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We present a novel new way—called Schrödingerization—to simulate general (quantum and non-
quantum) systems of linear ordinary and partial differential equations (PDEs) via quantum simulation. We
introduce a new transform, referred to as the warped phase transformation, where any linear—including
nonautonamous—system of ordinary or partial differential equation can be recast into a system of
Schrödinger’s equations, in real time, in a straightforward way. This approach is not only applicable to
PDEs for classical problems but is also useful for quantum problems, including the preparation of quantum
ground states and Gibbs thermal states, the simulation of quantum states in random media in the
semiclassical limit, simulation of Schrödinger’s equation in a bounded domain with artificial boundary
conditions, and other non-Hermitian physics. This formulation is versatile enough to be applicable in a
simple way to both digital quantum simulation as well as to analog quantum simulation, and using either
qubits or continuous-variable quantum systems (qumodes).
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Introduction—Quantum simulation is one of the most
natural tasks for a quantum device by preparing outputs of
Schrödinger’s equations directly via its own evolution [1].
However, what can we say about the suitability of quantum
simulation for other more general dynamical laws, typically
in the form of ordinary or partial differential equations
(ODEs or PDEs) that are not Schrödinger type equations or
unitary dynamics? Many of these differential equations,
often due to their high dimensionality and/or the presence
of multiple time and spatial scales, are prohibitively
expensive for classical computers; thus it is highly desirable
to develop quantum algorithms to solve them. This will also
greatly broaden the application areas of quantum comput-
ing in science and engineering problems.
While the most obvious applications are for classical

problems that are difficult for classical computers, simu-
lating classical dynamics is also important for quantum
problems. The most well-known include the preparation of
quantum ground states [2,3] and Gibbs states [4], which
benefit from the simulation of nonunitary dynamics and are
particularly important in areas like quantum chemistry [5]
and optimization.
We know quantum simulation of classical dynamics is in

principle possible, if we accept reductionism and that the
world is fundamentally quantum mechanical. All classical
dynamical laws are, with the exception of relativity,
in principle derivable from underlying Schrödinger’s

equations. From a computational perspective, we also
know that any classical gate can be trivially embedded
into a quantum gate, so we expect quantum gates to be
able to simulate classical ones. However, the quantum
degrees of freedom involved could typically be signifi-
cantly larger than that of the classical systems one wishes to
simulate. An essential question is, then, are there less
resource-intensive ways to represent classical dynamics
with Schrödinger’s equations?
Consider the case of numerical solutions to linear PDEs,

which, upon spatial and temporal discretizations, become a
system of linear algebraic equations. Quantum algorithms
in solving a system of linear algebraic equations [6,7] can
subsequently lead to possible polynomial or superpolyno-
mial speedups in solving PDEs [8,9]. For their nonlinear
counterparts see [10–12]. However, here quantum simu-
lation only plays the role of an algorithmic primitive: due to
discretization in time, one does not prepare solution states
continuously in time t by evolution of a Schrödinger
equation in time t.
To obviate the discretization in time, a main difficulty is

in finding a way to represent nonunitary dynamics with a
unitary one, which can be evolved by quantum simulation
like the Schrödinger equation. One way is via qubitization
[13,14] (or block encoding), and this has very recently been
applied to linear PDEs [15]. This involves unitary dilation
methods (e.g., [16]) and has origins in quantum signal
processing [17]. While this fairly general formalism can in
principle approximate the action of any nonunitary oper-
ator, it relies heavily on building linear combinations of*Contact author: nana.liu@quantumlah.org
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quantum states and finding suitable polynomial approx-
imations to the nonunitary operator. This is not always
simple to describe or to implement in practice with qubits
and cannot take advantage of continuous-variable quantum
systems. Another method, limited to the heat equation, is
the imaginary time evolution approach, where the heat
equation can be converted to a Schrödinger equation
through a change to imaginary time t → it [18]. However,
the state obeying Schrödinger’s equation and its imaginary
time counterpart do not have the same evolution. This
means that, except for the steady state solution, extra
resources are necessary to map between the solution in
the unitarily evolving system to the original one.
For instance, one requires tomographic measurements of
quantum states at each small time step in the unitary
evolution [19]. A conceptual alternative is required.
Thus we have an important question: Is there a

