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Abstract. We propose a random batch method (RBM) for a contractive interacting par-
ticle system on a network which can be formulated as a first-order consensus model with
heterogeneous intrinsic forcing and convolution type consensus force. In [30], the RBM was
proposed for general interacting particle systems with conservative external forces, with
particle-number independent error estimate established under suitable regularity assump-
tions on the external force and interacting kernel. Unlike the interacting particle system in
[30], our consensus model has two competing dynamics, namely “dispersion” (generated by
heterogeneous intrinsic dynamics) and “concentration” (generated by consensus forcing).
In a close-to-consensus regime, we present a uniform error estimate for a modified RBM in
which random batch algorithm is also applied to the part of intrinsic dynamics, not only
to the interaction terms. We prove that the error depends on the batch size P and the
time step τ , uniformly in particle number and time, namely, the L2-error is of O(

√
τ/P ).

Thus the computational cost per time step is O(NP ), where N is the number of particles
and one typically chooses P � N , while the direct summation would cost O(N2). Our
analytical error estimate is further verified by numerical simulations.

1. Introduction

Collective behaviors of interacting particle (or multi-agent) systems appear ubiquitously
in nature, e.g., aggregation of bacteria [33, 45, 46], flocking of birds [13], swarming of fish
[44], synchronization of fireflies and pacemaker cells [8, 41], etc. (see [1, 2, 4, 5, 12, 16, 20,
42, 43, 47, 48] for brief surveys and related papers). Recently, due to possible engineering
applications to the control of robots, driverless cars and drones, collective dynamics models
have also received lots of attention from control theory communities. Such models often take
the form of interacting particle systems with all-to-all interactions. Thus, the computational
complexity in the numerical integration is proportional to square of the system size per time
step, which is very expensive to compute in real applications. From this reason, we look
for a low fidelity model with less complexity by taking only parts of interactions, not the
whole ones. This is the main topic to be addressed in this paper.

Date: August 21, 2020.
2010 Mathematics Subject Classification. 37M99, 37N30, 65P99.
Key words and phrases. consensus, interacting particle system, random batch.
Acknowledgment. The work of S.-Y. Ha was supported by National Research Foundation of Korea

(NRF-2020R1A2C3A01003881), and the work of S. Jin was supported by NSFC grant No. 11871297, and
the work of D. Kim was supported by a KIAS Individual Grant (MG073901) at Korea Institute for Advanced
Study.

Data availability statement. The data that supports the findings of this study are available in the
supplementary material of this article.

1



2 HA, JIN, KIM, AND KO

Consider an ensemble of interacting particles with heterogeneous intrinsic dynamics and
interacting force. To motivate the idea, we begin with a first-order consensus model. Let
q = q(·) ∈ Rd be a quantifiable observable to seek a consensus, whose meaning may depend
on the context under consideration. In what follows, we assume that the temporal evolution
of the state vector Q = (q1, · · · , qN ) ∈ RNd is governed by the Cauchy problem to the
following first-order consensus model:

(1.1)


dqi
dt

= νi +
κ

N − 1

∑
j 6=i

aijΓ(qj − qi), t > 0,

qi(0) = qini , i = 1, · · · , N,
where κ is the nonnegative coupling strength and νi is the intrinsic velocity of the i-th agent
of which we may assume, without loss of generality, that the total sum is zero (see Section
3.1):

N∑
i=1

νi = 0,

and the adjacency matrix (aij)
N
i,j=1 represents the network structure for interactions between

agents satisfying symmetry and nonnegative conditions:

(1.2) aij = aji ≥ 0, 1 ≤ i, j ≤ N.
Here Γ is the interaction kernel which is assumed to be a function of relative states and
satisfies the following properties: there exists r0 > 0 such that

(1.3) Γ ∈ Lip(Br0(0)), Γ(−q) = −Γ(q), ∀ q ∈ Br0(0).

Here we denote by Br(x) the open ball centered at x with radius r.
Note that for the interaction kernel, relative state dependence and its anti-symmetric

property (1.3)2 are natural for physics-based consensus models with translation invari-
ance, e.g., particle Keller-Segel model, Kuramoto model, one-dimensional Cucker-Smale
model, etc. However, anti-symmetry property in (1.3) may break down for some nonlinear
consensus models with anti-symmetric social interactions [23, 32, 38] and geometric state
constraints [7, 10, 14, 26, 27, 37]. We observe that the first term on the R.H.S. of (1.1) in-
duces the “dispersion effect” due to the heterogeneity of νi, and its corresponding one-body
potential V = V (Q) is given by a linear potential:

V (Q) = −
N∑
i=1

νiqi.

This potential V is not strongly convex, which is one of the difficulties in the error analysis.
Thus, the error estimates in [30, 31] cannot be applied for the system (1.1) directly. In
contrast, the second term in the R.H.S. of (1.1) generates “concentration effect” and it is
modeled by the convolution type consensus forces. Therefore, the overall dynamics of (1.1)
is determined by the competition between dispersion and concentration. This issue will be
elaborated in Section 3.1. Now, we turn to computational complexity issue of (1.1). For all-
to-all interactions (for example aij = 1), computational complexity of the interaction terms
in (1.1) is of O(N2) per time step. Thus, for N � 1, it becomes unaffordable to compute the
state Q. Thus, designing a good approximate algorithm with low computational complexity
is an important and challenging problem in the era of big data. Recently, as a designing
principle of such low fidelity models associated with (1.1), the random batch method (RBM)
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was proposed in [30] and uniform error analysis was done under suitable assumptions on
external force and interaction kernel. For the mean-field limit of the Cucker-Smale model,
a similar binary random algorithm was introduced in [3], following the approach of direct
simulation Monte-Carlo method.

The RBM is a fast algorithm to approximate the time-evolution of a large interacting
particle system. To reduce the complexity, instead of computing all the interactions, the
RBM approximates the given system as decoupled subsystems at each time step, which
are batches consisting of (not more than) P (P � N) individuals. Hence, each agent only
interacts with agents in the same batch. Then, the number of interactions we consider at
each time instant reduces to the order of O(NP ). Of course, the choice of batches is random
and is only used for a small duration of time, in order to average the random effect in the
time course. After one time step, one randomly rearranges the new batch combination.
Therefore, the RBM–approximation becomes a (randomly) switching networked system
along time (see [15] for the Cucker-Smale flocking model).

Before we discuss our main result on the uniform error estimate of RBM, we begin with a
brief discussion on the original RBM–approximation for (1.1) following the work [30]. Let τ
be a positive small time step, and we decompose the infinite time-horizon [0,∞) as a union
of disjoint finite-time intervals: For τm := mτ for m = 0, 1, 2, . . . ,

[0,∞) =
∞⋃
m=0

[τm, τm+1).

At (m+ 1)-th time interval [τm, τm+1), we choose a partition of {1, 2, . . . , N} randomly, (its
precise meaning will be clarified in the proof of Lemma 6.2) C = {Cm1 , . . . , Cmn } of n = dNP e
batches with sizes at most P > 1, in the following way:

{1, . . . , N} = Cm1 ∪ Cm2 ∪ · · · ∪ Cmn , |Cmi | = P, i = 1, · · · , n− 1, |Cmn | ≤ P.
In each time interval [τm, τm+1), we set [i]m ∈ C to be the batch containing i. Then,
it would be natural to consider an RBM-approximation QR = (qR1 , · · · , qRN ) given by the
Cauchy problem as the following low-fidelity model:

(1.4)


dqRi
dt

= νi +
κ

P − 1

∑
j∈[i]m

aijΓ(qRj − qRi ), t ∈ [τm, τm+1),

qRi (0) = qini , i = 1, . . . , N, m = 0, 1, 2, . . . .

Note that the RBM is applied only for the interacting part without changing the part of
the intrinsic dynamics. Then, the particle trajectories for (1.4) can be drastically different
from the original trajectory as can be seen explicitly in the Kuramoto model (see Section
2.2). Therefore, the uniform bound of ‖QR−Q‖ is not true in general for the original RBM
to approximate (1.1). Heuristically, this can be explained as follows. In the strong coupling
regime with κ� maxi,j |νi−νj |, the relative states qi−qj for (1.1) can be uniformly bounded,
i.e., concentration is dominant compared to the dispersion. However, if we take only part
of interactions as in the original RBM-approximation (1.4), the effect of concentration will
be mitigated so that the dispersion effect can be more dominant in the worst-case scenario.
This is why the relative approximate state qRi − qRj can be unbounded even if the original

relative state qi − qj is uniformly bounded (see Section 2.2 for explicit example). Thus
to balance dispersion and interaction in the RBM, we also need to apply the RBM in the
dispersion part as well. This is where the novelty of this work lies. Now, we need to look
for an alternative RBM (approximate) system and a sufficient framework leading to the
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uniform boundedness of relative states. To do this, we introduce suitable decomposition of
the dispersion term νi as a sum of N -dispersion terms ν̄ij (see Section 2.2):

(1.5) νi =
κ

N − 1

N∑
j=1

ν̄ij , ν̄ij = −ν̄ji, i, j = 1, . . . , N.

Then, the original Cauchy problem (1.1) is equivalent to the following problem:

(1.6)


dqi
dt

=
κ

N − 1

∑
j 6=i

(
ν̄ij + aijΓ(qj − qi)

)
, t > 0,

qi(0) = qini , i = 1, · · · , N.

Now, we apply the RBM to the above equivalent problem (1.6) to sample dispersions and
interactions proportionally and obtain the modified RBM model for (1.1):

(1.7)


dqRi
dt

=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aijΓ(qRj − qRi )

)
, t ∈ (τm, τm+1),

qRi (0) = qini , i = 1, . . . , N, m = 0, 1, 2, . . . .

In this paper, we are interested in the following question:

“How well the RBM system (1.7) can approximate the full system (1.1)?
More precisely, is there a time-independent upper bound for the displace-
ment ‖QR −Q‖ in a suitable norm?”

For an external conservative force with a strongly convex potential, uniform error analysis
between the full system and the RBM-approximated one was done in [30] using a strong
convexity assumption for the external potential. In fact, the explicit dissipation structure
in the coupling kernel Γ was not utilized there. In the current work, we use this dissipation
estimate resulting from the interaction kernel to suppress errors from the external force.

Below, we state our main result for the one-dimensional case. For the desired error
analysis, we assume that the coupling kernel Γ is strongly dissipative in the sense that

(Γ(q̃)− Γ(q)) · (q̃ − q) ≈ |q̃ − q|2, ∀ q, q̃ ∈ [−r0, r0],
and we also assume that the full system (1.1) has an equilibrium Φ = (φ1, · · · , φN ) ∈
(−r0, r0)N and the initial data is sufficiently close to Φ (see Section 3 for a detailed discus-
sion). Our main result is the following uniform error estimate, under the condition that the
underlying network topology is connected strongly enough (see Theorem 5.1):

sup
0≤t<∞

[ 1

N

N∑
i=1

E|qRi (t)− qi(t)|2
]
.
[
τ

(
1

P − 1
− 1

N − 1

)
+ τ2

]
.

For the multi-dimensional setting with q ∈ Rd, the same error analysis can be obtained
under one more extra assumption (A0), which guarantees that the state Q and QR are
confined in the ball Br0(0) (see Remark 5.1 (4) and Section 6.3).

