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ABSTRACT
Coulomb interaction, following an inverse-square force-law, quantifies the amount of force between two stationary and electrically charged
particles. The long-range nature of Coulomb interactions poses a major challenge to molecular dynamics simulations, which are major tools
for problems at the nano-/micro-scale. Various algorithms are developed to calculate the pairwise Coulomb interactions to a linear scale, but
poor scalability limits the size of simulated systems. Here, we use an efficient molecular dynamics algorithm with the random batch Ewald
method on all-atom systems where the complete Fourier components in the Coulomb interaction are replaced by randomly selected mini-
batches. By simulating the N-body systems up to 108 particles using 10 000 central processing unit cores, we show that this algorithm furnishes
O(N) complexity, almost perfect scalability, and an order of magnitude faster computational speed when compared to the existing state-of-
the-art algorithms. Further examinations of our algorithm on distinct systems, including pure water, a micro-phase separated electrolyte, and
a protein solution, demonstrate that the spatiotemporal information on all time and length scales investigated and thermodynamic quantities
derived from our algorithm are in perfect agreement with those obtained from the existing algorithms. Therefore, our algorithm provides
a promising solution on scalability of computing the Coulomb interaction. It is particularly useful and cost-effective to simulate ultra-large
systems, which is either impossible or very costly to conduct using existing algorithms, and thus will be beneficial to a broad range of problems
at nano-/micro-scales.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073424

I. INTRODUCTION

Molecular dynamics (MD) is one of the most powerful simula-
tion tools in modern science to furnish the atomic-detailed micro-
scopic mechanism underlying experimental findings in a plethora
of areas, including physics, chemistry, engineering, biology, and
pharmaceutical sciences.1–5 Despite the enormous success, the appli-
cation of MD simulations without specific coarse graining and the
enhanced sampling method has been largely limited to moderate size
(often below 1 × 106 atoms) and time scale (shorter than 10 ms).
These limitations cannot be solved by parallel computing using
a large number of computer cores, as the inter-atomic Coulomb
interactions4,6,7 are long-ranged and require intensive communica-
tions between cores, significantly reducing the parallel efficiency,

especially when using supercomputers. In the past decades, enor-
mous efforts have been devoted to reduce the computational cost of
the Coulomb interaction, and many fast algorithms have been devel-
oped, including the lattice summation methods on the basis of fast
Fourier transform (FFT),8,9 multipole-type methods such as the tree-
code algorithm10 and the fast multipole method (FMM),11,12 partial
differential equation-based multigrid methods,13 and Maxwell equa-
tion molecular dynamics.14 These algorithms can reduce the compu-
tational complexity to O(N log N) or even O(N) and have achieved
great success in practical applications. However, none of these
methods can achieve high scalability for calculating the Coulomb
interaction while using a large number of computer cores.15

The recent random batch Ewald (RBE)16 method is an alter-
native O(N) algorithm for electrostatic calculations. It is based on
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the Ewald splitting, but it avoids the use of the FFT by introducing
random mini-batch sampling on the Fourier space to approximate
the force contribution from the long-range part. In this work, we
develop the RBE for the all-atom molecular dynamics simulation
and demonstrate its great computational efficiency and high scal-
ability, especially when applied on large-scale simulations using
supercomputers owing to great reduction in global communica-
tions. The so-called “random mini-batch” in the RBE originated
from the stochastic gradient descent method widely used in machine
learning17,18 and was first proposed for interacting particle sys-
tems with rigorous error estimates.19 It has succeeded in Monte
Carlo simulation on particle systems.20 In the present work, we
demonstrate that the RBE-based MD enhances the computational
speed by an order of magnitude in comparison to the state-of-
the-art algorithms, including particle-particle particle-mesh (PPPM)
and particle-mesh Ewald (PME) methods, and maintains the par-
allel efficiency of nearly 95% when paralleling up to 10 000 central
processing unit (CPU) cores to simulate a large system of 108

atoms. Moreover, a systematic test was conducted on all-atom
simulations of three representative systems, namely, bulk water,
a micro-phase separated aqueous electrolyte, and a protein solu-
tion, revealing that the spatiotemporal information for these systems
on a broad range of time and length scales and the thermody-
namical quantities are quantitatively reproduced by the RBE-based
MD. Thus, as compared to the mainstream algorithms (PPPM
or PME8,9), the RBE-based MD furnishes a novel algorithm with
substantial improvement in computational efficiency and parallel
scalability while maintaining the accuracy of the spatiotemporal
information.

This paper is organized as follows: In Sec. II, we introduce
the random batch Ewald method and then describe the parallel
implementation in details. In Sec. III, we validate the superior CPU
performance and superscalability of the RBE method by the simu-
lation on bulk water and perform numerical calculations for three
benchmark problems, including bulk water, a micro-phase separated
aqueous electrolyte, and a protein solution, to demonstrate the accu-
racy of the RBE method. Discussions and conclusions are given in
Secs. IV and V, respectively.

