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a b s t r a c t

We propose a level set method for the semiclassical limit of the Schrödinger equation with
discontinuous potentials. The discontinuities in the potential corresponds to potential bar-
riers, at which incoming waves can be partially transmitted and reflected. Previously such a
problem was handled by Jin and Wen using the Liouville equation – which arises as the
semiclassical limit of the Schrödinger equation – with an interface condition to account
for partial transmissions and reflections (S. Jin, X. Wen, SIAM J. Num. Anal. 44 (2006)
1801–1828). However, the initial data are Dirac-delta functions which are difficult to
approximate numerically with a high accuracy. In this paper, we extend the level set
method introduced in (S. Jin, H. Liu, S. Osher, R. Tsai, J. Comp. Phys. 210 (2005) 497–518)
for this problem. Instead of directly discretizing the Delta functions, our proposed method
decomposes the initial data into finite sums of smooth functions that remain smooth in
finite time along the phase flow, and hence can be solved much more easily using conven-
tional high order discretization schemes.

Two ideas are introduced here: (1) The solutions of the problems involving partial trans-
missions and partial reflections are decomposed into a finite sum of solutions solving prob-
lems involving only complete transmissions and those involving only complete reflections.
For problems involving only complete transmission or complete reflection, the method of
JLOT applies and is used in our simulations; (2) A reinitialization technique is introduced so
that waves coming from multiple transmissions and reflections can be combined seam-
lessly as new initial value problems. This is implemented by rewriting the sum of several
delta functions as one delta function with a suitable weight, which can be easily imple-
mented numerically. We carry out numerical experiments in both one and two space
dimensions to verify this new algorithm.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we propose a numerical scheme for the Liouville equation
ft þ Hn � rxf � Hx � rnf ¼ 0; t > 0; x; n 2 Rd; ð1:1Þ
whose solutions are delta functions of variable weight concentrating on the bi-characteristics strips of the equation. The
function f(t,x,n) is the density distribution of particles depending on position x, time t and velocity n. The Hamiltonian H
takes the form
. All rights reserved.
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Hðx; nÞ ¼ 1
2
jnj2 þ VðxÞ; ð1:2Þ
with V(x) corresponding to the potential function. In particular, we are concerned with the case when the potential
V(x) 2W1,1 has jump discontinuities along a smooth hypersurface; such type of potentials correspond physically to problems
with potential barriers.

Eq. (1.1) provides a phase space description of the semiclassical limit [6,20] of the Schödinger equation:
i�h@tw
�h ¼ � �h2

2
Dw�h þ VðxÞw�h; x 2 Rd; ð1:3Þ
where w�h is the complex-valued wave function, �h the reduced Planck constant. In this setting, one typically considers the
Schrödinger equation (1.3) with the WKB initial data assuming the form
wðx;0Þ ¼ A0ðxÞ expðiS0ðxÞ=�hÞ; ð1:4Þ
with smooth S0. In the semiclassical limit ⁄ ? 0, this corresponds to mono-kinetic initial data for the Liouville equation (1.1):
f ð0; x; nÞ ¼ jA0ðxÞj2dðn�rxS0ðxÞÞ: ð1:5Þ
Consequently, the solutions of the initial value problem (1.1) and (1.5) remain as delta functions concentrating on the bi-
characteristics.

When potential barriers are present in the problem, the potential function V has jump discontinuities along the barrier.
Waves traveling into a potential barrier typically undergo partial transmissions and reflections; i.e. a proportion of an inci-
dent wave is transmitted through the discontinuity of the potential while the remaining portion is reflected. [1,21,25]. In this
paper, we shall use the terms complete transmission or complete reflection when each incident ray is either transmitted
through or reflected off the interface, and we shall refer to the discontinuities in the potential function as the interface.

It is possible to solve the Liouville equation (1.1) with delta function initial data (1.5) by replacing the initial data with
approximate delta functions. We shall refer to this type of methods as the direct methods. However, this type of methods
usually produces poor quality approximations as the delta functions are quickly smeared out due to numerical dissipation,
and that the large gradient of the numerical approximations of the delta functions result in very large error constants.

