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Abstract. We propose a stochastic Galerkin method using sparse wavelet bases for the
Boltzmann equation with multi-dimensional random inputs. The method uses locally
supported piecewise polynomials as an orthonormal basis of the random space. By a
sparse approach, only a moderate number of basis functions is required to achieve good
accuracy in multi-dimensional random spaces. We discover a sparse structure of a set of
basis-related coefficients, which allows us to accelerate the computation of the collision
operator. Regularity of the solution of the Boltzmann equation in the random space and
an accuracy result of the stochastic Galerkin method are proved in multi-dimensional
cases. The efficiency of the method is illustrated by numerical examples with uncertain-
ties from the initial data, boundary data and collision kernel.
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1. Introduction

The Boltzmann equation plays an essential role in kinetic theory [9]. It describes the
time evolution of the density distribution of dilute gases, where fluid dynamics equations,
such as the Euler equations and the Navier-Stokes equations, fail to provide reliable infor-
mation. It is an indispensable tool in fields concerning non-equilibrium statistical mechan-
ics, such as rarefied gas dynamics and astronautical engineering.

For most applications of the Boltzmann equation, the initial and boundary data are
given by physical measurements, which inevitably bring measurement errors. Furthermore,
∗Corresponding author. Email addresses: rshu2@math.wisc.edu (R. Shu), jingweihu@purdue.edu (J.
Hu), sjin@wisc.edu (S. Jin)
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due to the difficulty of deriving the collision kernels from first principles, empirical collision
kernels are often used. Such kernels contain adjustable parameters which are determined
by matching with experimental data [5]. This procedure involves uncertainty on the pa-
rameters in the collision kernel. To understand the impact of these random inputs on the
solution of the Boltzmann equation, it is imperative to incorporate the uncertainties into
the equation, and design numerical methods to solve the resulting system [30]. A proper
quantification of uncertainty will provide reliable predictions and a guidance for improving
the models. Since the uncertainties of the Boltzmann equations come from many indepen-
dent sources, it is necessary to use a multi-dimensional random space to incorporate all
the uncertainties. Moreover, a Karhunen-Loeve expansion of a random field will result in a
multi-dimensional random space.

Various numerical methods have been developed to solve the problem of uncertainty
quantification (UQ) [12,19,30,31]. Monte-Carlo methods [23] use statistical sampling in
the random space, which give halfth order convergence in any dimension. Stochastic col-
location methods [2, 4, 22] take sampling points on a well-designed grid, usually accord-
ing to a quadrature rule, or take sampling points by least-square or compressed sensing
approaches, and the statistical moments are computed by numerical quadratures or recon-
structed generalized polynomial chaos expansions. Stochastic Galerkin methods [3,4] use
an orthonormal basis expansion in the random space. By a truncation of the expansion and
Galerkin projection, one is led to a deterministic system of expansion coefficients. Both
methods can achieve spectral accuracy in one-dimensional random space if the quadrature
rule (orthonormal basis) is well chosen.

Hu and Jin [16] gave a first numerical method to solve the Boltzmann equation with
uncertainty by a generalized polynomial chaos based stochastic Galerkin method. By a
singular value decomposition on a set of basis related coefficients, together with the fast
spectral method for the Boltzmann collision operator proposed by [21], the computational
cost of the collision operator is decreased dramatically. However, their work focuses on low
dimensional random spaces, and a direct extension of their method to multi-dimensional
random spaces will suffer from the curse of dimensionality, which means K , the total num-
ber of basis functions, will grow like K =

�K1+d
K1

�

, where K1 is the number of basis in one
dimension, and d is the dimension of the random space. This cost is not affordable if both
K1 and d are large. Monte-Carlo methods are feasible, but a halfth order convergence rate
can be unsatisfactory in many applications. Therefore it is desirable to have an efficient and
accurate method to solve the Boltzmann equation with multi-dimensional random inputs.

In this work, we adopt a sparse approach [8, 11] for the stochastic Galerkin method
to circumvent the curse of dimensionality. The idea of sparse approaches traces back to
Smolyak [28]. In recent years, sparse approaches have become a major way to break the
curse of dimensionality in various contexts, for example in Galerkin finite element meth-
ods [8,27,33], finite difference methods [13,14], high-dimensional stochastic differential
equations [24,32] and uncertainty quantification [20,25]. The sparse approach we adopt
was first proposed by Schwab et al. [26] for transport-dominated diffusion problems, and
then applied to discontinuous Galerkin methods for elliptic equations by Wang et al. [29]
and transport equations by Guo and Cheng [15]. Simply speaking, we start from a hier-
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archical basis in one dimension. To construct the sparse wavelet basis in multi-dimension,
we take the tensor basis and discard those basis functions that are in deep levels in most
dimensions. In this way only a small number of basis functions are kept, yet it can be
proved that the accuracy is still as good as the corresponding tensor basis, if the function to
approximate is smooth enough. With a hierarchical basis with N levels and piecewise poly-
nomials of degree at most m, our method can achieve an accuracy of O(N d−12−N(m+1))with
number of basis K = O((m+ 1)d2N N d−1) for d-dimensional random spaces. This accuracy
is O(K−(m+1)(log K)(m+2)(d−1)) in terms of K . It is algebraically accurate, but as d increases,
the accuracy deteriorates very slowly. Furthermore, we discover a sparse structure of a set
of basis related coefficients, Si jk, which greatly reduces the cost of the expensive collision
operator evaluation.

