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Abstract

We construct an efficient numerical scheme for the quantum Fokker-Planck-Landau

(FPL) equation that works uniformly from kinetic to fluid regimes. Such a scheme in-

evitably needs an implicit discretization of the nonlinear collision operator, which is difficult

to invert. Inspired by work [9] we seek a linear operator to penalize the quantum FPL col-

lision term QqFPL in order to remove the stiffness induced by the small Knudsen number.

However, there is no suitable simple quantum operator serving the purpose and for this

kind of operators one has to solve the complicated quantum Maxwellians (Bose-Einstein or

Fermi-Dirac distribution). In this paper, we propose to penalize QqFPL by the ‘classical’

linear Fokker-Planck operator. It is based on the observation that the classical Maxwellian,

with the temperature replaced by the internal energy, has the same first five moments as

the quantum Maxwellian. Numerical results for the Bose and Fermi gases are presented to

illustrate the efficiency of the scheme in both the fluid and kinetic regimes.

1 Introduction

The Fokker-Planck-Landau (FPL) equation is a kinetic model widely used in plasma physics.

It describes the time evolution of charged particles in a plasma [21, 22]. When the quantum

effects of particles are taken into account, for example, several bosons can occupy the same

quantum state while only one fermion can occupy a particular quantum state, one has to use

the following so-called quantum Fokker-Planck-Landau equation,

∂f

∂t
+ v · ∇xf =

1

ε
QqFPL(f), x ∈ Ω ⊂ Rdx , v ∈ Rdv , (1.1)

where f(t, x, v) ≥ 0 is the phase space distribution function depending on time t, position x

and particle velocity v. ε is the Knudsen number which measures the degree of rarefiedness of
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the particles. It is the ratio of the mean free path and the typical length scale. The quantum

collision operator QqFPL is given by

QqFPL(f)(v) = ∇v ·
∫
Rdv

A(v − v∗) [f∗(1± θ0f∗)∇vf − f(1± θ0f)∇v∗f∗] dv∗ (1.2)

with f = f(t, x, v) and f∗ = f(t, x, v∗). A(z) = Ψ(|z|)Π(z) is a dv × dv semi-positive definite

matrix and Π(z) is the orthogonal projection onto the space orthogonal to z,

Π(z) = I − z ⊗ z
|z|2

, I is the identity matrix. (1.3)

For inverse-power law interactions, Ψ(|z|) = |z|γ+2 with −3 ≤ γ ≤ 1. The case γ = −3 refers to

the Coulomb potential which is of primary importance in plasma applications. The parameter

θ0 = ~dv , where ~ is the rescaled Planck constant. Here in (1.2) and the sequel, the upper sign

will always correspond to the Bose gas (composed of bosons) while the lower sign to the Fermi

gas (composed of fermions). For the latter f must also satisfy f ≤ 1

θ0
by the Pauli exclusion

principle.

Unlike the classical FPL equation, very few studies have been conducted on the quantum FPL

equation. See [7] for a formal derivation from the quantum Boltzmann equation in the grazing

collision limit and [23] for a spectral analysis of its linearization near the equilibrium. In the

spatially homogeneous setting, the well-posedness and regularity of the solution were established

in [1, 5] for Fermi-Dirac particles and the equilibrium states were rigorously determined in [2].

It is well-known that the equilibrium, in this context the quantum Maxwellian Mq (Bose-

Einstein or Fermi-Dirac distribution), is reached when the Knudsen number ε goes to zero. Then

we could instead consider the limiting hydrodynamic equations satisfied by the moments ofMq.

However, fluid equations are not adequate for many applications. Very often one has to deal

with multiscale phenomena, where the Knudsen number varies between different regimes. Our

goal in this paper is to design an efficient numerical scheme for the quantum FPL equation (1.1)

that works uniformly for both kinetic and fluid regimes. The main difficulty arises when ε is

very small: the right hand of equation (1.1) becomes stiff and due to the diffusive nature of the

collision operator explicit schemes are subject to severe stability constraints (require time step

∆t = O(ε∆v2), where ∆v is the mesh size in velocity domain). Implicit schemes don’t have such

a restriction, but a fully nonlinear equation needs to be solved at each time step. Ideally, we

would like an implicit scheme that allows larger time step and can be inverted easily.

A class of asymptotic preserving schemes recently introduced in [9] has successfully resolved

this issue for the classical Boltzmann equation. The basic idea is to penalize the collision term

with a BGK operator:

QcB = [QcB − λ (Mc − f)]︸ ︷︷ ︸+λ [Mc − f ]︸ ︷︷ ︸, (1.4)

less stiff stiff

where QcB is the classical Boltzmann collision operator. λ is some constant approximation of

the spectrum of QcB . Mc is the classical Maxwellian given by

Mc =
ρ

(2πT )
dv
2

e−
(v−u)2

2T , (1.5)

ρ : density, u : macro-velocity, T : temperature.
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Now the first bracket in (1.4) is less stiff than the second one and can be treated explicitly.