II. METHODS
A. The random batch Ewald method

In the classical Ewald method,21 the Coulomb kernel is split
into two components,

1
r
=

erf(√αr)
r

+
erfc(√αr)

r
, (1)

where erf(⋅) is the error function and erfc(⋅) is its complementary
function such that the first term is a smooth function and the sec-
ond one becomes short-ranged. To mimic the bulk environment, a
periodic boundary condition is assumed. Without loss of general-
ity, one considers a system of N charged particles located at rj for
j = 1, . . . , N in a cubic box of length L and volume V = L3. By apply-
ing the Fourier transform on the smooth part of the electrostatic
interactions of these charges, one can write the total Coulomb energy
as U = U1 +U2, with

U1 =
2π
V ∑k≠0

∣ρ(k)∣2
∣k∣2 e−

∣k∣2

4α −
√α

π∑i
q2

i (2)

and

U2 =
1
2∑n

′∑
ij

qiqj
erfc(√α∣rij + nL∣)
∣rij + nL∣ , (3)

where rij = rj − ri is the vector starting at particle i and pointing
toward particle j, k = 2πm/L with m ∈ Z3, and ρ(k) is the structure
factor defined by

ρ(k) ∶=
N

∑
i=1

qieik⋅ri . (4)

Here, the structure factor is the conjugate of the Fourier transform
of the charge density. The Coulomb force acting on the ith particle
in the form of the Ewald summation is the derivatives of U in two
parts,

Fi = −∑
k≠0

4πqik
V ∣k∣2 e−

∣k∣2

4α Im(e−ik⋅ri ρ(k)) − qi∑
j,n

′qjG(∣rij + nL∣) rij + nL
∣rij + nL∣

=: Fi,1 + Fi,2, (5)

where G(r) is defined by

G(r) ∶= erfc(√αr)
r2 + 2

√
αe−αr2

r2 (6)

and Im(⋅) denotes the imaginary part of the independent variable. In
Eq. (5), Fi,1 represents the component in the Fourier space, while Fi,2
denotes the one in the real space. By proper choice of the parame-
ters (α and the real-space and Fourier-space cutoffs rc and kc), the
computational complexity is optimized to O(N3/2). Moreover, the
FFT is often employed to further speed up the evaluation of Fi,1 such
that the real-space cutoff radius can be much smaller than that of
the classical Ewald summation, resulting in the core algorithms for
mainstream software, including the PPPM and PME algorithms.8,9

A final computational complexity of O(N log N) can be achieved
through these methods for periodic systems.

The RBE avoids the use of the FFT; instead, it employs the
random mini-batch strategy to calculate Fi,1. Here, one picks a
small batch of frequencies when evaluating Fi,1 for a given particle
i. These frequencies are chosen randomly with an importance-
sampling scheme (see below for a brief overview and the work of
Jin et al.16 for more details). Let P be the batch size and

S ∶=∑
k≠0

exp(−∣k∣2/4α) = H3 − 1, (7)

with

H ∶= ∑
m∈Z

e−π2m2/(αL2) =
√

αL2

π

∞
∑

m=−∞
e−αm2L2

, (8)

where the second equality holds due to the Poisson summation
formula.22 Then, we have the probability

Pk = S−1e−
∣k∣2

4α (9)

for k ≠ 0, which is a discrete Gaussian distribution. Samples obey-
ing this probability can be obtained efficiently by applying the
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Metropolis–Hastings (MH) algorithm23 to sample from the discrete
distribution

Pm ∶= H−1e−(2πm/L)2/(4α), (10)

performing this sampling procedure for three components and dis-
carding the k = 0 sample. At each step of our simulation, one picks a
batch size P, which is of O(1), and draws P frequencies kℓ, 1 ≤ ℓ ≤ P
independent identically distributed (i.i.d) from the discrete distri-
bution Pk by the above-mentioned MH sampling method. The
approximate force then reads

F∗i,1 = −
P

∑
ℓ=1

S
P

4πkℓqi

V ∣kℓ∣2
Im(e−ikℓ ⋅ri ρ(kℓ)), (11)

which is an unbiased estimator of Fi,1 in Eq. (5).
Since the number of frequencies P used to estimate ρ(k) for

each particle is system-size independent, the overall computational
cost to calculate the structure factor for the entire simulation system
scales as O(N) under a given level of accuracy.16 The sketch map of
the RBE algorithm is present in Fig. 1(a).

In the isothermal-isobaric ensemble simulations (NPT), the
virial tensor calculation is needed at each MD step. It can also be
done by employing importance sampling in the Fourier space. With
the same batch of P Fourier modes, the approximate reciprocal space
contribution of the virial reads

Ξβγ
1 = −

P

∑
ℓ=1

S
P

π
V ∣kℓ∣2

∣ρ(kℓ)∣2 ⋅ [δβγ − 2kβ
ℓkγ

ℓ(
1

4α2 +
1
∣kℓ∣2
)], (12)

where β and γ are dimensions taken from the three coordinates indi-
cating the corresponding components of the tensor. The details for
deriving Eq. (12) are briefly given in Sec. II C.