simpler and generic way of obtaining Schrödinger’s
equations naturally from any given linear dynamical
system?
We propose a new paradigm—based on a novel trans-

formation called the warped phase transformation—that
can map any linear PDE and ODE (including dissipative
time-irreversible and nonautonomous ones), to Schrödinger
equations in real time, by going to one higher dimension
followed by a Fourier transform. The quantum simulation
of this Schrödinger dynamics in time t makes it possible to
prepare solutions of the original PDEs/ODEs at any
time t, in the form of a quantum state. We call this the
Schrödingerization approach.
This new method is not limited to the quantum simu-

lation of any linear PDE or ODE that might arise from
classical problems. It applies to many quantum problems
like the preparation of quantum ground states, Gibbs
thermal states, and the simulation of quantum systems in
random media in the semiclassical limit and with artifical
boundary conditions [20]. It is also useful for discrete
dynamical systems and linear algebra [21]. Furthermore,
the formulation makes it straightforward to allow both
discrete and analog quantum simulation, with qubits or
continuous-variable quantum systems or a hybrid or even
qudits [22,23]. This versatility is a feature not currently
shared with other methods.
Background—When uðtÞ evolves under a unitary evo-

lution that is generated by a (Hermitian) Hamiltonian
HðtÞ ¼ H†ðtÞ, it satisfies the linear differential equation

i
duðtÞ
dt

¼ HðtÞuðtÞ; uðt ¼ 0Þ ¼ uð0Þ: ð1Þ

The canonical description of Schrödinger’s equation is a
linear PDE in which uðx; tÞ is the wave function with
normalization constraint on the l2 norm kuðtÞk22 ¼R juðt; xÞj2dx ¼ 1, invariant in time, where x∈Rd is the
position in d dimensions. Here HðtÞuðtÞ¼R ð−∇2

xþVðt;xÞÞ

uðx;tÞjxidx, where uðtÞ ¼ R
uðt; xÞjxidx is the continuous-

variable quantum state of d qumodes with the ortho-
normal basis set fjxigx∈Rd , ∇2

x is the Laplace operator
with respect to x, and Vðt; xÞ is the potential function.
To find numerical solutions to this problem, one can
discretize in x, with uniform mesh sizes along each
dimension Δx ¼ 2=M where M is a positive even integer.
Then we use a discrete-variable representation, where
uðtÞ ¼ P

Md

i¼1 uðt; xiÞjii is a Md-dimensional vector whose
entries are uðt; xiÞ at grid points with i ¼ 1;…;Md,
satisfying kuðtÞk22 ¼

P
Md

i¼1 juðt; xiÞj2 ¼ 1, where fjiig is
an orthonormal basis set. When given a state spanned by
fj0i; j1ig over the field C, this is called a qubit. Thus uðtÞi
can be described by a system of d log2ðMÞ qubits. In this
case,HðtÞ is aMd ×Md Hermitian matrix that results from
a suitable discretization of the Schrödinger Hamiltonian
−∇2

x þ Vðt; xÞ in x. One can also use different discrete
representations where jii are the energy eigenstates ofHðtÞ,
which are sums of products of Pauli operators, as is typical
in quantum chemistry applications.
Quantum simulation addresses the question of how to

