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We provide new methods of computing multi-valued solutions to the Euler-Poisson system and test
them in the context of a klystron amplifier. An Eulerian formulation capable of computing multi-
valued solutions is derived from a kinetic description of the Euler-Poisson system and a moment
closure. The system of the moment equations may be closed due to the special structure of the
solution in phase space. The Eulerian moment equations are computed for a velocity modulated
electron beam, which has been shown by prior Lagrangian theories to break in a finite time and
form multi-valued solutions. The results of the Eulerian moment equations are compared to direct
computation of the kinetic equations, a Lagrangian method also developed in the paper, and a prior
analytical theory for two cases. We use the Lagrangian formulation for the explicit computation of
wave breaking time and location for typical velocity modulation boundary conditions.

PACS numbers: 52.35.Mw, 52.35.Tc, 52.65.Ff, 84.40.Fe

I. INTRODUCTION

The phenomenon of wave breaking in systems de-
scribed by fluid equations is widely documented [1].
Different physical systems and their associated model
equations may require that their wave breaking events
be handled in different manners. Where the physics
of one system may dictate that a shock develops after
the wave breaking event, the physics of another system
may dictate that the formation of multi-valued solutions
is appropriate after the wave breaking event. Physi-
cal systems where multi-valued solutions may be appro-
priate include geometric optics, arrival time in seismic
imaging, semi-classical limits of the linear and nonlin-
ear Schrödinger equations, integrable systems (such as
the nonlinear Korteweg-de Vries equation) in the small
dispersion regimes, nonlinear plasma waves, stellar dy-
namics and galaxy formation, multi-lane traffic flows, and
electron overtaking in the electron beams of vacuum elec-
tronics devices. Direct Eulerian formulations of such sys-
tems based on the classical WKB analysis, which usually
introduces viscosity solutions, may fail when the physi-
cal solution is the one which becomes multi-valued after
wave breaking.

Recently, there has been a growing interest in devel-
oping an Eulerian framework for the computation of the
multi-valued solutions that arise in geometric optics [2–6]
and in the semi-classical limit of the Schrödinger equa-
tion [7–10]. An Eulerian method may be preferred over
a Lagrangian method since the former computes the nu-
merical solution of partial differential equations on a fixed
grid, while the latter may lose accuracy or need regrid-
ding as the rays expand.

In this paper we consider a system of Euler-Poisson
equations. The Euler-Poisson equations have applica-
tions to many physical problems including fluid dynam-

ics, plasma dynamics, gas dynamics, elasticity, gaseous
stars, quantum gravity, general relativity, rigid bodies,
and semiconductors. While it is known that for certain
initial conditions the solution of the Euler-Poisson system
can break [11], methods for computing its multi-valued
solutions using Eulerian methods have not been reported.

The main result of this paper is an Eulerian method for
solving the Euler-Poisson system that can capture multi-
valued solutions beyond wave breaking. The method is
based on a kinetic formulation and an exact moment clo-
sure. For comparison, we also give a Lagrangian formula-
tion which is solved analytically prior to wave breaking,
and numerically to include the multi-valued solutions.
An application of the method to a modulated electron
beam as found in a klystron amplifier is given and re-
sults of the methods are compared to an analytic theory
of the klystron by Lau et al. [12].

In Section II we describe the principle of operation for
a klystron amplifier, and we present an Euler-Poisson
model of the system. The Eulerian methods are devel-
oped in Section III. A kinetic formulation for the Euler-
Poisson system is given first, using the Vlasov-Poisson
system, which is then closed using an exact moment
closure to derive multi-phase equations in the physical
space. This is the main result of the paper. In Section
IV we present a Lagrangian formulation of the system.
Numerical examples comparing the methods are given
in Section V. Section VI discusses the computation of
breaking time and location. The paper is concluded in
Section VII. There are several supplemental appendices
providing details of numerical methods and analytical
computations.
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II. AN EULER-POISSON MODEL OF A
MODULATED ELECTRON BEAM

A wide variety of vacuum electronics devices constitute
a large fraction of today’s high power, high frequency
electromagnetic wave sources and amplifiers [13]. The
source of energy for amplification in a vacuum electron-
ics device is a high energy beam of electrons that inter-
acts with an electromagnetic wave. The class of vacuum
electronics devices known as “linear beam devices” use
electron beam velocity modulation to obtain amplified
electron beam current modulation, which is converted
into amplified electromagnetic radiation.

The simplest example of a linear beam device is a two-
cavity klystron [14]. The geometry of the two cavity
klystron is shown in Fig. 1. The basic components of
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FIG. 1: Two cavity klystron geometry. The signal on the
input cavity imparts a velocity modulation on the electron
beam, which is streaming from left to right in the figure. The
velocity modulation is converted to a beam current modula-
tion downstream, which induces an amplified version of the
input signal in the output cavity.

the device are an input cavity, an output cavity, and an
electron beam. The cavities are resonant electromagnetic
cavities whose resonant frequencies are equal to the op-
erational frequency of the amplifier. The electron beam
is passed through the input cavity where it experiences
the electric field of the cavity “gap,” and subsequently
passes through the output cavity where it induces elec-
tromagnetic fields in the output cavity. The radio fre-
quency (RF) signal injected into the input cavity results
in a time-varying electric field in the input cavity gap.
As the electron beam passes through the gap the time-
varying gap electric field imparts a “modulation” on the
electrons in the beam. In particular, an electron is ac-
celerated or decelerated depending on the phase of the
gap electric field during the instant at which the electron
passes through the gap. As the “velocity modulation” is
carried by the dc beam velocity to the output cavity the
velocity modulation transforms to a beam density and
beam current modulation. Finally, as the current mod-
ulation passes through the output cavity it induces an
RF signal which is an amplified version of the input RF
signal. However, due to the nonlinear evolution of the
electron beam, the spectra of the beam current modu-

lation and the RF output signal are distorted from the
spectrum of the original RF input signal.

For strong enough input RF “drive,” some electrons
are sped up sufficiently such that they pass by, or “over-
take,” other electrons that were initially ahead of them
before they reach the output cavity. In a 1-dimensional
Eulerian description of the electron beam, a multi-valued
velocity function is required to describe the electron
beam behavior when the beam has experienced “over-
taking.”