To avoid computing directly the delta function solutions, one can track the bi-characteristic strips of the Liouville equa-
tion either explicitly [5] or implicitly [23,3,13,9,24,19], and evolve various physical quantities defined on the bi-character-
istics along the way. In the context of solving the Schrödinger equation, the method introduced in [9] decomposes the
particle density function f into w and /j (j = 1, . . . ,d):
f ðx; n; tÞ ¼ wðx; n; tÞPd
j¼1dð/jðx; n; tÞÞ; ð1:6Þ
where w and /j solve the same Liouville equation (1.1) with initial data
wðx; n;0Þ ¼ q0ðxÞ; /jðx; n; 0Þ ¼ ðn� u0ðxÞÞj; ð1:7Þ
respectively. Here (n � u0(x))j denotes the jth component of the vector. In this setup, the common zeros of /j defines the bi-
characteristics and w tracks the density on the bi-characteristics. We shall refer to such methods as decomposition methods.

The decomposition methods allow for numerical computations of bounded solutions rather than the measure-valued
solution of the Liouville equation with singular initial data (1.5). Physical observables of the system (such as the density
q and momentum qu) can be computed passively via simple integrals in the phase dimensions
qðx; tÞ ¼
Z

wðx; n; tÞPd
i¼1dð/iÞdn; ð1:8Þ

uðx; tÞ ¼
Z

wðx; n; tÞnPd
i¼1dð/iÞdn=qðx; tÞ: ð1:9Þ
For problems involving complete transmissions and reflections, interface conditions can be formulated to capture such
phenomena. The level set method proposed in [2] uses such idea to capture the reflections of wave fronts for the wave equa-
tions. It was also mentioned in [23] that an interface condition is needed to incorporate Snell’s Law of Refraction into the
transmission of wave fronts. In [14,15] a transmission and reflection interface condition was introduced for the Liouville
equation (1.1) and a corresponding Hamiltonian preserving scheme was developed for complete transmissions and reflec-
tions for problems containing potential barriers or discontinuous wave speeds. Then the decomposition method of [9]
was used to offer a more accurate numerical approximation. However, when one has to deal with partial transmissions
and reflections using such an interface condition, as was done in [16] (and subsequent extensions to quantum barriers
[10–12] and wave diffractions [17,18]), the direct method still works while the decomposition method requires additional
level set functions to be added each time a ray in the incoming wave splits into a reflected one and a transmitted one [16].
This can be easily understood from the Lagrangian point of view. For smooth potentials V the solution to the Liouville equa-
tion (1.1) can be defined by the method of characteristics defined by the Hamiltonian system
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@x
@t
¼ rnH;

@n

@t
¼ �rxH: ð1:10Þ
However, at discontinuity of V, in order to define a physically relevant solution to the initial value problem of (1.10), a
particle (or a characteristic defined by (1.10)) is split into two particles with weights corresponding to the transmission
and reflection coefficients [11,7]. Since each level set Liouville equation (1.1) is the phase representation of the particle tra-
jectory determined by (1.10), when a particle splits at the interface, one has to add another level set function to describe such
a particle or ray splitting. With multiple partial transmissions and reflections, the total number of level set functions will
increase exponentially in time [16].

In this paper, we extend the decomposition method so that partial transmissions and reflections that occur in the prob-
lems with potential barriers can be captured with a fixed number of level set functions, independent of how many times
partial transmissions and reflections occurs at points on the interface. In order to achieve this, we introduce two new ideas.
First, we decompose the problem with partial transmission and reflection into the sum of problems with only complete trans-
missions and reflections, so the decomposition method of Jin–Liu–Osher–Tsai can be used here as in [14,15].

Since this decomposition is valid only if the waves or particles hit the interface at most once, we need to utilize a reini-
tialization technique, which is the second new idea of the paper. After particle transmissions and reflections f no longer has
the form of (1.6). Rather it is a superposition of several functions of the form (1.6). In order to continue to use the decom-
position, we need to rewrite f in the form of (3.8). A simple numerical procedure is introduced for this purpose. This enables
us to handle multiple transmissions and reflections for a long time.

Details of the decomposition is presented in Section 2. The level set algorithm for the decomposition method is presented
in Section 3; this is followed by details about the reinitialization step in Section 4. In Section 5, we present some examples
computed using the proposed numerical methods. The paper is concluded in Section 6.

2. Decomposition of the interface problem

Consider a point x on the interface. Since the interface is a hypersurface in the physical domain, we may consider the
‘‘left” and the ‘‘right” side of the interface at this point. Denote it by x� and x+. The transmission-reflection interface condition
for the Liouville equation (1.1) at (x+, n), for phase directions pointing into the ‘‘right” of the interface, can be written in a
general form as
f ðt;xþ; nÞ ¼ aT f ðt; x�; nTÞ þ aRf ðt;xþ; nRÞ; ð2:1Þ
where nT and nR are two functions depending on the interface normal at x and the phase variable n; aT and aR are transmis-
sion and reflection coefficients that may depend on nT and nR. This boundary condition dictates that the the density of par-
ticles at (x+,n) are the sum of what is being transmitted, f(t,x�,nT), and what is being reflected f(t,x+,nR) from appropriate
phases and sides of the interface.

