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A B S T R A C T

A Vlasov-Fokker-Planck-Landau (VFPL) code is developed for the study of
colliding supersonic dense plasma flows, in which the VFPL equations for
both electrons and ions are solved by the time splitting strategy in the two-
dimensional Cartesian coordinate space and the two-dimensional velocity space
(2D2V). To accurately handle two colliding supersonic plasma flows with their
velocities even much higher than the thermal velocities of ions, the full Fokker-
Planck-Landau operator is employed for the collision terms. Using advanced
numerical methods such as the fast spectral method and the asymptotic-preserving
scheme, the ion-ion and electron-electron collision terms can be properly solved
with a relatively large time step so that both high accuracy and efficiency of
the developed code can be achieved. Further, the quantum degeneracy effect
due to the high density and relatively low initial temperature of the electrons is
included in the model. In addition, both the energy and momentum conserva-
tion are well satisfied. The developed code provides a unique numerical tool to
study the interactions between high-velocity high-density plasma flows, which
may be encountered in some advanced schemes of inertial confinement fusion
and laser-driven laboratory astrophysics experiments.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Counterstreaming plasmas widely exist in many areas of research, such as laser-induced plasmas, astrophysi-
cal plasmas, and inertial confined fusion (ICF). Generally, they can be categorized into collisional and collisionless
regimes. In the collisionless case, the direct interactions between charged particles are ignorable, and the particles
are only affected by macroscopic electromagnetic fields associated with collective behaviors. Collisionless plasma
flows are found in many astrophysical environments and laboratory experiments. In astrophysics and space physics,
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they are related to magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebula, active
galactic nuclei, gammaray bursts, and clusters of galaxies shock waves, etc. [1, 2, 3]. In ICF, collisionless shock
waves generated by high-energy laser play a pivotal role in the compression and heating of fuel targets. Usually,
numerical simulations of the collisionless counterstreaming plasmas can be carried out with fluid codes, particle-
in-cell (PIC) codes, or Vlasov codes [4, 5, 6]. In the collisional case, however, the strong exchange of energy and
momentum are found between charged particles involving plasma jets, which are frequently encountered in labora-
tory [7, 8] and astrophysical environments [9, 10]. In such a scenario, kinetic effects are expected to be as important
as fluid effects. For example, typical fluid simulations cannot well describe ion-ion and ion-electron interactions in
the collision-dominant regime, where the ion (or electron) mean free path is comparable to the scale length of other
physical processes. In order to accurately describe the plasma interpenetration and shock formation in this regime
[11, 12, 13], kinetic effects both for ions and electrons should be taken into account. Based on the accurate kinetic
equation, Vlasov-Fokker-Planck (VFP) simulations are particularly suitable for the simulation of counterstreaming
plasmas in the collision-dominant regime [14, 15].

Previously, various VFP codes have been developed by many groups for different applications. For example, the
VFP equation for electrons was solved to study the electron transport, plasma conductivity, magnetic field generation,
and inverse bremsstrahlung, where the ions are considered to be in rest or as a cold fluid [16, 17, 18, 19, 20, 21, 22, 23,
24]. Some attention has also been paid to solving the VFP equation at the ion time scale for the problems related to
shock waves in ICF implosion and fast ion transport. Larroche et al. developed an ion-kinetic model of the collisional
plasma and extensively studied the ICF implosion through their multi-species VFP simulations [25, 26, 27, 28, 29].
And a multiple-moving velocity-space adaptivity strategy for VFP equation was proposed by Taitano et al. [30, 31],
where the velocity grid is normalized and shifted in terms of the thermal speed and the drift velocity, respectively.
And due to the short electron collision time, the hydrodynamic model is usually applied for the electrons in these
kinetic studies of ion dynamics.

For the Fokker-Planck equation, there are two widely used forms of collision operator in plasma physics. The
Fokker-Planck-Landau (FPL) operator is an integro-differential equation form, while the Rosenbluth-Fokker-Planck
(RFP) is expressed as a differential equation, where the diffusion and advection coefficients are solved by Poisson
equations. Although these two forms of the operator are equivalent, in numerical schemes, it is generally accepted
that FPL has better conservation properties, while RFP benefits from faster solving speed. For the VFP simulation
introduced above, many codes adopt the RFP operator for fast implicit implementation, and some choose the FPL
[32, 33]. For RFP equation, the method of the Legendre expansion for Rosenbluth potentials is often used to reduce
the high-dimensional problem to a one-dimensional problem, which assumes that the distribution function is mainly
isotropic and the anisotropic parts are small perturbation terms.

However, in some advanced ignition schemes of the ICF, such as impact ignition and double cone ignition, the
colliding between dense highly supersonic plasma flows will be involved. In the impact ignition, a part of the fuel is
accelerated to a super-high velocity and then it collides with a precompressed main fuel. To convert enough kinetic
energy into thermal energy, the impactor velocity needs to be as high as 1100-1500 km/s [34, 35, 36, 37]. Similarly, the
double-cone ignition scheme involves a head-on collision between two precompressed targets, where their velocities
can reach hundreds of km/s [38]. In such conditions, the distribution function of the charged particles in phase space
is far away from the Maxwellian distribution for the equilibrium state, as shown in Figs. 1(a) and 1(b). For such a
high-Mach-number plasma, the assumption of small deviations from the Maxwellian distribution is no longer valid.
As a result, the higher order terms of Legendre expansion of the distribution function will be even larger than the lower
order terms in some velocity regions, as shown in Fig. 1(c), for example. An alternative approach to this problem is
to adopt the co-moving frame in which the plasma is stationary [39]. But this approach does not work well for two
colliding supersonic dense plasma flows. In this case, it is hard to define a co-moving frame since the distribution
function has two separated parts in the phase space and these two parts quickly evolve due to their strong interaction.
Some more costly strategies need to be employed [40, 41] to overcome this difficulty, and recently, Taitano et al.
developed an implicit algorithm for RFP equation [42, 43], and this scheme is not limited by the above dilemma.
Their one-dimensional code address scenarios when the drift velocity is much greater than the thermal velocity as
well as adaptivity in the configuration-space grid [30].

On the other hand, the applications of FPL equations also have faced serious challenges. Due to the integro-
differential nature, achieving a fully implicit scheme is difficult, and the computational complexity prevents it from
being implemented. Fortunately, some fast schemes have been developed to reduce computational complexity [44, 45,
46], and the asymptotic-preserving (AP) methods for FPL equation have been proposed by Jin et al. to accelerate the
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computing speed by penalization techniques [47, 48]. These advanced numerical schemes allow one to achieve high
accuracy and computational efficiency for specific physical problems. Meanwhile, the numerical methods preserve
good energy conservation and are easily scalable to higher dimensions. For the reasons given above, we choose
the FPL operator to handle colliding supersonic dense plasma. Furthermore, the quantum degeneracy effect of the
electrons in dense plasmas may impact the collision process of plasma flows [49, 50], which has not been extensively
studied in VFP previously. Brown et al. expanded a degenerate form of the Fokker–Planck collision operator [51],
and this modified Fokker–Planck collision operator was employed to study the electron transport [52]. Also, the
fast method has been developed for the quantum Fokker-Planck-Landau (qFPL) equation [53]. Previous studies have
shown that the degenerate effects have a significant effect on dense plasma. Thus the quantum electrons collision also
needs to be considered in some ICF scenarios.