The rest of the paper is organized as follows: in Section 2 we introduce the Boltzmann
equation with uncertainty and the framework of stochastic Galerkin (sG) method; in Sec-
tion 3 we introduce our sparse method with multi-wavelet functions; in Section 4 we give
an estimate of the sparsity of the coefficients Si jk; in Section 5 we prove the random space
regularity of the solution of the Boltzmann equation with uncertainty, as well as the ac-
curacy of the sG method with sparse wavelet basis; in Section 6 we give some numerical
results; the paper is concluded in Section 7.

2. The Boltzmann equation with uncertainty

The classical (deterministic) Boltzmann equation in its dimensionless form reads

∂t f + v · ∇x f =
1

Kn
Q( f , f ), (2.1)

where f = f (t,x,v) is the density distribution function of a dilute gas at time t ∈ R+,
position x ∈ Ω ⊂ Rdx , and with particle velocity v ∈ Rdv . Kn is the Knudsen number, a
dimensionless number defined as the ratio of the mean free path and a typical length scale,
such as the size of the spatial domain. The collision operator Q( f , f ) is given by

Q( f , f ) =

∫

Rdv

∫

Sdv−1

B(v,v∗,σ)
�

f (v′) f (v′∗)− f (v) f (v∗)
�

dσ dv∗, (2.2)

which is a quadratic integral operator modeling the binary elastic collision between par-
ticles. (v,v∗) and (v′,v′∗) are the particle velocities before and after a collision, which are
given by











v′ =
v+ v∗

2
+
|v− v∗|

2
σ,

v′∗ =
v+ v∗

2
−
|v− v∗|

2
σ,

(2.3)

with a vector σ varying on the unit sphere. The collision kernel B is a non-negative func-
tion of the form B(v,v∗,σ) = B(|v− v∗|, cosθ ), where θ = arccos σ·(v−v∗)

|v−v∗|
is the deviation
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angle. A commonly used model for the collision kernel is the variable hard sphere (VHS)
model [5], which takes the form

B = b|v− v∗|λ, (2.4)

where b and λ are some constants whose values are usually determined by matching with
the experimental data to reproduce the correct transport coefficients such as the viscosity.

The Boltzmann collision operator satisfies the conservation laws

∫

Rdv

Q( f , f )







1

v

|v|2






dv= 0, (2.5)

as well as the H-theorem

−
∫

Rdv

Q( f , f ) ln f dv≥ 0. (2.6)

The equality is achieved if and only if f takes the form

M(v)(ρ,u,T ) =
ρ

(2πT )dv/2
e−

(v−u)2
2T , (2.7)

which is called the Maxwellian. ρ, u and T are the density, bulk velocity and temperature,
given by

ρ =

∫

Rdv

f dv, u=
1
ρ

∫

Rdv

f vdv, T =
1

dvρ

∫

Rdv

f |v− u|2 dv. (2.8)

The initial condition of the Boltzmann equation is given by

f (0,x,v) = f 0(x,v), (2.9)

and a boundary condition is needed if the spatial domain Ω is a proper subset of Rdx . We
adopt the Maxwell boundary condition, which takes the form

f (t,x,v) = g(t,x,v), x ∈ ∂Ω, v · n> 0, (2.10)

with

g(t,x,v) =(1−α) f (t,x,v− 2(v · n)n)

+
α

(2π)(dv−1)/2Tw(x)(dv+1)/2
e−

|v|2
2Tw(x)

∫

v·n<0

f (t,x,v)|v · n|dv,
(2.11)

where Tw is the temperature of the wall, and n is the inner normal unit vector of the wall.
The first term is the specular reflective part, and the second term is the diffusive part. α
is the accommodation coefficient. α = 1 implies purely diffusive boundary, while α = 0
implies purely reflective boundary. For simplicity we only consider the case where the wall
is static.
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As mentioned before, there are many sources of uncertainties in the Boltzmann equa-
tion, such as the initial data, boundary data, and collision kernel. To quantify these uncer-
tainties we introduce the Boltzmann equation with uncertainty














∂t f (t,x,v,z) + v · ∇x f (t,x,v,z) =
1

Kn
Qz( f , f ), t ∈ R+, x ∈ Ω ⊂ Rdx , v ∈ Rdv , z ∈ Iz ⊂ Rd ,

f (0,x,v,z) = f 0(x,v,z), x ∈ Ω, v ∈ Rdv , z ∈ Iz,

f (t,x,v,z) = g(t,x,v,z), t ∈ R+, x ∈ ∂Ω, v ∈ Rdv , z ∈ Iz.
(2.12)

Here z ∈ Iz is a d-dimensional random vector with probability distribution π(z) character-
izing the uncertainty in the system. We assume that the collision kernel has the form

B(v,v∗,σ,z) = b(z)B0(v,v∗,σ),

which means that Qz can be written as

Qz( f , f ) = b(z)Q( f , f ).

The Maxwell boundary data g(t,x,v,z) is given by

g(t,x,v,z) =(1−α(z)) f (t,x,v− 2(v · n)n,z)

+
α(z)

(2π)(dv−1)/2Tw(x,z)(dv+1)/2
e−

|v|2
2Tw(x,z)

∫

v·n<0

f (t,x,v,z)|v · n|dv.
(2.13)

To solve the stochastic system (2.12), Hu and Jin [16] proposed a stochastic Galerkin
(sG) method. The idea is to approximate f by a truncated polynomial series:

f (t,x,v,z)≈ f K(t,x,v,z) =
K
∑

k=1

fk(t,x,v)Φk(z), (2.14)

where {Φk(z)} are an orthonormal polynomial basis, which satisfies
∫

Iz

Φi(z)Φ j(z)π(z)dz= δi j .