Since the Liouville equations and the Schrödinger equation are translation and rotation invariant, we may assume that a
point of interest on the interface is at the origin of the spatial domain and the x-axis is parallel to the normal of the interface
at least locally. Thus, without loss of generality, we discuss the decomposition idea in the following model problem in two
dimensions (one in space and one in phase). Thus, we assume that the interface is at x = 0 and the potential takes on the
values V+ and V� from the right and the left, respectively. At (0+,n), n > 0, the transmission comes from the left side of the
interface with a phase gradient which has the same sign as n and satisfies the condition for the conservation of Hamiltonian:
1
2

n2 þ Vþ ¼ 1
2

n2
T þ V�; nT > 0: ð2:2Þ
The reflection comes from the same side of the interface as 0+ with a phase gradient which has the opposite sign from n
and satisfies
1
2

n2 þ Vþ ¼ 1
2

n2
R þ Vþ; nR < 0: ð2:3Þ
To simplify the notation, we introduce two new notations, n+ and n�, where n+ and n� have the same sign and they satisfy
the relationship
1
2
ðnþÞ2 þ Vþ ¼ 1

2
ðn�Þ2 þ V�: ð2:4Þ
Then at (0+,n+), n+ > 0, (2.2) and (2.3) can be rewritten as nT = n� and nR = �n+. Similarly, one can derive the condition for
(0�,n�), n� 6 0. Combining the two possible cases of 0� and 0+, we have
@t f þ nfx � Vxfn ¼ 0; t > 0; x – 0;
f ð0; x; nÞ ¼ f0ðx; nÞ;
f ðt;0þ; nþÞ ¼ aRðnþÞf ðt;0þ;�nþÞ þ aTðn�Þf ðt; 0�; n�Þ; nþ P 0;
f ðt;0�; n�Þ ¼ aRðn�Þf ðt;0�;�n�Þ þ aTðnþÞf ðt; 0þ; nþÞ; n� 6 0:

8>>><
>>>:

ð2:5Þ
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n+ and n�, having the same sign, satisfy the conservation of Hamiltonian

1
2
ðn�Þ2 þ V� ¼ 1

2
ðnþÞ2 þ Vþ: ð2:6Þ
The well-posedness of (2.5) was shown in [16].
For now, we assume that the characteristics of the Liouville equation, defined by (1.10), emanating from the support of

f0(x,n) at time 0, intersect the interface at most once in the interval [0,s1] for some s1 > 0. Let X(s) denote all (x,n) such that
they can be traced backward from time s to time 0 along the characteristics of the Liouville equation without intersecting
with the interface x = 0. We can then easily write down the solution for (2.5) as follows:

� If (x,n) 2X(s), then
f ðs; x; nÞ ¼ f0ðx0; n0Þ; ð2:7Þ
here (x,n) and (x0,n0) are respectively the coordinates of the unique characteristics at time s and at time 0.
� If (x,n) 2Xc, then
f ðs; x; nÞ ¼ aRðnþÞf ðtc; 0
þ;�nþÞ þ aTðn�Þf ðtc; 0

�; n�Þ ¼ aRðnþÞf0ðxR
0; n

R
0Þ þ aTðn�Þf0ðxT

0; n
T
0Þ: ð2:8Þ

Here tc is the time at which the characteristics emanating from ðxR
0; n

R
0Þ and from ðxT

0; n
T
0Þ at time 0 arrive at the interface

x = 0. From this time on, these two rays travels along the same path and arrive at (x,n) at time s. See Fig. 1.

The solution at points lying in the left side of the interface, i.e. (x,n): x 6 0, is a sum of values that are convected along the
characteristics that came from the same side and remain in the same side, maybe due to reflection, and those that were
transmitted from the other side.

Hence, the density function f can be decomposed into the sum of the solutions of three interface problems of the same
Liouville equation, but with only either complete transmissions or reflection. This fact is summarized in the following theo-
rem. We shall refer to such solutions as the generalized characteristics solutions.

