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Abstract. When using standard deterministic particle methods, point values of the computed
solutions have to be recovered from their singular particle approximations by using some smoothing
procedure. The choice of the smoothing procedure is rather flexible. Moreover, there is always a
parameter associated with the smoothing procedure: if this parameter is too large, the numerical
solution loses its accuracy; if it is too small, oscillation appears. No explicit formula has been given
on how to choose this parameter.

In this paper, we develop a particle method for the semiclassical limit of the Schrödinger equation
and the Vlasov-Poisson equations, in which we use the property of conservation of charge, which
was studied in [30], to construct the density. This method avoids the recovery step of the particle
methods, thus it is simpler and more accurate. In particular it gives more accurate field quantities.
Consequently, we apply this method to the Vlasov-Poisson equations, which yields more accurate
density and electric field in each time step. We carry out numerical experiments in both one and two
dimensions for the Schrödinger equation and Vlasov-Poisson equations to verify the method. Some
comparisons with other particle methods are also made.
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1. Introduction. In this paper, we propose a novel numerical method for the
Liouville equation

ft +Hξ · ∇xf −Hx · ∇ξf = 0 , t > 0, x, ξ ∈ Rd . (1.1)

The function f(t,x, ξ) is the density distribution of particles depending on position x,
time t and velocity ξ. The solution to this problem is a superposition of delta functions
of variable weight concentrating on the bi-characteristic strips of the equation which
is governed by the Hamiltonian system

∂x

dt
= ∇ξH ,

∂ξ

dt
= −∇xH , with H(x, ξ) =

1

2
|ξ|2 + V (x),

where V (x) is the potential function. The moments of f yield the physical ob-
servables, namely, density ρ(x, t) =

∫
Rd f(t,x,v)dv and momentum ρ(x, t)u(x, t) =∫

Rd f(t,x,v)vdv, where u(x, t) is the velocity.
We will also consider the Vlasov-Poisson equations which are just (1.1) with

potential V given by

∆xV =

∫
Rd

f(t,x,v)dv =: ρ(x, t) . (1.2)

Equation (1.1) provides a phase space description of the semiclassical limit of the
Schödinger equation [9, 19]:

i~∂tψ~ = −~2

2
∆ψ~ + V (x)ψ~, x ∈ Rd, (1.3)
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where ψ~ is the complex-valued wave function, ~ the reduced Planck constant. In this
setting, one typically considers the Schrödinger equation (1.3) with the WKB initial
data of the form ψ(x, 0) = A0(x) exp(iS0(x)/~) with smooth S0. In the semiclassical
limit ~ → 0, the Wigner transform of ψ is f that satisfies the Liouville equation (1.1)
with the mono-kinetic initial data:

f(0,x, ξ) = |A0(x)|2δ(ξ −∇xS0(x)) =: ρ0(x)δ(ξ −∇xS0(x)). (1.4)

The Vlasov-Poisson equations arise in semiconductor device modeling [23] and
plasma physics [18]. For mathematical analysis of this system see [2, 20, 31, 21, 22],
while for numerical methods see [11, 1, 8, 28, 29].

When one closes (1.1) and (1.4) with the moments–which give the density and
momentum of particles–the moment system satisfies the pressureless gas dynamics e-
quations, which develop delta-shock solutions in finite time, corresponding to caustics
in geometric optics. Beyond the caustics, only the multi-valued solutions are physical-
ly relevant [27, 12]. The computation of multi-valued solutions in geometrical optics
and semiclassical limit of the Schrödinger equation, using the Liouville equation (1.1)
in the Eulerian level set framework, has been an active area of research in recent
years, see for examples [24, 3, 17, 14]. Recent overviews of this subject can be found
in [7, 13].

We focus our attention on the Lagrangian particle methods. When using a particle
method, one has to recover the point values of the computational solutions from
their singular particle approximations which are the Dirac delta functions. The most
common approach is to approximate the Dirac delta function by its convolution with a
smooth kernel, see, e.g., [5, 26, 6]. For a comparison between the convolution recovery
and other redistribution recovery strategies, see [4]. In this paper, we propose a more
accurate recovery strategy. In [30], an analysis on the 1D Vlasov-Poisson equations
with electron sheet initial data used the following conservative quantity∫

Υ(0)

f(0,x, ξ)dξdx =

∫
Υ(t)

f(t,x, ξ)dξdx, ∀Υ(0) ⊂ R2d, ∀t, (1.5)

where

Υ(t) =

{
(x, ξ)(t,x0, ξ0)

∣∣∣∣dxds = ξ,
dξ

ds
= −∇xV,x(0) = x0, ξ(0) = ξ0, (x0, ξ0) ∈ Υ(0)

}
are the particle trajectories. We call (1.5) the conservation of charge. In this paper, we
propose to use this theoretical property to formulate a particle method. This method
allows one to get a more accurate density ρ, which is only a postprocessing for (1.1) of
course, but for equations with a field, such as the Vlasov-Poisson equations (1.1) and
(1.2), it provides a more accurate (time-dependent) potential–and consequently the
electric field E = −∇xV – at each time step, thus enhances the numerical accuracy
overall in long time.

In fact, our formulation allows us to treat more general initial data than (1.4). Let

C be a curve in the x-ξ space. Let C(α) =
{(
x(α), ξ(α)

)∣∣∣α ∈ Ω
}
be a parameterized

form of C. We first make the following definition:
Definition 1.1. The function ϑC(x, ξ) is a surface measure supported on the

curve C, defined by∫
R2

ψ(x, ξ)ϑC(x, ξ)dξdx =

∫
Ω

ψ
(
x(α), ξ(α)

)∣∣∣∣dC(α)dα

∣∣∣∣dα, ∀ψ ∈ C∞
0 (R2),
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where

∣∣∣∣dC(α)dα

∣∣∣∣dα =
√
x′(α)2 + ξ′(α)2dα is the infinitesimal arc length.

The initial data

f(0, x, ξ) = ρ0(x)
∣∣∣dC(x)
dx

∣∣∣−1

ϑC , (1.6)

is the so-called electron sheet initial data [21]. In the semiclassical limit problem,
f(0, x, ξ) = h(x, ξ)ϑC allows the initial data to be multi-valued, thus are more general
than the mono-kinetic initial data (1.4).