In this paper, we develop the first, to the best of our knowledge, two-dimensional multi-species code dedicated
exclusively to the studies of colliding supersonic dense plasma flows, where both the electrons and ions are treated
fully kinetically and accurately. This code solves the Vlasov-Fokker-Planck-Landau (VFPL) equations for the elec-
trons and ions by the splitting strategy in two-dimensional Cartesian coordinate space and two-dimensional velocity
space (2D2V). With the asymptotic-preserving scheme and the fast spectral method, this code has the capability of
being able to model the interaction between supersonic dense plasma flows from the kinetic to fluid regimes and is
not limited by the strong anisotropy in the distribution. Specifically, the AP scheme allows one to use coarse meshes
and large time steps and thus achieve both high accuracy and computational efficiency for our physical problem. In
addition, the full qFPL treatment for degenerate electrons and self-consistent ion-electron collisions are also consid-
ered in our code. This code provides a unique numerical tool with high computational efficiency and good accuracy
to study counterstreaming dense plasma with high drift velocity.

The rest of the paper is organized as follows. Section 2 introduces the basic equations to be solved. Section 3 gives
the numerical schemes for solving the VFPL. In particular, the fast spectral method for the Fokker-Planck-Landau
collision operator [44] and the asymptotic-preserving scheme for the collision equation [47, 48] are applied. Several
numerical examples for the interaction between two counterstreaming dense plasma flows are presented to test the
codes in Sec 4. Finally, the discussion and conclusions are given in Sec 5.

Fig. 1. The schematic diagram of the counterstreaming plasma blocks. (a) The distribution function of ions in x-vx phase space. (b) The
distribution function in the velocity space on the interpenetration surface (red dashed line in (a)). (c) The decomposed distributions in
Legendre harmonics fl(|v|) of order l=0, 2, 6, 10, 16.

2. Basic Equations and Variable Normalization

The distribution functions of the ions and electrons fα,e (x, v, t) are governed by the following VFP equations:

∂ fα
∂t
+ v
∂ fα
∂x
+

mαE
Zαe
∂ fα
∂v
=

∑
β

Cαβ
(

fα, fβ
)
+Cαe ( fα) ,

∂ fe
∂t
+ v
∂ fe
∂x
−

meE
e
∂ fe
∂v
= Cee ( fe) +

∑
α

Ceα ( fe) ,
(1)
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where the subscripts α and β represent the particle species for the ions, while the subscript e represents the electrons.
The collision term between the species α and β is denoted by Cαβ, whereas Cee represents the collision term between
the electrons. Ceα and Cαe represent the electron-ion collision and ion-electron collision, respectively. Additionally,
the variables x and v are the spatial and velocity coordinates, respectively. Zα and mα are the charge number and mass
for the ion species α, respectively. Furthermore, e is the unit charge, and E on the left side of the equation is the
electric field governed by the Poisson equation:

∇ · E = 4πe

∑
a

Zαnα − ne

 . (2)

Taking different order moments of the velocity distribution function, the density nα, flow velocity uα, internal energy
eα and energy εα of the particles α are given by:

nα =
∫

fα (v) dv,

nαuα =
∫

fα (v) vdv,

nαeα =
mα
2

∫
fα (v) |v − u|2dv,

nαεα =
∫

fα (v) v2dv.

(3)

For the collision term between the ions in Eq. (1), it can be described by the Fokker-Planck-Landau (FPL) collision
operator:

Cαβ
(

fα, fβ
)
= −

2πlnαβZ2
αZ

2
βe

4

mα

∂

∂vδ

∫ { fα(v)
mβ

∂ fβ (v′)
∂v′γ

−
fβ(v′)
mα

∂ fα (v)
∂vγ

}
Uδγdv′ (4)

where U is a nonnegative and symmetric matrix of the form

Uαβ =
1

|v − v′|3
{∣∣∣v − v′

∣∣∣2δαβ − (
vα − v′α

) (
vβ − v′β

)}
. (5)

The FPL collision operator has the properties of conserving mass, momentum, and energy:∫
Cαβdv = 0,

∑
α,β

mα

∫
Cαβvdv = 0,

∑
α,β

mα

∫
Cαβv2dv = 0. (6)

Meanwhile, it satisfies Boltzmann’s H theorem:

−

∫
Cαα log ( fα (v)) dv ≥ 0. (7)

Moreover, the equilibrium distribution function is the local Maxwellian distribution function

fM (v) =
n

(2πT )d/2 exp
(
−
|v − u|2

2T

)
, (8)

and d is the dimension number of the velocity space. The Coulomb logarithm in Eq. (4) is expressed in the form

lnαβ =
1
2

ln
(
1 + b2

max/b
2
min

)
, (9)

where the upper bmax and lower bmin are cutoffs described by Brysk et al. [54]. Since the difference between the
respective Coulomb logarithm lnee and lnei for the electrons and the ions is only noticeable at extremely high density
and low temperature (i.e. 1027cm−3 and 10eV), the same value is used for them in our simulation.
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If we assume that the self-collision term Cαα is the leading term in the VFP equation for the ions, the strong
self-collisions will ensure that the distribution function is nearly an equilibrium distribution. With the Maxwellian
distribution assumption, the different order moments of the VFP equation yield the following multispecies fluid equa-
tions:

∂nα
∂t
+ ∇x · (nαuα) = 0,

mαnα

(
∂

∂t
+ uα · ∇x

)
uα,γ +

∂nαTα
∂xγ

− Zαenα =
∑
β

Rαβ,γ + Reα,γ,

3
2

nα

(
∂

∂t
+ uα · ∇x

)
Tα + nαTα∇x · uα + ∇x · qα =

∑
β

Qαβ + Qeα,

(10)

where qα is the heat flux, and the Spitzer-Härm heat flux is often used. Rαβ and Qαβ are the friction force and heat
terms between particles α and β, respectively. It is worth pointing out that this multifluid model requires that the mean
free path λαα for the self-collisions is not only much smaller than the scale length L = | fα/∇ fα|, but also much smaller
than the mean free path λαβ for the collisions between the different ion species. Later we will show that the second
requirement may be not satisfied in some tests, in which the multifluid model fails.