Theorem 2.1. Let f be the generalized characteristic solution of (2.5). Define Lf :¼ @1f þ nfx � Vxfn, and consider the following
three initial value problems with interface conditions:
Lf R ¼ 0; f Rð0; x; nÞ ¼ f R
0 ðx; nÞ :¼ f0ðx; nÞ;

f Rðt;0þ; nþÞ ¼ aRðnþÞf Rðt; 0þ;�nþÞ; nþ P 0;
f Rðt;0�; n�Þ ¼ aRðn�Þf Rðt; 0�;�n�Þ; n� 6 0;

8><
>: ð2:9Þ

Lf T1 ¼ 0; f T1ð0; x; nÞ ¼ f T1
0 ðx; nÞ :¼ Ifx<0gf0ðx; nÞ;

f T1ðt;0þ; nþÞ ¼ aTðn�Þf T1ðt;0�; n�Þ; nþ P 0;
f T1ðt;0�; n�Þ ¼ aTðnþÞf T1ðt;0þ; nþÞ; n� 6 0;

8><
>: ð2:10Þ
and 8

Lf T2 ¼ 0; f T2ð0; x; nÞ ¼ f T2

0 ðx; nÞ :¼ IfxP0gf0ðx; nÞ;
f T2ðt;0þ; nþÞ ¼ aTðn�Þf T2ðt;0�; n�Þ; nþ P 0;
f T2ðt;0�; n�Þ ¼ aTðnþÞf T2ðt;0þ; nþÞ; n� 6 0;

><
>: ð2:11Þ
Fig. 1. Illustration of the characteristic solution.
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where n+ and n� satisfy condition (2.6) with the same sign. If the characteristics of the Liouville equation, defined by (1.10),
emanating from the support of f0(x,n) at time 0, intersect the interface at most once in the interval [0,s1] for some s1 > 0.
Then
f ¼ f R þ IfxP0gf T1 þ Ifx<0gf T2; 0 6 t 6 s1: ð2:12Þ
Proof. Let 0 6 t 6 s1. We decompose the x � n plane into two parts: X(t) and Xc(t). According to the definition of the solution
to (2.5),
f ðt; x; nÞ ¼ IXf0ðx0; n0Þ þ IXcaRðnþÞf0ðxR
0; n

R
0Þ þ IXcaTðn�Þf0ðxT

0; n
T
0Þ: ð2:13Þ
Similarly,
f Rðt; x; nÞ ¼ IXf0ðx0; n0Þ þ IXcaRðnþÞf0ðxR
0; n

R
0Þ; ð2:14Þ

f T1ðt; x; nÞ ¼ IXIfx0<0gf0ðx0; n0Þ þ IXcaTðn�ÞIfxT
0
<0gf0ðxT

0; n
T
0Þ; ð2:15Þ

f T2ðt; x; nÞ ¼ IXIfx0P0gf0ðx0; n0Þ þ IXcaTðn�ÞIfxT
0
P0gf0ðxT

0; n
T
0Þ: ð2:16Þ
By the definitions of X, for all (x,n) 2X, one can trace backward in time along the trajectory of (1.10) to (x0,n0) without
hitting the interface x = 0. Therefore, x0 < 0 if and only if x < 0. Thus
IXIfx0<0g ¼ IX
T
fx<0g; IXIfx0P0g ¼ IX

T
fxP0g:
Similarly, definitions of Xc and xT
0 imply that
IXc IfxT
0<0g ¼ IXc

T
fxP0g; IXc IfxT

0P0g ¼ IXc
T
fx<0g:
Hence
f Rðt; x; nÞ þ IfxP0gf T1ðt; x; nÞ þ Ifx<0gf T2ðt; x; nÞ ¼ IXf0ðx0; n0Þ þ IXcaRðnþÞf0ðxR
0; n

R
0Þ þ IfxP0gIX

T
fx<0gf0ðx0; n0Þ

þ IfxP0gIXc
T
fxP0gaTðn�Þf0ðxT

0; n
T
0Þ þ Ifx<0gIX

T
fxP0gf0ðx0; n0Þ

þ Ifx<0gIXc
T
fx<0gaTðn�Þf0ðxT

0; n
T
0Þ

¼ IXf0ðx0; n0Þ þ IXcaRðnþÞf0ðxR
0; n

R
0Þ þ IXcaTðn�Þf0ðxT

0; n
T
0Þ ¼ f ðt; x; nÞ: �
Theorem 2.1 shows that an interface problem with partial transmissions and reflections can be decompose into the inter-
face problems with complete transmissions and reflections, in a time interval in which the characteristics hit the interface at
most once.