This paper is organized as follows. In section 2, we derive a formula of weak
solutions of the Liouville equations with singular (measure-valued) initial data (1.6).
In section 3, we describe a numerical density reconstruction method based on the
conservation of charge (1.5) for one, two and general space dimensions. In section
4, we extend the method to the Vlasov-Poisson equations. In section 5, 1D and 2D
numerical examples are given for the Liouville equation and Vlasov-Poisson equations,
and comparisons are made with classical particle methods. This paper is concluded
in section 6.

2. Weak solution of the Liouville equation with measure-valued initial
data. We construct weak solutions of the one-dimensional Liouville equations with
measure-valued initial data in section 2.1. Then we extend the result to the multi-
dimensional case.

2.1. One space dimension. Since Definition 1.1 will be used in our weak so-
lution formulation, we will first elaborate on this definition.

2.1.1. On Definition 1.1. Definition 1.1 is independent of the choice of the
parametrization α. Without loss of generality, we assume α ∈ Ω = (a, b). Let

C(β) =
{(
x̃(β), ξ̃(β)

)∣∣∣β ∈ (r, s)
}

be another parameterized form of C. Then there

exists a unique monotonic function g such that (x(g(β)), ξ(g(β))) = (x̃(β), ξ̃(β)).
Therefore ∫ b

a

ψ
(
x(α), ξ(α)

)√
x′(α)2 + ξ′(α)2dα

=

∫ g−1(b)

g−1(a)

ψ
(
x(g(β)), ξ(g(β))

)√
x′(g(β))2 + ξ′(g(β))2d(g(β))

=

∫ g−1(b)

g−1(a)

ψ
(
x̃(β), ξ̃(β)

)√
(x̃′(β)2 + ξ̃′(β)2)/g′(β)2g′(β)dβ

=

∫ g−1(b)

g−1(a)

sign(g′(β))ψ
(
x̃(β), ξ̃(β)

)√
(x̃′(β)2 + ξ̃′(β)2)dβ

=

∫ s

r

ψ
(
x̃(β), ξ̃(β)

)√
(x̃′(β)2 + ξ̃′(β)2)dβ.

Remark 2.1. The mono-kinetic initial data (1.4) is a special case (in the weak
sense) of the more general initial data (which allows the initial data to be multi-valued)

f(0, x, ξ) = ρ0(x)
∣∣∣dC(x)
dx

∣∣∣−1

ϑC , (2.1)

with

C(x) =
{(
x, ξ(x)

)
=

(
x,∇xS0(x)

)∣∣∣x ∈ (−∞,∞)
}
. (2.2)
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We verify it below: ∀ψ ∈ C∞
0 (R2),∫

R2

ψ(x, ξ)ρ0(x)δ(ξ −∇xS0(x))dξdx =

∫ ∞

−∞
ψ
(
x,∇xS0(x)

)
ρ0(x)dx,∫

R2

ψ(x, ξ)ρ0(x)
∣∣∣dC(x)
dx

∣∣∣−1

ϑCdξdx =

∫ ∞

−∞
ψ
(
x,∇xS0(x)

)
ρ0(x)

∣∣∣dC(x)
dx

∣∣∣−1∣∣∣dC(x)
dx

∣∣∣dx.
Thus they are identical for all test functions, hence (1.4) and (2.1) are equivalent in
the weak sense.

A general measure supported on the curve C(α) has the form h(x, ξ)ϑC . By
Definition 1.1, ∀ψ ∈ C∞

0 (R2),∫
R2

ψ(x, ξ)h(x, ξ)ϑC(x, ξ)dξdx =

∫
Ω

ψ
(
x(α), ξ(α)

)
h
(
x(α), ξ(α)

)∣∣∣∣dC(α)dα

∣∣∣∣dα. (2.3)

Notice that for function h, only the value on the curve C matters, that is, only
h(x(α), ξ(α)) =: h(α) matters. Therefore, we denote the measure as h(x, ξ)ϑC =:
h(α)ϑC(α).

2.1.2. Weak solutions and conservation of charge. Definition 2.1. A
function f is a weak solution of (1.1) if it satisfies the weak form of (1.1) which is
given by∫ ∞

0

∫
R2

(ψtf + fξ · ∇xψ − f∇xV · ∇ξψ)dxdξdt = 0, ∀ψ ∈ C∞
0 (R2 × R+). (2.4)

We now give a formula for weak solutions of the 1D Liouville equations, and
conservation of charge, in the following theorem.

Theorem 2.2. Consider (1.1) subject to the delta function initial data, i.e., a

measure supported on a curve C(α, 0) =
{(
x(α, 0), ξ(α, 0)

)∣∣∣α ∈ Ω
}

which has the

following form f(0, x, ξ) = ϱ0(α)
∣∣∣dC(α,0)

dα

∣∣∣−1

ϑC(α,0). Denote the solution of the initial

value problem of the Hamiltonian system

dx

dt
= ξ,

dξ

dt
= −∇xV, x(0) = x(α, 0), ξ(0) = ξ(α, 0), (2.5)

by
(
x(α, t), ξ(α, t)

)
. Then

f(t, x, ξ) = ϱ0(α)
∣∣∣dC(α, t)

dα

∣∣∣−1

ϑC(α,t) (2.6)

is a weak solution to (1.1), which is a delta function supported on the curve

C(α, t) =
{(
x(α, t), ξ(α, t)

)∣∣∣α ∈ Ω
}
.

Moreover, for every interval (β, γ), let Λ(t) =
{(
x(α, t), ξ(α, t)

) ∣∣∣α ∈ (β, γ)
}
, then∫

R2

f(0, x, ξ)IΛ(0)dxdξ =

∫
R2

f(t, x, ξ)IΛ(t)dxdξ =

∫ γ

β

ϱ0(α)dα, ∀t, (2.7)

where IΛ is the characteristic function supported on Λ. (2.7) is referred to “conser-
vation of charge” [30].
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Proof. For all ψ ∈ C∞
0

(
R × R × [0, T ]

)
, since dx(α,t)

dt = ξ(α, t), dξ(α,t)
dt = −∇xV,

it follows that

dψ(x(α, t), ξ(α, t), t)

dt
=
∂ψ(x(α, t), ξ(α, t), t)

∂t
+ ξ(α, t) · ∇xψ(x(α, t), ξ(α, t), t)

−∇xV · ∇ξψ(x(α, t), ξ(α, t), t).