The steps of the RBE-based MD algorithm are summarized as
follows:

(i) Set parameters α, rc, and batch size P. Load initial positions
and strengths of charges.

(ii) Sample sufficient number of k ∼ e−∣k∣
2/4α with k ≠ 0, by

employing importance sampling to form the total set of
frequency samples, K.

(iii) Evolve Newton’s equations. The real part Fi,2 of the Coulomb
force is directly computed with cutoff rc, whereas the Fourier
part is approximated by F∗i,1 using Eq. (11) with the P
frequencies chosen from K in order.

(iv) If the NPT ensemble is employed, compute the real-space
virial and the approximated Fourier virial using Eq. (12).

B. Parallel implementation
The RBE is especially suitable for parallelization and vector-

ization. Here, we present the implementation strategy with hybrid
message passing interface (MPI)/OpenMP parallelization for the
RBE in both the all-atom NVT and NPT simulations, which sup-
ports massively parallel MD simulations of large-scale systems. We
use the Intel 512-bit SIMD (AVX-512 architecture) for vector-
ization implementation, which operates 16 neighbors for single-
precision floating calculation (or eight for double precision) at
the same time, and the Intel Parallel Studio for parallelization
(including functions of MPI, OpenMP, and AVX-512 instructions).
The communication and vectorization procedures are optimized as
follows.

Steps (ii) and (iii) of the RBE require a serial importance sam-
pling procedure and a global broadcast operation, whereas their
cost is relatively small and can be eliminated by the designed non-
jammed communication and computation/communication overlap-
ping. First, for the NVT ensemble, assume that M MPI ranks are
employed, and M independent sampling processes are executed

FIG. 1. Sketch map. (a) The algorithm sketch map of the RBE applied to the electrostatic long-range interaction. (b) Parallel strategy in the Fourier space employing
single-instruction multiple-data (SIMD). Only one global operation with O(1) amount of data is required during each step.
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in parallel within each rank. Next, the first MPI rank broadcasts
the samples to other ranks using the blocking operation. Finally,
the equations of motion are calculated [i.e., step (iii)], whereas the
samples in other ranks are concurrently broadcasted. This strat-
egy evaluates and updates the samples every M steps, dramatically
reducing the global communication cost. Second, for the NPT
ensemble, the above strategy no longer works due to the dynam-
ically changed size of the box. We offer an alternative method by
the lights of the Multiple-Program Multiple-Data parallelization in
GROMACS.24 When M is large, one MPI rank is selected to do
only the sampling, which is sampled from the standard normal
distribution, and then broadcast the samples and the random vari-
ables which are required in the Metropolis step to other ranks.
Other ranks receive the samples and multiply by a constant with
respect to the instantaneous size of the box on them. An accep-
tancerejection step is then run at each rank with the same random
variables. The communication operation can also overlap with the
computation.

Step (iii) also requires the evaluation of the real-part force Fi,2
of the Coulomb force, and we follow the classical procedure in
the MD package of Large-scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS).25,26 The calculation of the Fourier part
(F∗i,1) is rather time-consuming in previous methods, and it is now
evaluated using Eq. (11), whose parallel strategy is displayed in
Fig. 1(b). The samples and the positions of particles are packaged
into 512-bit vectors when the structure factors ρ(k) are evaluated.
The OpenMP threads can be selected to involve/uninvolve in loop
parallelization when one evaluates ρ(k). Only one global operation,
MPI_Allreduce, is required for reducing ρ(k). The approximated
force F∗i,1 of each particle and the Fourier virial are then obtained
from the structure factors.

C. Calculation of the virial
We briefly discuss the calculation of the virial [Eq. (12)]. In a

system with periodic boundary conditions, the macroscopic pres-
sure p of a set of N particles contained in a volume V obeys the
following relation:

p = 2
3 V
(Ekin − Ξ), (13)

where Ekin is the instantaneous kinetic energy and Ξ is the virial. In
the full tensor form, the virial can be written as

Ξ = −1
2

N

∑
i<j

rn
ij ⊗ Fij, (14)

where rn
ij denotes the distance vector of the nearest image of atom i

from atom j and ⊗ denotes the direct product of two vectors. The
straightforward implementation of Eq. (14) involves its evaluation
in the inner loop of the non-bonded force routine, which results in
a significant CPU time consumption. Nevertheless, it is possible to
extract the virial calculation from the inner loop. A hybrid method is
often employed to evaluate the Ewald-based electrostatic virial such
that the real-space virial is treated as the tensor form employing the
method in the literature27 and the Fourier virial is computed from
the derivative of Lagrangian UF ,

Ξβγ
1 = −∑

η

−∂UF

∂hγη
hβη

= −∑
k≠0

π
V ∣k∣2 e−

∣k∣2

4α ∣ρ(k)∣2[δβγ − 2kβkγ( 1
4α
+ 1
∣k∣2 )], (15)

where h is the tensor indicating the size of the box, β, γ, and η
are taken from {x, y, z} indicating the corresponding component.
Although the Fourier virial can be cheaply evaluated using Eq. (15),
it cannot be directly derived from RBE due to the incomplete data of
the structure factors, as only P of them is evaluated in Eq. (11). To
address this problem, we follow the same idea that employs impor-
tance sampling from the Gaussian distribution in the Fourier space.
With the same batch of P frequencies [see Eq. (11)], the approximate
reciprocal space contribution of the virial Ξ1 reads as Eq. (12).