Based on this result, we can use the following strategy to obtain the solution of (2.5): for 0 6 t 6 s1, we solve problems
(2.9), (2.10) and (2.11), then
f ðt; x; nÞ ¼ f Rðt; x; nÞ þ IfxP0gf T1ðt; x; nÞ þ Ifx<0gf T2ðt; x; nÞ; 0 6 t 6 s1:
Using f(s1,x,n) as the initial data, we redo the previous step to get solution of (2.5) on [s1,s1 + s2], where s2 > 0 such that
no particle trajectory will hit the interface more than once in the time period [s1,s1 + s2]. One can repeat this process to ob-
tain the solution for any time interval [0,K].

Remark 2.1. If there are N interfaces which divide R1 into N + 1 parts denoted by A1, A2, . . ., AN+1, respectively, then the
solution f will be
f ¼ f R þ
XNþ1

i¼1

IfR1nAigf
Ti ;
where each f Ti has the initial data
f Ti ð0; x; nÞ ¼ f Ti
0 ðx; nÞ :¼ IAi

f0ðx; nÞ:
Similarly, in the multi-dimensional case, if the interfaces divide Rd into N + 1 parts denoted by A1, A2, . . ., AN+1, respec-
tively, then the solution f will be
f ¼ f R þ
XNþ1

i¼1

IfRdnAigf
Ti ;
where each f Ti has the initial data
f Ti ð0;x; nÞ ¼ f Ti
0 ðx; nÞ :¼ IAi

f0ðx; nÞ:
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For general initial data or general geometry, it is not easy to determine s1, s2, . . . Here we propose a reinitialization after
each time step Dt so f remains the form of (1.6). This will be addressed in Section 4.
3. The level set decomposition

Consider the d function initial data (1.5), namely,
f ð0; x; nÞ ¼ f0ðx; nÞ ¼ q0ðxÞdðn� u0ðxÞÞ: ð3:1Þ
Correspondingly, the initial data for fR, fT1 and fT2, which only involve complete transmission or reflection, are of the
mono-kinetic form (3.1). According to [14,15], they can be solved by the decomposition method of [9]. More specifically,
fR = wRd(/R) where /R and wR satisfy
L/R ¼ 0; /R
0ðxÞ ¼ n� u0ðxÞ;

/Rðt;0þ; nþÞ ¼ /Rðt;0þ;�nþÞ; nþ P 0;
/Rðt;0�; n�Þ ¼ /Rðt;0�;�n�Þ; n� 6 0;

8><
>: ð3:2Þ

LwR ¼ 0; wR
0ðxÞ ¼ q0ðxÞ;

wRðt;0þ; nþÞ ¼ aRðnþÞwRðt;0þ;�nþÞ; nþ P 0;
wRðt;0�; n�Þ ¼ aRðn�ÞwRðt;0�;�n�Þ; n� 6 0;

8><
>: ð3:3Þ
Similarly, fT1 = wT1d(/T1) and fT2 = wT2d(/T2) where
L/T1 ¼ 0; /T1
0 ðxÞ ¼ n� u0ðxÞ;

/T1ðt;0þ; nþÞ ¼ /T1ðt;0�; n�Þ; nþ P 0;

/T1ðt;0�; n�Þ ¼ /T1ðt;0þ; nþÞ; n� 6 0;

8>><
>>: ð3:4Þ

LwT1 ¼ 0; wT1
0 ðxÞ ¼ Ifx<0gq0ðxÞ;

wT1ðt;0þ; nþÞ ¼ aTðnþÞwT1ðt;0�; n�Þ; nþ P 0;

wT1ðt;0�; n�Þ ¼ aTðn�ÞwT1ðt;0þ; nþÞ; n� 6 0;

8>><
>>: ð3:5Þ

L/T2 ¼ 0; /T2
0 ðxÞ ¼ n� u0ðxÞ;

/T2ðt;0þ; nþÞ ¼ /T2ðt;0�; n�Þ; nþ P 0;

/T2ðt;0�; n�Þ ¼ /T2ðt;0þ; nþÞ; n� 6 0;

8>><
>>: ð3:6Þ

LwT2 ¼ 0; wT2
0 ðxÞ ¼ IfxP0gq0ðxÞ;

wT2ðt;0þ; nþÞ ¼ aTðnþÞwT2ðt;0�; n�Þ; nþ P 0;

wT2ðt;0�; n�Þ ¼ aTðn�ÞwT2ðt;0þ; nþÞ; n� 6 0;