To simplify our analysis we model a 1-d velocity mod-
ulated electron beam and for the time being ignore cou-
pling of the beam current to an output cavity. Required
for the model are a charge conservation equation, a mo-
mentum balance equation (Newton’s law) where the force
on electrons is due to the internal “Coulomb repulsion,”
or “space charge” electric field, and Gauss’ law to de-
termine the evolution of the space charge electric field.
The governing equations are the following Euler-Poisson
system [12]























∂

∂t
ρ +

∂

∂z
(ρu) = 0

∂

∂t
(ρu) +

∂

∂z
(ρu2) = e

me
RscEρ

∂E

∂z
= ρ−ρ0

ε0

(1)

subject to the boundary conditions






ρ(0, t) = ρ0,

u(0, t) = u0 + u0
ε(t)
2 ,

E(0, t) = 0,

where ρ(z, t) is the electron beam charge density, u(z, t) is
the electron beam velocity, and E(z, t) is the space charge
electric field. The function ε(t) represents an arbitrary
time dependent modulation of the electron beam velocity
at location z = 0. The “space charge reduction factor”
Rsc accounts for the finite radius of the electron beam
by reducing the accelerating electric field an electron ex-
periences [14][22]. The variables e, me, and ε0 represent
electron charge, electron mass, and permittivity of free
space, respectively. The dc beam charge density ρ0 and
dc beam velocity u0 are determined by the dc beam cur-
rent, dc beam voltage, and beam radius (see Section V).

In order to make our formulation more generic, and
the numerical procedures more convenient and effective,
we choose the following characteristic quantities

Z = L, U = u0, T =
Z

U
, D = ρ0,

where L is the klystron length (see Section V), and define
the non-dimensional variables

z∗ =
z

Z
, u∗ =

u

U
, t∗ =

t

T
, ρ∗ =

ρ

D
, E∗ =

ε0E

ZD
.

One arrives at the re-scaled equations






∂
∂tρ + ∂

∂z (ρu) = 0,
∂
∂t (ρu) + ∂

∂z (ρu2) = R̂scρE,
∂E
∂z = ρ − 1.

(2)
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with

R̂sc =
eZDT

meε0U
Rsc = ω2

p T 2Rsc (3)

and the boundary conditions

ρ(z = 0, t) = ρ0(t) = 1, u(z = 0, t) = u0(t) = 1 +
ε(t)

2

where the normalized star (∗) notation has been dropped.
A case of general interest in klystrons is

u0(t) = 1 +
1

2

∑

n

εn sin(ωnT t + θn). (4)

In this case, we will normalize the frequency ωn to ωnT
so that the scaling factor T will not appear in deriva-
tions. The term ωp introduced in Eq. (3) is the plasma
frequency [14]. Finally, we would point out that our anal-
ysis and numerical methods are not restricted to a con-
stant input density ρ0(t) = 1. We will use the notation
ρ0(t) or ρ0 to represent a generic density boundary con-
dition, even though all the numerical results are carried
out for ρ0 = 1.

III. EULERIAN METHODS

A. A kinetic approach

It is known that the solution of the Euler-Poisson sys-
tem can break in finite time [11], and that the density
ρ(z, t) will display the concentration effect (usually called
a δ-shock), whereas the velocity will develop a shock pro-
file. After the solution breaks, there are different ways to
interpret the solution. Conventionally the solution is ob-
tained in the limit of zero viscosity. Numerical evidence
shows that this allows shock propagation. However, in
some circumstances, such as a modulated electron beam,
one expects the “overtaking” phenomena, i.e., the solu-
tion of the Euler-Poisson system becomes multi-valued.

To interpret the multi-valued solutions of the Euler-
Poisson equations, we propose the following so-called
Vlasov-Poisson equations for the kinetic distribu-
tion w(z, v, t),















wt + vwz + R̂scE(z, t)wv = 0,

∂
∂z E =

∫

R+

w(z, v, t)dv − 1,

(z, v, t) ∈ R × R
+ × R

+,
(5)

with the boundary value,

w(0, v, t) = ρ0(t)δ(v − u0(t)). (6)

In order to make the connection to the Euler-Poisson
equations we define,

ρ =

∫

R+

w(z, v, t)dv, I =

∫

R+

w(z, v, t)vdv

as charge density and current density functions. If one
assumes that the solution to Eqs. (5) remains as a delta
function (as will be justified for the single phase case),
i.e.,

w(z, v, t) = ρ(z, t)δ(v − u(z, t)),

one can multiply the Vlasov-Poisson equations by 1 and
v, integrate with respect to v and obtain the Euler-
Poisson equations (2). This indicates the equivalence of
the Vlasov-Poisson equations and the Euler-Poisson sys-
tem when the solution is single-valued. As the solution
becomes multi-valued, the introduction of the phase vari-
able v naturally incorporates all of the possible values in
the solution.

To solve Eqs. (5), we define its “bicharacteristic
curves”

(

s, t(v0, t0; s), v(v0, t0; s)
)

,















d

ds
t = 1/v, t = t0 at s = 0,

d

ds
v = R̂scE/v, v = v0 at s = 0,

z = s.

(7)

Equations (7) define a mapping

(v0, t0) ∈ R
+ × R

+ → (v, t) ∈ R
+ × R

+.

We assume that this mapping is smooth. This is not a
mathematically rigorous result. It has not been proven
true mathematically for general initial or boundary value
problems of the Vlasov-Poisson system (5). However, for
the numerical examples given in this paper, this assump-
tion seems valid based on the numerical evidence given
in Section V.

To check the invertibility of the mapping we consider
the associated Jacobian,

∆ = det

(

∂(v, t)

∂(v0, t0)

)

.

By direct differentiation one can verify that

d

ds
(v∆) = 0. (8)

In light of the initial conditions we get from Eq. (8)

∆(v0, t0; s) = v0/v(v0, t0; s). (9)

Since we only consider cases when v(v0, t0; s) > 0, Eq. (9)
implies that the mapping (v0, t0) → (v, t) is invertible.
We use

(

t0(v, t; s), v0(v, t; s)
)

to represent the inverse
transform.

Simple computation using (5) shows that

d

ds
w(s, v(v0, t0; s), t(v0, t0; s)) = 0.

Therefore along the bicharacteristic curves the solution
of (5) remains invariant,

w(z, v, t) = w(0, v0(v, t; z), t0(v, t; z)),

= ρ0(t0(v, t; z))δ(Φzt(v)),
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with

Φzt(v) = v0(v, t; z) − u0(t0(v, t; z)). (10)

If the kernel of Φzt(v) {v : Φzt(v) = 0} has finitely
many elements {uk, k = 1, 2, · · · , N(z, t)}, then δ(Φzt(v))
can be split up and the solution of Eqs. (5) can be written
as

w(z, v, t) =

N
∑

k=1

ρkδ(v − uk), ρk = ρ0|Φ′
zt(uk)|−1. (11)

This form of the solution will be used to close the mo-
ment system of the Euler-Poisson equations (5), just as
the local Maxwellian closes the moment system of the
Boltzmann equation. This linear superposition was ob-
tained first for the linear Vlasov equation where the po-
tential is independent of the solution (external potential)
in Refs. [8, 15].