For the electron-electron collision term, the full collision model has been implemented in our model, including
quantum statistical effects. For the degenerate electrons in a dense plasma, the quantum Fokker-Planck-Landau
(qFPL) operator is given by [51]

Cee ( fe) = −
2πLneee4

m2
e

∂

∂vδ

∫ {
fe(v) (1 − θe fe(v))

∂ fe (v′)
∂v′γ

− fe(v′)
(
1 − θe fe(v′)

) ∂ fe (v)
∂vγ

}
Uδγdv′, (11)

where θe = (2πℏ)d/2, so that dv/θe represents the number of available states in the phase space. This expression
reduces to the classical collision limit when |θe fe(v)| ≪ 1. The qFPL operator also satisfies the conservation and H
theorem. With the qFPL operator, the equilibrium states take the Fermi-Dirac distribution

fFD(v) =
1
θe

1 + exp

µ − (v − u)2
/
2

T



−1

, (12)

where µ is the electrostatic potential and u is the flow velocity. It is usually defined T/EF as a parameter to characterize
the degree of quantum degeneracy, with the Fermi temperature EF=ℏ2/2me(3π2ne)2/3. In dense and cold plasmas,
the quantum degeneracy effect of electrons cannot be neglected. The degree of quantum degeneracy influences the
collisional transfer rates. For instance, the electron-ion relaxation time in the quantum degeneracy regime is modified
as [49]

1
τei
=

(4π)2Ze4lneimeni

3θne

1
1 + e−µ/T

, (13)

when me/mi ≪ Te/Ti that is well satisfied in most physical situations. According to Eq. (13), the degeneracy effect
becomes obvious when the electrostatic potential energy is comparable to the electron thermal energy. Correspond-
ingly, the modified relaxation time is longer than its classical limit. For counterstreaming plasmas, the quantum effect
may affect the energy exchange process between the electrons and the ions.

The ion-ion collision term and degenerate electron-electron collision term will be solved by the fast spectral
method as described in the next section. However, the ion-electron collision term is generally hard to be solved
directly due to the sizeable ion-to-electron mass ratio, which makes the fast spectral method ineffective. Therefore a
simplified operator for the ion-electron collisions should be considered. Following Braginskii [55], one can expand
the matrix Uαβ in powers of the ratio of the ion v velocity to electron velocity v′, and only retain the first term

Uαβ =
1
|v′|3

{∣∣∣v′∣∣∣2δαβ − v′αv′β
}
, (14)

which results from the fact that normally the electron velocities are much larger than the ion velocities. Further, we
assume that the electron distribution is in an approximate equilibrium state, and a slight distortion in the electron
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distribution does not affect the value of the collision term. As a result, the ion-electron collision term takes the
following approximate form:

Cie ( fα) =
mene

mαnα

1
τei

∂

∂vβ

((
vβ − ue,β

)
fα +

Te

mα

∂ fα (v)
∂vβ

)
. (15)

For the ions, the above collision operator can capture the exchange of momentum and energy between the electrons
and ions.

For the electrons, the momentum and energy gained (or lost) from the electron-ion collisions are calculated ac-
cording to the momentum and energy conservation, and a simplified electron-ion collision is adopted in our code.
Since the relaxation time of the electrons is far shorter than that of the ions, many simulation models usually assume
that the electron distribution has reached a quasi-steady state when considering the dynamic of the ions. To estimate
the electron kinetic effects, we take a simplified description for the electron distribution with the Krook model (or
BGK model) [56] as follows

Cei ( fe) = −
1
τei

(
fe − f̄

)
, (16)

where f̄ is the local Maxwellian distribution with the density, momentum, and temperature calculated by the electron
distribution function fe. The Krook model is the most straightforward and most numerically economical. Meanwhile,
it maintains the main properties of Coulomb collisions and has the same fluid (compressible) Euler limit as the
relaxation time goes to zero. Moreover, its validity and improvement have been studied for many years [57, 58].

In the following, we present our numerical schemes to solve the equations given above. We adopt normal-
ized units with the characteristic temperature T0 and number density n0. The thermal velocity corresponding to
the temperature is defined as v0 = (2T0mp)1/2 with mp the proton mass. Time is normalized to the collision time
t0 = 3m2

pv3
0

/
16π1/2n0e4, and length is normalized to the mean free path λ0 = v0t0. And the distribution function f is

normalized to n0/vd
0. The physical quantities for time, length, velocity, density, ion mass, temperature, and electric

field are normalized as follows:

t → t/t0, x→ x/λ0, v→ v/v0, na → na/n0,

ma → ma

/
mp, Ta → Ta

/
mpv2

0, E→ t0eE
/
mpv0.

(17)

The full set of equations using the above normalisations is given by

∂ fα
∂t
+ v
∂ fα
∂x
+

AαE
Zα

∂ fα
∂v
=

∑
β

Cαβ
(

fα, fβ
)
+Cαe ( fα) ,

∂ fe
∂t
+ v
∂ fe
∂x
− E
∂ fe
∂v
= Cee ( fe) +

∑
α

Ceα ( fe) ,

∇ · E =
4πn0e2t2

0

mp

∑
a

Zαnα − ne

 ,
(18)

and the collision terms are given by:

Cαβ
(

fα, fβ
)
= −

3
√
πlnαβZ2

αZ
2
β

8A2
α

∂

∂vδ

∫ {Aα
Aβ

fα(v)
∂ fβ (v′)
∂v′γ

− fβ(v′)
∂ fα (v)
∂vγ

}
Uδγdv′,

Cee ( fe) = −
3
√
πlneeµ

2
0

8
∂

∂vδ

∫ {
fe(v) (1 − θe fe(v))

∂ fe (v′)
∂v′γ

− fe(v′)
(
1 − θe fe(v′)

) ∂ fe (v)
∂vγ

}
Uδγdv′,

Cαe ( fα) =
neµ0

Aαnα

1
τeα

∂

∂vβ

((
vβ − ue,β

)
fα +

Te

Aα

∂ fα (v)
∂vβ

)
,

Ceα ( fe) = −
1
τeα

(
fe − f̄

)
,

where Aα = ma/mp and µ0 = mp/me.
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3. Numerical schemes for time integration and the Vlasov equation

3.1. Time Integration

We adopt the time-splitting scheme to solve the VFP equation [59], which was first invented by Cheng and Knorr
[60] and is now widely utilized to solve multidimensional partial-differential equations (PDEs). The split scheme
requires less memory space and allows a relatively large time step than the unsplit methods. For the VFP equation,
we decompose VFP equations into several one-dimensional advection equations and collision operators, then advance
the distribution function from tn to tn+1 given by

f
(
x, v, tn+1

)
= T (∆t/2) S (∆t) T (∆t/2) f (x, v, tn) , (19)

T (∆t) = Tx (∆t/2) Ty (∆t/2) Tvx (∆t) Tvy (∆t) Tx (∆t/2) Ty (∆t/2) ,

where Tx (∆t/2)and Ty (∆t/2) denote the advection operators with a half time step ∆t/2 along the x and y directions,
respectively. Tvx (∆t) and Tvy (∆t) denote the advection operators with time step ∆t along the vx and vy direction,
respectively, and S (∆t) is the collision operator with time step ∆t. Here we use Strang’s splitting to get a second-
order accuracy in the time splitting scheme. The Poisson equation is solved to update the electric field before the
execution of advection operators Tvx and Tvy in the velocity space. Here the time step for updating the distribution
function is chosen to be