If one uses polynomials of degree at most K1 in a d dimensional random space, then the
number of basis functions is K =

�K1+d
K1

�

. Substituting (2.14) into (2.12) and conducting a
standard Galerkin projection, one gets

∂t fk(t,x,v) + v · ∇x fk(t,x,v) =Qk( f
K , f K), (2.15)

fk(0,x,v) = f 0
k (x,v), (2.16)

Qk( f
K , f K) =

K
∑

i, j=1

Si jkQ( fi , f j), (2.17)
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where

Si jk =

∫

Iz

b(z)Φi(z)Φ j(z)Φk(z)π(z)dz. (2.18)

The boundary condition is given by

gk =
K
∑

j=1

∫

Iz

(1−α(z))Φk(z)Φ j(z)π(z)dz f j(t,x,v− 2(v · n)n)

+
K
∑

j=1

Dk j(x,v)

∫

v·n<0

f j(t,x,v,z)|v · n|dv,

(2.19)

where

Dk j(x,v) =

∫

Iz

α(z)
(2π)(dv−1)/2Tw(x,z)(dv+1)/2

e−
|v|2

2Tw(x,z)Φk(z)Φ j(z)π(z)dz (2.20)

is a matrix that is time independent hence can be pre-computed.
This gPC-sG method works well for low dimensional random inputs, but for high dimen-

sional ones, it might require a very large number of basis functions (K large) to approximate
f to a given accuracy. If one takes K1 basis functions in each dimension of a d-dimensional
random space, then a direct extension of the gPC-sG method will require K =

�K1+d
K1

�

basis
functions, which is prohibitively expensive if both K1 and d are large. Furthermore, since
the computation of Qk typically requires O(K2) times evaluation of the deterministic col-
lision operator, one has to choose a relatively small K in order to afford the computation.
Also, [16] uses the singular value decomposition of a size K matrix as pre-computation for
the collision operator, which reduces the computational cost by one order of magnitude, but
this pre-computation can be prohibitively expensive if K is large. In the following sections
we propose a stochastic Galerkin method with sparse grid basis functions, which requires
much fewer basis functions for multi-dimensional random spaces.

3. A sparse approach with multi-wavelet basis functions

3.1. The sparse wavelet basis construction

For simplicity we restrict to the case Iz = [−1, 1]d , and π(z) = 1
2d is the uniform dis-

tribution. We follow the notation by Guo and Cheng [15]. We start by constructing a
hierarchical decomposition of the space consisting of piecewise polynomials of degree at
most m. Let Pm(a, b) be the space of polynomials of degree at most m on the interval (a, b),
and for every N ≥ 0,

V m
N = {φ : φ ∈ Pm(−1+ 2−N+1 j,−1+ 2−N+1( j + 1)), j = 0, 1, . . . , 2N − 1}. (3.1)

Then define the wavelet space W m
N , N = 1,2, . . . as the orthogonal complement of V m

N−1
inside V m

N . For convenience we define W m
0 = V m

0 . Then one obtains the hierarchical de-
composition V m

N = ⊕0≤ j≤N W m
j .
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Then a standard sparse trick can be applied. For simplicity we introduce the following
vector notations:

If i= (i1, . . . , id), j= ( j1, . . . , jd) then

i≤ j means i1 ≤ j1, . . . , id ≤ jd ,
�

j
i

�

:=
�

j1
i1

�

× · · · ×
�

jd
id

�

,

1m is the vector with 1 at m-th component and 0 elsewhere,

|i|∞ = max
1≤m≤d

{|im|}, |i|1 = |i1|+ · · ·+ |id |.

Define the d-fold tensor product of V m
N by

Vm
N ,z = V m

N ,z1
× · · · × V m

N ,zd
. (3.2)

Similarly define the d-fold tensor product of W m
j by

Wm
j,z =W m

j1,z1
× · · · ×W m

jd ,zd
. (3.3)

Then
Vm

N ,z = ⊕0≤|j|∞≤N Wm
j,z.

The sparse trick is to replace the l∞ norm on j by the l1 norm. In this way we define the
sparse wavelet space

V̂m
N ,z = ⊕0≤|j|1≤N Wm

j,z. (3.4)

From now on we will omit the subscript z for these spaces.

3.2. Construction of the basis functions

We adopt the basis functions of W m
j constructed by Alpert [1]. The basis functions of

W m
j are denoted byψm′

j,l , m′ = 0, 1, . . . , m, l = 0, 1, . . . , 2 j−1−1 for j ≥ 1 and l = 0 for j = 0.

ψm′
0,0 are the orthonormal Legendre polynomials of degree m′ on [−1, 1], andψm′

1,0 are piece-
wise polynomials on [−1,0] and [0, 1] that are orthogonal to those Legendre polynomials,
which can be constructed by a procedure similar to the Gram-Schmidt orthogonalization.
Other ψm′

j,l are defined by dilation and translation of ψm′
1,0:

ψm′
j,l (y) = 2( j−1)/2ψm′

1,0(2
j−1 y + 2 j−1 − 1− 2l), j = 2,3, . . . , l = 0,1, . . . , 2 j−1 − 1,

which has support on the interval [−1+ 22− j l,−1+ 22− j(l + 1)].
The basis functions of Wm

j are tensor products of the one dimensional basis functions:

ψm′
j,l (z) =ψ

m′1
j1,l1
(z1)×· · ·×ψ

m′d
jd ,ld
(zd), 0≤ |m′|∞ ≤ m, 0≤ l1 ≤ 2 j1−1−1, . . . , 0≤ ld ≤ 2 jd−1−1,

and the basis functions of V̂m
N consist of all the above functions for 0≤ |j|1 ≤ N . By reorder-

ing the basis functions for V̂m
N we make them Φ1(z), . . . ,ΦK(z), where K = K(m, N , d) is the

total number of basis functions. It is proved in Lemma 2.3 of [29] that

K = O((m+ 1)d2N N d−1). (3.5)



8 R. Shu, J. Hu and S. Jin

4. Estimate of the Sparsity of Si jk

Recall the triple product tensor Si jk defined in (2.18). Due to the local support of
the sparse wavelet basis functions Φk, this tensor is sparse, especially when N and d are
large. Due to this sparsity, when one computes Qk =

∑K
i, j=1 Si jkQ( fi , f j), one only needs to

compute those Q( fi , f j) where there is at least one k with Si jk 6= 0. Now we prove some
results on its sparsity. We focus on the dependence on N , so every O(·) notation means
multiplication by a constant that may depend on d.

Recall that when one takes the sparse wavelet space V̂m
N , the basis functions are

ψm′
j,l (z) =ψ

m′1
j1,l1
(z1)× · · · ×ψ

m′d
jd ,ld
(zd), 0≤ |m′|∞ ≤ m,

0≤ l1 ≤ 2 j1−1 − 1, . . . , 0≤ ld ≤ 2 jd−1 − 1, |j|1 ≤ N .
(4.1)

The functionψm′
j,l (z) is supported on the interval [−1+22− j l,−1+22− j(l+1)] for j ≥ 1.

Since this support is independent of m′, we omit the m′ index in the following consideration.
If ψj1,l1 and ψj2,l2 have non-intersecting supports, then

∫

Iz

b(z)ψj1,l1(z)ψj2,l2(z)ψj3,l3(z)π(z)dz= 0, ∀j3, l3.

Recall that the number of basis functions, in V̂m
N , which includes those ψj,l with |j|1 ≤ N

and 0 ≤ l1 ≤ 2 j1−1 − 1, . . . , 0 ≤ ld ≤ 2 jd−1 − 1, is O((m+ 1)d2N N d−1). Thus the number of
the pairs of such functions is O((m+ 1)2d22N N2d−2). Now we state our result:

Theorem 4.1. The pairs of basis functions of V̂m
N with intersecting supports have a total num-

ber at most O((m+ 1)2d22N N d+1).

Proof. The number of φ j,l for a fixed j is (m+1)2 j−1 for j ≥ 1, and m+1 if j = 0. Thus
it is less than or equal to (m+ 1)2 j for all j. For fixed j1, j2, suppose j1 ≥ j2, then φ j1,l1

and φ j2,l2 have intersecting supports if and only if the support of φ j1,l1 is a subinterval of
the support of φ j2,l2 . For every l1, there is one and only one such l2. Thus the number of

pairs l1, l2 such that φ j1,l1 and φ j2,l2 have intersecting supports is 2 j1 , which is 2max{ j1, j2}

in general.
Thus the desired number is

S = (m+ 1)2d
∑

0≤|j1|1≤N ,0≤|j2|1≤N

2max{ j11 , j21 }+···+max{ j1d , j2d }. (4.2)

Let k1 =max{j1, j2}, where the maximum acts on each component of vectors. Similarly
let k2 = min{j1, j2}. Then |k1 + k2|1 = |j1 + j2|1 = |j1|1 + |j2|1 ≤ 2N , and for each fixed
k1,k2, there are at most 2d pairs of j1, j2 satisfying the conditions k1 = max{j1, j2} and
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k2 =min{j1, j2}. Thus

S ≤ C(d)(m+ 1)2d
∑

0≤|k1|1+|k2|1≤2N

2|k
1|1

= C(d)(m+ 1)2d
2N
∑

k=0

2k
�

k+ d − 1
d − 1

� 2N−k
∑

l=0

�

l + d − 1
d − 1

�

≤ C(d)(m+ 1)2d N
2N
∑

k=0

2k(k+ 1)d−1(2N − k+ 1)d−1.

The first equality is because there are
�k+d−1

d−1

�

choices of k1 with |k1|1 = k, and similarly for

k2. The second inequality is because
�k+d−1

d−1

�

= k+1
1

k+2
2 · · ·

k+d−1
d−1 ≤ (k + 1)d−1, and taking

the largest term in the l summation.
Then by taking derivative with respect of k, it is easy to see that the previous summation

is optimized at kmax = 2N −O(d). Thus

S ≤ C(d)(m+ 1)2d N22kmax (kmax + 1)d−1(2N − kmax + 1)d−1

≤ C(d)(m+ 1)2d22N N d+1,

which finishes the proof.

Remark 4.1. When d ≥ 4, one has 22N N2d−2 > 22N N d+1, thus in this case the number of
Q( fi , f j) needed to be computed is much less than the total number of pairs of fi , f j . And the
bigger d is, the more saving one will gain.

Numerically, we observe this sparsity result even in the cases d = 2,3 (see Section 6.1.3),
and for a fixed d, the percentage of Q( fi , f j) needed to be computed decreases exponentially
as N increases, which is better than what one expects from the above theorem (where the
percentage is O( 1

N d−3 )). This suggests that the above theorem is not sharp.

5. Regularity and accuracy

In this section, we prove the regularity of the solution to the Boltzmann equation in the
random space, and the accuracy of the stochastic Galerkin method using sparse wavelet
basis. These are straightforward multi-dimensional extensions of the corresponding results
in [16]. We assume that the random collision kernel depends linearly on z. This is a rea-
sonable assumption because when one uses the Karhunen-Loeve expansion to approximate
a random field, the resulting dependence on z is linear.