The second bracket will be discretized implicitly. Using the conservation properties of the BGK

operator, this implicit term can actually be handled explicitly [6].

Later, a similar idea was applied to the quantum Boltzmann equation [8] and the classical

FPL equation [16]. As the name implies, the quantum FPL equation (1.1) shares the features of

both equations: (1) admits the quantum Maxwellian Mq as the equilibrium state like quantum

Boltzmann; (2) becomes the classical FPL when θ0 → 0. Correspondingly, we are facing the

numerical challenges from both sides: have to invert a nonlinear 2 by 2 system to defineMq [8];

the BGK operator is not suitable for penalization since QqFPL contains diffusion-like terms [16].

In this work, we propose to penalize (1.2) by a ‘classical’ Fokker-Planck (FP) operator:

QqFPL = [QqFPL − λPcFP (f,Mc)] + λPcFP (f,Mc) (1.6)

with

PcFP (f,Mc) = ∇v ·
(
Mc∇v

(
f

Mc

))
. (1.7)

The idea is based on the observation that the classical Maxwellian (1.5), with the temperature

replaced by the (quantum) internal energy, has the same first five moments as the quantum

Maxwellian. In addition, the classical FP operator (1.7) has good conservation properties and

is relatively easy to invert. A second order extension is also given. Thus we arrive at a scheme

uniformly stable in ε and avoid computing the complicated quantum Maxwellians. Furthermore,

our numerical experiments show that the solution f will converge to Mq eventually within an

error of O(∆t), no matter what the initial condition is. This guarantees the capturing of the

fluid dynamic limit for small ∆t in the sense of the asymptotic-preserving schemes [14, 15].

To implement the above scheme, we need a fast and accurate solver for the quantum FPL

operator QqFPL. The spectral method introduced in [26, 10] for the classical FPL operator can

be easily extended to this case. Even though QqFPL is cubic, the fast algorithm still applies,

allowing us to reduce the cost from O(n2) to O(n log n) (n = Ndv , N is the number of discretized

points in each direction of v). The details of the method are presented in the Appendix.

The rest of the paper is organized as follows. In the next section, we briefly summarize

the basic properties of the quantum FPL equation. In section 3, we describe the numerical

schemes. Numerical examples are given in section 4 to illustrate the asymptotic property and

the effectiveness of the scheme in both the kinetic and fluid regimes. Finally we make some

concluding remarks in section 5.

2 The quantum FPL equation and its hydrodynamic limits

In this section we review some basic facts about the quantum FPL equation (1.1). They will

be useful to design the numerical scheme.

The weak form of the collision operator (1.2) reads:∫
Rdv
QqFPL(f)φdv = −1

2

∫∫
Rdv×Rdv

(∇vφ−∇v∗φ∗)
T
A(v − v∗)f∗f(1± θ0f∗)(1± θ0f)

·
(

1

1± θ0f

∇vf
f
− 1

1± θ0f∗

∇v∗f∗
f∗

)
dv∗dv. (2.1)
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Then ∫
Rdv
QqFPL(f)dv =

∫
Rdv
QqFPL(f)vdv =

∫
Rdv
QqFPL(f)|v|2dv = 0. (2.2)

Conservations of mass and momentum are straightforward. Conservation of energy follows from

zTA(z) = (A(z)z)T = 0.

If φ = ln
f

1± θ0f
, one has

∫
Rdv
QqFPL(f) ln

f

1± θ0f
dv = −1

2

∫∫
Rdv×Rdv

(
1

1± θ0f

∇vf
f
− 1

1± θ0f∗

∇v∗f∗
f∗

)T
A(v − v∗)

·f∗f(1± θ0f∗)(1± θ0f)

(
1

1± θ0f

∇vf
f
− 1

1± θ0f∗

∇v∗f∗
f∗

)
dv∗dv ≤ 0.

(2.3)

This is Boltzmann’s H-theorem. The last inequality comes from the semi-positivity of A(z).

Moreover, ∫
Rdv
QqFPL(f) ln

f

1± θ0f
dv = 0⇐⇒ QqFPL(f) = 0⇐⇒ f =Mq, (2.4)

where Mq is the quantum Maxwellian given by

Mq =
1

θ0

1

z−1e
(v−u)2

2T ∓ 1
. (2.5)

The macroscopic quantity z is called the fugacity: z = e
µ
T , µ is the chemical potential (see [13]

for more details about the derivation of Mq). (2.5) is the well-known Bose-Einstein (‘-’) and

Fermi-Dirac (‘+’) distributions.

2.1 The hydrodynamic limit

Define the density ρ, macro-velocity u and specific internal energy e as

ρ =

∫
Rdv

fdv, ρ u =

∫
Rdv

fvdv, ρe =
1

2

∫
Rdv

f |v − u|2dv. (2.6)

Then with f = Mq, the first dv + 2 moment equations of (1.1) can be closed and yield the

quantum Euler equations:

∂ρ

∂t
+ ∇x · (ρu) = 0,

∂(ρu)

∂t
+ ∇x ·

(
ρu⊗ u+

2

dv
ρeI

)
= 0,

∂

∂t

(
ρe+

1

2
ρu2

)
+ ∇x ·

((
dv + 2

dv
ρe+

1

2
ρu2

)
u

)
= 0.