∆t = min (∆ts,∆tv,∆tc) , (20)

where ∆tc, ∆ts, and ∆tv are the time steps for the collision operator, and the advection equations in coordinate and
velocity spaces, respectively. Usually, the collision operators determine the restriction condition or the time step
for a dense plasma. The Courant–Friedrichs–Lewy (CFL) condition for the Vlasov part satisfies ∆ts < C∆x/v and
∆tv < C∆v/ (AαE/Zα), while the explicit schemes of the collision operators suffer from the constraint ∆tc < Cτe∆v2

or ∆tc < Cτi∆v2, where the characteristic electron and ion collision times can be written in the form:

τe =
3
√

meT 3/2
e

4
√

2πlneie4Z2ni
, τi =

3
√

miT
3/2
i

4
√
πlniie4Z4ni

. (21)

The hydrodynamic time scale is longer than the collisional processes in our case as shown in the following.

3.2. The Vlasov equation

For the Vlasov equation, the primary step is to solve the advection equation:

∂ f (x, t)
∂t

+ v
∂ f (x, t)
∂x

= 0. (22)

There are numerous algorithms to solve this advection equation, and we adopt the semi-Lagrangian time integration
scheme [61]. The semi-Lagrangian scheme guarantees mass conservation strictly [60, 62] and has been extensively
studied and widely used in the Vlasov equation in the past decades. According to this scheme, given the value of
function f at the i-th mesh, the new value at the next time step is given by

f (xi, tn + ∆t) = f (X(tn, tn + ∆t, xi), tn), (23)

where X is the position of the characteristic curve. We denote by f n
i the averaged value of the distribution function

over the i-th grid at time tn, then the new distribution at the next time step is

f n+1
i = f n

i + Φ
n
i−1/2 − Φ

n
i+1/2, (24)

where the numerical flux is

Φn
i±1/2 =

1
∆x

∫ xi±∆x/2

X(tn,tn+∆t,xi)
f (x, tn)dx. (25)
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The essential step for the semi-Lagrangian method is to interpolate the distribution function [62]. The most used
scheme is the positive flux conservation scheme (PFC) proposed by Filbet et al. [63]. Here, we adopt the high-
order monotonicity- and positivity-preserving schemes introduced by Tanaka et al. [64]. This method is based on
the conservative semi-Lagrangian scheme (CSL) [65] with the monotonicity-preserving constraint and the positivity-
preserving limiter to ensure the positivity and monotonicity of the numerical solution. The schemes have high-order
accuracy, and the details of each step can be found in Ref. [64].

The Poisson equation is solved numerically before the iteration of the distribution function. Because the cost of
solving the Poisson equation is much less than calculating the collision terms, we use the multigrid method to update
the electric field directly.

3.3. Method to deal with the ion collision term

3.3.1. Numerical scheme for the FPL equation
The ion-ion collision term is described by the Landau collision operator in Eq. (4) shown above. Due to the

multidimensional nature of the distribution function and the threefold integral of the Landau operator, the numerical
solution of the FPL equation is difficult and expensive. There are several numerical schemes of the full Fokker-Planck
equation [19]. The RFP collision operator is often utilized in the numerical investigation implicitly [18, 40, 66].
Several studies considered a simpler diffusive Fokker-Planck model [67] or took the polar or cylindrical coordinates
[12, 41, 68]. In order to reduce computational complexity and cost, some fast algorithms have been proposed for FPL
operator, such as multipole expansions [46], and multigrid techniques [45, 69]. In our code, we adopt a fast algorithm
with a reduced computational cost while preserving the accuracy of the Fokker-Planck operator by using the fast
spectral method for the FPL collision operator [44], and the asymptotic-preserving scheme to solve the collision
equation [47].

The fast spectral method is based on a Fourier spectral approximation of the distribution function. It allows us to
reduce the computational cost from O(N2) to O(N log2 N), where N is the total number of grids in the velocity space.
Further details of the fast spectral method can be found in Ref. [44]. Here we extend this method for the collisions
between different particle species. The main idea of this method is to approximate the distribution function by the
truncated Fourier series:

f N(v) =
N∑

k=−N

f̂keik·v, (26)

where k donates the vector of integers and N is the number of half modes. Then substituting the series into Eq. (4),
we obtain the collision operator for each Fourier mode f̂k with a simple change of variable:

CN
αβ

(
f N
α , f N

β

)
=

2πLnαβe2
αe

2
β

m2
α

 N∑
k=−N

Ĉαβ,keik·v, (27)

Ĉαβ,k =
N∑

m=−N

f̂α,k−m f̂β,mβ̂L (k −m,m).

The kernel integral β̂L (k,m) in Eq. (27) is given by

β̂L (k,m) =
∫

B(0,π)
|g|−1

[
(k +m) (k −m) −

mα
mβ
|g|−2 (k +m) · g (k −m) · g

]
eig·mdg, (28)

where the integration limits B(0, π) are the ball of a radius π in the phase space. The kernels β̂L (k,m) are completely
independent of the distribution function, thus one only needs to calculate them accurately for one time and can acquire
their values directly from the storage in the next time steps.
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To further reduce the computational cost, we can split β̂L (k,m) and rewrite Eq. (27) as

Ĉαβ,k =
N∑

m=−N

f̂α,k−m f̂β,mF (m) (k −m)2

−

N∑
m=−N

f̂α,k−m f̂β,mBL (m,m) −
N∑

m=−N

d∑
p,q=1

f̂α,k−m f̂β,m
(
kp − mp

) (
kq − mq

)
Ipq (m)

+

(
1 −

mα
mβ

) N∑
m=−N

d∑
p=1

f̂α,k−m f̂β,m
(
kp − mp

)
Gp (m,m),

(29)

where

F (m) =
∫

B(0,π)
|g|−1eig·mdg,

Ipq (m) =
∫

B(0,π)
|g|−3gpgqeig·mdg,

BL (k,m) = k2F (m) −
d∑

p,q=1

kpkqIpq (m),

Gp (k,m) = k2F (m) −
d∑

q=1

kqIpq (m),

When the mass of particle species α and β are the same, the collision term returns to the form given in Ref. [44]. For
the accurate computation of kernel integrals, one may refer to Ref. [70]. Finally, it is straightforward to transform the
summation through the convolution theorem, and we can solve the FPL equation in O(N log2 N) using the Fast Fourier
Transform. In addition to its high precision and low cost, another advantage of the FSM is its good expansibility for
multi-dimension cases. This is a superiority over solving the Poisson equation of the Rosenbluth potentials, which is
difficult to be extended to the three-dimensional velocity space.