Therefore, for f given by (2.6)∫ T

0

∫
R2

(ψtf + fξ · ∇xψ − f∇xV · ∇ξψ)dxdξdt

=

∫ T

0

∫
R

[∂ψ(x(α, t), ξ(α, t), t)
∂t

+ ξ(α, t) · ∇xψ(x(α, t), ξ(α, t), t)

−∇xV · ∇ξψ(x(α, t), ξ(α, t), t)
]
ϱ0(α)

∣∣∣dC(α, t)
dα

∣∣∣−1∣∣∣dC(α, t)
dα

∣∣∣dαdt
=

∫ T

0

∫
R

dψ(x(α, t), ξ(α, t), t)

dt
ϱ0(α)dαdt = 0.

We used (2.3) in the first equality above.

2.1.3. Multi-valued solutions and physical observables. We now explain
the relationship between f(t, x, ξ) and the physical observables, which gives rise to
the multi-valued solutions. First, for the mono-kinetic initial data

f(0, x, ξ) = ρ0(x)δ(ξ −∇xS0(x)) = ρ0(x)
∣∣∣dC(x)
dx

∣∣∣−1

ϑC ,

ρ0(x) is the local density, that is, ρ0(x) =
∫∞
−∞ f(0, x, ξ)dξ. For every fixed x, f(0, x, ξ)

is a Dirac-delta function with respect to ξ supported at the point ∇xS0(x).
In the general case, where f(t, x, ξ) is a measure supported on C(α, t), and C(α, t)

is not necessarily a graph in the x-ξ plane, we claim the following theorem
Theorem 2.3. Consider a solution of (1.1) with the form (2.6), ∀w ∈ R, such

that x(α, t) = w has finitely many solutions which are denoted by α1(w), α2(w), . . . , αk(w),
that is

x(α1(w), t) = x(α2(w), t) = · · · = x(αk(w), t) = w, (2.8)

and

∂x

∂α

∣∣∣∣
α=αj(w)

̸= 0, j = 1, . . . , k, (2.9)

there exists κ > 0, such that

f(t, z, ξ) =
k∑

j=1

ϱ0(αj(z))
∣∣∣∂x
∂α

∣∣∣−1

α=αj(z)
δ(ξ− ξ(αj(z))), ∀z ∈ (w−κ,w+κ). (2.10)

Proof. For every fixed w that satisfies (2.8) and (2.9), there exists a τ > 0, such
that x(α, t) is one-to-one on (αj(w)− τ, αj(w) + τ), j = 1, . . . , k. Denote

gj(α) = x(α, t), α ∈ (αj(w)− τ, αj(w) + τ), j = 1, . . . , k. (2.11)
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x

ξ

 (x(α
4
(w),t),ξ(α

4
(w),t))

(x(α
3
(w),t),ξ(α

3
(w),t)) 

 (x(α
5
(w),t),ξ(α

5
(w),t))

(x(α
1
(w),t),ξ(α

1
(w),t))

 (x(α
2
(w),t),ξ(α

2
(w),t))

ww−κ  w+κ

Fig. 2.1: A simple illustration of (2.12)

Consequently, there exists a κ > 0, such that ∀z ∈ (w − κ,w + κ), the equation
x(α, t) = z yields exactly k solutions α1(z), . . . , αk(z), such that

αj(z) ∈ (αj(w)− τ, αj(w) + τ), j = 1, . . . , k. (2.12)

See Fig 2.1. We now prove ∀z ∈ (w − κ,w + κ), ∀ψ ∈ C∞
0 (R2),∫ ∞

−∞
ψ(z, ξ)f(t, z, ξ)dξ =

∫ ∞

−∞
ψ(z, ξ)

( k∑
j=1

ϱ0(αj(z))
∣∣∣∂x
∂α

∣∣∣−1

α=αj(z)
δ(ξ − ξ(αj(z)))

)
dξ,

(2.13)
and then (2.10) follows. The left hand side of (2.13) can be reformulated as

∂

∂z

∫ z

−∞

∫ ∞

−∞
ψ(x, ξ)f(t, x, ξ)dξdx =

∂

∂z

∫ z

w−κ

∫ ∞

−∞
ψ(x, ξ)f(t, x, ξ)dξdx.

Plugging (2.6) into the above, and using the fact that (x(α, t), ξ(α, t)) ∈ (w − κ, z)×
(−∞,∞) if and only if α ∈

∪k
j=1

(
g−1
j (w − κ), g−1

j (z)
)
, we obtain∫ ∞

−∞
ψ(z, ξ)f(t, z, ξ)dξ =

∂

∂z

∫ z

w−κ

∫ ∞

−∞
ψ(x, ξ)ϱ0(α)

∣∣∣dC(α)
dα

∣∣∣−1

ϑCdξdx

=
∂

∂z

∫ ∞

−∞

∫ ∞

−∞
I(w−κ,z)×(−∞,∞)ψ(x, ξ)ϱ0(α)

∣∣∣dC(α)
dα

∣∣∣−1

ϑCdξdx

=
∂

∂z

( k∑
j=1

sign(g−1
j (z)− g−1

j (w − κ))

∫ αj(z)=g−1
j (z)

g−1
j (w−κ)

ψ
(
x(α), ξ(α)

)
ϱ0(α)dα

)
=

k∑
j=1

sign(g−1
j (z)− g−1

j (w − κ))
∂
(
g−1
j (z)

)
∂z

ψ
(
x(αj(z)), ξ(αj(z))

)
ϱ0(αj(z))

Since it is possible that g−1
j (z) < g−1

j (w − κ), we multiply each integral in the above

expression by the sign of (g−1
j (z) − g−1

j (w − κ)) to make it correct. Recall that

gj(α) = x(α, t) on (αj(w)− τ, α+ τ), therefore | ∂x∂α |
−1
α=αj(z)

= sign(g−1
j (z)− g−1

j (w −
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κ))
∂
(
g−1
j (z)

)
∂z . We find

∫ ∞

−∞
ψ(z, ξ)f(t, z, ξ)dξ =

k∑
j=1

∣∣∣∣∂x∂α
∣∣∣∣−1

α=αj(z)

ψ
(
x(αj(z)), ξ(αj(z))

)
ϱ0(αj(z))

=
k∑

j=1

ψ
(
z, ξ(αj(z))

)∣∣∣∣∂x∂α
∣∣∣∣−1

α=αj(z)

ϱ0(αj(z))

=

∫ ∞

−∞
ψ(z, ξ)

( k∑
j=1

ϱ0(αj(z))
∣∣∣∂x
∂α

∣∣∣−1

α=αj(z)
δ(ξ − ξ(αj(z)))

)
dξ.