(2.7)

This form is exactly the same as the classical Euler equations. In fact pressure p =
2

dv
ρe holds for

both classical and quantum gases. However, the intrinsic equipartition laws are quite different.

For classical (monatomic) gas e =
dv
2
T , while for quantum gas ρ and e are connected with T
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and z (appeared in the definition of Mq (2.5)) by a nonlinear 2× 2 system:
ρ =

(2πT )
dv
2

θ0
Q dv

2
(z),

e =
dv
2
T
Q dv+2

2
(z)

Q dv
2

(z)
,

(2.8)

where Qν(z) denotes the Bose-Einstein function Gν(z) and Fermi-Dirac function Fν(z) respec-

tively,

Gν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

z−1ex − 1
dx, 0 < z < 1, ν > 0; z = 1, ν > 1, (2.9)

Fν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

z−1ex + 1
dx, 0 < z <∞, ν > 0, (2.10)

where Γ(ν) =

∫ ∞
0

xν−1e−xdx is the Gamma function.

The physical range of interest for a Bose gas is 0 < z ≤ 1, with z = 1 corresponding to the

degenerate case (the onset of Bose-Einstein condensation). z could be any positive real number

for a Fermi gas and the degenerate case is reached when z � 1.

For small z, the integrand in (2.9) and (2.10) can be expanded in powers of z,

Gν(z) =

∞∑
n=1

zn

nν
= z +

z2

2ν
+
z3

3ν
+ . . . , (2.11)

Fν(z) =

∞∑
n=1

(−1)n+1 z
n

nν
= z − z2

2ν
+
z3

3ν
− . . . . (2.12)

Thus both functions behave like z itself for z � 1, and one recovers the classical limit.

On the other hand, the first equation of (2.8) can be written as

Q dv
2

(z) =
ρ

(2πT )
dv
2

θ0, (2.13)

where
ρ

(2πT )
dv
2

is just the coefficient of the classical Maxwellian, and should be an O(1) quantity.

If θ0 → 0, then Q dv
2

(z) → 0, which implies z → 0 by the monotonicity of function Qν . This is

consistent with the fact that one gets the classical FPL operator in (1.2) by letting θ0 → 0.

3 Numerical schemes

As discussed in the introduction, our goal is to design a numerical scheme for the quantum

FPL equation (1.1) that works uniformly for different ε. Inspired by work [9], we seek a suitable

operator P (f,Mq) to penalize QqFPL. A first-order (in time) scheme should look like:

fn+1 − fn

∆t
+ v · ∇xfn =

1

ε

[
QqFPL (fn)− λP

(
fn,Mn

q

)]
+
λ

ε
P
(
fn+1,Mn+1

q

)
. (3.1)

To find fn+1, we need to computeMn+1
q first. This can be accomplished by taking the moments

on both sides of (3.1), i.e. multiply by φ =

(
1, v,

1

2
v2

)T
and integrate with respect to v. If
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P (f,Mq) preserves mass, momentum and energy, one has

Un+1 − Un

∆t
+

∫
φ(v)v · ∇xfndv = 0, (3.2)

where U =

(
ρ, ρu, ρe+

1

2
ρu2

)T
. Once we get Un+1, Mn+1

q is known, then we go back to (3.1)

to compute fn+1.

From the above discussion, we naturally require the operator P (f,Mq) to satisfy the following

conditions:

1. It preserves mass, momentum and energy;

2. It is easy to invert; preferably linear in f ;

3. It contains diffusion-like terms to mimic the structure of QqFPL;

4. It has a unique equilibrium solution: P (f,Mq) = 0⇐⇒ f =Mq.

Remark 3.1. The last condition is to insure the asymptotic property of the scheme. Simply

speaking, if fn−Mn
q = O(ε), then QqFPL (fn) = O(ε), P

(
fn,Mn

q

)
= O(ε). Thus (3.1) implies

P
(
fn+1,Mn+1

q

)
= O(ε), so fn+1 −Mn+1

q = O(ε). Later we will see this requirement is not

necessary if we allow a weaker asymptotic condition.

A similar problem has been thoroughly studied in [16] for the classical FPL equation and the

FP operator (1.7) was suggested there as penalization. For the quantum Fokker-Planck-Landau

equation, it is very natural to think of an operator P (f,Mq) that depends on the quantum

MaxwellianMq and meets all of the above criteria. Even if one can find such an operator, there

is still one difficulty left. In the classical case, if Un+1 (conserved quantities) is known, then

Mn+1
c is readily obtained, but things are not easy for Mn+1

q . In fact, one has to invert the

nonlinear system (2.8) to get z and T in order to define Mq [13, 8]. In practice this is very

expensive (has to be done at every time step and every spatial point). Furthermore, setting

a good initial guess for the iterative method is not trivial especially when z is close to the

degenerate regime.