In splitting schemes, the time step is typically limited by collision terms. Although the collision terms can be
calculated accurately using implicit schemes, they are usually expensive and complicated. On the other hand, for an
explicit scheme, the time step is restricted by the collision time, which affects the application of the code for highly
dense plasmas. To overcome the stability constraint for the explicit scheme, Filber and Jin proposed an asymptotic-
preserving (AP) scheme for the FPL equation [47], which is adopted in our code. Using the AP scheme, the collision
equation is discretized in time as

f n+1 − f n

∆t
= C ( f n) − ζPn ( f n) + ζPn+1

(
f n+1

)
, (30)

where the penalization operator is given by

P ( f ) = ∇v ·

(
fM∇v

(
f

fM

))
. (31)

Here ζ is a constant related to the distribution function, which is best chosen as

ζ =
(
2 +
√

2
)

max
v
λ (DA ( f )) , (32)

DA (v) =
∫

U
(
v − v′

)
f
(
v′

)
dv′,

where λ (DA) is the spectral radius of the matrix DA. The AP scheme penalizes the nonlinear collision operator by
a penalization operator P ( f ) and the stiffness of the FPL operator is overcome by solving the penalization operator
implicitly. Here the operator P ( f ) is a linear operator whose implicit solution can be easily achieved, while the full
FPL operator C ( f ) can be explicitly calculated by the efficient FSM. The AP schemes are able to handle multiple
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Fig. 2. Evolution of the ion distribution functions for two colliding plasma flows with identical ion species. The top row is for the ion
distribution with a negative initial drift velocity, and the bottom row is for another ion distribution. Axis v∥ represents the velocity parallel
to the flow, while v⊥ perpendicular to the drift velocity.

scales from kinetic regimes to fluid regime, efficiently [48], and has been developed for many years [71, 72, 73].
Specifically, this scheme allows one to use coarse meshes and large time-steps to capture the macroscopic behavior
even if the small physical scales are under-resolved. In addition, the scheme we adopted preserves the mass strictly in
time, while the conservation of momentum and energy is controlled by the spectral accuracy, except for the projection
error [32]. By selecting the appropriate grids for different physical problems, acceptable numerical errors can be
achieved. Typically, we set the normalized units according to the initial ion density and temperature, with a time step
t = 0.01t0 to balance the computational cost and accuracy.

3.3.2. Numerical test of the FPL model
To validate the numerical scheme given above, we perform some test simulations for the ion-ion collisions between

two colliding plasma flows, in which the ion species of two colliding plasma flows can be either identical or different.
Figure 2 shows the snapshots of the distribution function at different times to illustrate the collisional slowing-

down process between the counterstreaming ions. The initial relative drift velocity u between the two distribution
functions is set as ten times the thermal velocity of the ions vt to test the ability to simulate supersonic plasma flows
and their initial distribution functions are assumed to be drift-Maxwellian as shown in Fig. 2(a) and Fig. 2(d),
with the same initial number density and temperature. The simulation depicts the isotropization and thermalization
process of two particle distributions. Under the influence of the collisions between counterstreaming ions, the two
distribution functions, which initially are far-separated from each other in the phase space, approach each other and
finally both of them stop at around v = 0. Meanwhile, their self-collision effects make the distribution function
form an isotropic Maxwellian distribution. During this process, the kinetic energy of the counterstreaming plasma
flows is converted into the ion internal energy, resulting in an increase in the ion temperature. In Fig. 2(b) and Fig.
2(e), a slight deviation of the distribution functions from the equilibrium state can be observed. This is because the
collision frequency increases as the relative velocity decreases, so the closer ions between two colliding plasma flows
are decelerated faster in the phase space. Nevertheless, isotropic Maxwellian distributions are finally achieved at a
later stage as shown in Figs. 2(c) and 2(f) since the densities of plasma flows are high enough.

In practical physical problems, especially in fusion physics, the plasma may contain multiple ion species. There-
fore, it is crucial to calculate the collision processes between different ion species. Figure 3 illustrates the collision
between counterstreaming light and heavy ion flows, using deuterium and carbon ions respectively. Similar to Fig.
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Fig. 3. Evolution of the ion distribution functions at various times. The top row is for deuterium, while the bottom row is for carbon. And
the center of mass coordinate is adopted.

2, both ion species have the same initial number density and temperature as shown in Figs. 3(a) and 3(d). And the
relative drift velocity between the two distribution functions is ten times the thermal velocity of the carbon ions vt. For
the light deuterium ions, their self-collision term is much smaller than the deuterium-carbon collision term. Therefore,
the distribution function of the deuterium ions will be significantly distorted by the deuterium-carbon collisions and
become far away from the Maxwellian distribution in the merging process. Moreover, the diffusion term is stronger
than the friction term in the deuterium-carbon collision operator. As a result, the deuterium ions tend to orbit around
the carbon ions with a distinct angular deflection as shown in Fig. 3(b). Finally, the distribution functions of both
ion species will recover to the Maxwellian functions, at which point the drift velocities of two species of ions reduce
to zero, and both ion species reach their thermal equilibrium at time t = 2500t0 as shown in Figs. 3(c) and 3(f),
respectively. This example shows that this numerical method can describe the collision processes between the ion
species with different masses, even if their ion distribution functions deviate significantly from the equilibrium state
and the relative drift velocity is much larger than their thermal velocities.

To further verify the numerical scheme for the ion-ion collision operators, we compare the FPL simulation with the
multifluid model, which employs separate fluid equations for each ion species. In the multifluid model, the collisional
interactions are simplified as the momentum and energy exchanges between different ion species [74, 75, 76], which
can be written as

Rαβ = −mαnαναβ
(
uα − uβ

)
,

Qαβ = nαmαβναβ
(
uα − uβ

)2
− nαµαβ

(
Tα − Tβ

)
.

(33)
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Fig. 4. The collision rate for different drift velocities, comparing the simulation (solid line) and Eqs. (34) (red dotted line) and Eqs. (35)
(blue dashed line).

where mαβ = mαmβ/(mα + mβ) is the reduced mass, and the coefficients ναβ and µαβ is given by Rambo:

ναβ = ν
0
αβ

1 +
(

2
9π

)1/3

ū2


−3/2

, µαβ = µ
0
αβ

1 +
(

2
9π

)1/3

ū2


−3/2

, (34)

ν0αβ =
4
√

2πZ2
αZ

2
βe

4Lnαβnβ

3mαβmα(Tα/mα + Tβ
/
mβ)

3/2 , µ
0
αβ =

3mαβν0αβ
mβ

,

ū =

∣∣∣uα − uβ
∣∣∣

(Tα/mα + Tβ
/
mβ)

1/2 ,

and Decoster [77]:

ναβ = ν
0
αβ

3
z3

∫ z

0
s2e−s2/2ds, µαβ = µ0

αβe
−z2/2. (35)

Here the coefficients can be considered as a simple modified collision rate. When the relative drift velocity is small
compared to the thermal velocity, this rate reduces to the expression derived by Braginskii for a drifting Maxwellian.
When the particles drift very fast, this rate reduces to the slowing down rate for the cold plasma flows. As shown
in Fig. 4 (a), the rate ναβ predicted by Eqs. (34) and Eqs. (35) coincides well with that obtained from our FPL
simulations in the range of u/ū from 0 to 20.