D. Consistency and stability analysis of employing
RBE in the NPT ensemble

We define the fluctuations in the random batch approximation
for the Fourier part of the force and the pressure on particle i by

χi = Fi,1(r) − F∗i,1(r) and χ̃βγ = pβγ − p̃βγ, (16)

respectively. The expectations and variances of the fluctuation can
be obtained by direct calculation, which are given by

E(χi) = 0,

E∣χi∣
2 = 1

P
(∑

k≠0

(4πqi)2S
V2∣k∣2 e−

∣k∣2

4α ∣Im(e−ik⋅ri ρ(k))∣
2
) − 1

P
∣Fi,1∣2,

(17)

and

E(χ̃βγ) = 0,

E(∣̃χβγ∣
2
) = 4S

9P∑k≠0

π2∣ρ(k)∣4
V4∣k∣4 e−

∣k∣2

4α Qβγ(∣k∣) − ∣pβγ∣
2
,

(18)

with

Qβγ(∣k∣) = δβγ − 2kβkγ( 1
4α2 +

1
∣k∣2 )

2

. (19)

Here, E represents the expectation (or the ensemble average).
Equations (17) and (18) imply that the random approximation is
consistent or unbiased, namely,

EF∗i,1 = Fi,1, and E p̃βγ = pβγ. (20)

Equation (20) illustrates that the averaged effect of the RBE quan-
tities is correct, and the random batch type methods work due to
this time averaging effect, which can be regarded as the law of large
numbers in time. This is a Monte-Carlo technique, but we have
demonstrated that the RBE can correctly reproduce the dynamical
properties (see Fig. 3) as the short-range part is calculated exactly.
Moreover, the following strong error holds:19,28

E[ 1
N∑i
(∣ri − r̃i∣2 + ∣vi − ṽi∣2)]

1
2

≲
√

Λ(N)Δt, (21)
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where Δt is the time step and

Λ(N) = max{E(∣χi∣
2),E(∣χ̃βγ∣

2
)} (22)

is an upper bound of the variance. Note that in the mean
field regime,16 Λ(N) is independent of N. It was also shown that if√

α ∼ ρ1/3
r (as it is used in the PPPM29), we haveE ∣χi∣

2 ≲ ρ4/3
r /P, with

ρr = N/V being the particle density. Moreover, at the Debye–Hückel
limit, the expectation of the squared structure factor is
approximated by30,31

⟨∣ρ(k)∣2⟩ ≃ kBTV
λ2

D + 1/∣k∣2 , (23)

where kBT is the thermal energy and λD is the Debye length. Assume
a symmetric electrolyte with ∣qi∣ = q for all i without loss of general-
ity. One has λD =

√
kBTε0ρr/q2, with ε0 being the vacuum dielectric

constant. Since k = 2πm/L and λD is constant for the fixed particle
density ρr = N/V , one has ⟨∣ρ(k)∣2⟩ ≃ O(V1/3) = O(N1/3). Follow-
ing our previous work,16 one can find that the variances of the

approximate force F∗i,1 and pressure p̃βγ decay as O(P−1). Note that
in the equations of motion of the NPT ensemble,32,33 the time deriva-
tives of the momentum and the volume depend linearly on the force
and the pressure, respectively. These arguments indicate that the
error of the RBE is expected not to grow with the increase of N for
a fixed density. However, rigorous justification16,33 remains an open
problem.

III. RESULTS
In this section, we discuss the main results of this paper to

demonstrate that the RBE-based MD enhances the computational
speed by an order of magnitude in comparison to the state-of-the-
art algorithms, including PPPM and PME, and maintains promising
parallel efficiency. Moreover, a systematic test was conducted on
all-atom simulations of three systems, namely, bulk water, a micro-
phase separated aqueous electrolyte, and a protein solution, to
demonstrate the accuracy on the spatiotemporal information and
the thermodynamical quantities of RBE-based MD. The experi-
mental design for all these simulations and the information of the

FIG. 2. Performance comparison. The average CPU time spent per simulation step for four bulk water systems of different sizes of (a) 53 367 atoms, (b) 311 469 atoms, (c)
3 000 000 atoms, and (d) 100 158 744 atoms, as a function of the number of CPU cores, for the RBE and the PPPM. Blue line: RBE with P = 100. Red line: PPPM with
Δ = 10−4. The connecting lines between marks are smoothed by employing the B-spline interpolation. The light-colored areas bounded by the dotted lines with appropriate
colors show the confidence intervals. The insets in panels show the relative parallel efficiency η(C). Note that the insets use log scales in (a) and (b) but linear scales in (c)
and (d) for better illustration.
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employed hardware and software are given in Appendixes A and B,
respectively.