We consider the spatially homogeneous Boltzmann equation

∂ f
∂ t
=Q( f , f ), (5.1)

subject to random initial data and random collision kernel

f (0,v,z) = f 0(v,z), B = B(v,v∗,σ,z), z ∈ Iz.
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5.1. Regularity in the random space for the Boltzmann equation

We define the norms and operators:

‖ f (t, ·,z)‖Lp
v
=

�∫

Rdv

| f (t,v,z)|p dv

�1/p

, ‖ f (t,v, ·)‖L2
z
=

�

∫

Iz

f (t,v,z)2π(z) dz

�1/2

,

‖| f (t, ·, ·)‖|k = sup
z∈Iz

 

k
∑

|l|=0

‖∂ l
z f (t,v,z)‖2L2

v

!1/2

,

Q(g, h)(v) =

∫

Rdv

∫

Sdv−1

B(v,v∗,σ,z)
�

g(v′)h(v′∗)− g(v)h(v∗)
�

dσ dv∗,

Q1, j(g, h)(v) =

∫

Rdv

∫

Sdv−1

∂z j
B(v,v∗,σ,z)

�

g(v′)h(v′∗)− g(v)h(v∗)
�

dσ dv∗.

We first state the following estimates of Q(g, h) and Q1, j(g, h), which are standard results
proved in [7,18] and its extension to the uncertain case is straightforward:

Lemma 5.1. Assume the collision kernel B depends on z linearly, B and ∂zB are locally inte-
grable and bounded in z. If g, h ∈ L1

v ∩ L2
v , then

‖Q(g, h)‖L2
v
, ‖Q1, j(g, h)‖L2

v
≤ CB‖g‖L1

v
‖h‖L2

v
, (5.2)

‖Q(g, h)‖L2
v
, ‖Q1, j(g, h)‖L2

v
≤ CB‖g‖L2

v
‖h‖L2

v
, (5.3)

where the constant CB > 0 depends only on B and ∂z j
B, j = 1, . . . , d.

Now we state our estimate on ‖| f ‖|k.

Theorem 5.1. Assume that B satisfies the assumption in Lemma 5.1, and supz∈Iz ‖ f 0‖L1
v
≤ M,

‖| f 0‖|k <∞ for some integer k ≥ 0. Then there exists a constant Ck > 0, depending only on
CB, M, T , and ‖| f 0‖|k such that

‖| f ‖|k ≤ Ck, for any t ∈ [0, T] . (5.4)

The proof of the theorem is provided in the Appendix.

5.2. Accuracy analysis

In this subsection, we will prove the convergence rate of the stochastic Galerkin method
using the previously established regularity. As in section 5.1, we will still restrict to the
spatially homogeneous equation (5.1).

We use the sparse wavelet space V̂m
N with parameters m, N . For this space, the number

of basis functions K = O((m+ 1)d2N N d−1).
Define the spaceH m(Iz) by

‖ f ‖H m(Iz) =max
∑

0≤mi1 ,...,mir≤m

∑

0≤m j1 ,...,m jd−r
≤1

‖∂
mi1

zi1
· · ·∂

mir
zir
∂

m j1
z j1
· · ·∂

m jd−r
z jd−r

f ‖L2(Iz),
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where the maximum is taken over all non-empty subsets {i1, . . . , ir} ⊂ {1, . . . , d}, and
{ j1, . . . , jd−r} is the complement of {i1, . . . , ir}. Using the orthonormal basis {Φk(z)}, the
solution f to (5.1) can be represented as

f (t,v,z) =
∞
∑

k=1

fk(t,v)Φk(z), where fk(t,v) =

∫

Iz

f (t,v,z)Φk(z)π(z) dz . (5.5)

Let PK be the projection operator defined as

PK f (t,v,z) =
K
∑

k=1

fk(t,v)Φk(z).

Then one has the following projection error estimate (Theorem 5.1 in [26]):

Lemma 5.2. For any f ∈H m+1(Iz), N ≥ 1, we have

‖PK f − f ‖L2(Iz) ≤ C(m, d)N d−1 2−N(m+1)‖ f ‖H m+1(Iz). (5.6)

This lemma implies that the projection error

‖PK f − f ‖L2(Iz) ≤ C(m, d)K−(m+1)(log K)(m+2)(d−1)‖ f ‖H m+1(Iz). (5.7)

Define the norms

‖ f (t, ·, ·)‖L2
v,z
=

�

∫

Iz

∫

Rd

f (t,v,z)2 dvπ(z) dz

�1/2

, (5.8)

then we have the following:

Lemma 5.3. Assume z obeys the uniform distribution, i.e., z ∈ Iz = [−1,1]d and π(z) =
1/2d . If ‖| f 0‖|d(m+1) is bounded, then

‖PK f − f ‖L2
v,z
≤ C(m, d)K−(m+1)(log K)(m+2)(d−1), (5.9)

where C(m, d) is a constant depending on m and d.

Given the gPC approximation of f :

f K(t,v,z) =
K
∑

k=1

f̂k(t,x,v)Φk(z), (5.10)

we now define the error function

eK(t,v,z) = PK f (t,v,z)− f K(t,v,z) :=
K
∑

k=1

ek(t,v)Φk(z),

where ek = f̂k − fk. Then we have
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Theorem 5.2. Assume the random variable z and initial data f 0 satisfy the assumption in
Lemma 5.3, and the gPC approximation f K is uniformly bounded in K, then

‖ f − f K‖L2
v,z
≤ C(t)

¦

C(m, d)K−(m+1)(log K)(m+2)(d−1) + ‖eK(0)‖L2
v,z

©

.