Further, the coefficient µαβ in Eqs. (33) describes the energy exchange between the ion species α and β due to their
different temperatures. Interestingly, the coefficient µαβ obtained from our FPL simulations will become negative at
around u/ū = 2 as shown in Fig. 5(b), which indicates that the energy flows from a colder plasma to a hotter plasma
in this region. This seems violate the second law of thermodynamics that heat cannot spontaneously flow from a
colder to a hotter reservoir but only with the expenditure of mechanical energy. It is important to point out that here
the energy flowing from the colder plasma to the hotter plasma is at the expenses of the kinetic energy of the plasma
flows. Since the evolution of the particle velocity distributions is accurately treated, the FPL simulations can self-
consistently describe the energy exchange between two plasma flows with different temperatures. In contrast, the
multifluid model only works well at the “fast” and ”slow” limits, but it fails to describe the energy exchange at around
u/ū = 2 where the particle velocity distribution function is significantly distorted and far away from the (drifting)
Maxwellian distribution.

In Fig. 5, we show that the multifluid model may also fail to describe the merging process of the two colliding
plasma flows that have the same ion species but different ion densities. When the initial conditions of the two plasma
flows are the same (mα = mβ, Zα = Zβ, nα = nβ, Tα = Tβ,

∣∣∣uα − uβ
∣∣∣ = 10vt), the velocity (Fig. 5(a)) and temperature

(Fig. 5(c)) relaxation processes obtained from the FPL simulation are similar to the results from the multifluid model.
This is because in this case the velocity distribution of each plasma flow deviates only slightly from the equilibrium
state as shown in Fig. 5(e) at t = 400t0. However, when the densities of these two plasma flows are significantly
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Fig. 5. Particle slowing-down processes in the homogeneous plasma. The initial conditions corresponding to (a), (c), and (e) are mα = mβ,
Zα = Zβ, nα = nβ, Tα = Tβ,

∣∣∣uα − uβ
∣∣∣ = 10vt , while those corresponding to (b), (d), and (f) are mα = mβ, Zα = Zβ, nα = 10nβ, Tα = Tβ,∣∣∣uα − uβ

∣∣∣ = 10vt . (a) and (b) show the drift velocities as functions of time, whereas (c) and (d) depict the evolution of temperature over time.
(e) and (f) represent the distribution functions of β at t = 400t0. In the curve chart, the black line corresponds to particle α and the red line
donates particle β; the solid lines represent the FPL simulation results, while the dotted lines show the multifluid simulation results.

different, for an example nα = 10nβ, Fig. 5(b) and Fig. 5(d) show that the merging process predicted by the multifluid
model will be significantly faster than that obtained from the kinetic simulation. In particular, the difference between
the FPL simulation and the multifluid model is more obvious for the plasma flow with a lower density. This is because
the velocity distribution of the plasma flow with a lower density will deviate more significantly from the equilibrium
state. As shown in Fig. 5(f), the velocity distribution of the rare plasma flow even splits into two parts at t = 400t0.
The small part that is closer to the dense plasma flow in the phase space will form a Maxwellian distribution firstly,
while another large part becomes significantly distorted. Even though the average flow velocity of the rare plasma
flow is already small, most of the particles in the rare plasma flow are still distributed far from the dense plasma flow.
Therefore, the effective collision frequency will be obviously smaller than that predicted by the multifluid model.
Consequently, the multifluid model obviously overestimates the speed of the merging process of the two colliding
plasma flows with significantly different densities. Similarly, the multifluid model will fail when the masses mα,β
or the ionization degree Zα,β are significantly different. These simulation examples demonstrate the importance of
considering non-equilibrium velocity distribution, and the kinetic simulation is necessary to accurately describe the
merging process of the two colliding plasma flows.

3.4. Method to deal with the electron collision term

As shown in Sec. 2, the electron-electron collisions in a degenerated dense plasma can be described by the
quantum FPL operator given by Eq. (11). Fortunately, the fast spectral method is also applicable to the quantum FPL
operator. Following Hu et al. [53], we replace fe(v)

[
1 − θe fe(v)

]
in Eq. (11) with a new function h(v), and a similar
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convolution sum for the quantum FPL operator is given by

Ĉee,k =
N∑

m=−N
f̂k−m,αĥm,β(k −m)2F (m) −

N∑
m=−N

ĥk−m,α f̂m,βBL (m,m)

−
N∑

m=−N

d∑
p,q=1

f̂k−m,αĥm,βIpq (m)
(
kp − mp

) (
kq − mq

)
+

N∑
m=−N

d∑
p=1

ĥk−m,α f̂m,βGp (m,m)
(
kp − mp

)
+

N∑
m=−N

d∑
p=1

f̂k−m,αĥm,βGp (m,m)
(
kp − mp

)
.

(36)

This summation approaches the classical one as h(v) approaches fe(v). In Fig. 6, we show an example to calculate
the quantum electron collision term with this model from classical to strong degeneracy region, where the distribution
evolves from an initial non-equilibrium distribution. Finally, the distribution reaches the equilibrium and is consistent
with the Fermi-Dirac distribution. In addition, when the degeneracy effect is strong, the gradient of the distribution
function in the phase space is also steep, which means that smaller ∆v and ∆t are needed in the phase space.
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Fig. 6. (a) The velocity distribution functions obtained from simulation (dots) at t = 5t0 with different µ/T . (b) The time evolution for
different µ/T with the non-equilibrium initial distribution.

3.5. Collision between ions and electrons
The ion-electron collisions and electron-ion collisions are described by the simplified operators Eq. (15) and Eq.

(16), respectively. Meanwhile, they must conserve energy and momentum:

Reα + Rαe = 0,
Qαe + Qeα = −Rαe · (uα − ue) ,

(37)

where the friction and heat can be calculated as follows

Reα = −
mene

τei
(ue − uα) ,

Qeα =
mene

τei
(ue − uα)2 −

3me

mα

ne

τei
(Te − Tα) .