prepare the state uðtÞ given access to HðtÞ and initial state
uð0Þ, and an estimation of the resources required. Quantum
simulation falls very roughly into two categories: discre-
tized time (digital) or continuous time (analog) [24]. In the
analog case, one finds a quantum system that naturally
realizesHðtÞ so time can run continuously without splitting
the unitary evolution into many smaller pieces, for example
using Trotter splitting. Here both qubit-based and continu-
ous-variable quantum systems can be employed, but the
latter has more potential for near-term implementation.
However, if such an analog quantum system cannot be
easily found or controlled, one can wait for farther-term
technology involving digital quantum simulation methods.
In this case, one counts resources as the number of queries
to some given black boxes (oracles) and the number of two-
qubit gates needed. This is referred to as the query and gate
complexities, respectively. For simplicity here, we cite the
result for time-independent H, but this can be extended to
time-dependent Hamiltonians (for example, [25]). Let s be
the sparsity of H (maximum number of nonzero entries in
each row) and kHkmax be its max-norm (value of largest
entry in absolute value). We denote the ði; jÞth entry toH as
Hij. A common set of black boxes used in Hamiltonian
simulation is known as the sparse access.
Definition 1—Sparse access to Hermitian matrix H

refers to two unitary black boxes OM and OF such that
OMjjijkijzi¼ jjijkijz⊕Hjki and OFjjijli ¼ jjijFðj; lÞi.
Here the function F takes the row index j and a number
l ¼ 1; 2;…; s and outputs the column index of the lth

nonzero elements in row j. There are quantum simulation
protocols in terms of query complexity that scale linearly
in t [13] using sparse access or linearly in t up to
logarithmic factors [26].
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Lemma 1—[26] Let τ ¼ stkHkmax. Then expð−iHtÞ
acting on mH qubits can be simulated to within error ε with
query complexity O

�
τ logðτ=εÞ=½log logðτ=εÞ�� and gate

complexity O
�
τ½mHþlog2.5ðτ=εÞ�logðτ=εÞ=½loglogðτ=εÞ��.

Throughout the Letter, we use Õ to denote O where
logarithmic terms are ignored.
Schrödingerization for general ODEs or PDEs—More

general linear ODEs or PDEs for uðtÞ that is first order in
time t ≥ 0 can be written

du
dt

¼ AðtÞu; uðt ¼ 0Þ ¼ uð0Þ; ð2Þ

where A is a linear operator for ODEs and a linear
differential operator for PDEs. In general the evolution

operator T e
R

t

0
AðτÞdτ (where T is the time-ordering oper-

ator) is not unitary, thus the system is not directly suitable
for quantum simulation. We first decompose AðtÞ into an
Hermitian part and an anti-Hermitian part: AðtÞ ¼
H1ðtÞ − iH2ðtÞ, where H1ðtÞ¼ðAðtÞþA†ðtÞÞ=2¼H†

1ðtÞ
and H2ðtÞ ¼ iðAðtÞ − A†ðtÞÞ=2 ¼ H†

2ðtÞ are both
Hermitian and we assume −H1 to be positive semidefinite
(so the original system is stable).
It is our aim to transform any equation of the form in

Eq. (2) to that of Schrödinger’s form in Eq. (1).
We begin by introducing a real one-dimensional variable

ξ > 0 and define

wðt; ξÞ ¼ e−ξuðtÞ: ð3Þ

This transformation—which we call the warped phase
transformation—is a crucial ingredient. A similar trans-
formation was used in [27] for a completely different
purpose: to develop efficient quantum computing algo-
rithms for uncertainty quantification problems in PDEs.
One can recover the solution to the original equation for

uðtÞ using uðtÞ ¼ R∞
0 wðt; ξÞdξ. Alternatively, one can also

recover u via uðtÞ ¼ eξwðt; ξÞ for any ξ > 0.
Clearly, w solves the following PDE:

∂tw ¼ −H1ðtÞ∂ξw − iH2ðtÞw:

We now extend the domain of ξ to ð−∞;∞Þ, with evenly
extended initial condition wð0; ξÞ ¼ expð−jξjÞu0. Let w̃ ¼
w̃ðt; ηÞ be the Fourier transform of w in ξ and η∈R be the
Fourier mode. Then w̃ satisfies a system of uncoupled
Schrödinger-like equations

i∂tw̃ ¼ ðηH1ðtÞ þH2ðtÞÞw̃; ð4Þ

one for each η! Clearly ηH1ðtÞ þH2ðtÞ is Hermitian. We
call this the Schrödingerized equation for u. In the case
without discretization of any parameter, we can consider
the state jw̃ðtÞi≡ ð1=kw̃ðtÞkÞ R∞

−∞ w̃ðt; ηÞjηidη and then
Eq. (4) becomes the Schrödinger-like equation

i∂tjw̃ðtÞi ¼ HðtÞjw̃ðtÞi;
HðtÞ ¼ H†ðtÞ; ð5Þ

where HðtÞ ¼ H1ðtÞ ⊗ η̂þH2ðtÞ ⊗ 1 and η̂jηi ¼ ηjηi.
See [22,23] for more details on this continuous-variable
analog simulation approach and examples of some PDEs
which are already amenable to near-term implementation
without the need for digital quantum simulation. In these
cases, queries and gate complexities are not relevant
resources. For a d-dimensional linear PDE problem, we
only require dþ 1 continuous-variable quantum modes
(qumodes).
Alternatively, we can also solve these equations numeri-

cally, where digital quantum simulation is necessary. We
discretize the system in x and ξ but not in t. We choose
uniform mesh sizes Δx ¼ 2=M for the position variable in
each dimension, Δξ ¼ 2L=N for the ξ variable, Δη ¼
2L=N for the η variable, where M and N are even positive
integers and L > 0. We can define the quantum state
jw̃ðtÞi ¼ ð1=kw̃ðtÞkÞPMd

i¼1

PN=2
j¼−N=2 w̃ðt; xi; ηjÞji; ji. Here

w̃ðt; xi; ηÞ with i ¼ 1;…;Md labels the x grid points and
ηj ¼ jΔη with j ¼ −N=2;…; N=2. Then the discretization
of the Schrödingerized equation means that Eq. (5) is now a
system of MdN ODEs with

HðtÞ ¼ H1ðtÞ ⊗ DþH2ðtÞ ⊗ 1; ð6Þ

where H1ðtÞ and H2ðtÞ involve the discretization of differ-
ential operators and the matrix D ¼ diagðμ1;…; μNÞ is also
a diagonal matrix, with entries μj ¼ πðj − N=2Þ.
For example, for the d-dimensional heat equation

with unit diffusion, H2 ¼ 0 and H1 ¼ −P2
1 � � � − P2

d
where Pl ¼ 1⊗l−1 ⊗ Pl ⊗ 1⊗d−l, l ¼ 1;…; d and Pl is
the discretization of the momentum operator −i∂x
with respect to the lth spatial variable. We define jw̃ðtÞi¼
ð1⊗Md ⊗F ξÞjwðtÞi, where F ξ is the discrete Fourier
transform with respect to variable ξ, so jw̃ð0Þi¼
ð1⊗Md ⊗F ξÞju0i

PN=2
j¼−N=2expð−jξjjÞjji. After evolving

this initial state with respect to unitary generated by the
Hamiltonian H and applying an inverse quantum Fourier
transform F−1

ξ onto the second register, we obtain jwðtÞi ¼
ð1⊗Md ⊗ F−1

ξ Þjw̃ðtÞi. Due to this unitary evolution,
kwðtÞk ¼ kw̃ðtÞk. From jwðtÞi one can recover the quan-
tum state of u whose entries are proportional to the
solutions of the original equation juðtÞi ¼ ð1=kuðtÞkÞP