A. CPU performance
The comparison between the RBE and PPPM was made by

using the MD engine of LAMMPS on the bulk water assuming the
force field of the extended simple point charge (SPC/E) model.34 The
parameters of the PPPM are chosen automatically in LAMMPS for a
given error level Δ of the relative force.35 The parameter α in the RBE
is chosen to be the same as that in the PPPM. The simulations were
conducted for two thousand steps to calculate the average CPU time
per step, denoted as T(C), where C is the number of cores. Four sys-
tems of different sizes are used in the test with N = 53 367, 311 469,
3 000 000, and 100 158 744 atoms, and the corresponding results are
present in Figs. 2(a)–2(d), respectively. As it can be seen, the com-
putational speed measured by T(C) from the RBE can be an order
of magnitude faster than that from the PPPM.

Moreover, the relative parallel efficiency η(C) at a given num-
ber of cores C defined by Eq. (24) is used to characterize the
scalability of the algorithm,15

η(C) = Cmin

C
⋅ Tbest

T(C) , (24)

where Cmin denotes the minimal nuber of cores used in the calcu-
lation and Tbest is the run time of the fastest method at Cmin. For
example, Cmin = 1 for Figs. 2(a) and 2(b) but set to 10 and 120 for
Figs. 2(c) and 2(d), respectively, since one processor is too time-
consuming and storage-limiting to simulate such large systems as in
Figs. 2(c) and 2(d). The relative parallel efficiency illustrates that the
RBE remains 95% for up to 10 000 cores when simulating 108 atoms
[inset of Fig. 2(d)], significantly outperforming that of the PPPM,
which drops to ∼ 20% for the same system.

B. Accuracy of the RBE and comparison
with the PPPM/PME methods
1. Pure water systems

We calculate four physical quantities on the bulk water sim-
ulation including the radial distribution function (RDF), the mean
square displacement (MSD), the velocity autocorrelation function
(VACF), and the hydrogen bond autocorrelation function (HBACF)
to examine the accuracy of the RBE as compared to the PPPM. The

FIG. 3. Comparison of accuracy between the PPPM and RBE on bulk water at the NVT ensemble. Simulation results from the PPPM (red dashed-dotted line) and from the
RBE with P = 100 (blue solid line) in bulk water. (a) The radial distribution function of oxygen–oxygen in water molecules. (b) The mean square displacement of the center
of mass of water molecules. (c) The velocity autocorrelation function of oxygen in water molecules. (d) The hydrogen bond autocorrelation function.
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FIG. 4. The variation of the total potential energy (a) and the temperature variation of bulk water (b) produced by the RBE and PPPM in the NVT ensemble, respectively. As
it can be seen, the fluctuations of potential energy and temperature derived from the RBE and PPPM are quantitatively similar.

definition of the HBACF is presented in Appendix C. The RDF
of oxygen–oxygen atom pairs furnishes the spatial arrangement of
water molecules. The MSD describes the translational motion on
the time scale from 1 fs to 1 ns. The VACF and HBACF character-
ize the short-time vibrational, liberational, and rotational dynamics
of water. As it can be seen in Fig. 3, for both spatial arrangement
(Å to nm) and dynamical motions of the water molecules (fs to ns),
the results derived from the RBE are almost identical to those from
the PPPM. The comparisons on the fluctuation of the total poten-
tial energy and the temperature of the system over the simulation
time are presented in Fig. 4. All these tests are calculated at the
NVT ensemble, and we also calculated them at the NPT ensemble
and similar results as Figs. 3 and 4 are obtained. In addition, the
isochoric and isobaric heat capacities and the relative dielectric con-
stant of bulk water (defined in Appendix D) in the ensembles of NVT
and NPT were calculated from the RBE simulations as provided in
Fig. 5, showing quantitative agreement with those derived from the
PME.

2. LiTFSI ionic liquid
The second benchmark test is an aqueous electrolyte (TFSI)

at ultrahigh concentration (5 M/l). We implement the algorithm
in the GROMACS package, as the electrolyte requires a special
force field which is installed in this MD engine. For compari-
son, the reference simulations using the PME were also conducted
using the GROMACS package. At such high concentration, the
electrolyte is microscopically inhomogeneous, separating into two
phases (water vs anions) at the length scale 1–2 nm, which
are mutually percolated in space.36,37 Figure 6(a) illustrates an
MD snapshot for the electrolyte, revealing the nano-heterogeneity
of the system. The structural information, i.e., the RDFs of
the center atom (nitrogen) of the anions, on this concen-
trated electrolyte derived from both RBE and PME is shown
in Fig. 6(b), while the dynamics in the system, including con-
ductivity, viscosity, and diffusion constants, are presented in
Figs. 6(c)–6(f). As it can be seen, the spatiotemporal features

FIG. 5. (a) The isochoric (Cv ) and isobaric (Cp) heat capacities of bulk water calculated from the trajectories of PME and RBE. (b) The relative dielectric constant of bulk
water from PME and RBE in the ensembles of NVT and NPT.