(38)

Then, the local Maxwellian distribution f̄ in the Krook model Eq.(16) can be updated by using the momentum and
temperature calculated above. In addition, it is necessary to know the fugacity z = exp(−µ/T ) and temperature T to
calculate the relaxation time τei in Eq. (15). For quantum gas, these two variables are connected with the density ne

and internal energy ee as

ne =
(2πTe)3/2

θe
F3/2 (z) , ee =

3
2

Te
F5/2 (z)
F3/2 (z)

, (39)

where Fi(z) is the Fermi-Dirac function, and z can be computed by cubic spline interpolation.
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3.6. All collisions included in a homogeneous plasma

The collision equations for the ions and the electrons are discreted in time, in which the ion-ion and electron-
electron collision terms are treated explicitly, while the penalization function, ion-electron, and electron-ion collision
terms are treated implicitly. Thus the discreted collision equations look like:

f n+1
α − f n

α

∆t
=

∑
β

Cn
αβ

(
f n
α

)
− ζnPn (

f n
α

)
+ ζnPn+1

(
f n+1
α

)
+Cn+1

ie

(
f n+1
α

)
,

f n
e − f n

e

∆t
= Cn

ee
(
f n
e
)
− ζnPn (

f n
e
)
+ ζn+1Pn+1

(
f n+1
e

)
+Cn+1

ei

(
f n+1
e

)
.

(40)

The explicit FPL operators can be calculated by using Eq. (27) and Eq. (36) as

Cn
αβ

(
f n
α , f n
β

)
= F −1

[
Ĉαβ

(
f n
α , f n
β

)]
,

Cn
ee

(
f n
e
)
= F −1

[
Ĉee

(
f n
e
)]
,

(41)

where F is the Fourier transform. In the ion-electron collision term, we treat the density, temperature, and drift
velocity explicitly with:

Cn+1
ie

(
f n+1
α

)
=

nn
eµ0

Aαnn
α

1
τn

ei

∂

∂vβ

((
vβ − un

e,β

)
f n+1
α +

T n
e

Aα

∂ f n+1
α

∂vβ

)
, (42)

and the derivatives of the distribution function are discretized using a finite-difference scheme as

∂ f
∂v

∣∣∣∣∣
i
=

f (vi+1) − f (vi−1)
2∆v

,

∂2 f
∂v2

∣∣∣∣∣∣
i
=

f (vi+1) + f (vi−1) − 2 f (vi)
∆v2 .

(43)

For the electron-ion collision term, we treat the equilibrium distribution function f̄ explicitly in which the energy and
momentum are updated according to the conservation Eqs. (38)

Cn+1
ei

(
f n+1
e

)
= −

1
τn

ei

(
f n+1
e − f̄ n

)
. (44)
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Fig. 7. Evolution of counterstreaming plasma described by the temperature and drift velocity. (a) Temperature, where the solid red lines
represent ions and the solid blue lines show the electron temperature with the classical collision operator; The dotted line shows the
temperatures for ions (red) and electrons (blue) when the electron degeneracy effect is included. (b) The drift velocity, where the black
dashed lines ignore ion-electron collisions.

Combining the above equaitons, we can simultaneously consider the collision effects between all particle species
in a homogeneous plasma. In Fig. 7, we simulate the collision processes between the counterstreaming plasma
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flows with all collision terms included. Here, the two plasma flows have the same initial density and electron and
ion temperatures, and the relative drift speed between them is approximately 6 times the ion thermal velocity vt.
Figures 7(a) and 7(b) present the time evolution of temperatures and drift velocity, respectively. It is found that the
isotropization of the ions dominates at the first stage, in which the kinetic energy of the ions is converted into the ion
thermal energy. However, a part of the ion kinetic energy will also be transferred to the electrons if the electron-ion
collisions are considering, causing the final steady-state ion temperature to decrease as compared to the case without
the electron-ion collisions. Meanwhile, the electron temperature will rapidly increase due to the collisions with the
ions. At the second stage, the ion thermal energy will be gradually converted into the electron thermal energy due
to the thermalization until the ion and electron temperatures become equal. Furthermore, Fig. 7(b) shows that the
electrons have a significant deceleration effect upon the ions. However, this effect has almost disappeared when the
degeneracy effect is included. In the quantum degeneracy case, we take the initial parameters of A = 2, Z = 1,
n = 4 × 1025 cm−3, and T = 50eV. With these parameters, the degeneracy parameter T/EF is approximately 0.1, and
the effective collision frequency calculated by Eq. (13) is only 0.015 times of its classical limit. Therefore, it can be
seen that the degeneracy effects have an evident influence on the merging process of two colliding supersonic dense
plasma flows.
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Fig. 8. The evolution of total energy deviation (black line) and momentum deviation (red line) over time for the case corresponding to the
classical limit presented in Fig. 7.

As mentioned earlier, the fast spectral method does not strictly guarantee the conservation of energy and momen-
tum. In Fig. 8, we illustrate the variation of energy and momentum error over time from the simulation in Fig. 7. The
results indicate that although the conservation of total energy and momentum is not perfect, it is still acceptable. To
completely eliminate all errors, we recommend a remediation method proposed in Ref. [39]. This approach evaluates
the errors in energy and momentum generated by collision terms at each timestep, and feed this discrepancy back to
the electrons to guarantee the conservation of energy and momentum.

4. Numerical examples

In this section, we present numerical test results with 1D or 2D coordinate space. In the simulations, periodic
boundary conditions are implemented along the x- and y-directions in the coordinate space. Zero boundary conditions
are applied in the velocity space, i.e. f (|v| > vbound) = 0, where vbound is a large enough velocity. Further, the
simulation code is parallelized, where the simulation domain is divided into several sub-domains in the coordinated
space, while the velocity space is not decomposed. We implement a Message Passing Interface (MPI) to communicate
the values of the distributions at the adjacent space between sub-domains in individual computational nodes. And Fig.
9 (a) shows an example of the MPI domain division. The OpenMP is used to realize the multi-thread parallelization
between CPU cores at each node. Since the computational cost is mainly spent on the collision operators, we can
solve the VFPL equation with the collision terms only in a part of the coordinate space. At the spatial grids where the
collision time is very long, the Vlasov equation that is greatly simplified for collisionless plasmas is solved instead of
the VFPL equation (Fig. 9(b)). In the following simulations, the collision operators are not considered in the region
with ni/v3

t < 10−6n0/v3
0.

4.1. One-dimensional simulation
In the following, we simulate the collision of two high-density hydrogen plasma flows with finite sizes in the 1D

coordinate space. The hydrogen plasma flows have the same initial temperature T = 300eV, the same drift speed
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Fig. 9. (a) Arrangement of MPI process. (b) Schematic diagram of ’collision domain’ and ’collisionless’ domain.

500km/s, and the similar Gaussian density profiles ni(x) = n0 exp[−(x − xL0,R0)2/2σ2] with σ=5µm, where xL0 and
xR0 are the initial center coordinates of the left and right plasma flows, respectively. The plasma drift, collision, and
expansion during the merging of these two plasma flows are compared with different initial flow peak densities n0.
For the convenience of analysis, the ions in the left and right plasma flows are described by two independent velocity
distribution functions in the simulations. Figure 10 illustrates the spatiotemporal evolution of the ion density of the
left plasma flow, while the ion density of the right plasma flow is symmetrical.