The proof of Lemma 5.4 and Theorem 5.5 can be proved in the same way as Section
4.2 in Hu and Jin [16], in view of Lemma 5.3. We omit the details.

Remark 5.1. In general, wavelet bases are used for functions with low regularity. Here we
briefly explain the reason why we use them for smooth functions. For low dimensional random
spaces (d ≤ 4), by choosing a large m (i.e., m ≥ 2) one can obtain a good accuracy order
(almost (m+ 1)-th order) with the wavelet basis. However, due to the factor (m+ 1)d in the
number of basis functions K (see (3.5)), m cannot be large for higher dimensional random
spaces (d ≥ 5). Thus for such random spaces one has to sacrifice the accuracy order a little
and take m= 0, 1 in order to make the number of basis functions K affordable.

6. Numerical results

In this section we give some numerical results of the stochastic Galerkin method with
sparse technique. We first demonstrate the efficiency of the sparse wavelet basis, and then
show its application to the Boltzmann equation with uncertainty.

The random space is taken as [0, 1]d with the uniform distribution. For the Boltzmann
equation with uncertainty, the physical space is taken as [0, 1], and the velocity space is
truncated as [−Rv , Rv]2. The physical space is discretized into Nx grid points

x i = (i +
1
2
)∆x , i = 0, 1, . . . , Nx − 1, (6.1)

where ∆x =
1

Nx
. The velocity space is discretized into Nv grid points in each dimension:

vi, j = (−Rv + (i +
1
2
)∆v,−Rv + ( j +

1
2
)∆v), i, j = 0,1, . . . , Nv − 1, (6.2)

where ∆v = 2Rv
Nv

.
The flux term v · ∇x fk in (2.16) is discretized by the second order upwind scheme

with the minmod slope limiter. The collision operator is computed by the fast spectral
method [21]. The time discretization is given by the second order Runge-Kutta scheme.

6.1. The sparse wavelet basis

6.1.1. Number of basis functions

We first give a comparison of number of basis functions between our sparse wavelet function
space V̂m

N and the tensor basis Vm
N . The result is shown in Table 1. It is clear that the sparse

technique saves a great number of basis functions, especially in multi-dimensional random
spaces.
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(a) m= 0

N = 3 N = 4 N = 5
d = 1 8,8 16,16 32,32
d = 2 20,64 48,256 112,1024
d = 3 38,512 104,4096 272,32768
d = 4 63,4096 192,65536 552,1048576

(b) m= 1

N = 3 N = 4 N = 5
d = 1 16,16 32,32 64,64
d = 2 80,256 192,1024 448,4096
d = 3 304,4096 832,32768 2176,262144

Table 1: Comparison of number of basis functions: m is the maximal degree of polynomials. d is the
dimension; in each cell, the left number is the number of basis of functions of V̂m

N ; the right number is
the number of basis of functions of Vm

N .

6.1.2. Efficiency of the sparse wavelet function space

We give a comparison of the L2 approximation error of V̂m
N and Vm

N . For each random
dimension d = 2,3, 4 we pick a smooth test function as follows:

f (z) =
1

2πK (z)2
exp

�

−
1

2K (z)

��

2K (z)− 1+
1−K (z)
2K (z)

�

, (6.3)

where

Kd=2(z) = 1− 0.5(0.5+ 0.1 sin(z1) + 0.1 sin(2z2)),

Kd=3(z) = 1− 0.5(0.5+ 0.1 sin(z1) + 0.1 sin(2z2) + 0.1cos(z3)),

Kd=4(z) = 1− 0.5(0.5+ 0.1 sin(z1) + 0.1 sin(2z2) + 0.1cos(z3) + 0.1cos(2z4)).
(6.4)

We use the function spaces V̂m
N and Vm

N with different m, N values to approximate these

functions, and compute their relative L2 error
‖ f −PK f ‖L2

‖ f ‖L2
, where PK is the projection operator

onto the corresponding function space. The result is shown in Figure 1. It can be seen that
the sparse wavelet method performs much better than the tensor method.

6.1.3. Sparsity of Si jk

We give a test of the sparsity of the tensor Si jk, as well as the number of Q( fi , f j) needed
to compute. We take a random collision kernel b(z) = 1 + 0.2z1. For simplicity we only
show the results with m= 0, since the sparsity of Si jk with larger m is similar. The result is
shown in Figure 2. One can clearly see an exponential decay of the percentage of nonzeros
in Si jk, as well as the percentage of Q( fi , f j) needed to compute, as N or d increase. This
is even better than what we have proved.

To further demonstrate the sparsity of Si jk we give a graph of nonzero elements of Si jk
for m= 0, N = 4, d = 3, shown in Figure 3. The points in the first graph represent nonzero
elements in Si jk. The second graph is the projection of the first graph onto i, j coordinates,
and the points in it represent those Q( fi , f j) needed to compute.

6.2. Application to the Boltzmann equation with uncertainty

In this subsection, the velocity space is assumed to be two-dimensional and its dis-
cretization is always given by Nv = 32. The time discretization is given by 0.8 times the
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Figure 1: Comparison of approximation error of both sparse basis and full tensor basis for d = 2, 3,4.
For d = 4 we do not give the result by tensor basis because the number of basis functions is too large.

CFL condition for spatial inhomogeneous problems.