One can verify that each pair (ρk, uk) given above sat-
isfies the Euler-Poisson system. This was proved for the
linear Vlasov equation in Ref. [8] and the same argument
holds here. Therefore, the kinetic formulation provides
a way to recover the multi-valued solutions to the Euler-
Poisson system.

Meanwhile, as the solution becomes multi-valued, we
have,

ρ =

∫

w(x, v, t)dv =

N
∑

k=1

ρk,

I =

∫

w(x, v, t)vdv =

N
∑

k=1

ρkuk.

Namely, the charge density and current density comply
with the linear superposition principle even though each
individual phase is governed by a nonlinear system.

Figure 2 provides an illustration of the evolution in z
of a constant w(z, v, t) curve for which the solution in the
physical space becomes three phased.

B. Multi-phase equations in the physical space

The kinetic equation can certainly be solved via stan-
dard finite difference discretization using the upwind
scheme or a particle method. However, computations
based on the discretization of phase space or a collec-
tion of interacting particles can be very expensive, es-
pecially when one attempts to achieve good resolution.
We thus aim at establishing a system defined only in the
physical space to describe the multi-phase phenomena.
This technique is motivated by the kinetic theory of gas
dynamics and is usually called kinetic moment closure
[16–18]. Unlike the usual moment closure for a general
kinetic (Boltzmann) equation, which uses an ad hoc form
of density distribution and therefore obtains an approx-
imate moment system, here we have obtained the exact

moment closure using Eq. (11).

FIG. 2: Illustration of evolution in z of a constant w(z, v, t)
curve for which the solution in the physical space becomes
three phased.

We first define the moments of the Vlasov-Poisson
equation,

ml =

∫

R+

w(z, v, t)vldv, l = 0, 1, · · · , 2N. (12)

Then taking moments of Eqs. (5) one gets,

∂
∂tm0 + ∂

∂z m1 = 0,
∂
∂tm1 + ∂

∂z m2 = R̂scm0E,
· · · + · · · = · · · ,

∂
∂tm2N−1 + ∂

∂z m2N = (2N − 1)R̂scm2N−2E ,

∂E
∂z =

N
∑

k=1

ρk − 1.

(13)

In order to close this system, and to be able to advance
the system in the z direction, we need to represent m0

in terms of (m1, m2, · · · , m2N ). From Eq. (11) one can
express the moments in terms of (ρk, uk)’s:

ml =

N
∑

k=1

ρkul
k, l = 1, 2, · · · , 2N,

and therefore we have a mapping from (ρk, uk)’s to
(m1, m2, · · · , m2N ). It has been shown [8] that if the ρk’s
are positive and the uk’s are distinct, then the mapping
is invertible. Therefore, when the number of physical
phases N is finite the system can be closed exactly.

For the examples we will present in Section V we have
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N = 3. We define,

p1 = u1 + u2 + u3 (14)

=
m6m2

2 − m6m3m1 + m5m4m1 − m5m2m3 + m4m2
3 − m2m2

4

m5m2
2 − m5m3m1 + m2

4m1 − 2m2m3m4 + m3
3

, (15)

p2 = u1u2 + u1u3 + u2u3 (16)

= −

m6m4m1 − m6m3m2 + m5m2
3 − m2

5m1 + m5m4m2 − m3m2
4

m5m2
2 − m5m3m1 + m2

4m1 − 2m2m3m4 + m3
3

,(17)

p3 = u1u2u3 (18)

= −

m6m2m4 − m6m2
3 − m2

5m2 + 2m5m4m3 − m2
5m2 − m3

4

m5m2
2 − m5m3m1 + m2

4m1 − 2m2m3m4 + m3
3

. (19)

Then m0 can be expressed as

m0 = (m3 − p1m2 + p2m1)/p3.

The first six equations of Eqs. (13) are closed in this
manner. For N = 2, one can define,

p1 =
m4m1 − m2m3

m1m3 − m2
2

,

p2 =
m2m4 − m2

3

m1m3 − m2
2

.

Then m0 = (−m2+p1m1)/p2 and the first four equations
are closed. In the case N = 1 the first two equations of
the system Eqs. (13) are reduced to the original Euler-
Poisson system. One can also define functions,

φ1 = m1m3 − m2
2,

φ2 = −m5m
2
2 + m5m3m1 − m2

4m1 + 2m2m3m4 − m3
3,

as indicators to identify the number of phases at the point
(z, t). Namely,

# of phases =







1, if φ1 = 0,
2, if φ1 > 0, φ2 = 0,
3, if φ2 > 0.

To use the multi-phase formulation one must assume
a maximum number of phases Nmax at the outset of the
calculation, and use indicator functions as above to mon-
itor the actual number of phases N in the solution [23].
When N is large one may not get an exact formula for
m0, but a numerical procedure can be used to obtain m0

approximately (see Ref. [8]).

IV. A LAGRANGIAN APPROACH

For comparison with the new Eulerian method of Sec-
tion III B and previous work, we next develop a La-
grangian formulation of Eqs. (2).

Upon entering the system at time t = t0 a fluid element
has the coordinates (z = 0, t = t0). The trajectory of the
fluid element may be parameterized by either (z, t(z, t0))
or (z(t, t0), t) where the different parameterizations lead
to two different sets of equations. Since we consider only
cases when the electrons are not reflected, i.e., ∂z/∂t > 0,
the inverse function theorem guarantees the equivalence

of the descriptions. In this section we consider the first
of the two suggested parameterizations.

We define

{

z = s,
t = t(s, ζ)

(20)

with

{ ∂t
∂s = 1

u , t(0, ζ) = ζ,
∂u
∂s = R̂scE

u , u(0, ζ) = u0(ζ).
(21)

By employing the derivative transformations the conti-
nuity equation in Lagrangian coordinates becomes

∂

∂s

(

ρu
∂t

∂ζ

)

= 0.

Hence,

I(s, ζ) = ρu =
ρ0(ζ)u0(ζ)

∣

∣

∣

∂t
∂ζ

∣

∣

∣

. (22)

The absolute value on the Jacobian ∂t/∂ζ is required by
the integral form of mass conservation. For systems that
exhibit wave breaking the absolute value is required since
the Jacobian changes sign. At the point of wave breaking
the Jacobian is zero and the current becomes infinite. At
this point Eq. (22) is not valid and an integral equation
is required.