Since PcFP works perfectly for the classical FPL equation and Mq is expensive to invert,

motivated by our previous work on the quantum Boltzmann equation [8], we propose PcFP (1.7)

as the penalization operator, where

Mc = ρ

(
dv

4πe

) dv
2

e−
dv
4e (v−u)2 . (3.3)

The modification onMc is just to replace the temperature T with internal energy e using relation

e =
dv
2
T . The reason is because such defined Mc has the same first dv + 2 moments as Mq.

Therefore, our scheme for the quantum FPL equation (1.1) reads:

fn+1 − fn

∆t
+ v · ∇xfn =

1

ε
[QqFPL (fn)− λPcFP (fn,Mn

c )] +
λ

ε
PcFP

(
fn+1,Mn+1

c

)
. (3.4)

The right hand side of (3.4) is still conservative, so one computes Mn+1
c same as before.

It is important to notice that z and T are not present at all in this scheme. If they are desired

variables for output, one only needs to convert between ρ, e and z, T through (2.8) at the final

time, see [13].
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Remark 3.2. In general, one cannot expect fn+1 −Mn+1
q = O(ε) even if fn −Mn

q = O(ε) for

this new scheme. Since then QqFPL (fn) = O(ε). The other terms on the numerator of the right

hand side of (3.4) could be written as, roughly speaking, O (fn −Mn
c ) + O

(
fn+1 −Mn+1

c

)
,

which is equal to O
(
fn −Mn

q

)
+ O

(
fn+1 −Mn+1

q

)
+ O

(
Mn+1

q −Mn
q

)
+ O

(
Mn+1

c −Mn
c

)
.

Assuming all the functions are smooth and ∆t > ε, the last two terms are of O(∆t), this implies

O
(
fn+1 −Mn+1

q

)
= O(∆t).

Remark 3.3. In [8] when the quantum BGK operator was penalized by the classical BGK

operator, we were able to show∣∣fn −Mn
q

∣∣ ≤ αn ∣∣f0 −M0
q

∣∣+O(∆t), 0 < α < 1. (3.5)

Based on this simple analysis, we expect that f will converge to Mq in (3.4) eventually within

an error of O(∆t) for any initial data. The numerical experiments in the next section actually

confirm this property for our new scheme, but there is no theoretical justification yet.

At this point, it is helpful to get a qualitative idea of the differences between the classical

Maxwellian and quantum Maxwellian, since basically we are replacing Mq with Mc in the

penalization and still expect f to be driven to Mq instead of Mc. As discussed in Section 2,

we know that Mq and Mc are more or less the same in the classical regime (when θ0 → 0,

i.e. z � 1). However, what we are really interested in is the behavior of the solution in the

quantum regime (when θ0 is not small, corresponding to z ∼ 1 for Bose gas and z � 1 for Fermi

gas). Figure 1 shows the 2-D profile of a typical Bose-Einstein distribution and Fermi-Dirac

distribution along with the (classical) gaussian distribution, all obtained with ρ = T = 1, u = 0.

In the numerical examples (Section 4), we always solve the equation in the quantum regime,

where the differences between Mq and Mc are evident (θ0 is not small and may take various

values in different examples).

−5
0

5

−5

0

5

0

0.1

0.2

0.3

0.4

0.5

0.6

Bose−Einstein distribution

−5
0

5

−5

0

5

0

0.05

0.1

0.15

0.2

Fermi−Dirac distribution

−5
0

5

−5

0

5

0

0.05

0.1

0.15

0.2

classical distribution

Figure 1: Left: Bose-Einstein distribution (z = 0.9216); middle: classical Maxwellian (z � 1);

right: Fermi-Dirac distribution (z = 306.8393).

3.1 The algorithm

We are ready to describe the detailed algorithm.

Given fn and Un =

(
ρ, ρu, ρe+

1

2
ρu2

)n
at time tn,

7



Step 1. Approximate the transport term v ·∇xfn in (3.2) by a finite volume or finite difference

method.

Step 2. Compute Un+1 via (3.2) (using any quadrature rule for the integral).

Step 3. Construct Mn+1
c through (3.3).

Step 4. Evaluate QqFPL (fn) by a fast spectral method presented in the Appendix.

Step 5. Solve fn+1 by

fn+1 =

(
I − λ∆t

ε
PcFP

(
·,Mn+1

c

))−1

·
(
fn −∆tv · ∇xfn +

∆t

ε
(QqFPL (fn)− λPcFP (fn,Mn

c ))

)
. (3.6)

The discretization of PcFP and its inverse can be found in [16], where only a symmetric matrix

needs to be inverted by the Conjugate-Gradient method.

A remaining question is how to choose an appropriate λ to approximate the spectrum of

QqFPL. The form (3.12) indicates a reasonable choice: λ should be the largest eigenvalue of

matrix ∫
Rdv

A(v − v∗)f∗(1± θ0f∗)dv∗. (3.7)

Note that the integral is just the convolution of A and f(1 ± θ0f), which can be obtained via

the Fourier transform.