Remark 2.2. If there are infinitely but countably many solutions of x(α) = z,
then there exists ∂x

∂α |α=αj(z) = 0, and the local density ρ(z, t) = ∞. If the set
{α|x(α, t) = z} is not discrete, i.e., its measure in R is greater than 0, then the local
density ρ(z, t) is a Dirac mass. Points where ρ = ∞ correspond to caustics.

We define ρ̃(α, t) := |∂x(α, t)/∂α|−1ϱ0(α). Then

f(t, z, ξ) =
k∑

j=1

ρ̃(αj(z), t)δ
(
ξ − ξ(αj(z), t)

)
. (2.14)

Here each term on the right hand side of (2.14) corresponds to one phase of the
so-called multi-valued solution, whose summation, f , is a weak solution to (1.1) cor-
responding to the semiclassical limit of the Schrödinger equation [27, 12]. The physical
observables at x = z are

density: ρ(z, t) =

∫ ∞

−∞
f(t, z, ξ)dξ =

k∑
j=1

ρ̃(αj(z), t), (2.15)

momentum: ρum(z, t) =

∫ ∞

−∞
ξmf(t, z, ξ)dξ =

k∑
j=1

ρ̃(αj(z), t)ξ(αj(z), t)
m, (2.16)

which are superposition of multi-valued solutions. Suppose x(α, t) is one-to-one on

(β, γ). Denote its inverse on (β, γ) by α(z) = x−1(z). Let Λ =
{(
x(α, t), ξ(α, t)

) ∣∣∣α ∈

(β, γ)
}
, then

∫ ∞

−∞

∫ ∞

−∞
IΛf(t, z, ξ)dξdx =

∫ γ

β

ϱ0(α)
∣∣∣dC(α, t)

dα

∣∣∣−1∣∣∣dC(α, t)
dα

∣∣∣dα
=

∫ γ

β

ϱ0(α)dα =

∫ x(γ)

x(β)

ϱ0(x
−1(z))

(
∂x−1

∂z

)
dz α(z) = x−1(z)

= sign(x(γ)− x(β))

∫ x(γ)

x(β)

ρ̃(α(z), t)dz.

(2.17)

Let M(ϖ) =
∫ϖ

0
ϱ0(α)dα, then

sign(x(γ)− x(β))

∫ x(γ,t)

x(β,t)

ρ̃(α(z), t)dz =M(γ)−M(β) =

∫ γ

β

ϱ0(α)dα. (2.18)
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We summarize the result here. To calculate the physical observables, one needs
the following information: (i) the curve C(α, t) and (ii) ρ̃(α, t). Then to find the
moment ρum(z, t) at z, we solve x(α, t) = z, suppose there are k solutions α1, . . . , αk,

then ρum(z, t) =
∑k

j=1 ρ̃(αj , t)ξ
m(αj , t), the superposition of moments of each branch

of the multi-valued momentum. The detailed numerical algorithm is given in Section
3.

2.2. Multi-dimensional case. Now, we extend Definition 1.1 to surface mea-
sure supported on a hyperplane in multi-dimensional space.

Definition 2.4. Let P be a hyperplane in the x-ξ space, x ∈ Rd, ξ ∈ Rd. Let

P (α) =
{(

x(α), ξ(α)
)∣∣∣α ∈ Ω

}
be a parameterized form of P . The function ηP (x, ξ)

is a surface measure supported on the hyperplane P , defined by∫
R2d

ψ(x, ξ)ηP (x, ξ)dξdx =

∫
Ω

ψ
(
x(α), ξ(α)

)dY (α)

dα
dα, ∀ψ ∈ C∞

0 (R2d), (2.19)

where
∫
Λ

dY (α)

dα
dα is the area of the hyperplane P (α ∈ Λ), ∀Λ ⊂ Ω.

Remark 2.3. It is easy to verify that definition 2.4 is independent of the choice
of the parametrization α.

In general, the hyperplane has dimension 0 ≤ k ≤ 2d, with Ω ⊂ Rk. The mono-
kinetic initial data (1.4) is a special case of (2.19), where the hyperplane has dimension
d. More precisely, (1.4) is equivalent, in the weak sense to a measure supported on a
hyperplane P (x,∇xS0(x)) such that the local density

∫
Rd fdξ = ρ0(x), that is,

f(0,x, ξ) = ρ0(x)
(dY
dx

)−1

ηP (x, ξ),

in the weak sense. We verify it below: ∀ψ ∈ C∞
0 (R2d),∫

R2d

ψ(x, ξ)ρ0(x)δ(ξ −∇xS0(x))dξdx =

∫
Rd

ψ
(
x,∇xS0(x)

)
ρ0(x)dx,∫

R2d

ψ(x, ξ)ρ0(x)
(dY
dx

)−1

ηP (x, ξ)dξdx =

∫
Rd

ψ
(
x,∇xS0(x)

)
ρ0(x)

(dY
dx

)−1(dY
dx

)
dx.

Thus∫
R2d

ψ(x, ξ)ρ0(x)δ(ξ −∇xS0(x))dξdx =

∫
R2d

ψ(x, ξ)ρ0(x)
(dY
dx

)−1

ηP (x, ξ)dξdx.