Fig. 10. The temporal evolution of one-dimensional spatial distributions of ion density. Figures (a), (b), and (c) correspond to the initial
densities of 2 × 1022cm−3, 2 × 1023cm−3, and 2 × 1024cm−3, respectively.

It can be observed that when the density is relatively low as n0 = 2 × 1022cm−3, the left plasma flow will directly
pass through the center position x = 0 with a slight thermal expansion, i.e. it is almost unaffected by the right plasma
flow, as shown in Fig. 10(a). When the initial density increases to n0 = 2 × 1023 cm−3, the left plasma flow will be
stopped at around x = 0 with an obvious thermal expansion as shown in Fig. 10(b)). At such a high density, the
mean-free path of the ions is on the order of 10µm, which is as short as the size of the plasma flows. Therefore, the
plasma flows are barely able to pass through each other. Moreover, the plasma temperature greatly increases because
the kinetic energy of the plasma flow is converted into its thermal energy, leading to the enhanced plasma thermal
expansion. Increasing the initial density further by an order of magnitude to n0 = 2 × 1024cm−3, the strong collisions
will result in an ultra short mean-free path for the ions. Consequently, Fig. 10(c) shows that the left plasma flow will
be stopped even before it reaches the center, resulting in a density accumulation in a relatively broad region. Such a
stagnation stage can sustain for about 20ps, followed by the thermal expansion towards the reverse direction.

The energy exchanges between the ion kinetic and thermal energies as well as between the ions and the electrons
are illuminiated in Fig. 11. Since our simulation code can conserve the energy quite well, the total energy in the
whole simulation box is nearly constant during the collision of two plasma flows in each simulation case. Figure
11(a) shows that both the ion kinetic energy and temperature change little, indicating that the plasma flows can pass
through each other nearly without let or hindrance at the relatively low density n0 = 2 × 1022cm−3. At the higher
density n0 = 2 × 1023cm−3, however, the ion kinetic energy decreases significantly as shown in Fig. 11(b). At
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Fig. 11. The temporal evolution of the spatially averaged energy, where the spatial average value of the quantity Q̄ (t) is defined as∫
n (x, t) Q (x, t) dx

/∫
n (x, t) dx. Each figure corresponds to the respective density in Fig.10. The black dashed line represents the total

energy, the green solid line represents the ion energy, and the black dotted line represents the electron energy. The blue line represents the
ion kinetic energy, while the red line represents the ion thermal energy.

t = 25ps, the thermal energy even exceeds the kinetic energy. Later, the ion kinetic energy will reversely increase due
to plasma expansion. At the highest density n0 = 2× 1024cm−3, Fig. 11(c) shows that nearly all the ion kinetic energy
can be dissipated into the thermal energy due to the ultra-strong collisions. Furthermore, a large proportion of the
ion kinetic energy is transferred to the electrons rather than the ion thermal energy since the electron-ion collisions
become very efficient in such a high density plasma. The above tests verify that our VFPL code can simulate the
colliding supersonic dense plasma flows well, and the processes of energy conversion and deposition are described
properly.

4.2. Two-dimensional simulation

Fig. 12. A two-dimensional simulation of counterstreaming plasma blocks with initial ni = 1023cm−3, T = 300eV and ux = 500km/s, where
(a), (b), and (c) are the different snapshot of distribution function

∫ ∞
−∞

f (x, v) dvy in the phase space (blue surface) and their projections in
x-y and x-vx plane at t = 0ps, t = 25ps, and t = 35ps, respectively.

Finally, we utilize the VFPL code with two spatial coordinates to simulate the collision between two colliding
plasma blocks. In Fig. 12, we show the ion velocity distribution integrated over the vy at three typical moments to
illustrate the merging process of the colliding plasma blocks in the x-y-vx phase space. In contrast to 1D simulations,
the ions suffer a strong expansion in the y-direction in the 2D simulation. Therefore, the ion density distribution has
the shape of an ellipse in the x-y space at t = 35ps after the merging. More importantly, the maximum ion density
is much smaller than twice the initial ion density as shown in Fig. 13(a). Further, Fig. 13(b) displays the energy
conversion as well as the conservation of the total energy. Due to the enormous computational cost, we do not employ
two ion distribution functions in the 2D2V simulation. As a result, it is difficult to distinguish between the ion kinetic
energy and the ion thermal energy. Instead, the effective ion temperatures that perpendicular Ty and parallel Tx to the
initial drift velocity are employed. Figure 13(b) shows that the longitudinal ion temperature Tx decreases while the
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transverse ion temperature Ty and electron energy increase with time. This indicates the conversion of the ion kinetic
energy into the ion thermal energy and the electron thermal energy. As expected, Fig. 13(b) also shows that the energy
conservation is maintained well in this 2D simulation. This test verifies that our 2D2V VFPL code has the ability to
simulate the colliding supersonic dense plasma flows on the spatio-temporal scale of tens of microns and hundreds of
picoseconds.

Fig. 13. The temporal evolution of (a) spatial distributions of ion density at y=0, and (b) the spatially averaged energy, corresponding to
simulation Fig. 12. The black dashed line represents the total energy, and the black solid line represents the electron energy. The blue line
and the red line represents Tx =

∫ ∞
−∞

f (x, v) v2
xdv and Ty =

∫ ∞
−∞

f (x, v) v2
ydv for ions, respectively.

5. Conclusions

In conclusion, we have developed 1D2V and 2D2V Vlasov-Fokker-Planck-Landau codes to model the kinetic
dynamics of two colliding supersonic dense plasma flows/blocks. Both the ions and electrons are treated kinetically
in the codes, where the Fokker-Planck-Landau collision operators are applied both for the electrons and ions. A
simplified ion-electron collision operator is applied, which can capture the exchange of momentum and energy be-
tween the electrons and ions. The fast spectral method and the asymptotic-preserving scheme are adopted to solve the
Fokker-Planck-Landau equation, which balance the efficiency and the accuracy well. Consequently, the conservation
of the mass, momentum, and energy is well satisfied. The fast spectral method can also work well with the electron
quantum degeneracy effect included. The codes allow us to simulate the ion and electron collisions with a reason-
able time step at a relatively high computing speed and time step, which may be used to simulate various problems
involving high-speed dense plasma flows/blocks. Moreover, our code has the capability to deal with plasma flows
drifting at velocities twenty times greater than the thermal velocity. However, when the flow velocity is increased
further, the simulations will be limited by the large amount of computational cost. This is because a greater number of
meshes in velocity space are required when the plasma temperature is increased significantly during the interaction.
To overcome this issue, one may adopt the moving-grid strategy, which allows for the calculation of plasmas with
higher Mach numbers. In this approach, one may adapt the mesh sizes in velocity space with time to maintain a
reasonable computing efficiency. Interested readers may refer to Refs. [30, 78] on the semi-Lagrangian method and
Vlasov-Fokker-Planck equation on a moving grid.
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