3.2 Discussions on other possible penalty operators

An equivalent form of PcFP is written as

PcFP = ∇v ·
(
∇vf +

v − u
T

f

)
. (3.8)

This reminds us of the quantum Fokker-Planck or Kaniadakis-Quarati equation [19, 20, 18],

∂f

∂t
= ∇v · (∇vf + vf(1± θ0f)) . (3.9)

It was introduced as a simplified model of the full kinetic equation. The well-posedness and

long-time asymptotics of the solution were investigated in [3, 4]. Recently it was also considered

for modeling the Bose-Einstein condensate [28].

For the spatially inhomogeneous case, we define

PqFP = ∇v ·
(
∇vf +

v − u
T

f(1± θ0f)

)
, (3.10)

analogous to its classical counterpart. Let’s check if this operator serves our purpose. It is not

hard to see that PqFP satisfies conditions 3 and 4. However, it is not linear in f which needs

more effort to invert than a linear one (although much better than QqFPL). Most importantly,

PqFP only preserves mass. Momentum and energy can be bounded [3], but are not strictly

conserved.
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Another possibility is the following operator:

P (f,Mq) = ∇2
v(f −Mq). (3.11)

This P clearly satisfies conditions 1-4, but it turns out to be a bad choice. We give a simple

argument here. The quantum collision operator (1.2) can be rearranged as

∇v ·
[(∫

Rdv
A(v − v∗)f∗(1± θ0f∗)dv∗

)
∇vf −

(∫
Rdv

A(v − v∗)∇v∗f∗dv∗
)
f(1± θ0f)

]
. (3.12)

On the other hand,

∇2
v(f −Mq) = ∇v · (∇vf −∇vMq) = ∇v ·

(
∇vf +

v − u
T
Mq(1± θ0Mq)

)
. (3.13)

Comparing (3.12) with (3.13) and (3.10), it is not surprising that the quantum FP operator (3.10)

works better than the purely diffusive one (3.11). Similar scenario happens in the classical case,

readers are referred to [16] for more explanations and numerical results regarding this issue.

3.3 An extension to second order method

Up to this point we are only dealing with the first order method, in the sense that the

numerical accuracy is first order in both space and time, as well as the asymptotic property

(fn −Mn
q = O(∆t)). Here we propose a way to extend scheme (3.4) to second order.

3.3.1 A toy model

We start with the toy model

∂tf = −1

ε
f. (3.14)

A penalty based second order method can be given as,

3fn+1 − 4fn + fn−1

2∆t
= −1

ε

(
2fn − fn−1 − β(2fn − fn−1) + βfn+1

)
. (3.15)

Lemma 3.4. The scheme (3.15) is stable for any ε and ∆t if and only if β ≥ 3
4 .

The proof is straightforward and given in the appendix.

Remark 3.5. The critical case β = 3
4 gives a stable scheme for any nonzero ε. But in the

limiting case ε = 0, one of the roots of the characteristic polynomial for (3.15) is −1. Then

(3.15) does not give the right solutions fn → 0. In fact, when β = 3
4 this method does not have

the L-stability, which is crucial for an Asymptotic-Preserving scheme [17].

3.3.2 A second order method for the qFPL equation

Now we can give the second order method for the qFPL equation:

3fn+1 − 4fn + fn−1

2∆t
+ v · ∇x(2fn − fn−1) =

1

ε

[
2Q (fn)−Q

(
fn−1

)]
− λ

ε

[
2P (fn,Mn

c )− P (fn−1,Mn−1
c )

]
+
λ

ε
P
(
fn+1,Mn+1

c

)
, (3.16)
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where Q = QqFPL is the qFPL operator, P = PcFP is the classical Fokker-Planck operator.

Like the first order method, we don’t have any rigorous justification for the quantum FPL

equation. However, when the scheme is applied to the quantum BGK equation, we can improve

the result in [8] with the following proposition.

Proposition 3.6. Suppose Q in (3.16) is the quantum BGK operator Mq − f and P is the

classical BGK operator β(Mc − f) with β > 3
4 , then for any initial data, there exists a constant

integer N > 0, such that

fn −Mn
q = O(∆t2), for any n ≥ N. (3.17)

Proof. In the case that Q is quantum BGK and P is classical BGK, the second order method

(3.16) gives

fn+1 −Mn+1
q =

β − 1

β
(2(f −Mq)

n − (f −Mq)
n−1) +A, (3.18)

with

A = O(ε) +O(∆t2).

Denote r1 and r2 the two roots of

g(r) = r2 − 2
β − 1

β
r +

β − 1

β
.

One can check that |r1| < 1 and |r2| < 1 under the condition β > 3
4 .

We write (3.18) as

(fn+1 −Mn+1
q )− r2(fn −Mn

q ) = r1((fn −Mn
q )− r2(fn−1 −Mn−1

q )) +A. (3.19)

Let hn = (fn+1 −Mn+1
q )− r2(fn −Mn

q ), then

hn = r1h
n−1 +A = r2

1h
n−2 + (1 + r1)A = · · · = rn1 h

0 + (1 + r1 + · · ·+ rn−1
1 )A. (3.20)

Noting the last term is of order O(ε) +O(∆t2) since |r1| < 1.