6.2.1. Accuracy of the approximation of the collision operator

We first check the accuracy of the collision operator Q( f , f ) computed by the sparse stochas-
tic Galerkin method. The function f is given by the Bobylev-Krook-Wu [6,17] solution with
uncertainty:

f (v,z) =
1

2πK (z)2
exp

�

−
|v|2

2K (z)

�

�

2K (z)− 1+
1−K (z)
2K (z)

v2
�

, (6.5)

where

Kd=2(z) = 1− 0.5(0.5+ 0.1 sin(z1) + 0.1 sin(2z2)),

Kd=3(z) = 1− 0.5(0.5+ 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3)),

Kd=4(z) = 1− 0.5(0.5+ 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3) + 0.1 cos(2z4)).
(6.6)
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0

50

100

150

0

50

100

150
0

20

40

60

80

100

120

ij

k

0 20 40 60 80 100 120
0

20

40

60

80

100

120

i

j

Figure 3: Demonstration of sparsity of Si jk: m = 0, N = 4, d = 3. Left: blue points represent non-zeros
terms of Si jk. Right: blue points represent a pair (i, j) with Si jk 6= 0 for some k.

For this f , Q( f , f ) with collision kernel B = 1
2π is given explicitly by

Q( f , f )(v,z) =

��

−
2
K (z)

+
|v|2

2K (z)2

�

f

+
1

2πK (z)2
exp

�

−
|v|2

2K (z)

�

�

2−
1

2K (z)2
|v|2

�

�

1−K (z)
8

.

(6.7)

The numerical solution is given by

Q̃( f , f )(v,z) =
K
∑

k=0

Qk(v)Φk(z), where Qk(v) =
K
∑

i, j=0

Si jkQ( fi , f j)(v).
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Figure 4: Accuracy of the approximation of the collision operator for d = 2,3, 4.

We compare the relative L2 error for d = 2, 3,4 and sparse basis V̂m
N with different m, N . The

result is shown in Figure 4. One can clearly see the error is a little worse than O(K−(m+1)),
and it becomes a little worse as d increases. This is caused by the log K factor in the error
estimate.

6.2.2. The homogeneous Boltzmann equation with uncertainty on the collision kernel

We solve the homogeneous Boltzmann equation with deterministic initial data and a ran-
dom collision kernel. We take the dimension of the random space d = 2,3, and the collision
kernels are

b(z) = 1+ 0.2z1 + 0.1z2, d = 2,

b(z) = 1+ 0.2z1 + 0.1z2 + 0.07z3, d = 3.
(6.8)

The initial data is the BKW solution

f0(v,z) =
1
π

exp(−|v|2)
|v|2

2
, (6.9)

and the exact solution is given by

f (t,v,z) =
1

2πK 2
exp

�

−
|v|2

2K

�

�

2K − 1+
1−K
2K

|v|2
�

, (6.10)

with
K (t,z) = 1− exp(−b(z)t/8)/2. (6.11)

We solve this equation by the sparse sG method with m= 0, time step ∆t = 0.01 and final
time t = 1, and check the relative L2 error with the exact solution. The result is shown in
Figure 5. The phenomenon is similar to the previous accuracy test.
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Figure 5: The homogeneous Boltzmann equation with a random collision kernel: accuracy result. m= 0,
∆t = 0.01, t = 1.

6.2.3. The Boltzmann equation with random initial data

We test our method on the (inhomogeneous) Boltzmann equation with uncertainty. The
random space is 4-dimensional. We take the x-domain to be [0,1]with the periodic bound-
ary condition. We use the following random initial data to mimic the Karhunen-Loeve ex-
pansion







































ρ0 =
1
3

�

2+ sin(2πx) + sin(4πx)z1/2+ sin(6πx)z2/4+ sin(8πx)z3/6+ sin(10πx)z4/7
�

,

u0 = (0.2,0),

T0 =
1
4

�

3+ cos(2πx) + cos(4πx)z1/2+ cos(6πx)z2/4+ cos(8πx)z3/6+ cos(10πx)z4/7
�

,

f =
ρ0

4πT0

�

exp(−
|v− u0|2

2T0
) + exp(−

|v+ u0|2

2T0
)

�

.

(6.12)
The x-domain is discretized into Nx = 50 mesh points, and we compare the solution by the
sparse stochastic Galerkin method with m = 0, N = 3 and a stochastic collocation method
with full tensor basis in random space at time t = 0.1. The collocation method is imple-
mented by solving the deterministic problem at points of the form z = (z1, . . . , zd) where
each zi is one of the Mz = 8 Gauss-Legendre quadrature points (thus one needs to solve
M d

z deterministic problems). And then the mean and standard deviation are computed by
numerical quadrature. The comparison result is shown in Figure 6. We see the results by
the two methods agree well.
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Figure 6: The Boltzmann equation with random initial data. Nx = 50, t = 0.1. Curve: collocation with
Mz = 8; asterisks: Galerkin with m = 0, N = 3. Left column: mean of density, first component of bulk
velocity, and temperature. Right column: standard deviation of density, first component of bulk velocity,
and temperature.