Also in general, we do not require P to be a graph in x− ξ space with dimension
d. Let g(x, ξ) = p(x, ξ)ηP be a surface measure supported on P . Then the value
of p on P determines the measure g. More precisely, p(α) := p

(
x(α), ξ(α)

)
,α ∈ Ω,

determines g. Therefore, for P (α) =
{(

x(α), ξ(α)
)∣∣∣α ∈ Ω

}
, we simply denote g

as g(α) = p(α)ηP (α). Similar to the 1D case, we define a weak solution of (1.1) for

x ∈ Rd.
Definition 2.5. A function f is a weak solution of (1.1) if it satisfies the weak

form of (1.1) which is given by∫ T

0

∫
R2d

(ψtf + fξ · ∇xψ − f∇xV · ∇ξψ)dxdξdt = 0.
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Equipped with this definition, we now give a formula for weak solutions of the
multi-D Liouville equations in the following theorem.

Theorem 2.6. Consider (1.1) with measure initial data f0 = ϱ0(α)
∣∣∣dY (α, 0)

dα

∣∣∣−1

ηP (α,0),

i.e., a measure supported on a hyperplane with dimension k with the form P (α, 0) =
(x0(α), ξ0(α)), α ∈ Ω ⊂ Rk. Denote the solution of the initial value problem to the
Hamiltonian system

dx

dt
= ξ,

dξ

dt
= −∇xV, x(0) = x0(α), ξ(0) = ξ0(α),

by
(
x(α, t), ξ(α, t)

)
. Then a measure supported on the hyperplane P (α, t) = (x(α, t), ξ(α, t)),

α ∈ Ω,

f(t,x, ξ) = ϱ0(α)
∣∣∣dY (α, t)

dα

∣∣∣−1

ηP (α,t),

is a weak solution to (1.1) with the given initial data. Let PΛ(t) = {
(
x(α, t), ξ(α, t)

)
|α ∈

Λ ⊂ Rk}. Then∫
R2d

f(0,x, ξ)IPΛ(0)dxdξ =

∫
R2d

f(t,x, ξ)IPΛ(t)dxdξ, ∀Λ ⊂ Ω, ∀t. (2.20)

The proof of this theorem is similar to the proof of Theorem 2.2, so we omit the
details.

Consider the Liouville equation with initial data (1.4), that is Ω ⊂ Rd. Similar

to the one-dimensional case, denote ρ̃(α, t) :=

∣∣∣∣∂x(α, t)∂α

∣∣∣∣−1

ϱ0(α), then f(t,x, ξ) can

be rewritten as

f(t, z, ξ) =
k∑

j=1

ρ̃(αj(z), t)δ
(
ξ − ξ(αj(z), t)

)
, (2.21)

where α1(z), . . . ,αk(z) are solutions of x(α, t) = z. Moreover, if x(α, t) is one-to-one
on α ∈ Ω1 ⊂ Ω, then ∫

x(Ω1)

ρ̃(x−1(z), t)dz =

∫
Ω1

ϱ0(α)dα.

3. The detailed numerical implementation.

3.1. The one-dimensional numerical implementation. We now describe
the numerical details for the one-dimensional Liouville equation. A key idea is to use
the conservation of charge (2.7); or rather (2.18). Suppose the initial data is given by

f(0, x, ξ) = ϱ0(α)
∣∣∣dC(α, 0)

dα

∣∣∣−1

ϑC(α,0). (3.1)

Without loss of generality, we assume α ∈ (0, 1).

Step 1. Let αj = j/N , j = 0, . . . , N , be the initial partition of the curve C(α, 0).
Step 2. Evaluate the initial charge mj =

∫ αj

αj−1
ϱ0(α)dα, j = 1, . . . , N, numerically

by some quadrature rule or analytically if possible.
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Step 3. Solve
dxj(t)

dt
= ξj ,

dξj(t)

dt
= −Vx, xj(0) = x(αj , 0), ξj(0) = ξ(αj , 0),

numerically to obtain xj(T ), uj(T ), j = 0, . . . , N .

Step 4. Approximate C(α, T ). For example, if a piecewise linear approximation is
used, one gets

x(α, T ) = xj−1(T ) +
α− αj−1

N

(
xj(T )− xj−1(T )

)
, α ∈ (αj−1, αj), (3.2a)

ξ(α, t) = ξj−1(T ) +
α− αj−1

N

(
ξj(T )− ξj−1(T )

)
, j = 1, . . . , N. (3.2b)

This also gives a multi-valued solution of the velocity ũ, that is,

ũ(x(α, t), t) = ξ(α, t), α ∈ (0, 1). (3.3)

ũ can be multi-valued since it is possible that x(β1, t) = x(β2, t) for β1 ̸= β2.
Step 5. By (2.18)

sign(x(αj+1, T )− x(αj , T ))

∫ x(αj+1,T )

x(αj ,T )

ρ̃(α(z), t)dz =M(αj+1)−M(αj) = mj .

We use a constant to approximate ρ̃(α, T ) on α ∈ (αj , αj+1). That is,

ρ̃(α, T ) ≈ mj

|x(αj+1, T )− x(αj , T )|
, α ∈ (αj , αj+1).

Similar to ũ, ρ̃ gives a multi-valued solution of density. The (single valued) position
density, namely the zeroth moment defined in (2.15) is given by

ρ(y, T ) =
N−1∑
j=0

mj

|x(αj+1, T )− x(αj , T )|
I(x(αj ,T ),x(αj+1,T ))(y). (3.4)

Step 6. Compute any desired physical observables by using the results of Step 4 and
5. For example, from definition (2.16)

ρ(y, T )u(y, T ) =

k∑
p=1

ρ̃(αp(y), T )ξ(αp(y), T ),

where αp(y) are solutions of x(α, T ) = y. By (3.2), if y ∈ (x(αj , T ), x(αj+1, T )),

then α =
y−xj(T )

xj+1(T )−xj(T )N + αj is a solution of x(α, T ) = y, and ξ(α, t) = ξj(T ) +
(y−xj(T ))(ξj+1(T )−ξj(T ))

xj+1(T )−xj(T ) . Therefore

ρ(y, T )u(y, T ) =
N−1∑
j=0

mjI(x(αj ,T ),x(αj+1,T ))(y)

|x(αj+1, T )− x(αj , T )|

(
ξj(T )+

(y − xj(T ))(ξj+1(T )− ξj(T ))

xj+1(T )− xj(T )

)
.

3.2. A detailed implementation of the 2D Algorithm. In this subsection,
we give a detailed numerical implementation for the 2D Liouville equation with initial
data (1.4). Numerical methods for the higher dimensional Liouville equation can be
constructed similarly.