Take N > 0 satisfying rN1 = O(ε) +O(∆t2), then

hn = O(ε) +O(∆t2), for any n ≥ N.

This means

fn+1 −Mn+1
q = r2(fn −Mn

q ) +O(ε) +O(∆t2), for any n ≥ N.

With same iterations, one obtains

fn+1 −Mn+1
q = rn+1−N

2 (fN −MN
q ) + (1 + r2 + · · ·+ rn−1

2 )(O(ε) +O(∆t2)).

Therefore for n large enough, we have

fn+1 −Mn+1
q = O(ε) +O(∆t2).

This improvement is very promising and deserves more studies. We will show some prelimi-

nary results of scheme (3.16) in the next section.
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4 Numerical examples

In all the simulations, the velocity space is assumed to be 2-D and the interactions between

particles are the Coulomb interactions. A second order finite volume method with slope limiters

[24] is applied to the transport part.

Whenever fugacity z and temperature T are needed, we compute them as follows. System

(2.8) (dv = 2) leads to
Q2

1(z)

Q2(z)
=
θ0

2π

ρ

e
, (4.1)

the left hand side is treated as one function of z, and inverted by the secant method. To evaluate

the quantum function Qν(z), expansion (2.11) is used for the Bose-Einstein function. The Fermi-

Dirac function is computed by a direct numerical integration. The approach adopted is taken

from [27] (Chapter 6.10).

4.1 The spatially homogeneous case

We first check the behavior of the solution in the spatially homogeneous case. Consider the

nonequilibrium initial data

f0(v) =
ρ0

4πT0

(
exp

(
−|v − u0|2

2T0

)
+ exp

(
−|v + u0|2

2T0

))
(4.2)

with ρ0 = 1, T0 = 3/8 and u0 = (1, 1/2). Figure 2 shows the time evolution of f up to time

t = 1.2 for a Bose gas. Here θ0 = 9 which corresponds to z = 0.6635 (the behavior of the quantum

gas is significantly different from that of the classical gas). The Knudsen number ε = 1e−4. The

computational domain for v is taken as [−8, 8] × [−8, 8] with N = 64 in each direction. Under

this condition, an explicit scheme would require ∆t = O(ε∆v2) ≈ 1e− 6, while our scheme (3.4)

gives fairly good results with a much coarser time step ∆t = 0.01. Furthermore, Figure 3 (left)

clearly illustrates that the so obtained f is indeed driven to the quantum MaxwellianMq rather

than classical Maxwellian Mc. Figure 3 (right) is the evolution of the relative entropy H,

H =

∫
Rdv

1

θ0

[
(θ0f) ln

f

Mq
∓ (1± θ0f) ln

1± θ0f

1± θ0Mq

]
dv. (4.3)

By the Boltzmann’s H-theorem, this quantity will decay to zero eventually.

4.2 The spatially inhomogeneous case

4.2.1 Asymptotic property

We now numerically verify the asymptotic property of the scheme (3.4) for the spatially

inhomogeneous equation.

Consider the equilibrium initial data

(I): f0 =Mq0,

with ρ0 =
sin(2πx) + 2

3
, u0 = (0, 0), T0 =

cos(2πx) + 3

4
, x ∈ [0, 1], (4.4)
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Figure 2: The evolution of f for a Bose gas at times t = 0, 0.1, 0.2 and 1.2. θ0 = 9. ε = 1e− 4.

∆t = 0.01. v ∈ [−8, 8]× [−8, 8] on a 64× 64 mesh.
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Figure 3: The time evolution of ‖f −Mq‖L1 , ‖f −Mc‖L1 (left) and the relative entropy H

(right) for a Bose gas. θ0 = 9. ε = 1e− 4. ∆t = 0.01. v ∈ [−8, 8]× [−8, 8] with N = 64.

and nonequilibrium initial data

(II): f0 =
ρ0

4πT0

(
exp

(
−|v − u0|2

2T0

)
+ exp

(
−|v + u0|2

2T0

))
,

with ρ0 =
sin(2πx) + 2

3
, u0 = (0.2, 0), T0 =

cos(2πx) + 3

4
, x ∈ [0, 1]. (4.5)12



We set θ0 = 1 to get a Bose gas in the quantum regime. The Knudsen number ε = 1e − 6.

v ∈ [−8, 8] × [−8, 8] with N = 64. Spatial size ∆x = 0.01. ∆t = 0.0013 by the CFL condition

imposed on the transport part. The periodic boundary condition is used in the x-direction. In

Figure 4, we report the time evolution of ‖f −Mq‖L1 for the equilibrium initial data (I) and

nonequilibrium data (II) respectively. As one can see, the distances between f andMq is about

1e−3 ≈ O(∆t) as expected. For comparison, we also plot the norms of f −Mc, which are much

bigger than those of f −Mq.