The rest of this paper is organized as follows. In Section 2, we briefly discuss how
the nonlinear consensus model (1.1) can be derived from the well-studied three collective
models, and present an example for the unbounded RBM trajectories to the Kuramoto
model with N = 4. In Section 3, we introduce a modified RBM approximate system
generated by sampling in the natural velocity part and interaction parts, and then discuss
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how the boundedness of RMB trajectories for the example introduced in Section 2 can be
guaranteed. In Section 4, we study a sufficient framework for (1.1) leading to the unique
existence of relative equilibrium. In Section 5, we present our main result on the uniform
boundedness of error estimate between the full system and the RBM approximate system,
and then briefly compare our result with the previous result in [30]. In Section 6, we present
a proof of Theorem 5.1. In Section 7, we apply the error estimate (Theorem 5.1) to the
prescribed three consensus models. In Section 8, we present several numerical simulations
to check the order of error along time-evolution. Finally, Section 9 is devoted to a brief
summary of our results and some remaining questions related to the RBM-approximation
for future work. In Appendix A and Appendix B, we provide proofs for Lemma 6.2 and
Lemma 6.4.

2. Preliminaries

In this section, we present how the first-order consensus model (1.1) can be derived from
three prototype models for collective behaviors and then we present an example in which
relative RBM trajectories to (1.4) can be unbounded via the explicit Kuramoto model. This
possible unboundedness of relative states illustrates that the naive RBM-approximation
(1.4) for (1.1) does not yield a uniform error estimate.

2.1. Universality of collective behaviors. Let qi = qi(t) ∈M be a quantifiable observ-
able of the i-th agent at time t whose dynamics is governed by the first-order consensus
model (1.1). In what follows, we consider three explicit examples in which the first-order
consensus model with all-to-all couplings appears as a governing system. In each case, we
can see how the generalized position qi and state manifold M can be interpreted.

• (Particle Keller-Segel model): Let xi = xi(t) ∈ Rd be the position process of the i-
th Keller-Segel particle [33]. Then, its dynamics is governed by the system of stochastic
ordinary differential equations:

(2.1) dxi = − κ

N − 1

∑
j 6=i
∇ϕ(xj − xi)dt+ σdBi,

where−∇xiϕ andBi(t) are the self-consistent aggregation force and the standard d-dimensional
Brownian motion, respectively. In the absence of stochastic noise, i.e., σ = 0, the system
(2.1) becomes the first-order nonlinear consensus model:

(2.2)
dxi
dt

= − κ

N − 1

∑
j 6=i
∇ϕ(xj − xi).

Note that system (2.2) corresponds to the first-order consensus model (1.1) via the following
obvious correspondence:

qi ←→ xi, Γ(q) ←→ −∇ϕ(q).

Here Γ is singular at the origin [33]. Hence, although the K-S model (2.2) is a consensus
model, it does not satisfy our regularity assumption (1.3).

• (1D Cucker-Smale model): Let xi and vi be the position and velocity of the i-th Cucker-
Smale particle with unit mass on the real line [21]. Then, their dynamics is governed by
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the system of ordinary differential equations:

(2.3)


dxi
dt

= vi,

dvi
dt

=
κ

N − 1

∑
j 6=i

ψ(xj − xi)(vj − vi),

where ψ is a nonnegative communication weight function. Now, we introduce anti-derivative
of ψ:

Ψ(x) =

∫ x

0
ψ(y)dy, i..e, Ψ′(x) = ψ(x).

Note that for a nonnegative communication weight ψ ≥ 0, Ψ is monotonically increasing.
Then, (2.3)2 can be rewritten as

dvi
dt

=
d

dt

( κ

N − 1

∑
j 6=i

∫ xj−xi

0
ψ(y)dy

)
=

d

dt

( κ

N − 1

∑
j 6=i

Ψ(xj − xi)
)
,

or equivalently

(2.4)
d

dt

(
vi −

κ

N − 1

∑
j 6=i

Ψ(xj − xi)
)

= 0.

By integrating the above relation (2.4), we have

(2.5) vi(t) = vini −
κ

N − 1

∑
j 6=i

Ψ(xinj − xini ) +
κ

N − 1

∑
j 6=i

Ψ(xj(t)− xi(t)).

If we set
νi := vini −

κ

N − 1

∑
j 6=i

Ψ(xinj − xini ),

then, from (2.3)1 and (2.5), we get

(2.6)
dxi
dt

= νi +
κ

N − 1

∑
j 6=i

Ψ(xj − xi).

Again, system (2.6) falls down to the first-order consensus model (1.1) via the following
obvious correspondence:

qi ←→ xi, Γ(q) ←→
∫ q

0
ψ(r)dr.

Note that Γ is an increasing function. For the Cucker-Smale model and its variant, we refer
to [13, 25, 28, 39].

• (The Kuramoto model): Let θi be the phase of the i-th Kuramoto oscillator. Then its
dynamics is governed by the following system of first-order equations [1, 22, 35]:

(2.7)
dθi
dt

= νi +
κ

N − 1

∑
j 6=i

sin(θj − θi),

where νi is the natural frequency of the i-th oscillator. Clearly, system (2.7) exactly falls
down to the consensus model (1.1) with the correspondence:

qi ←→ θi, Γ(q) ←→ sin(q).

Note that Γ is a 2π-periodic function.
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2.2. Example for unboundedness of RBM trajectories. In the explicit examples of
the consensus models in the previous subsection, one can observe that the interaction func-
tion Γ depends on the relative states, (qj−qi). In particular, the interaction of the Kuramoto
model (2.7) changes dramatically if qj−qi is bigger than π, since sin(qj−qi) changes its sign.
This can be a critical problem when we consider the stability of the RBM-approximated
system (1.4). More precisely, we briefly explain one key difficulty for the error analysis via
the Kuramoto model with N = 4. For definiteness, we set

ν1 = ν2 = −ν3 = −ν4 = 1 and qin1 = qin2 = qin3 = qin4 = 0.

In this case, the Cauchy problem to the Kuramoto model reads as follows.

(2.8)



dq1
dt

= 1 +
κ

3

(
sin(q2 − q1) + sin(q3 − q1) + sin(q4 − q1)

)
,

dq2
dt

= 1 +
κ

3

(
sin(q1 − q2) + sin(q3 − q2) + sin(q4 − q2)

)
,

dq3
dt

= −1 +
κ

3

(
sin(q1 − q3) + sin(q2 − q3) + sin(q4 − q3)

)
,

dq4
dt

= −1 +
κ

3

(
sin(q1 − q4) + sin(q2 − q4) + sin(q3 − q4)

)
,

(q1, q2, q3, q4)(0) = (0, 0, 0, 0).

Then, it is easy to see that

q1(t) = q2(t), q3(t) = q4(t), t ≥ 0,

and q1 and q3 satisfy the Kuramoto model for two oscillators:
dq1
dt

= 1 +
2κ

3
sin(q3 − q1),

dq3
dt

= −1 +
2κ

3
sin(q1 − q3),

(q1, q3)(0) = (0, 0).

If follows from [11] that if κ > 3, then the system converges to the equilibrium Qe =
(qe1, q

e
2, q

e
3, q

e
4) exponentially fast:

(2.9) lim
t→∞

Q(t) = Qe.

Now we return to the RBM-approximated system (1.4) of (2.8) with P = 2. In this case,
one of partitions for the whole ensemble could be

{1, 2, 3, 4} = {1, 2} ∪ {3, 4}.

As the worst case scenario, we choose this partition in all time intervals [τm, τm+1). Then,
the RBM-approximated system (1.4) for (2.8) becomes

dqR1
dt

= 1 + κ sin(qR2 − qR1 ),
dqR2
dt

= 1 + κ sin(qR1 − qR2 ), t > 0,

dqR3
dt

= −1 + κ sin(qR4 − qR3 ),
dqR4
dt

= −1 + κ sin(qR3 − qR4 ),

(q1, q2, q3, q4)(0) = (0, 0, 0, 0).

Direct calculation yields

(2.10) qR1 (t) = qR2 (t) = t and qR3 (t) = qR4 (t) = −t, t ≥ 0,
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which is clearly unbounded. This RBM solution (2.10) is quite different from the full
trajectory (2.9) even for κ > 3. Moreover, QR is independent of the parameters κ. This
kind of unboundedness illustrates the breakdown of the naive RBM-approximation to (2.8),
although numerically the probability of this is extremely low. To guarantee the uniform
boundedness of the RBM trajectories (which will be presented in Lemma 6.1), in next
section we propose an alternative version of the RBM-approximation to (1.1) in a large
coupling regime κ� 1 in which a unique existence of relative equilibrium is guaranteed in
a region near q = 0.

3. The modified RBM approximate system

In this section, we propose an alternative modified RBM-approximation for (1.1) which
was briefly outlined in Introduction.

3.1. Decomposition of natural velocities. Note that since Γ is anti-symmetric and
locally bounded near zero, one has

Γ(0) = 0.

and system (1.1) can be rewritten as

(3.1)


dqi
dt

= νi +
κ

N − 1

N∑
j=1

aijΓ(qj − qi), t > 0,

qi(0) = qini , i = 1, · · · , N.

Lemma 3.1. Let {qi} be a solution to (3.1). Then, the following assertions hold.

(1) (Translation-invariance): system (3.1) is invariant under the translation q̃i := qi +
α, α ∈ R:

dq̃i
dt

= νi +
κ

N − 1

N∑
j=1

aijΓ(q̃j − q̃i).

(2) (Conservation law): the quantity S(t) :=
∑N

i=1 qi(t) − t
∑N

i=1 νi is conserved along
the dynamics (3.1):

S(t) = S(0), t > 0.

Proof. (i) The first assertion follows from the fact that the interaction Γ is convolution type,
i.e., it is expressed in terms of relative positions qj − qi.

(ii) We use the symmetry property of aij and Γ(−q) = −Γ(q) to see

κ

N − 1

∑
i,j

aijΓ(qj − qi) = − κ

N − 1

∑
i,j

ajiΓ(qj − qi) = − κ

N − 1

∑
i,j

aijΓ(qj − qi).

Thus, one has
κ

N − 1

∑
i,j

aijΓ(qj − qi) = 0.

Now we use the above relation and (3.1) to obtain

d

dt

N∑
i=1

qi =
N∑
i=1

νi +
κ

N − 1

∑
i,j

aijΓ(qj − qi) =
N∑
i=1

νi.

This yields the desired estimate. �
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Remark 3.1. Below, we comment on ramifications of Lemma 3.1.

1. Consider a frame moving with the average velocity 1
N

∑
j νj. We set

(3.2) q̃i := qi −
t

N

∑
j

νj , ν̃j := νj −
1

N

∑
j

νj .

Then, it is easy to see that (q̃j , ν̃j) satisfies the same system:

dq̃i
dt

= ν̃i +
κ

N − 1

N∑
j=1

aijΓ(q̃j − q̃i),

with the constraint: ∑
j

ν̃i = 0.

Thus, imposing the zero sum condition
∑

j νj can be made without loss of generality. In

what follows, the solution Q = (q1, · · · , qN ) to

(3.3) νi +
κ

N − 1

N∑
j=1

aijΓ(qj − qi), i = 1, · · · , N,
∑
i

νi = 0

will be called a relative equilibrium.

2. For the case in which Γ is bounded on the state space, say

|Γ(q)| ≤ Γ∞,

the interaction part in the R.H.S. of (3.1) is uniformly bounded:∣∣∣ κ

N − 1

∑
j 6=i

aijΓ(qj − qi)
∣∣∣ ≤ κΓ∞max

i,j
|aij |.