Without loss of generality, assume x = (x, y) ∈ [0, 1]× [0, 1], ξ ∈ R2.
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Step 1. Given mesh size ∆x = ∆y = 1/N . Denote x(j, l) = (xj , yl).

Step 2. There are N2 cells. Denote the cell (xj , xj+1) × (yl, yl+1) by Ωk(0), where
k = (j + 1 + lN). Since the elementary elements in 2D are triangles, we further split
Ωk(0) into two parts Ωk1(0) and Ωk2(0), where Ωk1(0) is the triangle with vertices
x(j, l), x(j+1, l), x(j, l+1), and Ωk2(0) is the triangle with vertices x(j, l+1),x(j+
1, l),x(j + 1, l + 1). See figure 3.2 for an illustration. Evaluate the initial charge

Ω
k2

Ω
k1

(x
j+1

,y
l
)(x

j
,y

l
)

(x
j
,y

l+1
) (x

j+1
,y

l+1
)

Fig. 3.1: 2D mesh with triangles Ωk1 and Ωk2.

mkq =

∫ ∫
Ωkq

ρ0(x, y)dxdy k = 1, . . . , N2, q = 1, 2,

numerically by some quadrature rule or analytically if possible.

Step 3. Solve numerically
dxjl(t)

dt
= ξjl,

dξjl(t)

dt
= −∇xV, subject to the initial

data xjl(0) = (xj , yl), ξjl(0) = ∇xS0(xjl(0)), to obtain xjl(T ), ξjl(T ), j = 0, . . . , N ,
l = 0, . . . , N .

Step 4. Apply the linear interpolation to approximate velocity on Ωkq(T ). More
precisely, denote the vertices of Ωkq by a,b, c, and the velocity at them are ua,ub,uc

respectively. Then for every x ∈ Ωkq, one can decompose x− a uniquely as x− a =
µ(b− a) + ν(c− a), here (µ, ν) can be solved analytically, and interpolate ξ(x, t) =
ua+µ(ub − ua)+ν(uc − ua). This gives a multi-valued solution of velocity ũ at time
T . Denote ξ(x, t) on Ωkq by ξkq(x, t).

Step 5. Denote the area of the triangle Ωkq(T ) by Akq(T ). Let ρ̃(α, T ) =
mkq

Akq(T )
on (associated with) Ωkq(T ). This gives a multi-valued solution of density at time T .
The (single valued) position density, defined in (2.21) with m = 0 then follows

ρ(x, T ) =
2∑

q=1

N2∑
k=1

mkq

Akq(T )
IΩkq(T )(x) (3.5)

Step 6. Compute any desired physical variables by using the result of Steps 4 and 5.
For example, from (2.21) with m = 1,

ρ(x, T )u(x, T ) =
2∑

q=1

N2∑
k=1

mkq

Akq(T )
IΩkq(T )(x)ξkq(x, T ).

Remark 3.1. One can apply any higher order numerical method in Steps 3, 4
and 5. In addition to its high efficiency and accuracy, a major advantage of the method
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is that it gives very accurate numerical solutions around caustics. The reason is: the
particles become automatically dense when caustic develops, and the total charge
inside any cell around the caustic is calculated at t = 0. For classical particle methods,
one has to apply some smoothing procedure to recover point values of the computed
solutions from their singular particle approximations, therefore, even the particles are
dense around the caustics, the smoothing procedure smears the solution. For details
of the smoothing procedures, see Section 5.1. Another side product is that we obtain
the multi-valued solution rather than the single valued physical observables.

Remark 3.2. For a 2D problem, when using (3.5) to calculate the local density
ρ on a mesh {yij}, one needs to identify whether yij is inside a triangle or not
many times. We apply the following fast test method. Denote the vertices of the
triangle Ωkq (q = 1 or 2) by a,b, c, where a = (a1, a2), b = (b1, b2) and c = (c1, c2).
Denote xmin = min{a1, b1, c1}, xmax = max{a1, b1, c1}, ymin = min{a2, b2, c2}, ymax =
max{a2, b2, c2}. Then for every yij ∈ R2, we first test whether yij ∈ (xmin, xmax) ×
(ymin, ymax). If so, we decompose yij − a as yij − a = µ(b− a) + ν(c− a), then yij

is inside the triangle Ωkq if and only if 0 < µ < 1, 0 < ν < 1 and µ + ν < 1. This
procedure greatly enhances the numerical method for the Vlasov-Poisson equation to
be present in the next section, since there one needs to construct ρ at every time
step.

4. The Vlasov-Poisson equations. We can apply the new method to the
Vlasov-Poisson equations

ft + v · ∇xf −E(x, t) · ∇vf = 0, (4.1a)

∆xV =

∫
Rd

f(x,v, t)dv =: ρ(x, t), E = −∇xV, (4.1b)

here E(x, t) is the electric field, V the potential.
For example, for the 2D Vlasov-Poisson equations, in each time step t to t+∆t,

we do the following:
(i) Choose a uniform mesh {yij} on x-plane, 1 ≤ i, j ≤ N . The initial particles are

located at the mesh points: xij(0) = yij .

(ii) solve the bi-characteristic equations numerically
dxij(t)

dt
= ξij ,

dξij(t)

dt
= −E,

to get particle positions and velocities xij(t+∆t), ξij(t+∆t);
(iii) use (3.5) to calculate the local density on uniform mesh points {yij} at time

t + ∆t; then use the standard five-point center difference scheme to solve the
Poisson equation (4.1b) to get the potential V (t+∆t,yij); take finite difference
of V (t+∆t,yij) to get E(t+∆t,yij);

(iv) use the linear interpolation to get E on particle positions xij(t+∆t), which will
be used in (ii) in the next time step.

Remark 4.1. The particle number is M = (N +1)2. In step (iii), the computa-
tional cost for evaluating the single valued position density ρ on uniform mesh points
yij of our method and all other particle methods are of the same order O(M2). In
step (iv), the computational cost for evaluating E on particle positions of all methods
are of order O(M). Although the computational cost for all methods have the same
order, our method is much faster than the previous particle methods in practice. We
show a comparison in a 2D numerical example in section 5.2.