J. Chem. Phys. 156, 014114 (2022); doi: 10.1063/5.0073424 156, 014114-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Comparison of simulation results derived from PME and RBE on concentrated ionic solution. The RBE uses P = 500. (a) Simulation snapshot of the system. The
anions are shown in red, and water molecules are represented in blue. The inset shows the structure of the solute. (b) The radial distribution function of nitrogen–nitrogen
between anions. (c) The conductivity of the electrolyte. (d) The viscosity of the system. (e) The diffusion constant of Li+. (f) The diffusion constant of the center of mass of
water molecules.

FIG. 7. Comparison of simulation results derived from PME and RBE on the protein solution. The RBE (blue) uses P = 500. (a) Simulation snapshot of the system. (b) The
root mean square deviation (RMSD) of the backbone atoms in the protein. (c) Solvent accessible surface area (SASA). (d) The root mean square fluctuation (RMSF) of
residues in the protein. (e) Distribution of the characteristic inter-domain distance between residue C54 and C97.
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of the system derived from the two methods are essentially the
same.

3. Protein in solution
The third benchmark test is a biological sample, i.e., a protein

solution (see more details in the Appendix A). The protein studied is
lysozyme [Fig. 7(a)], which is a model system widely used for testing
new simulation and experimental protocols for their applications on
biological systems. Here, the characteristic structural information of
the proteins we are testing is the root mean square deviation (RMSD)
of the backbone atoms relative to the initial structure for starting
the MD simulations and the surface accessible surface area (SASA)
[Figs. 7(b) and 7(c)], while the dynamics of the biomolecule is char-
acterized by the root mean squared fluctuations (RMSF) [Fig. 7(d)].
Definitions of the RMSD, SASA, and RMSF are given in Appendix E.
Moreover, we also examine the functional phase space sampled by
the two methods. Lysozyme is a two-domain protein, where the two
domains conduct a hinge-bending motion in order to facilitate the
enzyme to break down the bacterial cell wall.38 The distance between
two residues (C54 and C97) is often used to characterize the open-
ingclosing status of the two domains, whose distribution can be used
to measure the broadness of the functional phase space and is pre-
sented in Fig. 7(e).39 As it can be seen, the structure, dynamics, and
functional space of the protein obtained by the PME are accurately
reproduced by the RBE. More details on the data production are
available at Appendix A.

We remark that there are also many valuable criteria worth an
investigation to observe the performance of our algorithm, e.g., the
symmetry-preserving mean-field condition presented recently.31,40

Moreover, the parameter P is determined empirically and is difficult
to be given theoretically. This may also be related to these crite-
ria. We will report further demonstrations of these criteria in our
subsequent work.

IV. DISCUSSIONS
The RBE method inherits the advantages of Ewald-based meth-

ods but employs the random mini-batch idea and importance sam-
pling technique to calculate the Fourier series of the long-range
interaction. As a result, it achieves O(N) computational complexity
and gains almost linear scalability for parallel computing, outper-
forming existing electrostatic algorithms. When very few compu-
tational cores were employed, the acceleration of the RBE mainly
comes from the relatively small batch size of k in calculating Fi,1.
With the increase in the number of CPU processors, the acceler-
ation mainly comes from less communication. This is because six
sequential rounds of communication are generally required to per-
form forward and backward Fourier transforms for the classical FFT,
whereas only one global communication is required for the RBE with
O(1) data transfer.

When the system is large [e.g., 100 × 106 atoms in Fig. 2(d)],
the parallel efficiency of the RBE remains over 95% for 10 000
CPU cores. When the number of atoms assigned to each proces-
sor becomes smaller [Figs. 2(a)–2(d)], the parallel efficiency of the
RBE goes down but remains much better than that of the PPPM.
The reduction in the RBE efficiency in small systems results from
the following reasons: First, the most time-consuming part trans-
forms gradually from intra-processor calculation to inter-processor

communication for small systems. Second, the frequency of the
“loop remainder” in the vectorization increases while the number
of particles/batches is not the multiple of the vector width. Different
instructions can be used to handle the “loop remainder” in order to
prevent out-of-bounds memory access along with other issues; how-
ever, additional costs are introduced. Third, the cost for other parts,
such as memory load and load balance, will become significant when
the one used for arithmetic operation of the Coulomb interactions
becomes small.