In the same figure, we also show the results of the second order scheme (3.16). The error is

smaller, but we mention that the long time behavior is not satisfactory, which is probably due

to the lack of well-balanced property of the scheme. We leave it for future studies.
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Figure 4: Distances between f and the Maxwellians for a Bose gas. Left: equilibrium initial

data (I); right: nonequilibrium initial data (II). θ0 = 1. ε = 1e− 6.

Remark 4.1. The long time behavior is not so satisfactory. This might be due to the lack

of well–balanced property for the IMEX type scheme. Consider a conservation equation with a

source term

∂tu+ ∂xf(u) = q(u).

One can solve it by an IMEX type method

un+1 − un

∆t
+ ∂xf(un) = q(un+1).

However this method is not well balanced in the sense that the stationary solution, i.e. the

solution to

∂xf(u) = q(u),

is not accurately preserved in the discrete level [12, 11].

This lack of well-balanced property is a typical problem for the long time behavior of AP

schemes and deserves further investigation. However it is beyond the scope of this work.

4.2.2 A shock tube problem

We next apply our scheme to the 1-D shock tube problem:
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
(ρl, ul, Tl) = (1, 0, 1), 0 ≤ x ≤ 0.5,

(ρr, ur, Tr) = (0.125, 0, 0.25), 0.5 < x ≤ 1.

(4.6)

We adjust θ0(= 4) to get a Fermi gas in the quantum regime (zl = 0.8901, zr = 0.3748). The

Knudsen number ε = 1e − 4. v ∈ [−8, 8] × [−8, 8] with N = 64. ∆x = 0.01. ∆t = 0.0013

as before. In this hydrodynamic regime, the solution of the kinetic equation should be close

to that of the fluid dynamic equations. So we compare the results of scheme (3.4) with the

kinetic scheme (KFVS scheme in [13]) for the quantum Euler equations (2.7). Figure 5 shows

the macroscopic quantities ρ, u, z and T at time t = 0.2.
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Figure 5: Fermi gas in the fluid regime ε = 1e − 4. θ0 = 4. Density ρ, velocity u1, fugacity z

and temperature T at t = 0.2. v ∈ [−8, 8] × [−8, 8] with N = 64, ∆x = 0.01, ∆t = 0.0013. ◦ :

scheme (3.4) for quantum FPL equation; solid line: KFVS scheme for quantum Euler equations.

4.2.3 Mixing regime

So far the Knudsen number has been fixed in the numerical simulation, and we’ve seen that

our scheme works well in the fluid regime. In the real situation the Knudsen number usually

14



varies between different regimes. The next example is devoted to this kind of problem.

Assume ε is space-dependent:

ε = ε0 + 0.05(tanh(5− 10x) + tanh(5 + 10x)), ε0 = 1e− 3, x ∈ [0, 1], (4.7)

as shown in Figure 6.
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Figure 6: Space-dependent ε.

We consider a Fermi gas with θ0 = 2.25 (z : 0.16 ∼ 0.76) starting from the equilibrium

initial data (4.4). Let v ∈ [−8, 8] × [−8, 8] with N = 64. ∆x = 0.01. ∆t = 0.0013 by the CFL

condition, independent of ε. Periodic boundary condition is applied to the x-direction. The

macroscopic quantities ρ, u and T at time t = 0.2 are plotted in Figure 7. The reference solution

is computed by an explicit second-order Runge-Kutta method with a much smaller time step

∆t = 6.7771e− 06. All the results agree pretty well which demonstrates that the scheme is also

reliable for problems with mixing scales.
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Figure 7: Fermi gas in the mixing regime. θ0 = 2.25. Density ρ, velocity u1 and temperature T

at t = 0.2. v ∈ [−8, 8] × [−8, 8] with N = 64. ∆x = 0.01. ◦: scheme (3.4) with ∆t = 0.0013;

solid line: explicit second-order Runge-Kutta scheme with ∆t = 6.7771e− 06.
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5 Conclusion

An efficient numerical scheme was constructed for the quantum Fokker-Planck-Landau equa-

tion (1.1) that works uniformly for different Knudsen numbers. The main idea is to penalize the

quantum collision operator QqFPL (1.2) by the ‘classical’ Fokker-Planck operator PcFP (1.7),

with the temperature T replaced by internal energy e in the classical Maxwellian Mc. The

implicit PcFP term can be easily inverted while QqFPL is much more complex to invert. A

remarkable feature of the scheme is that the numerical solution f is still driven to the quantum

Maxwellian rather than Mc under the fluid regime. We also developed a fast spectral method

for the collision operator QqFPL following its classical counterpart.

Appendix A A fast spectral method for the quantum FPL

collision operator

In this Appendix, we outline the fast spectral method for evaluating the quantum FPL

collision operator (1.2). It is an extension of the spectral method in [26, 10] for the classical FPL

operator.

In order to develop a spectral approximation, we restrict the function f on the cube DT =

[−T, T ]dv , and extend it periodically to the whole domain. T is chosen such that T = 2R, where

B(0, R) is the compact support of f [25]. We can then write the operator (1.2) as [26],

QqFPL(f)(v) = ∇v ·
∫
B(0,2R)

A(g) [h(v + g)∇vf(v)− h(v)∇gf(v + g)] dg, (A.1)

where A(g) = |g|γ+2

(
I − ggT

|g|2

)
, h(v) = f(v)(1± θ0f(v)).