Hence, if the coupling strength κ is sufficiently small such that

|νi| > κΓ∞max
i,j
|aij |,

then the R.H.S. of (3.1) cannot be zero. Thus, system (3.1) cannot have a relative equilib-
rium (or an equilibrium in moving frame (3.2)). Therefore, relative equilibriums can exist
only in a large coupling strength regime.

Now, we are ready to derive the precise formulae for ν̄ij in (1.5) based on the relative
equilibrium (3.3). Let Φ = (φ1, · · ·φN ) be the unique relative equilibria for (1.1) in the ball
(Br0(0)) appearing in (1.3). Then, from (3.3), one can see that natural velocity νi can be
expressed as a sum of some quantities depending on the relative equilibrium Φ:

νi = − κ

N − 1

N∑
j=1

aijΓ(φj − φi) =
κ

N − 1

N∑
j=1

[
− aijΓ(φj − φi)

]
.

Hence, if we set

(3.4) ν̄ij := ν̄ij(φ1, · · · , φN ) := −aijΓ(φj − φi), i, j = 1, · · · , N,
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then it is easy to check that ν̄ij satisfies relation (1.5). Finally, system (1.1) and its effective
RBM approximate system can be rewritten as

(3.5)


dqi
dt

=
κ

N − 1

N∑
j=1

(
ν̄ij + aijΓ(qj − qi)

)
, t > 0,

dqRi
dt

=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aijΓ(qRj − qRi )

)
, t ∈ [τm, τm+1), m = 0, 1, 2, · · · .

3.2. Effectiveness of the modified RBM approximate system. In this subsection, we
explain how the modified RBM approximate system can recover the uniform boundedness
of relative state, unlike the naive RBM approximate system (1.4), via the same example
introduced in Section 2.2.

Note that the RBM approximate model (3.5)2 reads as
dqRi
dt

= κ
∑
j∈[i]m

(
sin(qRj − qRi )− sin(φj − φi)

)
, t ∈ [τm, τm+1), m = 0, 1, 2, · · · ,

qi(0) = 0, i = 1, 2, 3, 4,

where (φ1, φ2, φ3, φ4) satisfies

(3.6)



0 = 1 +
κ

3

(
sin(φ2 − φ1) + sin(φ3 − φ1) + sin(φ4 − φ1)

)
,

0 = 1 +
κ

3

(
sin(φ1 − φ2) + sin(φ3 − φ2) + sin(φ4 − φ2)

)
,

0 = −1 +
κ

3

(
sin(φ1 − φ3) + sin(φ2 − φ3) + sin(φ4 − φ3)

)
,

0 = −1 +
κ

3

(
sin(φ1 − φ4) + sin(φ2 − φ4) + sin(φ3 − φ4)

)
.

If κ is large enough, one solution is

(φ1, φ2, φ3, φ4) =

(
1

2
arcsin

3

2κ
,
1

2
arcsin

3

2κ
,−1

2
arcsin

3

2κ
,−1

2
arcsin

3

2κ

)
,

which clearly satisfies (3.6). In this case, for any fixed interval [τm, τm+1), the modified
RBM dynamics for QR is given as follows: if [1]m = [2]m 6= [3]m = [4]m, then

dqR1
dt

= κ sin(qR2 − qR1 ),
dqR2
dt

= κ sin(qR1 − qR2 ),

dqR3
dt

= κ sin(qR4 − qR3 ),
dqR4
dt

= κ sin(qR3 − qR4 ), t ∈ [τm, τm+1).

if [1]m = [3]m 6= [2]m = [4]m, then
dqR1
dt

= κ
(

sin(qR3 − qR1 ) +
3

2κ

)
,

dqR2
dt

= κ
(

sin(qR4 − qR2 ) +
3

2κ

)
,

dqR3
dt

= κ
(

sin(qR1 − qR3 )− 3

2κ

)
,

dqR4
dt

= κ
(

sin(qR2 − qR4 )− 3

2κ

)
, t ∈ [τm, τm+1),

if [1]m = [4]m 6= [2]m = [3]m, then
dqR1
dt

= κ
(

sin(qR4 − qR1 ) +
3

2κ

)
,

dqR2
dt

= κ
(

sin(qR3 − qR2 ) +
3

2κ

)
,

dqR3
dt

= κ
(

sin(qR2 − qR3 )− 3

2κ

)
,

dqR4
dt

= κ
(

sin(qR1 − qR4 )− 3

2κ

)
, t ∈ [τm, τm+1).
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From the uniqueness of the solution, we have

(qR1 , q
R
2 , q

R
3 , q

R
4 ) = (xR, xR,−xR,−xR),

where xR is the solution to the following Cauchy problem:
dxR

dt
=

{
0 if [1]m = [2]m 6= [3]m = [4]m,

−κ sin(2xR) + 3
2 , otherwise,

t ∈ [τm, τm+1),

xR(0) = 0.

Since

0 ≤ xR(t) <
1

2
arcsin

3

2κ
≤ π

4
for 0 ≤ t <∞,

the trajectory of QR is bounded. We will prove boundedness of QR for general Γ in Lemma
6.1.

As can be seen in (3.4) and (3.5), the formulation of the modified RBM approximate
system is crucially dependent on the existence of a unique relative equilibrium. Thus, in
the following section, we study a sufficient framework which guarantees the unique existence
of relative equilibrium for (1.1) in the region Br0(0).

4. Existence of a unique relative equilibrium

In this section, we provide an existence of an equilibrium for (1.1) using the contraction
mapping principle.

Recall that the relative equibrium Φ = (φ1, · · · , φN ) ∈ RN satisfies

(4.1) νi +
κ

N − 1

N∑
k=1

aikΓ(φk − φi) = 0, i = 1, · · · , N,
N∑
j=1

νj = 0.

In next proposition, we present sufficient conditions for the unique solvability of the equation
F = 0.

Proposition 4.1. Let r > 0 and M be a linear subspace of RN . Suppose that F : M ∩
Br(0)→M is a Lipschitz continuous function satisfying the dissipativie conditions:

(4.2) 〈x, F (x)〉 ≤ a‖x‖−b‖x‖2, 〈x−y, F (x)−F (y)〉 ≤ −c‖x−y‖2, ∀ x,y ∈M∩Br(0)

for some a, b, c > 0 with a < br. Then, equation F (x) = 0 has a unique root in M ∩Br(0).

Proof. Suppose that F satisfies the dissipative conditions (4.2). We set

FM := sup
x∈M∩B(r)

‖F (x)‖, L := sup
x,y∈M∩Br(0)

x 6=y

‖F (x)− F (y)‖
‖x− y‖

.

Define a parametrized family of functions f ε : M ∩Br(0)→M (ε > 0) by

f ε(x) := x + εF (x).

Then, it is easy to see that the fixed point x for f ε is exactly the root of F :

f ε(x) = x ⇐⇒ F (x) = 0.

For this, we claim: for a sufficiently small ε > 0,

(4.3) f ε is a contraction mapping on M ∩Br(0).
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This can be done in two steps below.

• Step A: We check

f ε(M ∩Br(0)) ⊆M ∩Br(0) for 0 < ε� 1.

For any ε > 0, we use (4.2) to get

(4.4)
‖f ε(x)‖2 = ‖x‖2 + 2ε〈x, F (x)〉+ ε2‖F (x)‖2

≤ (1− 2bε)‖x‖2 + 2aε‖x‖+ ε2F 2
M =: g(‖x‖), ∀ x ∈M ∩Br(0).

If 0 < ε < 1
2b , then g is convex. Thus, the convexity of g and (4.4) yield

‖f ε(x)‖2 ≤ max
0≤s≤r

g(s) = max{g(0), g(r)} = max
{
ε2F 2

M , r
2 − 2εr(br − a) + ε2F 2

M

}
.

For a sufficiently small ε > 0, the right-hand side is smaller than r2.

• Step B: We check

f ε is a contraction for 0 < ε� 1.

For x,y ∈M ∩Br(0), we can get

‖f ε(x)− f ε(y)‖2 = ‖x− y‖2 + 2ε〈x− y, F (x)− F (y)〉+ ε2‖F (x)− F (y)‖2

≤ (1− ε(2c− εL2))‖x− y‖2.

For a sufficiently small ε > 0, (1− ε(2c− εL2)) is less than 1. Therefore, the claim (4.3) is
verified. The lemma follows by the contraction mapping theorem since f ε has a fixed point
in M ∩Br(0). �

Next, we return to (4.1) and discuss a sufficient framework (A) for the unique solvability
of (4.1) and uniform error analysis.

• (A1) (Bi-Lipschitz property near the origin): There exists positive constants r0, L1

and L2 such that

L1|q̃ − q|2 ≤ (Γ(q̃)− Γ(q)) · (q̃ − q) ≤ L2|q̃ − q|2, ∀ q, q̃ ∈ Br0(0).

• (A2) (Algebraic connectivity): Let L = (`ij) be the Laplacian matrix defined by

`ij =

{∑
k 6=i aik if i = j,

−aij if i 6= j.

Denote by 0 = λ1 ≤ λ2 ≤ · · · ≤ λN the eigenvalues of L. The connectivity of
G = (aij) is equivalent to the condition λ2 > 0. We call λ2 the algebraic connectivity
of the graph G with weights aij . We assume λ2 is strictly positive:

(4.5) λ2 = min
x 6=0, x·1=0

x>Lx

‖x‖2
= N min

∃ i,j: xi 6=xj

∑
i,j aij(xi − xj)2∑
i,j(xi − xj)2

> 0.

For more details on the Laplacian matrices, see [17]. In addition, we assume that
0 ≤ aij ≤ C ′ for some constant C ′ > 0.
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• (A3) (Existence of unique relative equilibrium): there exists a state φ = (φ1, · · · , φN ) ∈
RN such that

νi +
κ

N − 1

N∑
j=1

aijΓ(φj − φi) = 0, i = 1, · · · , N,
∑
j

νj = 0, max
i,j
|φi − φj | < r0.

As a direct application of Proposition 4.1, one has the unique existence of relative equi-
librium for (1.1) on Br0(0).

Corollary 4.1. Let the system parameters a, b and M be given by

a = ‖ν‖, b =
κL1λ2
N − 1

and M := (span{1})⊥ ⊂ RN .

Suppose conditions (A1)–(A2) hold, and

N∑
j=1

νj = 0,
a

b
=

(N − 1)‖ν‖
κL1λ2

<
r0√

2
.

Then, relative equilibrium equations (4.1) have a unique solution φ = (φ1, . . . , φN ) ∈ RN
satisfying condition (A3).

Proof. We set

x = (x1, · · · , xN ) and y = (y1, · · · , yN ).

Let r be any positive real number satisfying a
b < r < r0√

2
, and define F = (F1, · · · , FN ) :

M ∩Br(0)→M as

(4.6) Fi(x) := νi +
κ

N − 1

N∑
j=1

aijΓ(xj − xi), i = 1, · · · , N.

In the sequel, we check the conditions in (4.2) one by one, adopting the approach using the
algebraic connectivity in [40].

� (The first condition): We use (4.5) and (4.6) to get

(4.7)

〈x, F (x)〉 =

N∑
i=1

νixi +
κ

N − 1

N∑
i,j=1

aijxiΓ(xj − xi)

=

N∑
i=1

νixi −
κ

2(N − 1)

N∑
i,j=1

aij(xj − xi)Γ(xj − xi)

≤
N∑
i=1

νixi −
κL1

2(N − 1)

N∑
i,j=1

aij(xj − xi)2

= ν>x− κL1

N − 1
x>Lx

≤ ‖ν‖‖x‖ − κL1λ2
N − 1

‖x‖2.
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� (The second condition): It follows from (4.6) that

Fi(x)− Fi(y) =
κ

N − 1

N∑
j=1

aij

(
Γ(xj − xi)− Γ(yj − yi)

)
.