6.2.4. The Boltzmann equation with randomness on initial data, boundary data, and
collision kernel

We finally solve the inhomogeneous Boltzmann equation with uncertainty on initial data,
boundary data, and collision kernel. The random domain is taken to be 6-dimensional. We
take the initial data to be the equilibrium with

ρ(x ,z) = 1, u(x ,z) = 0, T = 1+0.5(1+0.2z2)exp(−100(1+0.1z3)(x−0.4−0.01z1)
2),

(6.13)
and the boundary data is given by the Maxwellian boundary condition with random pa-
rameters

Tw = 1+ 0.2z4, α= 0.5+ 0.3z5. (6.14)

The collision kernel is given by
b(z) = 1+ 0.2z6. (6.15)
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Figure 7: The Boltzmann equation with randomness on initial data, boundary data, and collision kernel
(d = 6). Nx = 100, t = 0.04. Curve: collocation with Mz = 4; asterisks: Galerkin with m= 0, N = 3. Left
column: mean of density, first component of bulk velocity, and temperature. Right column: standard
deviation of density, first component of bulk velocity, and temperature.

The spatial discretization is given by Nx = 100 to better capture the details near the bound-
ary. We compare the result by the stochastic Galerkin method with sparse technique with
the stochastic collocation method with full grid at time t = 0.04. The Galerkin method
has parameters m = 0, N = 3, and the collocation method is as described in the previous
numerical result with Mz = 4 collocation points in each dimension. The result is shown in
Figure 7. One can see that the two results agree well.

7. Conclusion

In this paper we developed a sparse wavelets based stochastic Galerkin method for
the Boltzmann equation with uncertainty. The uncertainty could come from initial data,
boundary data, and collision kernel. This method enables us to quantify the uncertainty
from multi-dimensional random inputs, which is previously infeasible using the global gPC
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basis. We proved and numerically demonstrated the sparsity of the basis related coefficient,
Si jk, which allows us to dramatically accelerate the computation of the collision operator
under the Galerkin projection. Regularity of the solution of the Boltzmann equation in the
random space and an accuracy result of the stochastic Galerkin method are proved.

Many related problems are still open, for example, asymptotic-preserving schemes [10]
for the Boltzmann equation with uncertainty, adaptive mesh techniques to capture discon-
tinuities in the random space, quantification of nonlinear uncertainties on the collision
kernel, etc.

Appendix: Proof of Theorem 5.2

Proof. First, from the conservation property of Q, one has

‖ f (t, ·,z)‖L1
v
= ‖ f 0(·,z)‖L1

v
≤ M .

Then we use mathematical induction on k. For k = 0, multiplying (5.1) by f and integrating
on v, by the Cauchy-Schwarz inequality and (5.2), one obtains

1
2
∂t

∫

Rd

f 2 dv=

∫

Rd

f Q( f , f ) dv≤ ‖ f ‖L2
v
‖Q( f , f )‖L2

v
≤ CB‖ f ‖L1

v
‖ f ‖2L2

v
≤ CB M‖ f ‖2L2

v
.

Now Gronwall’s inequality implies that there is a positive constant C0 such that (5.4) is true
for k = 0.

Now for some k ≥ 0 assume (5.4) holds. Take any multi-index j with |j|1 = k+1. Taking
j-th derivative of z on (5.1) gives

∂t∂
j
z f =

j
∑

l=0

�

j
l

�

Q(∂ l
z f ,∂ j−l

z f ) +
d
∑

m=1

jm

j−1m
∑

l=0

�

j− 1m

l

�

Q1,m(∂
l
z f ,∂ j−1m−l

z f ), (A.1)

where we used the bilinearity of the collision operator and the assumption that B is linear
in z.

Multiplying (A.1) by ∂ j
z f and integrating over v yields

1
2
∂t

∫

Rd

(∂ j
z f )2 dv

≤
j
∑

l=0

�

j
l

�

‖∂ j
z f ‖L2

v
‖Q(∂ l

z f ,∂ j−l
z f )‖L2

v
+

d
∑

m=1

jm

j−1m
∑

l=0

�

j− 1m

l

�

‖∂ j
z f ‖L2

v
‖Q1,m(∂

l
z f ,∂ j−1m−l

z f )‖L2
v

≤
j
∑

l=0

�

j
l

�

CB‖∂ j
z f ‖L2

v
‖∂ l

z f ‖L2
v
‖∂ j−l

z f ‖L2
v
+

d
∑

m=1

jm

j−1m
∑

l=0

�

j− 1m

l

�

CB‖∂ j
z f ‖L2

v
‖∂ l

z f ‖L2
v
‖∂ j−1m−l

z f ‖L2
v

≤ CBC2
k ‖∂

j
z f ‖L2

v

∑

0≤l≤j,l6=0,j

�

j
l

�

+ 2CBC0‖∂ j
z f ‖2L2

v
+ CBC2

k ‖∂
j
z f ‖L2

v

d
∑

m=1

jm

j−1m
∑

l=0

�

j− 1m

l

�

= (2k+1 − 2)CBC2
k ‖∂

j
z f ‖L2

v
+ 2CBC0‖∂ j

z f ‖2L2
v
+ 2k(k+ 1)CBC2

k ‖∂
j
z f ‖L2

v
. (A.2)
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In the first inequality we used the Cauchy-Schwarz inequality, and in the second inequality
we used (5.3). In the third inequality the induction assumption is used for the second sum,
since the indexes l and j− 1m − l appeared there have order less than or equal to k. Every
term in the first sum can be treated similarly except terms corresponding to the cases of
l = 0 and l = j, which are treated separately. In the final equality, we used the identity
∑L

l=0

�L
l

�

= (1+ 1)L = 2L .
Then we apply Gronwall’s inequality to (A.2) and get the control

sup
z∈Iz

�

‖∂ j
z f (t,v,z)‖2L2

v

�1/2
≤ Ck+1,

with a positive constant Ck+1. Sum over all j with |j|1 = k + 1 we get (5.4) for k + 1. This
completes the mathematical induction and the proof.
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