Now f and h are approximated by truncated Fourier series,

f(v) ≈
N
2 −1∑

k=−N2

f̂ke
i πT k·v, f̂k =

1

(2T )dv

∫
DT

f(v)e−i
π
T k·vdv; (A.2)

h(v) ≈
N
2 −1∑

k=−N2

ĥke
i πT k·v, ĥk =

1

(2T )dv

∫
DT

h(v)e−i
π
T k·vdv. (A.3)

Plugging them into (A.1), one can get the k-th mode of Q̂qFPL,

Q̂qFPL,k = − π
2

T 2

N
2 −1∑

l,m=−N2
l+m=k

[∫
B(0,2R)

|g|γ+2[l(l +m)− (l · µ)((l +m) · µ)]ei
π
Tm·gdgf̂lĥm

−
∫
B(0,2R)

|g|γ+2[m(l +m)− (m · µ)((l +m) · µ)]ei
π
Tm·gdgf̂mĥl

]
,

(A.4)
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where µ =
g

|g|
. Following [26], we define

F (m) =

∫
B(0,2R)

|g|γ+2ei
π
Tm·gdg, (A.5)

Ipq(m) =

∫
B(0,2R)

|g|γgpgqei
π
Tm·gdg, p, q = 1, . . . dv. (A.6)

Then (A.4) can be recast as

Q̂qFPL,k = − π
2

T 2

N
2 −1∑

l,m=−N2
l+m=k

[
l2F (m)f̂lĥm +mlF (m)f̂lĥm −m2F (m)f̂mĥl −mlF (m)f̂mĥl

−
dv∑

p,q=1

lplqIpq(m)f̂lĥm −
dv∑

p,q=1

lpmqIpq(m)f̂lĥm

+

dv∑
p,q=1

mplqIpq(m)f̂mĥl +

dv∑
p,q=1

mpmqIpq(m)f̂mĥl

]
. (A.7)

Every term in (A.7) is a convolution, which can be computed by the Fast Fourier Transform in

O(n log(n)) operations, where n = Ndv is the total points in the velocity space.

As for F (m) and Ipq(m), we precalculated them according to the formulas given in [26]. In

the 2-D case, a factor (T/π)
γ+4

needs to be multiplied to their results since we are dealing with

the arbitrary domain DT .

Appendix B The stability of the second order method on

the toy model

Here we prove Lemma 3.4.

Proof. (3.15) gives

fn+1 +
−4(1 + ∆t

ε (β − 1))

3 + 2∆t
ε β

fn +
1 + 2∆t

ε (β − 1)

3 + 2∆t
ε β

fn−1 = 0.

Let

g(r) = (3 +
2∆t

ε
β)r2 − 4(1 +

∆t

ε
(β − 1))r + (1 +

2∆t

ε
(β − 1)).

Suppose the two roots of g(r) are r1 and r2. If r1 6= r2, the solution {fn} is given by

fn = c1r
n
1 + c2r

n
2 ,

where c1 and c2 are determined by f0 and f1. If r1 = r2, the solution {fn} is given by

fn = c1r
n
1 + c2nr

n
1 .

Therefore the stability of method (3.15) is equivalent to the condition that |r1| < 1, |r2| < 1.

Note that the parabola g(r) opens upward and

g(1) = 2∆t/ε > 0.
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Case 1, β ≥ 1. Note that

g(0) = 1 +
2∆t

ε
(β − 1) > 0,

0 <
r1 + r2

2
=

2(1 + ∆t
ε (β − 1))

3 + 2∆t
ε β

< 1,

0 < r1r2 =
1 + 2∆t

ε (β − 1)

3 + 2∆t
ε β

< 1.

Then

• Case 1.1, r1 and r2 are real. Then 0 < r1 < 1, 0 < r2 < 1.

• Case 1.2, r1 and r2 are not real. Then |r1| = |r2| =
√
r1r2 < 1.

Case 2, 3
4 ≤ β < 1. Note that

g(−1) = 8 +
∆t

ε
(8β − 6) > 0,

−1 <
r1 + r2

2
=

2(1 + ∆t
ε (β − 1))

3 + 2∆t
ε β

< 1.

• Case 2.1, r1 and r2 are real. Then −1 < r1 < 1, −1 < r2 < 1.

• Case 2.2, r1 and r2 are not real. Then g(0) > 0, hence

0 <
g(0)

3 + 2∆t
ε β

=
1 + 2∆t

ε (β − 1)

3 + 2∆t
ε β

< 1,

i.e. 0 < r1r2 < 1. Then |r1| = |r2| =
√
r1r2 < 1.

We have shown that the scheme is stable if β ≥ 3
4 .

If β < 3
4 , with ε small enough,

g(−1) = 8 +
∆t

ε
(8β − 6) < 0.

Since g(r) is a parabola that opens upward, there must be a root r1 < −1, which makes the

scheme unstable.
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