In Eulerian coordinates the density is the superposi-
tion of each of the densities carried along each of the
characteristic curves, i.e.,

ρE(z, t) =
∑

{(s,ζ):t(s,ζ)=t,s=z}

ρL(s, ζ).

Gauss’ law for E must account for this superposition. A
numerical scheme for solving Eqs. (21) is given in Ap-
pendix A.

V. NUMERICAL RESULTS

In this section we present results for two cases to test
the validity of our formulations. We compare results from
the kinetic formulation (Section III A), the multi-phase
technique (Section III B), the Lagrangian method (Sec-
tion IV)–which will serve as the correct reference solu-
tion, and the theory of Lau et al. [12].

In our examples we consider ε(t) to be of the form [12]

ε(t) = ε1 sin(ω1t + θ1) + ε2 sin(ω2t + θ2).

The physical parameters and derived quantities used in
the examples are listed in Table I.
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TABLE I: Physical parameters and derived quantities for a
representative klystron design with nominal operating fre-
quency of 1 GHz. The value of Rsc is estimated from Fig. 9-3
in Ref. [14] for a fill factor of rb/a ≈ 0.3 and βerb ≈ 0.1. The
parameters are chosen so that the results may be compared
to those in Ref. [12].

Description Symbol Value
beam voltage V0 8.50 (kV)
beam current I0 0.25 (A)
beam radius rb 0.85 (mm)
klystron length L = λq/4 13.6 (cm)
space charge
reduction factor Rsc 0.01

dc beam velocity u0 =
q

2eV0
me

5.46 × 107 (m/s)

dc beam charge density ρ0 = I0
u0πr2

b

2.02 × 10−2 (C/m3)

plasma frequency ωp =
q

eρ0
meε0

2π × 109 (rad/s)

effective plasma
frequency ωq =

√
Rscωp 2π × 108 (rad/s)

plasma wavelength λp = 2πu0
ωp

5.43 (cm)

effective plasma

wavelength λq =
λp

√

Rsc
54.3 (cm)

A. Multi-phase, kinetic, and Lagrangian schemes

For comparison of the multi-phase, kinetic, and La-
grangian schemes we choose the velocity modulation
function ε(t)

ε(t) = ε1 sin(ω1T t), (23)

with ω1 = 2π × 109 (rad/s) and ε1 = 0.4 (i.e., ε2 = 0).
We first show the numerical solutions obtained by inte-

grating the Euler-Poisson equations (2) without account-
ing for multiple phases [Eqs. (13) with Nmax = 1]. In
Fig. 3 we plot the current I(z, t) solutions at different lo-
cations. The solution first develops a single peak and is
then smoothed out by the potential. This solution does
not allow “overtaking” and thus is not physically correct
[compare with Fig. 4].

The current waveforms at z = 1.0 predicted by the
methods presented in this paper are shown in Fig. 4.
The methods include solving directly the Vlasov-Poisson
system with ∆z = 5×10−5, ∆t = 4∆z, ∆v = ∆z, solving
the moment system with ∆z = 5 × 10−3, ∆t = 2∆z,
and solving the Lagrangian equations with ∆z = 5 ×
10−3, ∆t = 2∆z via the method developed in Appendix
A. Using the analysis of Section VI we determined that
there are three phases in the multi-phase region.

The numerical computations of the current display
similar structure. However, the Eulerian methods – both
the kinetic and the moment methods – display smooth
transitions across phase boundaries, whereas the La-
grangian method shows discontinuous transitions. The
discrepancy lies in the fact that the Eulerian methods use
numerical viscosity, which smears out the discontinuity
as in any standard shock capturing scheme. In the kinetic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t

-2

0

2

4

6

8

10

12

14

I(
z,

t)

z=0.2
z=0.5
z=1.0

FIG. 3: The current solutions at different locations obtained
from the Euler-Poisson system when only accounting for a
single phase in the solution (i.e., Nmax = 1). The solutions
are displayed for two periods: t ∈ (0, 0.8].

0 0.2 0.4 0.6 0.8
t

0

2

4

6

I(
z=

1.
0,

t)
Lagrangian
Multi-phase
Kinetic

FIG. 4: The current waveforms at z = 1.0 predicted by the
kinetic formulation, the multi-phase formulation, and the La-
grangian formulation. The solutions are displayed for two
periods: t ∈ (0, 0.8].

computation, a narrow Gaussian is used to represent the
delta function boundary data, as described in Appendix
A, which could further smooth out the the discontinuity.
The peaks in the current waveform are theoretically of
infinite height; however, due to numerical resolution of
the methods they have finite amplitudes in the Eulerian
solutions.

To further illustrate the existence of the multi-valued
solutions in Eulerian coordinates, we plot the multi-
valued velocity profile (u1, u2, u3) obtained from the
moment system (13) together with the algebraic equa-
tions (14)–(19), as well as the Lagrangian solutions in
Figs. 5(a)–5(c). The velocities produced by these two
methods are in good agreement, and the large multi-
phase region of the velocity solution is clearly evident.
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As the number of phases change u1(or u3) and u2 ap-
proach each other and the system (14)–(19) becomes ill-
conditioned. This fact accounts for the jumps in u3 at
the phase boundary seen in Figs. 5(a)–5(c). This is of lit-
tle concern since the values at the jump are disregarded,
as in any shock computation.

Among the three numerical methods, the multi-phase
method is the most computationally efficient. For N grid
points in the z and t directions the computational com-
plexity is of order O(N2) for the multi-phase method.
Solving the kinetic Vlasov-Poisson equations by finite
difference methods are often O(N 3) because of the addi-
tional phase-space dimension. Another difficulty in solv-
ing the kinetic equation is due to the irregularity of the
solution, i.e., the presence of delta functions. Although
one can replace delta functions by smoother functions,
such as Gaussian distributions with narrow width, the
numerical grid size must decrease as the width decreases.
The development of an efficient coupling of the moment
system and the kinetic equations is currently in progress.
The Lagrangian method, along with the Finite Fourier
method, offers the best resolution for a given mesh size.
However, the evaluation of the Fourier integrals can lead
to O(M × N2) cost, where M is the number of Fourier
modes. In fact, for the test problem in Section V B 2,
the Lagrangian method takes several days to finish on
a 1.8 GHz Gnu/Linux machine, while solving the mo-
ment system only takes several minutes. In addition, be-
cause of the presence of the peaks a very large number of
modes are required to represent the solutions. Therefore,
the numerical solution I(z, t) often displays spurious os-
cillations. Interestingly, since the trajectory t̂(z) is well
resolved in the Lagrangian method, it is preferable to
use Eq. (22) to compute the current once the trajectory
is obtained. A natural fix to speed up the Lagrangian
method would be to use a local basis in lieu of a Fourier
representation.