Md

i¼1 uðt; xiÞjii. We can do this by either projecting
jwðtÞi onto 1 ⊗

P
N
k¼N=2 jkihkj (projecting only onto

ξ > 0), or using amplitude amplification to boost the
chance of retrieving juðtÞi to probability ∼kuð0Þk=kuðtÞk.
We call this the Schrödingerization approach to prepar-

ing juðtÞi ¼ uðtÞ=kuðtÞk2, where we only need quantum
simulation applied onto jw̃ðtÞi using the HamiltonianHðtÞ.
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For simplicity of the quantum simulation part, we can
look at the case of time-independent A. Let
s ∼maxðsðH1Þ; sðH2ÞÞ be the maximum of the sparsity
of H1 and H2. The max-norm kHkmax∼maxðkH1kmax=ϵ;
kH2kmaxÞ, where ϵ is the computational precision, which
appears here due to the extra ∂ξ operator. In the transport
equation case, the two terms in the latter expression are of
the same order (see Supplemental Material Sec. 5[28]). The
cost in digital quantum simulation for Schrödingerization is
then the following.
Theorem 1—Given sparse access to theMd ×Md matrix

H and the unitary Uinitial that prepares the initial quantum
state juð0Þi to precision ϵ. With the Schrödingeriza-
tion approach, the state juðtÞi can be prepared with
query complexity Õððkuð0Þk=kuðtÞkÞstkHkmaxÞ and
Õðkuð0Þk=kuðtÞkdstkHkmaxÞ additional two-qubit gates.
Proof—See Supplemental Material Sec. 2 [28] and

Ref. [29] for the use of amplitude amplification to
reduce the above scaling from kuð0Þk2=kuðtÞk2 to
kuð0Þk=kuðtÞk. ▪

Below we consider some applications of this approach,
both for quantum and classical problems.
Ground state preparation: Suppose one wants to pre-

pare a D-dimensional ground state jE0i from a given state
juð0Þi ¼ P

D−1
j¼0 αjjEji, where αj ∈C, kuð0Þk ¼ 1, and

fjEjig are the nondegenerate orthonormal eigenstates of
a D ×D (positive definite Hermitian) Hamiltonian h. uðtÞ
is the vector whose entries are the amplitudes of the
unnormalized juðtÞi. If one evolves uðtÞ ¼ expð−htÞuð0Þ
according to ∂tu ¼ −hu with initial condition uð0Þ, then
one can write juðtÞi ∝ expð−htÞjuð0Þi where h is a D ×D
Hermitian matrix with sparsity s and max-norm khkmax.
Then H2 ¼ −h, H2 ¼ 0. Assuming a nonzero spectral gap
Δ ¼ E1 − E0 > 0, then the convergence to the ground state
juðtÞi → jE0i is exponentially fast. Then it can be shown
that the total query and gate complexity costs in preparing
the ground state to quantum fidelity 1 − ϵ for ϵ ≪ 1 is
Õðskhkmax=ðjα0jΔϵÞÞ. Here the scaling in jα0j and Δ is
comparable to nonheuristic schemes like quantum phase
estimation [2] and near-optimal lower bounds for ground
state preparation [3], up to logarithmic factors. The
drawback is that this scheme has an extra factor 1=ϵ
compared to the near-optimal schemes. This originates
from kH2 ⊗ Dkmax ∼ khkmax=ϵ. This can be improved to
almost logð1=ϵÞ by using smoother initial data for w. See
[30]. See Supplemental Material Sec. 3[28] for more
details, which also contains a short description of the
difference to the imaginary time evolution method [19].
Gibbs thermal state preparation: To create the Gibbs

thermal state at temperature T corresponding to the
same D ×D Hamiltonian h, we can similarly use the
Schrödingerization approach to prepare the normalized
pure state jΨðβÞi ¼ P

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð−βEkÞ=Z

p jEkEki, where
Z ¼ Trðexpð−βhÞÞ is the partition function for h

with β ¼ 1=ðkBTÞ. In this case we make use of
Schrödingerization with H2 ¼ −h ⊗ 1. Then by
tracing out one register we obtain the Gibbs state
ρGibbsðβÞ¼

P
D−1
j¼0 expð−βEjÞjEjihEjj¼Tr1ðjΨðβÞihΨðβÞjÞ.