Then, we have

〈F (x)− F (y),x− y〉 =

N∑
i=1

(Fi(x)− Fi(y))(xi − yi)

=
κ

N − 1

N∑
i,j=1

aij

(
Γ(xj − xi)− Γ(yj − yi)

)
(xi − yi)

= − κ

N − 1

N∑
i,j=1

aij

(
Γ(xj − xi)− Γ(yj − yi)

)
(xj − yj) by i↔ j

=
κ

2(N − 1)

N∑
i,j=1

aij

(
Γ(xj − xi)− Γ(yj − yi)

)(
(xi − yi)− (xj − yj)

)

= − κ

2(N − 1)

N∑
i,j=1

aij

(
Γ(xj − xi)− Γ(yj − yi)

)(
(xj − xi)− (yj − yi)

)

≤ − κL1

2(N − 1)

N∑
i,j=1

aij

∣∣∣(xj − xi)− (yj − yi)
∣∣∣2.

From (4.5) in the assumption (A2), we have

−
N∑

i,j=1

aij

∣∣∣(xj − xi)− (yj − yi)
∣∣∣2 ≤ −λ2

N

N∑
i,j=1

∣∣∣(xj − yj)− (xj − yi)
∣∣∣2.

Hence, it yields

(4.8)

〈F (x)− F (y),x− y〉 ≤ − κλ2L1

2N(N − 1)

N∑
i,j=1

∣∣∣(xj − yj)− (xj − yi)
∣∣∣2

≤ − κλ2L1

(N − 1)

N∑
i=1

|xi − yi|2 = − κλ2L1

(N − 1)
‖x− y‖2.

If we set

a = ‖ν‖, b =
κL1λ2
N − 1

and c =
κλ2L1

(N − 1)
,

then it follows from (4.7) and (4.8) that conditions (4.2) holds. Thus, by Proposition 4.1,

system (4.1) has a unique solution φ = (φ1, . . . , φN ) ∈ RN in M ∩Br(0), which is a subset
of M ∩Br0/

√
2(0). Finally, we have

max
i,j
|φi − φj | ≤ max

i 6=j
(|φi|+ |φj |) ≤ max

i 6=j

√
2(|φi|2 + |φj |2) ≤

√
2‖φ‖ < r0

so that the equilibrium satisfies condition (A3). �
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Remark 4.1. (1) From the second assertion in Corollary 4.1, the coefficients depend
on N . However, this is not surprising according to (4.5): if aij = 1 for all i and j
(the all-to-all network), then we get λ2 = N and the N -dependency is natural.

(2) Proposition 4.1 can be generalized to the multi-dimensional case, φ = (φ1, . . . , φN ) ∈
(Rd)N , with the same argument. Instead of choosing M = (span{1})⊥, we set

M =

{
x = (x1, . . . , xN ) ∈ (Rd)N

∣∣∣∣∣
N∑
i=1

xi = 0

}⊥
with ‖x‖ :=

√√√√ N∑
i=1

|xi|2.

Hence, the corresponding result of Corollary 4.1 also holds for the multi-dimensional
case.

Proposition 4.1 can be applied to a wide range of collective behavior models with the
contracting property, including several examples presented in Subsection 2.1.

5. Description of the main result

In this section, we briefly discuss our main result on the uniform error analysis for the
RBM-approximation and a brief comparison with earlier work [30]. For simplicity, we
assume that the dimension d is 1. As noted in [30], key ingredients for the error analysis
to the RBM-approximation require some regularity assumptions on Γ and the external
potential.

5.1. Main results. Next we state our main result on the uniform error analysis.

Theorem 5.1. (Uniform error estimate) For d = 1, suppose system (1.1) satisfies assump-
tions (A1)–(A3), and initial data is a small perturbation of the given relative equilibrium
Φ = (φ1, · · · , φN ) in (A3):

max
1≤i,j≤N

|(qini − φi)− (qinj − φj)|+ max
1≤i,j≤N

|φi − φj | < r0,

where r0 is a positive constant appearing in (A1). Let Q and QR be solutions of (1.1) and
(1.7) with the same initial data Qin, respectively. Then, the discrepancy QR −Q satisfies a
uniform error estimate:

(5.1) sup
0≤t<∞

[ 1

N

N∑
i=1

E|qRi (t)− qi(t)|2
]
≤ C

[
N

λ2
τ

(
1

P − 1
− 1

N − 1

)
+

(
N

λ2
τ

)2
]
,

for some constant C independent of τ , P , N , t and λ2.

Proof. Section 6 is fully devoted to the proof. �

Remark 5.1. In the sequel, we give several comments on the result of Theorem 5.1

(1) Consider a sequence of graphs {GN}N=1,2,..., with each term associated to the N×N
adjacency matrix (aNij )1≤i,j≤N , and denote λN2 by its algebraic connectivity. If aNij =

1, ∀ i, j, ∀ N , then λN2 ≡ N , so the upper bound in (5.1) is independent of N ,
although it looks dependent on N at first glance. More generally, if the graphs GN

are connected strongly enough so that lim inf
N→∞

λN2
N > 0, then the upper bound in the

R.H.S. of (5.1) is independent of N .
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(2) In Section 7, we will see that the three concrete examples of first-order consensus
models, namely the linear consensus model, the Kuramoto model and the 1D Cucker-
Smale model, satisfy the uniform RBM error estimates by verifying the framework
(A1)–(A3).

(3) In the proof of Theorem 5.1, the essential parts in the derivation of the error estimate
is the contracting property (A1), network connectivity (A2) and the boundedness of
the states, the RBM states, and the derivatives of Γ. (A3) is used to deduce these
boundedness conditions.

(4) It is worthy to mention that the RBM error estimation can be extended to the multi-
dimensional setting, where qi and νi are multi-dimensional vectors. In this case,
one technical difficulty comes from the boundedness of the RBM-approximate states,
which needs one more assumption on Γ:

(A0): (Monotonicity to the equilibrium).

For any bounded vectors Q with maxi |qi| < r0, the interaction kernel Γ
satisfies

akj(Γ(qj − qk)− Γ(φj − φk)) · (qk − φk) ≤ 0, j = 1, . . . , N,

where v · w is the standard inner product between vectors v and w in RN ,
and k is any index satisfying |qk − φk| = maxi |qi − φi|.

Under assumptions (A0) and (A1)–(A3), Theorem 5.1 holds even for multi-dimensional
case, as we later check in Section 6.3.

(5) The novelty of Theorem 5.1 and the decomposition of natural frequencies (3.5) lie
in the uniform-in-time estimate. As noted in Remark 3.1 of [30], if the contraction
property (A1) does not hold, the error estimate (5.1) can be formulated with a finite
time interval [0, T ]:

sup
0≤t<T

[ 1

N

N∑
i=1

E|qRi (t)− qi(t)|2
]
≤ C(T )

[
N

λ2
τ

(
1

P − 1
− 1

N − 1

)
+

(
N

λ2
τ

)2
]
,

where the constant C(T ) grows exponentially on T . The proof of the time-dependent
estimate is similar to Theorem 5.1.

5.2. Comparison with the previous work. In this subsection, we briefly discuss the
approach and result in [30] for the comparison with our result. Let X = (X1, . . . , XN )
with Xi ∈ Rd, i = 1, . . . , N be a state vector whose temporal evolution is governed by the
stochastic dynamics with a Brownian motion B = (B1, . . . , BN ):

(5.2)


dXi = −∇V (Xi)dt+

1

N − 1

∑
j 6=i

Γ(Xi −Xj)dt+ σdBi
t, i = 1, . . . , N, t > 0,

Xi(0) ∼ ν i.i.d., where ν is a given random variable, i = 1, . . . , N.

Then, we consider the RBM-approximation of (5.2):
dXR

i = −∇V (XR
i )dt+

1

P − 1

∑
j∈[i]m

Γ(XR
i −XR

j )dt+ σdBi
t, t ∈ [τm, τm+1),

Xi(0) ∼ ν i.i.d., where ν is a given random variable, i = 1, . . . , N, m = 0, · · · , n
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In [30], the potential V is assumed to be a C2 function with a polynomial growth such
that V (x)− r|x|2/2 is convex. In contrast, the interaction function Γ is also assumed to be
a bounded and Lipschitz continuous C2 function with a Lipschitz constant L < r/2. When
the coupling is weak enough compared to the drift from V (x), the homogeneous system

dXR
i = −∇V (XR

i )dt+ σdBi
t,

is dominant and the RBM approximates system (1.3) with a uniform error over time:

sup
t>0

1

N

N∑
i=1

E|XR
i −Xi|2 ≤ C

τ

P − 1
+ Cτ2.

The uniform error analysis is based on the law of large numbers, where the convergence
to the original dynamics is guaranteed as τ tends to zero, where T/τ is the large number
for the time duration t ∈ [0, T ]. A remarkable point is the independence on the final time
T . From this property, the RBM is considered as a good approximation to the long-time
behavior.

Though the uniform-in-time analysis (1.7) is restricted to a specific case, the RBM has
shown good performances in the numerical simulations, starting from the examples in [30]:
nonlinear opinion dynamics, quantum dynamics [18] and Poisson-Boltzmann equation [36].
Especially, the consensus-based optimization method [9, 24] and the collective behavior
models [6, 34] show a quite accurate long-time behavior even if the interaction function Γ
is dominant in these systems.

6. Uniform error estimate

In this section, we provide a proof of Theorem 5.1 on the uniform error estimate for the
discrepancy between the full system and the RBM approximate system:

(6.1)


dqi
dt

=
κ

N − 1

N∑
j=1

(
ν̄ij + aijΓ(qj − qi)

)
, t > 0,

dqRi
dt

=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aijΓ(qRj − qRi )

)
, t ∈ [τm, τm+1), m = 0, 1, 2, · · · .

Now, we introduce the discrepancies between the full solution and the approximate solution:

zi := qRi − qi, i = 1, · · · , N.

Then, it follows from (6.1) that zi satisfies

(6.2)

dzi
dt

=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aijΓ(qRj − qRi )

)
− κ

N − 1

∑
j 6=i

(
ν̄ij + aijΓ(qj − qi)

)
=:

κ

N − 1

∑
j 6=i

aij

(
Γ(qRj − qRi )− Γ(qj − qi)

)
+ χm,i(Q

R, ν̄),

where the random variable χm,i(Q
R, ν̄) is given by the following relation:

(6.3) χm,i(Q
R, ν̄) :=

κ

P − 1

∑
j∈[i]m

(
ν̄ij +aijΓ(qRj − qRi )

)
− κ

N − 1

∑
j 6=i

(
ν̄ij +aijΓ(qRj − qRi )

)
.
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The first term in the R.H.S. of (6.2) will be treated by the dissipative assumption (A1)
(see Lemma 6.1). To apply the condition (A1), we need to make sure that there exists r0
such that

(6.4) sup
0≤t<∞

max
i,j
|qRj (t)− qRi (t)| ≤ r0 and sup

0≤t<∞
max
i,j
|qj(t)− qi(t)| ≤ r0.