B. Comparison to existing theory

The klystron theory of Lau et al. [12] has been favor-
ably compared to certain experimental results for several
cases [19, 20]. Therefore, it is useful to compare results
from the methods in this paper to those in Ref. [12].
It is important to note that in Refs. [19, 20] a direct
experimental measurement of the time-dependent cur-
rent waveform was not available. Consequently, simula-
tion and experimental measurement comparisons were re-
stricted to comparisons of measured and predicted spec-
tra of the output RF signal. Moreover, in Refs. [19, 20],
the number of phases in the solutions were not quanti-
fied. As shown in this and the following section, the ex-
tent of multi-phase may have a strong effect on how well
a theory will match the measurements. In this section we
compare results from the various methods for two cases.
The first case represents a relatively strong input mod-
ulation with ε1 = 0.4, the same case that was analyzed
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FIG. 5: The multi-valued velocity profile (a) u1, (b) u2, and
(c) u3 and the Lagrangian velocity solution at location z =
1.0. The solutions are displayed for one period: t ∈ (0, 0.4].
The Lagrangian solution (t̂, v̂) has been converted into this
interval using the periodic properties of the solution.



8

in Section V A. As shown later, the solution to this case
has a significant amount of multi-phase, and therefore
differences may be expected in the predictions of differ-
ing models, depending on what factors limit the accuracy
of the individual models. For this case, we directly com-
pare the complete time-varying beam current, in contrast
to the radiation spectrum basis of comparison used be-
tween simulation and experiment in Refs. [19, 20]. We
have observed that this time-varying current is a sensitive
indicator of the accuracy of a model at capturing multi-
phase characteristics. The second comparison represents
a case where the input signal contains two frequencies, ω1

and ω2 which is the same basis of model-to-experiment
comparison used in Refs. [19, 20]. Moreover, in this case
we select a comparatively weak input modulation, with
ε1 = ε2 = 0.1, identical to the conditions used in the
simulation-experiment comparisons of Refs. [19, 20]. Fi-
nally, as done in Refs. [19, 20], we adopt the output radi-
ation spectrum as the basis of comparison. In this case,
we show that it is not possible to discern differences be-
tween different model solutions or between model and
experimental measurements. In Section VI, we will show
that this is a direct result of the fact that for these con-
ditions, the extent of multi-phase is very small, so that
comparisons or validations for these conditions are not
particularly discriminating.

1. Single frequency input

First we consider again the example of Section V A. In
Fig. 6 we compare the output current computed by the
analytic solution of Ref. [12] and the Lagrangian method
of this paper. The analytic solution of Lau et al. is seen
to deviate from the Lagrangian method in that it has
narrower multi-phase zones.

0 0.2 0.4 0.6 0.8
t

0

2

4

6

I(
z=

1.
0,

t)

Lagrangian
Ref. 12

FIG. 6: The current waveforms at z = 1.0 predicted by the
Lagrangian formulation and Eq. (C6) of Ref. [12]. The solu-
tions are displayed for two periods: t ∈ (0, 0.8].

For an alternate view of the discrepancies in Fig. 6 we
compare characteristic curves from the analytic solution

in Eq. (B17) to those computed by numerical solution of
the Lagrangian system in Fig. 7. One can see that the
deviation of the solutions becomes substantial after char-
acteristics have crossed (about z = 0.5). For these pa-
rameters the characteristics predicted by Eq. (B17) ver-
sus those predicted by the theory of Ref. [12] [repeated
in Eq. (B16) of the present paper] are indistinguishable.
However, neither Eq. (B17), Eq. (B16), nor the result of
Ref. [12] are valid beyond wave breaking since they do
not account for the absolute value of the Jacobian in the
denominator of Eq. (B3).

0 0.2 0.4 0.6 0.8 1
z

0

0.5

1

1.5

2

t

Lagrangian solution
Eq. (B17)

FIG. 7: Two periods of characteristic curves (arrival time
as a function of position) predicted by numerical solution of
the Lagrangian formulation (Section A2) and the analytic for-
mula in Eq. (B17). The characteristics in the magnified boxes
illustrate that the characteristic curves of the Lagrangian sim-
ulation and the analytic theory agree prior to wave break-
ing (prior to crossing characteristics), but deviate after wave
breaking (after characteristics have crossed).

To further contrast our results to that of Ref. [12], we
provide here details of where Ref. [12] is in error. As
mentioned above the error of Ref. [12] is the neglect of
an absolute value sign on the Jacobian in the Lagrangian
continuity equation. In particular, in Appendix A of
Ref. [12] the Lagrangian continuity equation Eq. (L-A6)
(for clarity equation numbers from Ref. [12] will be pre-
ceded by an “L”) does not have the absolute value sign
on the Jacobian [compare Eq. (L-A6) to Eq. (B3) of the
present paper]. It is precisely this fact that allows for
the derivation of the harmonic oscillator equation for the
beam displacement, Eq. (L-A13), and the analytic re-
sults which follow, e.g., the beam displacement function
(L-5) and the beam current (L-C6). Since our numer-
ical solution to the Lagrangian equations accounts for
the absolute value when computing the characteristics we
claim that it is the correct solution to the Euler-Poisson
equations when the solution becomes multi-valued. Note
that the ballistic limit (ωp = 0) of the theory in Ref. [12]
[e.g. Eq. (L-C6)] is correct since in this case the abso-
lute value sign does not enter into the calculation of the
characteristics.
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Another publication by the same authors [21] consid-
ers explicitly the issue of electron overtaking. It is im-
portant to note that we agree with all of the calculations
performed in Ref. [21]. However, the choice of Eq. (7) in
Ref. [21] as the equation determining the beam character-
istics when accounting for space charge again implicitly
neglects the absolute value sign from the Jacobian as de-
scribed above.

Lastly, in Appendix B of the present paper we de-
scribe a calculation that is very similar to the calcula-
tions in Appendix A of Ref. [12]. In this calculation we
too omit the absolute value sign in order to make ana-
lytic progress that is valid prior to wave breaking. In our
calculations we find additional terms that were neglected
in Ref. [12]. However, for the parameters in this section
these additional terms appear to be very small, i.e., the
characteristics predicted by Eq. (B16) and Eq. (B17) are
indistinguishable.

2. Two frequency input

A case of considerable interest in klystrons is when the
input signal contains more than one frequency. For such
an input signal the electron beam nonlinearity produces
additional spectral components (so called intermodula-
tion products) in the beam modulation, and hence in the
RF output signal. For such input modulations the theory
of Lau et al. [12] has been compared to experiments with
remarkable agreement [19, 20]. We test our formulations
on such an input spectrum and compare our results to
those computed in Ref. [12].