This quantum simulation method differs from previous
methods [4] that make use of quantum phase estimation to
prepare jΨðβÞi. Following Theorem 3, it can be shown that
we can prepare ρGibbsðβÞ to precision ϵ with query and gate
complexity Õðskhkmaxβ

ffiffiffiffiffiffiffiffiffiffi
D=Z

p
=ϵÞ. Heuristic methods

aside, this coincides with the best-known scaling, to our
knowledge, with respect to D and Z [4,14]. The ϵ scaling
can be similarly improved to almost logð1=ϵÞ by using
smoother initial data for w; see [30]. See Supplemental
Material Sec. 4[28] for more details.
Quantum PDEs: In practice, the simulation of quantum

dynamics is done in a bounded domain. Here one employs
artificial boundary conditions that may absorb outgoing
wave packets and keep the size of the computational
domain to a minimum. These methods include complex
absorbing potential, which involves including an imaginary
component to the potential. It also includes perfectly
matched layers and a Dirichlet-to-Neumann map. All these
can be tackled with Schrödingerization [20]. In fact, our
methods can be applied more broadly to more general non-
Hermitian physics, which will be an area of further
exploration [31]. Another example is the application of
Schrödingerization to solving linear transport problems,
which can be used to simulate quantum states in random
media in the semiclassical limit [32,33]. See Supplemental
Material Sec. 5 [28] for more details, and see [34] and [35]
therein for why the transport problem can be treated
similarly to the ground state preparation problem, with
observables extracted using, for instance, [36].
Classical ODEs and PDEs: There are many other

applications where Schrödingerization has been applied—
general PDEs including Liouville, Fokker Planck, Vlaslov-
Fokker-Planck, and Black-Scholes’ equations [37],
Maxwell’s equations [39], nonlinear Hamilton-Jacobi
PDEs, nonlinear scalar hyperbolic PDEs and nonlinear
ODEs [22,38], and PDEswith physical boundary conditions
and interface conditions [40]. Schrödingerization is also
suitable for nonautonomous PDEs [25]. It can be shown that
Schrödingerization also provides a new stable numerical
method for ill-posed PDEs [30]. Our method can also be
extended to discrete dynamical systems [21].
Linear algebra problems: The cost to solve a quantum

linear system of equations using Schrödingerization, unlike
using methods based on solving a system of linear algebraic
equations by matrix inversion [6], has no direct depend-
ence on the condition number of the matrices [21]. This
makes these class of methods distinct from previous
quantum linear systems algorithms.
Summary—We have introduced a conceptually new

method, calledSchrödingerization,whichmakes it possible—
in a simple yet general way—to simulate solutions of any
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linear ODE or PDE using quantum simulation. This method
can be framed in the traditional language of (continuous-
variable) dynamical equations. The connection between
classical dynamics and its corresponding Schrödinger’s
equations can be seen easily at the level of the dynamical
equations, without approximations and with the addition of
only a single extra dimension. For deeper connections
between this method and the mathematics of dilation, see
[41]. It is also suitable for both the continuous-variable or
analogue and digital frameworks alike [22].

Note added—After completion of this article, the authors
were informed by the authors of [42] that they were
preparing a paper which presented a complementary
perspective on a similar algorithm. Their approach,
as shown in Theorem 1 in [42], directly represents the
solution—in integral form of the Fourier variable—of our
Schrödingerized PDEs, then expresses it as a linear
combination of Hamiltonian simulation problems. This
would be more appealing to the linear combination of
unitaries community. We directly take the Fourier trans-
form and write it into a PDE form, the Schrödingerized
equation for w̃. Ours is more attractive to the PDE
community and more convenient to the use of the well-
established computational PDE techniques to develop
quantum algorithms. Another important feature of
Schrödingerization is that, since it is a continuous variable
formulation, it is naturally suited for analog quantum
computing, which could be realized in the nearer term
compared with digital quantum computation [22,23].
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