For the estimate of the second term, we will estimate the zeroth and first moment estimates
of χm,i(Q

R, ν̄) (see Lemma 6.2): for a bounded constant vector P = (p1, . . . , pN ),

(6.5) E(χm,i(P, ν̄)) = 0 and Var(χm,i(P, ν̄)) .

(
1

P − 1
− 1

N − 1

)
.

In the following subsection, we provide estimates for (6.4) and (6.5).

6.1. Preparatory estimates. In this subsection, we study the boundedness of the relative
states in (6.4). This can be proved using condtions (A1)–(A3) as follows.

Lemma 6.1. For d = 1, suppose conditions (A1)–(A3) hold. Moreover, the initial data Qin

and the equilibrium Φ satisfy

(6.6) max
1≤i,j≤N

|(qini − φi)− (qinj − φj)|+ max
1≤i,j≤N

|φi − φj | < r0.

Let Q and QR be a solution to the system (6.1). Then, one has

sup
0≤t<∞

max
1≤i,j≤N

|(qi(t)− φi)− (qj(t)− φj)|+ max
1≤i,j≤N

|φi − φj | < r0,

sup
0≤t<∞

max
1≤i,j≤N

|(qRi (t)− φi)− (qRj (t)− φj)|+ max
1≤i,j≤N

|φi − φj | < r0.

Proof. The solution Q to (6.1)1 may be seen as a solution QR to (6.1)2 with P = N . Hence,
we only prove the second estimate and omit the first.

For the second estimate, we use the continuity argument. More precisely, we introduce a
set T consisting of times in which the second estimate is valid, and T∗ is the supremum of
the set T :

T :=

{
T > 0

∣∣∣∣ max
1≤i,j≤N

|(qRi (t)− φi)− (qRj (t)− φj)|+ max
1≤i,j≤N

|φi − φj | < r0

holds for t ∈ [0, T )

}
, T∗ := sup T .

By assumption (6.6) and the continuity of max
1≤i,j≤N

|(qRi (t)− φi)− (qRj (t)− φj)|, there exists

δ > 0 such that

max
1≤i,j≤N

|(qRi (t)− φi)− (qRj (t)− φj)|+ max
1≤i,j≤N

|φi − φj | < r0, ∀ t ∈ [0, δ).

Hence, δ ∈ T and T∗ > 0.
Next, we claim

T∗ =∞.
Suppose this is not true, i.e., T∗ <∞. Then, one has

max
1≤i,j≤N

|(qRi (t)− φi)− (qRj (t)− φj)|+ max
1≤i,j≤N

|φi − φj | < r0, ∀ t ∈ [0, T∗).

For each t ≥ 0, we choose time-dependent indices it and jt to satisfy

qRit (t)− φit = max
1≤i≤N

(qRi (t)− φi) and qRjt(t)− φjt = min
1≤i≤N

(qRi (t)− φi).



RANDOM BATCH METHOD TO FIRST-ORDER CONSENSUS MODELS 19

This implies

(6.7) (qRk − qRit )− (φk − φit) = (qRk − φk)− (qRit − φit) ≤ 0, k ∈ {1, · · · , N}.

On the other hand, qRit satisfies

(6.8)

dqRit
dt

=
κ

P − 1

∑
k∈[it]m

(
ν̄itk + aitkΓ(qRk − qRit )

)
=

κ

P − 1

∑
k∈[it]m

aitk

(
Γ(qRk − qRit )− Γ(φk − φit)

)
.

By assumption (A1) on Γ, (6.7) and the maximality (6.8) of T∗, we have

d

dt
(qRit − φit) ≤

L1κ

P − 1

∑
k∈[it]m

aitk[(q
R
k − qRit )− (φk − φit)] ≤ 0, t ∈ [0, T∗).

Similarly, one has

d

dt
(qRjt − φjt) ≥

L1κ

P − 1

∑
k∈[jt]m

ajtk[(q
R
k − qRjt)− (φk − φjt)] ≥ 0, t ∈ [0, T∗).

These two inequalities induce that

d

dt

(
(qRit (t)− φit)− (qRjt(t)− φjt)

)
≤ 0.

Therefore, we have

max
1≤i,j≤N

|(qRi (t)− φit)− (qRj (t)− φjt)|+ max
1≤i,j≤N

|φi − φj |

≤ max
1≤i,j≤N

|(qini − φi)− (qinj − φj)|+ max
1≤i,j≤N

|φi − φj | < r0, t ∈ [0, T∗).

Letting t→ T∗−, one has

max
1≤i,j≤N

|(qRi (T∗)− φit)− (qRj (T∗)− φjt)|+ max
1≤i,j≤N

|φi − φj | < r0.

This contradicts to the maximality of T∗. Hence, we get T∗ =∞ and the desired estimate.
�

Next, we study the moment estimates in (6.5). For any m ≥ 0, i = 1, . . . , N and a
bounded constant vector P = (p1, . . . , pN ), we set

Λi(P, ν̄) :=
κ2

N − 2

∑
j:j 6=i

∣∣∣∣∣∣(ν̄ij + aijΓ(pj − pi))−
1

N − 1

∑
k:k 6=i

(ν̄ik + aikΓ(pk − pi))

∣∣∣∣∣∣
2

.

Lemma 6.2. Let P = (p1, . . . , pN ) be a bounded constant vector. Then, the random func-
tionals χm,i(P, ν̄) and Λi(P, ν̄) satisfy

E
[
χm,i(P, ν̄)

]
= 0, Var

[
χm,i(P, ν̄)

]
=

(
1

P − 1
− 1

N − 1

)
Λi(P, ν̄).

Proof. Although the proof can be followed from the same argument of Lemma 3.1 in [30],
for reader’s convenience, we provide its detailed proof in Appendix A. �
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Remark 6.1. From Lemma 6.2, the variance of χm,i(P, ν̄) is bounded for a bounded vector
P: in order to bound the right-hand side of (2.1), note that Γ is bounded in a bounded
domain. Later in the proof of Theorem 5.1, we need to assume that Γ is Lipschitz continuous
additionally.

6.2. Proof of Theorem 5.1. In this subsection, we provide a proof of our main result.
Recall that our purpose is to derive the following uniform error estimate:

(6.9) sup
0≤t<∞

[ 1

N

N∑
i=1

E|qRi (t)− qi(t)|2
]
.

[
Nτ

λ2

(
1

P − 1
− 1

N − 1

)
+

(
Nτ

λ2

)2 ]
.

Let Q and QR be solutions to (1.1) and (1.7), respectively. We set

zi := qRi − qi, 1 ≤ i ≤ N.

Introduce a functional U :

U(t) :=
1

N
E
( N∑
i=1

|zi|2
)

=
1

N

N∑
i=1

E|zi|2.

6.2.1. Step A. (Derivation of Grönwall’s inequality for U): In what follows, we derive the
following differential inequality for U :

dU

dt
≤ −Cλ2

N
U + Cτ

√
U + Cτ

(
1

P − 1
− 1

N − 1

)
,

where C is a generic positive constant. From the governing equations for qi and qRi , it is
easy to see that zi = qRi − qi satisfies

dzi
dt

=
κ

P − 1

∑
j∈[i]m

[ν̄ij + aijΓ(qRj − qRi )]− κ

N − 1

∑
j 6=i

[ν̄ij + aijΓ(qj − qi)]

=
κ

N − 1

∑
j 6=i

aij
[
Γ(qRj − qRi )− Γ(qj − qi)

]
+ χm,i(Q

R, ν̄).

Here, the remainder term χm,i(Q
R, ν̄) was defined in (6.3), which has been analyzed in

Lemma 6.2 for a deterministic state P. We multiply 2zi on the derivative of zi and sum it
over i and take an expectation to get

(6.10)

d

dt

1

N
E

N∑
i=1

|zi|2 =
2κ

N(N − 1)
E

N∑
i=1

∑
j 6=i

aij
[
Γ(qRj − qRi )− Γ(qj − qi)

]
(qRi − qi)

+
2

N
E

N∑
i=1

zi · χm,i(QR, Ṽ )

=: S(t) +
2

N

N∑
i=1

Ri(t), a.e., t > 0.

In the following lemmas, we estimate S and Ri.
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Lemma 6.3. Suppose assumptions (A1)–(A3) hold, and let Q and QR be solutions to (1.1)
and (1.7) satisfying the boundedness property (6.4). Then, S in (6.10) satisfies

S(t) ≤ −Cλ2
N2

E
N∑
i=1

|zi|2.

Proof. In (6.10), we interchange indices i↔ j and use (1.2) and (1.3) to get

(6.11)

S(t) =
2κ

N(N − 1)
E

N∑
j=1

∑
i 6=j

aji
[
Γ(qRi − qRj )− Γ(qi − qj)

]
(qRj − qj)

= − 2κ

N(N − 1)
E

N∑
i=1

∑
j 6=i

aij
[
Γ(qRj − qRi )− Γ(qj − qi)

]
(qRj − qj).

We use (6.11) and (A2) to obtain

S(t) = − κ

N(N − 1)
E

N∑
i=1

∑
j 6=i

aij
[
Γ(qRj − qRi )− Γ(qj − qi)

] (
(qRj − qj)− (qRi − qi)

)
≤ − κC

N(N − 1)
E

N∑
i=1

∑
j 6=i

aij |(qRj − qRi )− (qj − qi)|2

= − κC

N(N − 1)
E

N∑
i=1

∑
j 6=i

aij |zj − zi|2

= − 2κC

N(N − 1)
E(z>Lz) ≤ − 2κCλ2

N(N − 1)
E‖z‖2 ≤ −Cλ2

N2
E

N∑
i=1

|zi|2,

where we followed the approach in [40] in the last line, and used the notation z :=

(z1 . . . zN )> and the conservation
N∑
i=1

zi ≡ 0. �

Lemma 6.4. Suppose assumptions (A1)–(A3) hold, and let Q and QR be solutions to (1.1)
and (1.7) satisfying the boundedness property (6.4). Then, the functional Ri in (6.10)
satisfies

Ri(t) ≤ Cτ

 1

N − 1

∑
j 6=i

E|zj(t)|+ E|zi(t)|+
(

1

P − 1
− 1

N − 1

)+ Cτ2.

Proof. Since the proof is tedious and very lengthy, we leave it in Appendix B. �
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6.2.2. Step B (Derivation of uniform boundedness). From (6.10), we collect the results of
Lemma 6.3, Lemma 6.4 and the Cauchy-Schwarz’ inequality to find

U̇(t) = S(t) +
2

N

N∑
i=1

Ri(t)

≤ −Cλ2
N

U(t) + Cτ
√
U(t) + Cτ

(
1

P − 1
− 1

N − 1

)
+ Cτ2

≤ −Cλ2
2N

U(t) + Cτ

(
1

P − 1
− 1

N − 1

)
+
CN

λ2
τ2 by Young’s inequality.

Then, we use comparison principle for ODEs and the explicit formula of the following ODE,

y′ = −Cλ2
2N

y + Cτ

(
1

P − 1
− 1

N − 1

)
+
CN

λ2
τ2,

to find the desired uniform error estimate:

U(t) ≤ CNτ
λ2

(
1

P − 1
− 1

N − 1

)
+ C

(
Nτ

λ2

)2

.

6.3. Extension to the multi-dimensional setting. As mentioned in Introduction, we
used the boundedness of the RBM-approximation (1.7) in the proof of Theorem 5.1. Unfor-
tunately, Lemma 6.1 cannot be used directly, when system (1.3) describes multi-dimensional
quantities qi, νi ∈ Rd. The following Lemma is an alternative version of Lemma 6.1 if we
assume (A0).