We have the velocity modulation function ε(t)

ε(t) = ε1 sin(ω1T t) + ε2 sin(ω2T t), (24)

with ε1 = ε2 = 0.1, ω1 = 2π1.003 × 109rad/s, ω2 =
2π1.007 × 109rad/s. The beam spectrum at z = 1.0 is
shown in Fig. 8. The spectral components are the Fourier
coefficients of the current at z = 1.0, computed from the
multi-phase equations.

The fact that the two predictions shown in Fig. 8 agree
so well is due to the fact the multi-phase region for this
case is very small. In Section VI we provide a method for
quantifying the size of the multi-phase region, and show
that it is very small for this case. We did not compute
an analogous case with a large ε1 since the benchmark
Lagrangian solution, with its current numerical imple-
mentation, is prohibitively expensive for these frequency
spacings.

VI. BREAKING TIME AND LOCATION

In this section we develop tools for studying wave
breaking time and location based on the alternative La-
grangian formulation given in Appendix B. This is of
relevance as one chooses the physical parameters as well
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 (
I n/I 0)
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Data from Ref. 12

FIG. 8: Output spectrum due to input modulation in
Eq. (24). Included are the third order (999, 1011) and fifth or-
der (995, 1015) intermodulation products. Shown are results
from the multi-phase formulation and data from Ref. [12].

as the computational domain to observe multi-phase phe-
nomena. Similar results are obtained in Ref. [11] for ini-
tial value problems.

In Appendix B we derive the following expression for
the Jacobian of the alternate Lagrangian coordinates
[Eq. (B14)]

∂z

∂ζ
=

1
√

R̂sc

d

dζ
u0(ζ) sin

√

R̂sc (τ − ζ) − u0(ζ)

which is only valid prior to wave breaking. To find the
critical time at which the solution breaks, we set ∂z/∂ζ
equal to zero

√

R̂sc
u0(ζ)
d
dζ u0(ζ)

= sin

√

R̂sc (τ − ζ), (25)

and determine conditions for which Eq. (25) has solu-
tions. Equation (25) is solvable as long as the value of
left hand side is between −1 and 1.

For the case of a modulation with a single frequency
Eq. (25) becomes

sin

√

R̂sc(τ − ζ) =
2
√

R̂sc

ε1ω1

1 + ε1
2 sin(ω1ζ)

cos(ω1ζ)
. (26)

Since for ε1 ≤ 2

min
ζ

1 + 1
2ε1 sin(ω1ζ)

| cos(ω1ζ)| =

√

1 − ε21
4

,

a necessary condition for Eq. (26) to have solutions is

ω1ε1

2
√

R̂sc

≥
√

1 − ε21
4

. (27)

If Eq. (26) is satisfied, then at least two characteristic
curves will cross at time τ . The multiple values of ζ can
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be solved from Eq. (26). These calculations can also be
carried out for the general boundary condition given in
Eq. (4).

A direct way to see whether a solution is multi-valued
is to plot the left hand side of Eq. (25). For parameters
where the value is between −1 and 1 multi-phase phe-
nomena is ensured. For the parameters of Sections V A
and V B 1 the left hand side of Eq. (25) is shown in Fig. 9.
Since the left hand side takes values between −1 and 1
the solutions become multi-valued in part of the domain.
One can show using Eq. (26) that for these parameters
the number of phases in the multi-phase solution is three.
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FIG. 9: The left hand side of Eq. (25) illustrating multi-phase
content in the current waveform. The fluid elements labeled
by ζ where the left hand side of Eq. (25) is between -1 and 1
will enter the multi-phase region.

For the parameters of Section V B 2 we plot the left
hand side of Eq. (25) in Fig. 10. This illustrates that for
these parameters the solutions are multi-valued. How-
ever, the multi-valued regions are tiny, which may illus-
trate why our numerical results, unlike the single fre-
quency input example, agree with the data of Lau et al.

VII. CONCLUSIONS

In this paper, we develop an Eulerian technique to
simulate multi-phase phenomena for electron beam wave
breaking in a modulated electron beam. The basic phys-
ical model is the Euler-Poisson system. We provide three
methods of solving the Euler-Poisson system (2) that are
valid when the solutions are multi-valued: a kinetic for-
mulation, a multi-phase Eulerian formulation, and a La-
grangian formulation. We compare the methods with
each other and with the analytic theory of Ref. [12] for a
modulated electron beam. For the case when the input
modulation contains a single frequency, the three meth-
ods are seen to agree with each other, while differing
somewhat from the analytic theory in Ref. [12]. The
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FIG. 10: The left hand side of Eq. (25) for two frequency
input. The figure illustrates that there is multi-phase content
in the current waveform. The fluid elements labeled by ζ
where the left hand side of Eq. (25) is between -1 and 1 will
enter the multi-phase region.

multi-valued structure of the current is confirmed by the
multi-phase Eulerian technique as well as the Lagrangian
technique. For an input modulation with two frequen-
cies the output current spectrum is computed. In this
case the multi-valued region is almost negligible, and the
multi-phase method is in agreement with the theory of
Ref. [12].
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J.G. Wöhlbier and J.H. Booske gratefully acknowledge
support in part by AFOSR Grant 49620-00-1-0088and by
DUSD (S&T) under the Innovative Microwave Vacuum
Electronics Multidisciplinary University Research Initia-
tive (MURI) program, managed by the United States Air
Force Office of Scientific Research under Grant F49620-
99-1-0297.

S. Jin gratefully acknowledges support in part by the
National Science Foundation, Grant DMS-0196106.

APPENDIX A: NUMERICAL SCHEMES

1. Kinetic scheme for the multi-phase system

In this section we briefly present the numerical meth-
ods we use to solve the multi-phase system (13). The
schemes are called kinetic schemes, which were devel-
oped in Ref. [8] for multi-phase moment equations. The
method consists of a transport step through the kinetic
equation and a projection into the equilibrium state in
Eq. (11). See Ref. [8] for details.



11

We first give a direct scheme to solve the kinetic equa-
tion, and this scheme will induce a “kinetic scheme” for
the moment system. Since we restrict our phase variable
v to be positive, we can simply use upwind scheme to
solve the kinetic equation,

wn
j,k − wn−1

j,k

∆t
+ vk

wn
j+1,k − wn

j,k

∆z
+ R̂scE

n
j wv = 0. (A1)

Here wn
j,k = w(zj , vk.tn). Note that since we update the

solution values in the z direction, the upwind difference
is done in the t derivative. The discretization of the v
derivative depends on the sign of E. For instance, one
may use,

wv =

{

wn
j,k−wn

j,k−1

∆v , if En
j > 0,

wn
j,k+1−wn

j,k

∆v , if En
j ≤ 0.