5. Numerical examples. We carry out one and two dimensional numerical ex-
periments in this section. In these examples, we compare numerical solutions obtained
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by our method with solutions obtained by previous particle methods. The main dif-
ference between our proposed method and the previous particle methods is that the
latter have to apply some smoothing procedures to recover point value of the numer-
ical solution from the singular particle approximation. For reader’s convenience, in
Section 5.1 we briefly describe three smoothing procedures that have been studied in
[4], and refer to [4] and references therein for more details.

In all examples, we solve the ODEs by the forward Euler method, although one
can use any other higher order methods. The initial charge mj was computed by the
Matlab subroutines QUAD and QUAD2D, which approximate the integral by using
recursive adaptive Simpson quadrature.

5.1. The smoothing procedures of particle methods. To use the particle
method, one first replaces the initial data f(0,x, ξ) = ρ0(x)δ(ξ−u0(x)) with a singular
particle approximation. More precisely, one decomposes the computational domain
Ω into M nonintersecting domains Ω = Ω1

∪
· · ·

∪
ΩM . Then particles with masses∫

Ωi
ρ0(x)dx are placed initially at xi(0), where xi(0) are the coordinates of the centers

of mass of Ωi. The initial velocities of the particles are taken to be u0(xi(0)) =:
(ui1, ui2, . . . , uid)(0). That is, one replaces f(0,x, ξ) = ρ0(x)δ(ξ − u0(x)) with

f̃(0,x, ξ) =
M∑
i=1

∫
Ωi

ρ0(x)dxδ(x− xi(0))δ(ξ − u0(xi(0))).

Denote f̃(0,x, ξ) in its equivalent form

wM (x, 0) =
M∑
i=1

ςi(0)δ(x− xi(0)).

Here ςi(0) = (ς
(1)
i , . . . , ς

(d)
i , ς

(d+1)
i )(0), and ς

(d+1)
i (0) =

∫
Ωi
ρ0(x)dx is the mass of the

ith particle, ςki (0) = uik(0)
∫
Ωi
ρ0(x)dx is the xk-moment (k = 1, . . . , d) of the ith

particle. Solving the following ODEs

dxi(t)

dt
= ui(t),

dui(t)

dt
= −∇xV, ui(t) = (ui1, ui2, . . . , uid)(t),

with initial data
(
xi(0),u0(xi(0))

)
, one obtains a singular solution at time t

wM (x, t) =

M∑
i=1

ςi(t)δ(x− xi(t)), (5.1)

where ςi(t) = (ς
(1)
i , . . . , ς

(d)
i , ς

(d+1)
i )(t), and ς

(d+1)
i (t) = ς

(d+1)
i (0) =

∫
Ωi
ρ0(x)dx is the

mass of the ith particle, ςki (t) = uik(t)
∫
Ωi
ρ0(x)dx is the xk-moment (k = 1, . . . , d) of

the ith particle at time t.
Assume one wants to find computational solutions of physical observables in Θ ⊂

Rd, the final step of the particle method is to recover the point values of the density
and momenta from (5.1). Three recovery methods have been compared in [4]:
AVE: The simplest way of regularizing (5.1) is to approximate it by a piecewise
constant

w(x, t) =
1

|Cj |

M∑
i=1

ςi(t)ICj (xi(t)), x ∈ Cj .
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Here {Cj}Jj=1 is an auxiliary mesh consisting of non-overlapping cells such that Θ =
C1

∪
· · ·

∪
CJ . Note that the mesh C is different from the mesh Ω, it should be coarser

than Ω, otherwise the numerical solution will be very oscillatory.
CONV: This is the most widely used way of regularizing (5.1). Taking a convolution
product with a smooth kernel ζϵ(x):

w(x, t) = (wM ∗ ζϵ)(x, t) :=
M∑
i=1

ςi(t)ζϵ(x− xi(t), (5.2)

where ζϵ serves as a smooth approximation of the delta-function with the following
properties:

ζϵ =
1

ϵd
ζ
(x
ϵ

)
,

∫
Rd

ζ(x)dx = 1,

where ϵ is a positive parameter measuring the “width” of the kernel. In our experi-
ments, we have used the Gaussian kernel for ζ.
RED: This recovery procedure is based on the particle weights redistribution tech-
nique typically used in the immersed boundary method, [25]. For example, in the
2D numerical experiments of [4], the computational domain was divided into uniform
Cartesian cells of size ∆x×∆y and M particles were placed into the middle of each
cell, then the point values of w have been computed at the equally spaced points
where the particles were initially placed, namely:

w(x, y, t) =
1

∆x∆y

M∑
i=1

ςi(t)ϕ

(
|x− xi(t)|

∆x

)
ϕ

(
|y − yi(t)|

∆y

)
,

where

ϕ(r) =


1

8

(
3− 2r −

√
1 + 4r − 4r2

)
, |r| < 1

1

8

(
5− 2r −

√
−7 + 12r − 4r2

)
, 1 < |r| < 2

0, otherwise.

5.2. Numerical examples. Example 5.1. A free particle model for a Gaus-
sian pulse: V (x) = 0. The initial data is taken to be f(0, x, ξ) = ρ0(x)δ(ξ − u0(x)),
where ρ0(x) = exp(−(x − 0.5)2), and u0(x) = − sin(πx)| sin(πx)|. This example is
taken from [10]. We plot the solutions at time t = 1, “OUR” indicates the numer-
ical solution obtained by our method, “AVE/CONV/RED” indicates the numerical
solutions obtained by the “AVE/CONV/RED” recovery procedures. In these four
methods, the time step is taken to be ∆t = ∆x/5, where ∆x = 2/N , N is the number
of particles.

We show the multi-valued solutions ũ and ρ̃ at time t = 1 obtained by our method
with N = 400 in Figure 5.1. One can compare them with Figures 7, 8 and 9 in [10]
which are numerical solutions of this problem obtained by the moment methods, and
our method yields much better numerical solutions.

We also compare our result with solutions obtained by previous particle methods.
One can see in Fig 5.2, that the solutions obtained by AVE and RED methods are
oscillatory. Fig 5.2 also shows that our solution is much better than the CONV
solution, especially around the caustics. Fig 5.3 shows the comparison between our
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Fig. 5.1: Ex5.1, new method with 400 particles, left:velocity ũ, right:density ρ̃, t=1.