Lemma 6.5. For d ≥ 2, suppose assumptions (A0)–(A3) hold, and assume that the solution
Q is a small perturbation of the stable equilibrium Φ:

max
1≤i≤N

|qini − φi|+ max
1≤i≤N

|φi| < r0/2,

and let Q and QR be a solution to the system (1.1) and (1.7), respectively. Then, one has

sup
0≤t<∞

max
1≤i≤N

|qi(t)− φi|+ max
1≤i≤N

|φi| < r0/2,

which implies

sup
0≤t<∞

max
1≤i,j≤N

|(qRi (t)− φi)− (qRj (t)− φj)|+ max
1≤i,j≤N

|φi − φj | < r0.

Proof. For some t ≥ 0, let k be an index satisfying

|qRk (t)− φk| = sup
i
|qi − φi|.

Then, the dynamics of qRk is given as

dqRk
dt

=
κ

P − 1

∑
j∈[k]m

[ν̄kj + akjΓ(qRj − qRk )] =
κ

P − 1

∑
j∈[k]m

akj [Γ(qRj − qRk )− Γ(φj − φk)].

Since we may use (A4) at t = 0, we have

d

dt
|qRk − φk|2 =

2κ

P − 1

∑
j∈[k]m

akj [Γ(qRj − qRk )− Γ(φj − φk)] · (qRk − φk) ≤ 0, t = 0.
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From the continuity argument as in Lemma 6.1, we conclude the boundedness of

max
1≤i≤N

|qRi (t)− φi|2

for the whole time interval. We will omit the details. �

With the same arguments in Section 6.2, we conclude the RBM error estimate for the
multi-dimensional system.

Corollary 6.1. Suppose that the multi-dimensional system (1.7) with qi, νi ∈ Rd satisfies
assumptions (A0)-(A3). Let Q = (q1, . . . , qN ) be the solution of (1.1) for a small initial
datum near the equilibrium:

max
1≤i≤N

|qini − φi|+ max
1≤i≤N

|φi| < r0/2,

where r0 and φ are from (A1) and (A3). Then, for the RBM-approximation QR = (qR1 , . . . , q
R
N )

of (1.7), the error can be estimated as

sup
t>0

1

N

N∑
i=1

E|qRi − qi|2 ≤ C
Nτ

λ2

(
1

P − 1
− 1

N − 1

)
+ C

(
Nτ

λ2

)2

for some constant C independent of t, τ , P , N and λ2.

7. Three first-order consensus models

In this section, we present three first-order consensus models satisfying assumptions (A1)–
(A3), and derive uniform error estimates for the RBM to such models.

7.1. The linear consensus model. For constants νi ∈ R (i = 1, . . . , N) and κ > 0, we
assume the states qi, q

R
i ∈ Rd (i = 1, . . . , N) follow the dynamics of the linear consensus

model:

(7.1)


dqi
dt

= νi +
κ

N − 1

∑
j 6=i

aij(qj − qi), t > 0,

dqRi
dt

=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aij(q

R
j − qRi )

)
, t ∈ (τm, τm+1),

subject to the same initial data:

(7.2) qi(0) = qRi (0) = qini , i = 1, · · · , N.
Note that each component of q satisfies the same form of equations (7.1). Hence, we may
assume d = 1. In this case, the coupling function ΓL is given as

ΓL(q) := q, q ∈ R.
Condition (A1) is satisfied for an arbitrary r0 > 0 with L1 = L2 = 1. By Corollary 4.1,

Condition (A3) holds for r0 >
√
2(N−1)‖ν‖
κL1λ2

. Since we can choose such r0 for any given system

parameters N, ν, κ, λ2, the RBM error estimate (6.9) holds unconditionally.

Corollary 7.1. Let Q and QR be the solutions to linear consensus models (7.1) - (7.2).
Then, we have

sup
t≥0

√√√√ 1

N

N∑
i=1

E|qRi − qi|2 ≤ C

[
Nτ

λ2

(
1

P − 1
− 1

N − 1

)
+

(
Nτ

λ2

)2
]
.
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7.2. The Kuramoto model. Let qi ∈ R be the phase of the i-th Kuramoto oscillator.
Then, qi and its approximation qRi satisfy

(7.3)


dqi
dt

= νi +
κ

N − 1

∑
j 6=i

aij sin(qj − qi), i = 1, · · · , N, t > 0,

dqRi
dt

=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aij sin(qRj − qRi )

)
, t ∈ (τm, τm+1),

subject to the same initial data:

(7.4) qi(0) = qRi (0) = qini , i = 1, · · · , N.

In this case, the interaction function ΓK takes the form of

ΓK(q) := sin q, q ∈ R.

The first condition (A1) is satisfied with parameters:

0 < r0 <
π

2
, L1 = cos r0 and L2 = 1.

By Corollary 4.1, if
√
2(N−1)‖ν‖
κλ2

< r0 cos r0, condition (A2) holds.

Corollary 7.2. Suppose that the initial data and the coupling strength satisfy

max
1≤i,j≤N

|(qini − φi)− (qinj − φj)|+ max
1≤i,j≤N

|φi − φj | < r0 <
π

2
,

√
2(N − 1)‖ν‖

κλ2
< r0 cos r0

and let Q and QR be solutions to (7.3) - (7.4). Then, one has

sup
t≥0

√√√√ 1

N

N∑
i=1

E|qRi − qi|2 ≤ C

[
Nτ

λ2

(
1

P − 1
− 1

N − 1

)
+

(
Nτ

λ2

)2
]
.

Note that the contracting property of ΓK was already known in [11, 19]. We have provided
an alternative proof using Proposition 4.1.

7.3. 1D Cucker-Smale model. Let qi be the position of the i-th CS particle with a unit
mass on the real line. Then, qi and its approximation qRi satisfy

(7.5)



dqi
dt

= νi +
κ

N − 1

∑
j 6=i

aijΓcs(qj − qi), t > 0,

dqRi
dt

=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aijΓcs(q

R
j − qRi )

)
, t ∈ (τm, τm+1),

qi(0) = qRi (0) = qini , i = 1, · · · , N,

where νi and Γcs are natural velocity of the i-th particle and coupling function which is the
anti-derivative of the communication weight function ψ:

Γcs(q) =

∫ q

0
ψ(r)dr, νi := vini −

κ

N − 1

N∑
j=1

aijΓcs(q
in
j − qini ).

For the flocking estimate of the RBM-approximation (7.5)2, we refer to [15].
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It is common to assume that the interaction kernel ψ is symmetric, non-negative, non-
increasing, smooth and bounded. For example, we may set

ψ(q) =
1

(1 + |q|2)β/2
, β > 0.

Since ψ is a nonnegative function, the coupling function Γcs is a smooth non-decreasing func-
tion. Thus, the situation is similar to the case of linear consensus models. If the interaction
kernel ψ is positive in a bounded domain {x | |x| < r0}, then the contracting property (A1)

holds with r0 with L1 = ψ(r0). By Corollary 4.1, (A2) also holds if
√
2(N−1)‖ν‖
κλ2

< r0ψ(r0).

Corollary 7.3. Suppose the interaction kernel ψ and initial data satisfy

(7.6) max
1≤i,j≤N

|(qini − φi)− (qinj − φj)|+ max
1≤i,j≤N

|φi − φj | < r0,

√
2(N − 1)‖ν‖

κλ2
< r0ψ(r0).

Then, there exists δ = δ(η) > 0 such that if κ > δ‖ν‖, one has

sup
0≤t<∞

√√√√ 1

N

N∑
i=1

E|qRi − qi|2 ≤ C

[
Nτ

λ2

(
1

P − 1
− 1

N − 1

)
+

(
Nτ

λ2

)2
]
.

Remark 7.1. Consider the case 1/ψ(r) = O(rβ). If β < 1 then the two inequalities in (7.6)
always hold for a sufficiently large r0, hence, the error estimate holds for any initial data, i.e.
the estimate holds unconditionally. But this is not the case for β ≥ 1: the second inequality
in (7.6) bounds the admissible value of r0, and this makes the first inequality in (7.6) hold
only for well-arranged initial data. Detailed analysis on the conditional and unconditional
convergence of the Cucker-Smale model depending on the value of the exponent β is given
in [25].

8. Numerical simulations

In this section, we perform several numerical simulations on the RBM-approximation for
the first-order models to compare with the analytical result on the RBM error estimate
in Theorem 5.1. The `2-errors will be evaluated for each RBM-approximation along time-
evolution, where the dependence on P and the boundedness over time t are our primary
concerns.

In order to compare the errors clearly, we used the forward Euler method with time step
τ , where τ is also the time step for the RBM-approximation. The tested system is the
one-dimensional Cucker-Smale model (7.5) with system parameters:

N = 64, τ = 0.1, aij ≡ 1, κ = 2 and ψ(q) =
1√

1 + |q|2
.

We take initial data randomly and uniformly distributed.
Note that the interaction network is fully connected and the communication weight is

always positive, hence, conditions (A1) and (A2) hold. We selected the equilibrium point
Φ a priori. Recall the original system and RBM-approximated system:

dqi
dt

=
κ

N − 1

∑
j 6=i

[sinh−1(qj − qi)− sinh−1(φj − φi)], t ≥ 0

dqRi
dt

=
κ

P − 1

∑
j∈[i]m

[sinh−1(qRj − qRi )− sinh−1(φj − φi)], t ∈ [τm, τm+1),
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Figure 1. A simulation on trajectories along time on the original system
(left) and the RBM-approximation (P = 2).

Figure 2. Left: The `2-errors from 1000 simulations, calculated with dif-
ferent P . The colored region is drawn with 95% of the total simulations
excluding bad 5% ones. The middle thick colored line is the median trajec-

tories. Right: Scaled error by the term
√

1
P−1 −

1
N−1 . Errors from different

P shows similar values.

subject to the same initial data:

qi(0) = qini , i = 1, · · · , N.

In Figure 1, we plot the trajectories along time from the full system and the RBM-
approximated system with P = 2. One can see that both systems converge to the same
equilibrium point φ. On the other hand, (1.4) is not stable around φ from the equations
and the example in Section 2.2.
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Figure 3. Left: The `2-errors from 1000 simulations, calculated with dif-
ferent τ . The colored region is drawn with 95% of the total simulations
excluding bad 5% ones. The middle thick colored line is the median tra-
jectories. Right: Scaled error by

√
τ . Errors from different τ shows similar

values.

In Figure 2, we plotted the `2-errors from the RBM-approximation, which is defined as

`2-error :=

√√√√ 1

N

N∑
i=1

|qRi (t)− qi(t)|2.

The RBM-approximation is computed with 1000 random simulations for each P , where the
error is tested with P = 2, 4, 8, 16, 32. The thick colored line shows the RBM trajectories
with the median error for each P , while the colored area is the 95% confidential intervals
at each time. This means that we exclude 5% simulations with extraordinary big or small
errors for better visibility.

Note that the error grows rapidly in the starting stage, but eventually decreases to zero
due to the convergence of the system. This was the main idea to expect uniform-in-time
error bounds for the RBM-approximation.

On the other hand, Figure 2 also shows how error decreases along P . Note that the
`2-error depends on P and τ :

(8.1) `2-error ≤ C

√
τ

(
1

P − 1
− 1

N − 1

)
+O(τ).