The electric field En
j can be obtained by simple finite

difference, for example,

En
j+1 − En

j

∆z
= ρn

j .

To improve the accuracy of the above schemes non-
oscillatory second order schemes can be introduced fol-
lowing Ref. [8].

Because of the presence of delta functions in the so-
lution, we need to smooth out the singularities in order
for the point-wise values to make sense. In practice, a
Gaussian distribution is usually used. For example, the
boundary condition (6) can be replaced by,

w(0, v, t) = ρ0(t) exp−(v−u0(t))2/ε /
√

2πε,

with ε as a small parameter. We also take the grid size
to be smaller than ε to resolve the small width. For this
reason, particle methods, which are similar to our La-
grangian method, are suitable for the problem. We have
found that a particle method offers a substantial advan-
tage over solving the kinetic equation by finite differenc-
ing, but is still four to five times more expensive than
our Lagrangian method. For example, for the problem
of Section V B2 the Lagrangian method requires several
days of computation, the particle method requires more
than ten days of computation, and solving the kinetic
equation by finite differencing requires about four weeks
of computation on a 1.8 GHz Gnu/Linux PC. Since our
purpose of solving the kinetic equation is to numerically
verify the multi-phase approach, we will not discuss this
issue further.

In order to get a numerical method for the moment
system, one can simply integrate (A1) with respect to
v and use the closure ansatz (III B). Since all of the
waves are going to the right in the context of the klystron,
the kinetic scheme is reduced to an upwind procedure.
Namely,

ml(zk, tn) − ml(zk, tn−1)

∆t
+

ml+1(zk+1, tn) − ml+1(zk, tn)

∆x

= (l − 1)R̂scml−1(zk, tn)E(zk, tn),

(A2)

for l = 0, 1, · · · . The potential is obtained from inte-
gration of m0. Periodic conditions are imposed in the t
direction and the numerical methods can be advanced in
the z direction up to z = L.

2. Finite difference scheme for the Lagrangian
system

In this section, we present a numerical procedure that
solves the Lagrangian equations (21). The novelty of
this approach is that one can easily switch to Eulerian
coordinates to solve the electric field E(z, t).

First we define the characteristic curves of the Euler-
Poisson system,

(

ẑ, t̂(t0; s), v̂(t0; s)
)

,















d

ds
t̂ = 1/v̂, t = t0 at s = 0,

d

ds
v̂ = R̂scE/v̂, v = u0(t0) at s = 0,

ẑ = s.

(A3)

Equations (7) may be projected to Eqs. (A3) by forcing
v0 = u0(t0). This fact will be used in the following com-
putation. Notice that Eqs. (A3) are the same as Eqs. (20)
and (21); however, we use a different notation here to
make the connection between Eqs. (A3) and Eqs. (7).

The characteristic curves of Euler-Poisson system may
experience crossing which indicates the appearance of
multi-phase solutions as we have seen in Section VI.
However the bicharacteristic curves of the kinetic equa-
tion (5) will never cross since the Jacobian of Eq. 9 is
always non-zero. This is essentially why the kinetic ap-
proach is capable of unfolding the multi-valued solutions.

Secondly we represent the density ρ(z, t) in Eulerian
coordinates by a Fourier series,

ρ(z, t) =
∑

n

ρ̃n(z)eiω0nt. (A4)

The coefficients ρ̃n can be determined by the integral,

ρ̃n =
ω0

2π

∫ 2π/ω0

0

e−iω0ntρ(z, t)dt.

The electric field can also be represented by a Fourier
series,

E(z, t) =
∑

n

Ẽn(z)einω0t, (A5)

and

∂Ẽn

∂z
(z) = ρ̃n(z) − δn, (A6)

where δn = 1 if n = 0 and 0 otherwise. Notice that
Ẽ0 ≡ 0.
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We now derive a formula to compute these Fourier co-
efficients with the aid of the kinetic distribution w(z, v, t),

ρ̃n =
ω0

2π

∫ 2π
ω0

0

∫

R+

e−iω0ntw(z, v, t)dvdt

=
ω0

2π

∫ 2π
ω0

0

∫

R+

e−inω0t(v0,t0;z)w(0, v0, t0)∆dv0dt0

=
ω0

2π

∫ 2π
ω0

0

∫

R+

e−inω0t(v0,t0;z)ρ0δ(v0 − u0(t0))∆dv0dt0,

=
ω0

2π

∫ 2π
ω0

0

e−inω0 t̂(t0;z)I0(t0)/v̂(t0; z)dt0 (A7)

In the above computations we made a transformation
from (v, t) coordinates to (v0, t0) coordinates using the
Jacobian in Eq. (9), we have used the projection from
Eqs. (7) to Eqs. (A3) which is realized by the delta func-
tion, and we have used the fact that the initial current
I0(t0) = ρ0(t0)u

0(t0).
Finally we can build a numerical procedure. Within

one loop t ∈ [z, z + ∆z) we use a second order Runge
Kutta method,

1. solve (A3) for a half step,

t̂(t0, z +
1

2
∆z) = t̂(t0; z) +

1

2
∆z/v̂(t0; z),

v̂(t0, z +
1

2
∆z) = v̂(t0; z) +

1

2
∆zR̂scE(t̂(t0; z), z)/v̂(t0; z),

2. use the formula (A7) and trapezoidal quadrature
to compute ρ̃n(z),

3. Ẽn(z + 1
2∆z) = Ẽn(z) + 1

2∆z(ρ̃n(t, z) − δn),

4. use fast Fourier transform to compute E(t̂(t0; z +
1
2∆z), z + 1

2∆z) by (A5),

5. solve (A3) for the whole step,

t̂(t0, z + ∆z) = t̂(t0; z) + ∆z/v̂(t0; z + 1

2
∆z),

v̂(t0, z + ∆z) = v̂(t0; z)

+∆tR̂scE(t̂(t0; z + 1

2
∆z), z + 1

2
∆z)/v̂(t0; z + 1

2
∆z),

6. compute E(t̂(t0; z + ∆z), z + ∆z) as in previous
steps,

7. z = z + ∆z, go to 1 unless z = L.

Remark 1: The technique used in Eq. (A7) can be
easily applied to other quantities. For example, one can
make use of Fourier series and obtain the Fourier coeffi-
cients of the current,

Ĩ1(L, n) =
ω0

2π

∫ 2π/ω

0

e−inω0tm1(L, t)dt (A8)

=
ω0

2π

∫ 2π/ω0

0

e−inω0 t̂(t0;L)I(0, t0)dt0, (A9)

which has appeared in Ref. [12].
Remark 2: By replacing the Fourier mode in Eq. (A4)

with a delta distribution δ(t − tn), with tn as discrete
points on the t axis, one obtains the traditional particle
method. We have found that the Fourier method has bet-
ter performance than the particle method (see previous
section).