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

x

ρ

AVE

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

x

ρ

RED

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

x

ρ

OUR −− single−valued density ρ

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

x

ρ

CONV

Fig. 5.2: Ex5.1, single-valued density ρ with 1000 particles, t=1.

solution and exact solution which is obtained by taking ∆x and ∆t very small. One
can see that they match very well.

When using the CONV method, one has to choose the width of the Gaussian
kernel. We show solutions for different choices of the width in Fig 5.4. One can
see that for large width ϵ, the solution is severely smeared, while for small ϵ, the
solution becomes oscillatory. The best choice turns out to be 0.004 for this example.
No formula has been given on how to choose ϵ for general problems. Our solution
outperforms the CONV method even with the best choice ϵ = 0.004.

Example 5.2. In this example (taken from [4], example 4.3), the initial data are
given by f(0, x, ξ) = ρ0(x)δ(ξ− u0(x)), where ρ0(x) = 1, u0(x) = 1− 0.5 arctan(20x),
and the potential is V (x) ≡ 0. We compute the solution with N = 400 and output
the solution at t = 0.4. In [4] AVE, RED and CONV particle methods were been used
with the same particle number N = 400 (figures 5 and 6, page 574). The AVE and
RED solutions are very oscillatory, while the CONV method with the best choice of
ϵ = 0.1

√
0.005 yields a better solution but still has oscillation. If one doubles ϵ, then

it is oscillation-free, but the peaks in the density are much lower, i.e., peaks equal 5
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Fig. 5.3: Ex5.1, multi-valued ρ̃ at t=1, left:OUR with 1000 particles, right:exact.
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Fig. 5.4: Ex5.1, ρ obtained by CONV with 1000 particles with different ϵ, t=1.

for bigger ϵ and 6 for smaller ϵ. Our method yields much better results: our solutions
are oscillation-free, much more accurate at peaks – the peak value of our solution is
around 70. See Figures 5.5 and 5.6.

The following examples are numerical solutions of the Vlasov-Poisson equations.
We compare our method with the CONV particle method. The main difference of the
two methods is: in our method, we use (3.4) and (3.5) to calculate the local density ρ
on uniform mesh points in each time step, then solve the Poisson equation; in CONV,
we use (5.2) to calculate the local density ρ on uniform mesh points in each time step.

Example 5.3. We solve the 1D Vlasov-Poisson equations with periodic initial
data f0 = δ(v − sin(2πx)),

∂f

∂t
+ v

∂f

∂x
− E(x, t)

∂f

∂v
= 0,

∂2

∂x2
V =

∫ ∞

−∞
f(x, v, t)dv − 1, E = −∂V

∂x
.

We compare density ρ, and electric field E obtained by different methods with different
particle numbers N at t = 0.5. When solving the Poisson equation, we take the
boundary condition V (0) = V (1) = 0. We take ∆t = ∆x = 1/N . The results are
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Fig. 5.5: Ex5.2, left:multi-valued velocity ũ, right:multi-valued density ρ̃, t=0.4.
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shown in Figs 5.7.
One can see that our method yields much better solutions for the density ρ and

electric field E. Furthermore, when apply the CONV method, for eachN , we do serval
tests for different widths of the Gaussian kernel ϵ, and show the best in our graphs.
Hence, our method outperforms the best that a CONV method can do, especially
when N is small.

Example 5.4. We solve the 2D Vlasov-Poisson equation (4.1) with initial data

f(0,x, ξ) = ρ0(x)δ(ξ − u0(x)),

where

ρ0 = I|x−(1,1)|<0.75, u0 = 2 sin
(
4π

∣∣4
3

(
x− (1, 1)

)∣∣5/6)(x− (1, 1)
)/

3|x− (1, 1)|.

We calculate the solution on spatial domain [0, 2] × [0, 2]. The initial particles are
placed inside [−0.75, 0.75] × [−0.75, 0.75], with ∆x = ∆y = 1.5/N . The uniform
meshes for the Poisson equation are on domain [0, 2] × [0, 2] with ∆x = ∆y = 2/N .
∆t is chosen to be 1/2N . When solving the Poisson equation, we take the following
boundary condition

V (0, ·) = V (2, ·) = V (·, 0) = V (·, 2) = 0.

The initial velocity profile is shown in Fig 5.8. For short times, if one ignores the
Poisson potential, one can still gain some information (such like the basic shape) of
the velocity profile. The velocity at t = 0.2 without involving the Poisson potential is
shown in Fig 5.8, which suggests that for the Vlasov-Poisson equations of this example
four caustics will form at t = 0.2.
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Fig. 5.7: Ex5.3, left: density ρ, right: electric field E.
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We compare the density ρ and potential V obtained by our method and the
CONV particle method with different N at t = 0.2. The results are shown in Figs
5.9, 5.10, and 5.11. The time cost for each method with different N are listed in
Table 5.1. Roughly speaking, with the same particle number, the time cost of the
new method is approximately 1/10 of the CONV particle method. The largest local
density near the caustics that obtained by the new method and the CONV particle
method are listed in Table 5.2. Combine these results, we can say that compared with
the CONV particle method our new method yields better numerical results with less
computational cost.

6. Concluding remarks. In this paper, we proposed a new numerical method
for the semiclassical limit of the Schrödinger equation (the Liouville equation with
measure-valued initial data) and Vlasov-Poisson equations. Our method constructs
the local density based on a conservative quantity–the charge. Therefore it avoids the
smoothing procedures of the previous particle methods. Numerical examples verify
that compared with the previous particle methods our method yields better numerical
solutions with less computational cost.
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N = 50 N = 100 N = 150 N = 200
New method 40 807 17493 (seconds)

CONV method 435 10735 113318 (seconds)
Table 5.1

Ex5.4, comparison of the time cost of the new and CONV method.

N = 50 N = 100 N = 150 N = 200
New method: max ρ 12.6083 21.3102 80.3682

CONV method: max ρ 1.9091 2.3927 2.9320
Table 5.2

Ex5.4, comparison of max ρ of the new and the CONV method.
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Fig. 5.9: Ex5.4, the CONV particle method with different N and ϵ.
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