In the right figure, the errors are scaled with the factor of P in the above inequality. One can
see that the errors are similar for different P , which shows that the estimate (8.1) suggests
the sharpest order on P .

Figure 3 is the same plot as Figure 2 with P = 2 but with different τ : τ = 1/10, 1/20,
1/40, 1/80. As in Figure 2, it shows that the `2-error is proportional to

√
τ .

9. Conclusion

In this paper, we have analyzed the RBM-approximation for the deterministic first-order
model with convolution-type interactions and the interaction network, in the case when
the system experiences the `2-contraction and convergence to an equilibrium. In the error
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analysis of the RBM model, contraction property and the boundedness of states are two
important ingredients for the uniform-in-time error analysis. In particular, the boundedness
of the RBM trajectories is the main obstacle, if there are nonidentical natural drift νi for
different i. By assuming a priori knowledge on the equilibrium point, the boundedness of the
RBM trajectories is guaranteed. To construct a unified framework, our focus was confined to
the deterministic consensus model including the linear consensus model and the Kuramoto
model as special cases. There are still lots of interesting issues for the RBM-approximation
for the first-order consensus model. Some of the issues can be listed below.

• Stochastic perturbations: When a system lies in a noisy environment, then
the boundedness of the system cannot be achieved in the classical sense, so we
need L2-boundedness of the states and interactions. We excluded noisy systems
due to the Kuramoto model since the contracting property (A1) in such models
needs deterministic bounds r0. The RBM was originally considered with additive
noise in [30], and the multiplicative noise is also important for the particle swarm
optimization as in [9].

• Non-contracting systems. Non-convolution systems are also good examples to
study the RBM error estimates. Moreover, we expect that non-contracting systems,
such as the Keller-Segel aggregation model or Coulomb potential dynamics, may
also satisfy uniform-in-time error estimates. We used contraction to nullify the error
along time, however, we may bound the error without it if we know the equilibria.

• Non-unique equilibria. Another interesting example is the Van der Waals dynam-
ics, where the equilibrium point is not unique due to the symmetry. For example,
if three particles want to make their relative distances to a specific value, then the
system does not care whether two particles change their positions. In such cases,
the RBM is not expected to converge to the exact equilibrium point of the original
system, but the final density profile may coincide.

• The mean-field limit. It will be interesting to study the mean-field limit (N →∞)
of the random batch model, and then compare the limit with that of the original
model, as was done in [29].

We leave the above interesting problems as future work.
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Appendix A. Proof of Lemma 6.2

In this appendix, we provide proofs for two stochastic estimates for χm,i(P, ν̄):

E
[
χm,i(P, ν̄)

]
= 0, Var

[
χm,i(P, ν̄)

]
=

(
1

P − 1
− 1

N − 1

)
Λi(P, ν̄).

(i) Recall that

(A.1) χm,i(P, ν̄) :=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aijΓ(pj − pi)

)
− κ

N − 1

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)
,

and we define

fm,i(P, ν̄) :=
κ

P − 1

∑
j∈[i]m

(
ν̄ij + aijΓ(pj − pi)

)
=

κ

P − 1

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)
︸ ︷︷ ︸

deterministic part

1{j∈[i]m}︸ ︷︷ ︸
random part

.(A.2)

Then, since the probability of {j ∈ [i]m} is P−1
N−1 , we get

(A.3)

Efm,i(P, ν̄) =
κ

P − 1

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)
E1{j∈[i]m}

=
κ

P − 1

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)P − 1

N − 1

=
κ

N − 1

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)
.

From (A.2) and (A.3), one has

(A.4) χm,i(P, ν̄) = fm,i(P, ν̄)− Efm,i(P, ν̄),

which trivially implies

E[χm,i(P, ν̄)] = 0.

(ii) It follows from (A.4) that

(A.5) Var [χm,i(P, ν̄)] = E|χm,i(P, ν̄)|2 = E
(
|fm,i(P, ν̄)|2

)
−
(
Efm,i(P, ν̄)

)2
.

Next, we compute the term E
(
|fm,i(P, ν̄)|2

)
.

By (A.2), one has

(A.6)

|fm,i(P, ν̄)|2 =
( κ

P − 1

)2 ∑
j∈[i]m

(
ν̄ij + aijΓ(pj − pi)

) ∑
k∈[i]m

(
ν̄ik + aikΓ(pk − pi)

)
=
( κ

P − 1

)2{ ∑
j∈[i]m

(
ν̄ij + aijΓ(pj − pi)

)2
+
∑
j∈[i]m

∑
k∈[i]m
k 6=j

(
ν̄ij + aijΓ(pj − pi)

)(
ν̄ik + aikΓ(pk − pi)

)}
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Now we apply expectation to both sides of (A.6) to get

(A.7)

E
(
|fm,i(P, ν̄)|2

)
=
( κ

P − 1

)2{
E
∑
j∈[i]m

(
ν̄ij + aijΓ(pj − pi)

)2
+ E

∑
j∈[i]m

∑
k∈[i]m
k 6=j

(
ν̄ij + aijΓ(pj − pi)

)(
ν̄ik + aikΓ(pk − pi)

)}

=:
( κ

P − 1

)2{
I1 + I2

}
.

In the sequel, we evaluate the terms I1 and I2 one by one.

• (Computation of I1): Similar to (A.3), one has

(A.8) I1 =
P − 1

N − 1

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)2
.

• (Computation of I2): We use

E
(
1{j,k∈[i]m, k 6=j}

)
= P{j ∈ [i]m}P{k ∈ [i]m, k 6= j | j ∈ [i]m} =

P − 1

N − 1

P − 2

N − 2
,

to get

(A.9) I2 =
P − 1

N − 1

P − 2

N − 2

∑
j 6=i

∑
k 6=i,j

(
ν̄ij + aijΓ(pj − pi)

)(
ν̄ik + aikΓ(pk − pi)

)
.

In (A.7), we combine estimates (A.8) and (A.9) to get
(A.10)

E
(
|fm,i(P, ν̄)|2

)
=
P − 1

N − 1
· κ2

(P − 1)2

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)2
+

(P − 1)(P − 2)

(N − 1)(N − 2)
· κ2

(P − 1)2

∑
j 6=i

∑
k 6=i,j

(
ν̄ij + aijΓ(pj − pi)

)(
ν̄ik + aikΓ(pk − pi)

)
.

For the evaluation of
(
Efm,i(P, ν̄)

)2
, we use (A.3) and similar argument as for Ii to

derive

(A.11)

(
Efm,i(P, ν̄)

)2
=

κ2

(N − 1)2

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)2
+

κ2

(N − 1)2

∑
j 6=i

∑
k 6=i,j

(
ν̄ij + aijΓ(pj − pi)

)(
ν̄ik + aikΓ(pk − pi)

)
.
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In (A.5), we use (A.10) and (A.11) to find

Var [χm,i(P, ν̄)] =

(
1

P − 1
− 1

N − 1

)(
κ2

N − 1

∑
j 6=i

(
ν̄ij + aijΓ(pj − pi)

)2
− κ2

(N − 1)(N − 2)

∑
j 6=i

∑
k 6=i,j

(
ν̄ij + aijΓ(pj − pi)

)(
ν̄ik + aikΓ(pk − pi)

))

=

(
1

P − 1
− 1

N − 1

)
κ2

N − 2

∑
j 6=i

∣∣∣∣∣∣(ν̄ij + aijΓ(pj − pi))−
1

N − 1

∑
k 6=i

(ν̄ik + aikΓ(pk − pi))

∣∣∣∣∣∣
2

=

(
1

P − 1
− 1

N − 1

)
Λi(P, ν̄).

This completes the proof of Lemma 6.2.

Appendix B. Proof of Lemma 6.4

The main ingredient is the moment estimates of χm,i, Lemma 6.2. Since QR(τm) is
independent of the random batches at [τm, τm+1), we can treat it as a constant vector:

(B.1)

E
∣∣χm,i(QR(τm), ν̄)

∣∣2 = E
[
E
[
|χm,i(QR(τm), ν̄)|2 | Fm

]]
= E

[
Var

[
χm,i(Q

R(τm), ν̄) | Fm
]]

≤ C
(

1

P − 1
− 1

N − 1

)
,

where Fm denotes the σ-algebra generated from the random choices before t = τm and we
used the boundedness |Λi(QR(τm), ν̄)| ≤ C. In order to use (B.1), we split the terms of
Ri(t) into the differences as follows:

Ri(t) = E[zi(t) · χm,i(QR(t), ν̄)]

= E[(zi(t)− zi(τm)) · χm,i(QR(τm), ν̄)]

+ E[zi(τm) · χm,i(QR(τm), ν̄)]

+ E[zi(t) · (χm,i(QR(t), ν̄)− χm,i(QR(τm), ν̄)]

=: I3 + I4 + I5.

In the sequel, we estimate I3, I4 and I5 one by one.

• (Estimate of I3): Note that

(B.2)

dzi
dt

=
κ

P − 1

∑
j∈[i]m

[ν̄ij + aijΓ(qRj − qRi )]− κ

N − 1

∑
j 6=i

[ν̄ij + aijΓ(qj − qi)]

=
κ

P − 1

∑
j∈[i]m

aij
[
Γ(qRj − qRi )− Γ(qj − qi)

]
+ χm,i(Q, ν̄), t ∈ [τm, τm+1).
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Then, we use (B.2) and defining relation of I3 to get

(B.3)

I3 = E[(zi(t)− zi(τm)) · χm,i(QR(τm), ν̄)]

= E
[(∫ t

τm

dzi
ds
ds
)
· χm,i(QR(τm), ν̄)

]
≤ E

[( ∫ t

τm

κ

P − 1

∑
j∈[i]m

aij
[
Γ(qRj − qRi )− Γ(qj − qi)

]
ds
)
· χm,i(QR(τm), ν̄)

]
+

∫ t

τm

E
[
χm,i(Q(s), ν̄) · χm,i(QR(τm), ν̄)

]
ds

=: I31 + I32.

Below, we estimate two terms in (B.3) as follows.

� (Estimate of I31): In this case, one has

(B.4) I31 ≤ CE
(∫ t

τm

∣∣∣ κ

P − 1

∑
j∈[i]m

aij
[
Γ(qRj − qRi )− Γ(qj − qi)

] ∣∣∣ds).
By Lipschitz continuity of Γ, we have

(B.5)
κ

P − 1

∑
j∈[i]m

aij
[
Γ(qRj − qRi )− Γ(qj − qi)

]
≤ κL2

P − 1

∑
j∈[i]m

aij(|zi|+ |zj |).

On the other hand, we use the boundedness of dzi
dt to see

(B.6)
|zi(s)| − |zi(τm)| ≤ |zi(s)− zi(τm)| =

∣∣∣ ∫ s

τm

dzi(r)

dr

∣∣∣ ≤ Cτ, s ∈ [τm, τm+1),

i.e., |zi(s)| ≤ |zi(τm)|+ Cτ, s ∈ [τm, τm+1).

Then, we use (B.5) and (B.6) to get that, for t ∈ [τm, τm+1),

(B.7)

∫ t

τm

∣∣∣ κ

P − 1

∑
j∈[i]m

aij
[
Γ(qRj (s)− qRi (s))− Γ(qj(s)− qi(s))

] ∣∣∣ds
≤ κL2

P − 1

∑
j∈[i]m

aij

∫ t

τm

(|zi(s)|+ |zj(s)|)ds

≤ κL2

P − 1

∑
j∈[i]m

∫ t

τm

(|zi(τm)|+ |zj(τm)|+ Cτ)ds

≤ Cτ

P − 1

∑
j∈[i]m

(|zi(τm)|+ |zj(τm)|) + Cτ2.