In addition, the speedup of the RBE is constrained by the
cost of the real-space calculation, i.e., the computation of Fi,2. In
many works employing FFT-based methods as their electrostatic
solver, the real-space cutoff is balanced such that the costs of real
and Fourier spaces are approximately the same. The real-space cut-
off for the RBE should be made smaller when one accelerates the
calculation in the Fourier space. The calibration of the optimized
short-range algorithm for the non-covalent bonds is our ongoing
project. Furthermore, if other optimized techniques for real-space
cutoffs are combined with the RBE, it is possible to obtain even bet-
ter acceleration. The research of all-atom simulations coupling the
RBE and the recently developed random batch list (RBL) method41

shall be studied in our subsequent works.
The time comparisons provided in Fig. 2 are only for the cal-

culation of long-range interactions. In practice, the calculation of
the Lennard-Jones (LJ) force is often done together with that of the
Coulomb force for saving time. Other operations, including ther-
mostat, bond angle, construction of the neighbor list, data statistics,
timekeeping, and diagnostic routine, have different requirements in
various systems. Generally, costs of these parts are not obvious but
will have considerable impact on top of the acceleration of long-
range interactions. We look forward to optimize these components
in mainstream packages, which may become a bottleneck in the
future.

Moreover, the RBE method discussed here is different from
any coarse-grained or enhanced sampling methods, e.g., Gaussian
accelerated molecular dynamics,42,43 replica exchange,44 umbrella
samplings,45,46 and meta dynamics,47 as it mainly provides an effi-
cient solution for calculating the Coulomb interactions and accel-
erates the simulation without losing any dynamical information on
all time and length scales. It, thus, can be well combined with any
coarse-grained and enhanced sampling methods to further speed up
and scale up the simulation systems.

It is remarked that our exploration of the RBE method is limited
to full periodic boundary condition. If the system is partially periodic
in some directions with Dirichlet or dielectric interface conditions
in other directions (e.g., the slab geometries), we believe the exten-
sion of our method is straightforward by introducing techniques
developed for such problems.48–50

V. CONCLUSIONS
In summary, we have reported an efficient RBE algorithm to

evaluate the Coulomb interactions in all-atom molecular dynamics
simulations and demonstrated that it can greatly improve the com-
putational efficiency and scalability for large-scale simulations in
supercomputers while maintaining the same level of accuracy. These
advantages of the RBE algorithm owe to the introduction of the
random mini-batch idea, which avoids the use of the FFT and
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significantly reduces the communication cost and the computa-
tional complexity in parallel computation. This novel algorithm
will be promising for MD simulations in modern architecture and
communication protocols.
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APPENDIX A: EXPERIMENTAL DESIGN

The bulk water system employs the classical SPC/E model in
LAMMPS (version 7 August 2019). The SPC/E specifies a three-
site rigid water molecule with charges and Lennard-Jones (LJ)
parameters assigned to each of the three atoms. Electrostatic inter-
action is modeled using Coulomb’s law, and the dispersion and
repulsion forces use the LJ potential. Four cubic simulation boxes of
different sizes, 8.16 nm (53 367 atoms), 14.61 nm (311 469 atoms),
31.09 nm (3 000 000 atoms), and 101.01 nm (100 158 744 atoms),
respectively, were used and specified with periodic boundary con-
ditions. The equilibration process was carried out for 500 ns in the
NPT ensemble at 298 K and 1 bar with the PPPM, followed by
200 ns NVT production MD simulation for data collection with
the PPPM and RBE, respectively. The time integration is performed
on Nosé–Hoover style non-Hamiltonian equations of motions at a
temperature coupling time parameter Tdamp = 5 fs, and the scheme
in LAMMPS closely follows the time-reversible measure-preserving

Verlet and rRESPA integrators.51 The velocity is initially generated
according to a Maxwell distribution function at 298 K. All chemi-
cal bonds are converted to constraints using the SHAKE algorithm
to allow a time step of 1 fs.52 During the equilibration process, the
short-range part of the Coulomb interaction and the LJ interaction
each with a cutoff parameter of 0.9 nm is considered with periodic
boundary conditions. The splitting parameter α of the RBE is the
same as PPPM’s automatic tuning value, and the number of mini-
batches is set to P = 100. Some important physical properties are
investigated to compare the RBE with the PPPM. The RDF, describ-
ing how the density of surrounding matter varies as a function of
the distance from a point, is a frequently used measurement to ana-
lyze the structure of the system.53 The simulation test in the NPT
ensemble with RBE was carried out at 298 K and 1 bar, using the
Nosé–Hoover thermostat and C-rescale barostat with the coupling
time 0.1 ps for temperature coupling and 1 ps for pressure coupling,
in GROMACS (version 2021.1). The cutoff radius of the short-range
Coulomb interaction and Lennard-Jones interaction is 1.2 nm with
the splitting parameter α = 4.2. The number of mini-batches is set to
P = 100.