APPENDIX B: ALTERNATIVE LAGRANGIAN
COORDINATES

Next we introduce an alternative set of Lagrangian co-
ordinates. The resulting Lagrangian equations can be
analytically solved, where the solutions are only valid
prior to wave breaking. The resulting formulas allow us
to compute breaking times and locations.

Define the Lagrangian coordinates (τ, ζ) which are con-
nected to the Eulerian independent variables (z, t) by

{

z = z(τ, ζ)
t = τ

(B1)

with

{

∂z
∂τ = u, z(ζ, ζ) = 0
∂u
∂τ = R̂scE, u(0, ζ) = u0(ζ).

(B2)

By the definitions in Eq. (B1) and Eq. (B2) the La-
grangian coordinates (τ, ζ) are equivalent to the La-
grangian coordinates (t, t0) that one often sees in the
microwave device literature [12].

Using Eq. (B1) and Eq. (B2) one finds that the conti-
nuity equation in these Lagrangian coordinates is

∂

∂τ

(

∂z

∂ζ
ρ

)

= 0

which considering the boundary data has the solution

ρ(τ, ζ) =
ρ0(ζ)u0(ζ)

∣

∣

∣

∂z
∂ζ

∣

∣

∣

(B3)

where the absolute value sign on the Jacobian is required
by the integral form of mass conservation.

This Lagrangian formulation can be analytically
solved, but the solution only holds prior to wave break-
ing. We consider the case when the Jacobian is nega-
tive definite and we remove absolute value signs. For the
Euler-Poisson system in these Lagrangian coordinates we
have

∂2z

∂τ2
= R̂scE (B4)

ρ
∂z

∂ζ
= −ρ0(ζ)u0(ζ) (B5)

∂E

∂ζ
=

∂z

∂ζ
(ρ − 1). (B6)
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Define

X ≡ ∂z

∂ζ
(ρ − 1) (B7)

and use (B4)–(B6) to get

∂2X

∂τ2
+ R̂scX = 0. (B8)

The first of the two initial conditions required to solve
Eq. (B8) is

X(ζ, ζ) = u0(1 − ρ0). (B9)

Then notice that

∂X

∂τ
(ζ, ζ) = −∂u

∂ζ
(ζ, ζ) (B10)

and compute

∂u

∂ξ
(τ(ξ), ζ(ξ)) =

∂u

∂τ

∂τ

∂ξ
+

∂u

∂ζ

∂ζ

∂ξ
(B11)

on (τ, ζ) = (ξ, ξ). Since u(ζ, ζ) = u0(ζ) and E(ζ, ζ) =
E0(ζ) one gets

∂u

∂ζ
(τ, ζ) = R̂scE

0(ζ) +
du0

dζ
(ζ), on τ = ζ,

so

∂X

∂τ
(ζ, ζ) = −R̂scE

0(ζ) − du0

dζ
(ζ). (B12)

Finally, solving Eq. (B8) subject to the initial conditions
one has

X(τ, ζ) = u0(1 − ρ0) cos

√

R̂sc (τ − ζ)

− 1
√

R̂sc

[

R̂scE
0 +

du0

dζ

]

sin

√

R̂sc (τ − ζ). (B13)

In the remainder of the calculation we consider a uniform
input density so ρ0 = 1 and E0 = 0, and we get the
following expression for the Jacobian

∂z

∂ζ
=

1
√

R̂sc

du0

dζ
(ζ) sin

√

R̂sc (τ − ζ)

− u0(ζ). (B14)

The analytic solvability of Eq. (B14) depends on u0(ζ).
For the boundary data in Eq. (4), repeated here

u0(ζ) = 1 +
1

2

∑

n

εn sin(ωnζ + θn)

with the ωn normalized frequencies one gets

z(τ, ζ) = τ − ζ

+
∑

n

εnωn

2
√

R̂sc







cos
[(

ωn −
√

R̂sc

)

ζ +
√

R̂scτ + θn

]

2
(

√

R̂sc − ωn

)

+
cos

[(

ωn +
√

R̂sc

)

ζ −
√

R̂scτ + θn

]

2
(

√

R̂sc + ωn

)

−
√

R̂sc cos(ωnτ + θn)

R̂sc − ω2
n

}

+
1

2

∑

n

εn

ωn
[cos(ωnζ + θn) − cos(ωnτ + θn)] . (B15)

The theory of Ref. [12] gives for the position function
of a fluid element when ε(ζ) = ε1 sin(ω1ζ) [24]

z(τ, ζ) = τ − ζ +
ε1

2ωp
sin(ω1ζ) sin(ωp(τ − ζ))

(B16)

where we have introduced our notation and normaliza-
tions. Alternatively Eq. (B15) gives

z(τ, ζ) = τ − ζ

+
ε1ω1

2
√

R̂sc







cos
[(

ω1 −
√

R̂sc

)

ζ +
√

R̂scτ
]

2
(

√

R̂sc − ω1

)

+
cos

[(

ω1 +
√

R̂sc

)

ζ −
√

R̂scτ
]

2
(

√

R̂sc + ω1

)

−
√

R̂sc cos(ω1τ)

R̂sc − ω2
1

}

+
1

2

ε1
ω1

[cos(ω1ζ) − cos(ω1τ)] .

(B17)

To compare Eq. (B17) to Eq. (B16) set Rsc = 1, then

R̂sc = ω2
p and we use the trigonometric identities

cos(α + β) + cos(α − β) = 2 cos(α) cos(β),

cos(α + β) − cos(α − β) = −2 sin(α) sin(β),

to write Eq. (B17) as

z(τ, ζ) =
1

2

ω1ε1
ωp(ω2

1 − ω2
p)

[

ω1 sin(ωp(τ − ζ)) sin(ω1ζ)

−ωp cos(ωp(τ − ζ)) cos(ω1ζ) + ωp cos(ω1τ)
]

+τ − ζ +
ε1

2ω1

(

cos(ω1ζ) − cos(ω1τ)
)

. (B18)

For ωp � ω1 Eq. (B18) can be reduced to Eq. (B16).
For the parameters considered in this paper the results
of the two expressions are graphically indistinguishable.
Equations (B17), (B16), and the analogous result of
Ref. [12], do not apply beyond wave breaking since the
absolute value was removed from the Jacobian (B3) in
their derivation.
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