Now, we combine (B.4) and (B.7) to find

(B.8) I31 ≤ C
( τ

N − 1

∑
j 6=i

(E|zi(τm)|+ E|zj(τm)|) + τ2
)
,

where we used

P(j ∈ [i]m) =
P − 1

N − 1
.
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By the same way as in (B.6), we have

(B.9) |zi(τm)| ≤ |zi(t)|+ Cτ.

We combine (B.8) and (B.9) to deduce

(B.10) I31 ≤ C
( τ

N − 1

∑
j 6=i

(E|zi(t)|+ E|zj(t)|) + τ2
)
.

� (Estimate of I32): We use the Cauchy-Schwarz inequality and boundedness of Λi to find

(B.11)

I32 =

∫ t

τm

E
[
χm,i(Q(s), ν̄) · χm,i(QR(τm), ν̄)

]
ds

≤
∫ t

τm

√
E|χm,i(Q(s), ν̄)|2

√
E|χm,i(QR(τm), ν̄)|2ds

≤ Cτ
(

1

P − 1
− 1

N − 1

)
.

In (B.3), we combine the estimates (B.10) and (B.11) to get

I3 ≤ C
( τ

N − 1

∑
j 6=i

(E|zi(t)|+ E|zj(t)|) + τ2
)

+ Cτ

(
1

P − 1
− 1

N − 1

)
.

• (Estimate of I4): This term is zero since the time is fixed at τm, which is independent of
the random choice at τm:

I4 = E[zi(τm) · χm,i(QR(τm), ν̄)]

= E
[
zi(τm) · E[χm,i(Q

R(τm), ν̄) | Fm]
]

= 0.

• (Estimate of I5): By the Cauchy-Schwarz inequality, one has

(B.12)
I5 = E[zi(t) · (χm,i(QR(t), ν̄)− χm,i(QR(τm), ν̄))]

≤
√
E|zi(t)|2

√
E|χm,i(QR(t), ν̄)− χm,i(QR(τm), ν̄)|2.

Now we claim that the second factor in (B.12) satisfies

(B.13) |χm,i(QR(t), ν̄)− χm,i(QR(τm), ν̄)|2 ≤ Cτ2.

For this, we use defining relation (A.1) of χm,i(Q
R(t), ν̄), the Lipschitz continuity of Γ and

QR and the uniform boundedness,

|qRj − qRi |+
∣∣∣ d
dt

(qRj − qRi )
∣∣∣ ≤ C

to see∣∣∣ d
dt
χm,i(Q

R(t), ν̄)
∣∣∣

=
∣∣∣ d
dt

[ κ

P − 1

∑
j∈[i]m

(
ν̄ij + aijΓ(qRj − qRi )

)
− κ

N − 1

∑
j 6=i

(
ν̄ij + aijΓ(qRj − qRi )

)]∣∣∣
≤ C.
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This implies∣∣∣χm,i(QR(t), ν̄)− χm,i(QR(τm), ν̄)
∣∣∣2 =

∣∣∣ ∫ t

τm

d

ds
χm,i(Q

R(s), ν̄)ds
∣∣∣2 ≤ Cτ2,

which verifies (B.13). Now, we combine (B.12) and (B.13) to obtain

I5 ≤ Cτ
√
E|zi(t)|2

for some positive constant C. Finally, we collect all the estimates for I3, I4 and I5 to find

Ri(t) ≤ Cτ
[ 1

N − 1

∑
j 6=i

E|zj(t)|+ E|zi(t)|+
(

1

P − 1
− 1

N − 1

)]
+ Cτ2.

This completes the proof of Lemma 6.4.
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[1] Acebron, J. A., Bonilla, L. L., Pérez Vicente, C. J. P., Ritort, F. and Spigler, R.: The Kuramoto model:
A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77 (2005), 137-185.

[2] Albi, G., Bellomo, N., Fermo, L., Ha, S.-Y., Kim, J., Pareschi, L., Poyato, D. and Soler, J.: Vehicular
traffic, crowds and swarms: From kinetic theory and multiscale methods to applications and research
perspectives. Math. Models Methods Appl. Sci. 29 (2019), 1901-2005.

[3] Albi, G. and Pareschi, L.: Binary interaction algorithms for the simulation of flocking and swarming
dynamics. Multiscale Modeling & Simulation, 11 (2013), 1–29.

[4] Bellomo, N. and Ha, S.-Y.: A quest toward a mathematical theory of the dynamics of swarms. Math
Models Moethods Appl. Sci. 27 (2017), 745-770.

[5] Bellomo, N. and Soler, J.: On the mathematical theory of the dynamics of swarms viewed as complex
systems. Math Models Methods Appl. Sci. 22 (2012), 1140006, 29 pp.

[6] Biccari, U. and Zuazua, E.: A stochastic approach to the synchronization of coupled oscillators. Available
at arXiv preprint arXiv:2002.04472 (2020).

[7] Bronski, J., Carty, T. and Simpson, S.: A matrix valued Kuramoto model. J. Stat. Phys. 178 (2020),
595-624.

[8] Buck, J. and Buck, E.: Biology of synchronous flashing of fireflies. Nature 211 (1966), 562.
[9] Carrillo, J. A., Jin, S., Li, L. and Zhu, Y.: A consensus-based global optimization method for high

dimensional machine learning problems. Available at arXiv:1909.09249 (2019).
[10] Chi, D., Choi, S.-H. and Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J.

Math. Phys. 55 (2014), 052703.
[11] Choi, Y., Ha, S.-Y., Jung, S. and Kim, Y.: Asymptotic formation and orbital stability of phase-locked

states for the Kuramoto model. Physica D 241 (2012), 735-754.
[12] Chopra, N. and Spong, M. W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans.

Automatic Control 54 (2009), 353-357.
[13] Cucker, F. and Smale S.: Emergent behavior in flocks. IEEE Trans. Automat. Control 52 (2007),

852-862.
[14] Degond, P., Frouvelle, A., Merino-Aceituno, S. and Trescases, A.: Quaternions in collective dynamics.

Multiscale Model. Simul. 16 (2018), 28–77.
[15] Dong, J.-G., Ha, S.-Y., Jung, J. and Kim, D.: On the stochastic flocking of the Cucker-Smale flock with

randomly switching topologies. SIAM J. Control Optim. 58 (2020), 2332-2353.
[16] Dörfler, F. and Bullo, F.: Synchronization in complex networks of phase oscillators: A survey. Auto-

matica 50 (2014), 1539-1564.
[17] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph

theory. Czechoslovak Math. J. 25 (1975), 607-618.
[18] Golse, F., Jin, S. and Paul, T.: The Random Batch Method for N-Body Quantum Dynamics. Available

at arXiv:1912.07424 (2019).



RANDOM BATCH METHOD TO FIRST-ORDER CONSENSUS MODELS 35

[19] Ha, S. Y., Ha, T. and Kim, J. H.: Emergent behavior of a Cucker-Smale type particle model with
nonlinear velocity couplings. IEEE Trans. Autom. Control, 55 (2010), 1679-1683.

[20] Ha, S.-Y., Ko, D., Park, J. and Zhang, X.: Collective synchronization of classical and quantum oscilla-
tors. EMS Surv. Math. Sci. 3 (2016), 209-267.

[21] Ha, S.-Y., Kim, J., Park, J. and Zhang X.: Complete cluster predictability of the Cucker-Smale flocking
model on the real line. Arch. Ration. Mech. Anal., 231 (2019), 319-365.

[22] Ha, S.-Y., Kim, H. W. and Ryoo, S. W.: Emergence of phase-locked states for the Kuramoto model in
a large coupling regime. Commun. Math. Sci. 14 (2016), 1073-1091.

[23] Ha, S.-Y., Jeong, E., Kang, J.-H. and Kang, K.: Emergence of multi-cluster configurations from attrac-
tive and repulsive interactions. Math. Models Methods Appl. Sci. 22 (2012), 1250013.

[24] Ha, S.-Y., Jin, S. and Kim, D.: Convergence of a first-order consensus-based global optimization algo-
rithm. To appear in Math. Models Methods Appl. Sci. Available at arXiv:1910.08239 (2019).

[25] Ha, S.-Y. and Liu, J. G.: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit.
Communications in Mathematical Sciences, 7(2), 297-325 (2009)

[26] Ha, S.-Y. and Park, H.: From the Lohe tensor model to the Lohe Hermitian sphere model and emergent
dynamics. SIAM J. Appl. Dyn. Syst. 19 (2020), 1312-1342.

[27] Ha, S.-Y. and Park, H.: Emergent behaviors of Lohe tensor flock. J. Stat. Phys. 178 (2020), 1268-1292.
[28] Ha, S.-Y. and Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet.

Relat. Models 1 (2008), 415-435.
[29] Jin, S. and Li, Lei.: On the mean field limit of Random Batch Method for interacting particle sys-

tems,Available at arXiv:2005.11740 (2020).
[30] Jin, S., Li, L. and Liu, J.-G.: Random batch methods (RBM) for interacting particle systems. J. of

Computational Physics 400 (2020), 108877.
[31] Jin, S., Li, L. and Liu, J.-G.: Convergence of Random Batch Method for interacting particles with

disparate species and weights, Available at arXiv:2003.11257 (2020).
[32] Kang, J.-H., Ha, S.-Y., Kang, K. and Jeong, E.: How do cultural classes emerge from assimilation and

distinction? An extension of the Cucker-Smale flocking model. J. Math. Sociol. 38 (2014), 47-71.
[33] Keller, E. F. and Segel, L. A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret.

Biol. 26 (1970), 399-415.
[34] Ko, D. and Zuazua, E.: Model predictive control with random batch methods for a guiding problem.

Available at arXiv:2004.14834 (2020).
[35] Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In International sym-

posium on mathematical problems in theoretical physics (pp. 420-422) Springer, Berlin, Heidelberg
(1975).

[36] Li, L., Liu, J. G. and Tang, Y.: A direct simulation approach for the Poisson-Boltzmann equation using
the Random Batch Method. Available at arXiv:2004.05614 (2020).

[37] Lohe, M. A.: Non-abelian Kuramoto model and synchronization. J. Phys. A: Math. Theor. 42 (2009),
395101.

[38] Motsch, S. and Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56 (2014), 577–
621.

[39] Motsch, S. and Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat.
Phys. 144 (2011), 923-947.

[40] Olfati-Saber, R. and Murray, R. M.: Consensus problems in networks of agents with switching topology
and time-delays. IEEE Trans. Automat. Control, 49(9), 1520-1533 (2004).

[41] Peskin, C. S.: Mathematical aspects of heart physiology. Courant Institute of Mathematical Sciences,
New York, 1975.

[42] Pikovsky, A., Rosenblum, M. and Kurths, J.: Synchronization: A universal concept in nonlinear sci-
ences. Cambridge University Press, Cambridge, 2001.

[43] Strogatz, S. H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of
coupled oscillators. Physica D 143 (2000), 1-20.

[44] Toner, J. and Tu, Y.: Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E 58
(1998), 4828-4858.

[45] Topaz, C. M. and Bertozzi, A. L.: Swarming patterns in a two-dimensional kinematic model for biological
groups. SIAM J. Appl. Math. 65 (2004), 152-174.



36 HA, JIN, KIM, AND KO
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