The LiTFSI ionic liquid employs the optimized potentials for
liquid simulations all-atom (OPLS-AA)24 force field for Li+, the
TIP3P model for water molecules,54 and the force field55 developed
for TFSI−. The system is equilibrated in the NPT ensemble with the
PME at 298 K and 1 bar for 500 ns, followed by 200 ns production
MD in the NVT using the Nosé–Hoover thermostat with the PME
and RBE, respectively. The system contains 126 424 atoms, including
2560 Li+, 2560 TFSI−, and 28 488 H2O. A cubic simulation box of
size 11.46 nm was initially used with periodic boundary conditions
in GROMACS (version 2020.4). The cutoff radius of the short-range
Coulomb interaction and Lennard-Jones interaction is 1.2 nm with
the splitting parameter α = 4.2. The number of mini-batches is set to
P = 500.

The protein solution employs the charmm2724 force field for
Lysozyme molecules, and the TIP3P model for water molecules.54

The system contains 38 376 atoms, including 12 136 water molecules
and the rest being protein molecules. Additional 0.1M NaCl is added
into the system to describe the physiological condition. The system
is equilibrated in the NPT ensemble with the PME at 298 K and 1 bar
for 500 ns, followed by 200 ns production MD in the NVT ensemble
using the Nosé–Hoover thermostat with the PME and RBE, respec-
tively. A cubic simulation box of size 7.3 nm was initially used with
periodic boundary conditions in GROMACS (version 2020.4). The
cutoff of the short-range Coulomb interaction and Lennard-Jones
interaction is 1.2 nm with splitting parameter α = 4.2. The number
of mini-batches is set to P = 500.

APPENDIX B: HARDWARE AND SOFTWARE

The computations in this paper were run on the π 2.0 clus-
ter supported by the Center for High Performance Computing at
Shanghai Jiao Tong University. Each CPU node contains two Intel
Xeon Scalable Cascade Lake 6248 (2.5 GHz, 20 cores) and 12 × Sam-
sung 16 GB DDR4 ECC REG 2666 memory. The tests using 10 000
CPU cores in this paper employ 250 such nodes. The computing
networks are connected using 100 Gbps Intel Omni-Path, which
is a high-speed interconnection network technology, and with this
network, the communication cost of both the RBE and PPPM are
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significantly reduced. We believe that the hardware employed in
such a way accurately reflects the proportion of the cost of near-field
and far-field on modern computer cluster architecture. The intel-
parallel-studio/cluster.2020.1-intel-19.1.1 is used as the compiler
and the LAMMPS is compiled using “make intel_cpu_intelmpi.”
The GROMACS is compiled using the same Intel package.

APPENDIX C: THE DEFINITION OF THE HYDROGEN
BOND AUTOCORRELATION FUNCTION (HBACF)

We define the HBACF by the following function:56

HBACF(t) = ⟨h(0)h(t)⟩⟨h⟩ dt, (C1)

where the variable h(t) is one if the specified pair of water molecules
is hydrogen bonded at time t, otherwise it is zero. The hydro-
gen bond is determined by the geometric criterion, i.e., when the
distance between the donor hydrogen of one water molecule and
the acceptor oxygen of another water molecule is smaller than
0.35 nm, and the angle of hydrogen-donor–acceptor is smaller than
30○. The bracket means averaging over time and all the pairs of
water molecules. It is remarked that the HBACF might also depend
on the parameters associated with the temperature and pressure
control.

APPENDIX D: THE CALCULATION METHOD OF HEAT
CAPACITY AND DIELECTRIC CONSTANT

The isochoric heat capacity (Cv) is calculated by the equation

Cv =
σ2

E

2kBT
, (D1)

where σE is the standard deviation of the total energy in the system in
the NVT ensemble, kB is Boltzmann constant, and T is the temper-
ature. The isobaric heat capacity (Cp) is calculated by the equation

Cp =
σ2

H

2kBT
, (D2)

where σH is the standard deviation of the enthalpy in the system
in the NPT ensemble. The dielectric constant is calculated by the
equation

εr = 1 + 4π
3kBTV

(⟨M2⟩ − ⟨M⟩2), (D3)

where V is the mean volume of the system and M is the total dipole
moment of the system.

APPENDIX E: THE CALCULATION METHOD OF SASA,
RMSD, AND RMSF OF the PROTEIN

The solvent accessible surface area (SASA) of the protein
molecule is calculated by rolling a sphere with a radius of the solvent
probe of 1.4 Å over the surface of the protein.57

The root mean square deviation (RMSD) of a certain structure
(t) to a reference structure is calculated by least-square fitting the
structure to the reference structure and subsequently calculating the
RMSD as

RMSD(t) = [ 1
M

N

∑
i=1

mi∣ri(t) − ri(0)∣2]
1
2

, (E1)

where M = ∑N
i=1mi and ri(t) is the position of atom i at time t.

The root mean square fluctuation (RMSF) is the standard devi-
ation of atomic positions after least-square fitting to a reference
structure,

RMSF(i) =
¿
ÁÁÀ 1

T

T

∑
t=1
(ri,t − ⟨ri⟩)2 (E2)

where ri,t is the position of atom i at time t, ⟨ri⟩ is the aver-
age position of atom i, and T is the total simulation time of the
trajectory.
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