8>><
>>: ð3:7Þ
At time s1, one can sum these solutions to obtain
f ðs1Þ ¼ f R þ IfxP0gf T1 þ Ifx<0gf T2 ¼ wRdð/RÞ þ IfxP0gw
T1dð/T1Þ þ Ifx<0gw

T2dð/T2Þ: ð3:8Þ
4. Reinitialization

Clearly, in one space dimension, the maximal value of s1 depends on the distance between the discontinuities as well as
the derivative of the potential in each smooth region. For general initial data and general piecewise smooth interfaces in
higher space dimensions, it is not easy to determine s1. In this section we introduce a reinitialization procedure which
can be carried out at each time step, after the decomposition step proposed in the previous section. With this decomposi-
tion–reinitialization process no knowledge of s1 is needed. When the discontinuity set of the potential is singular or the wave
comes at critical angle, diffraction happens, which introduces a next order term and is out of the scope of this paper. We refer
readers to [22,17,18].

As discussed in the previous section, even though f0 has the form (3.1), at time s1 it is a sum of more than one delta func-
tions. In fact, it may be the sum of more than three delta functions shown in (1.6), since /R;T1 ;T2 may have multiple zeroes,
corresponding to multiphased velocities [8,26]. Clearly, to continue the decomposition of Section 3, we need to reinitialize
f(s1,x,n) so it becomes the form in (1.6). In other words, we want to find / and w such that
f ðx; n; s1Þ ¼ wRðx; n; s1Þd /Rðx; n; s1Þ
� �

þ IfxP0gw
T1ðx; n; s1Þd /T1ðx; n; s1Þ

� �
þ Ifx<0gw

T2ðx; n; s1Þd /T2ðx; n; s1Þ
� �

¼ wðx; n; s1Þdð/ðx; n; s1ÞÞ: ð4:1Þ
The following theorems provide a generic strategy on how this can be done.
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Theorem 4.1 (1-Dimension). Assume gj(x) are continuous functions with Nj distinct zeros xji
; i ¼ 1; . . . ;Nj; j ¼ 1; . . . ;N. Assume

fj(x) are bounded continuous functions. Then there exists an � > 0 and a function j defined by
jðxÞ ¼
1; jxj < �;
0; jxjP �;

�
ð4:2Þ
such that
XN

j¼1

fjðxÞdðgjðxÞÞ ¼ f ðxÞdðgðxÞÞ ð4:3Þ
in the distributional sense. Here
f ðxÞ ¼
XN

j¼1

fjðxÞjðgjðxÞÞ ð4:4Þ
and g(x) is defined by
gðxÞ ¼ sgnðglx ðxÞÞmin
j
ðjgjðxÞjÞ; ð4:5Þ
where lx is the index such that jglx ðxÞj 6 jgjðxÞj; 8 j.
Proof. Since gj(x) are continuous with distinct zeros, there exists an g > 0 small enough, such that
xji � g; xji þ g
� �

; i ¼ 1; . . . ;Nj; j ¼ 1; . . . ;N
are disjoint intervals and
max
16j6N;16i6Nj

max
x2ðxji

�g;xji
þgÞ
jgjðxÞj

 !
< min

16j6N;16i6Nj

min
x2ðxji

�g;xji
þgÞ;m – j

jgmðxÞj
 !

;

Let
� ¼ max
16j6N;16i6Nj

max
x2ðxji

�g;xji
þgÞ
ðjgjðxÞjÞ

 !
; ð4:6Þ
then on each interval ðxji � g; xji þ gÞ,
f ðxÞ ¼ fjðxÞ
and
gðxÞ ¼ gjðxÞ:
Furthermore, one can find a positive number h, such that
gðxÞ > h > 0; 8 x 2 R n
[

16j6N;16i6Nj

ðxji � g; xji þ gÞ: ð4:7Þ
Therefore, 8 u 2 C1c ðRÞ,
Z 1

�1
uðxÞf ðxÞdðgðxÞÞdx ¼

XN

j¼1

XNj

i¼1

Z xji
þg

xji
�g

uðxÞf ðxÞdðgðxÞÞdx: ð4:8Þ
Hence, for all test functions u 2 C1c ðRÞ,
Z 1

�1
uðxÞ

XN

j¼1

fjðxÞdðgjðxÞÞdx

¼
XN

j¼1

Z
uðxÞfjðxÞdðgjðxÞÞdx ¼

XN

j¼1

XNj

i¼1

Z xji
þg

xji
�g

uðxÞfjðxÞdðgjðxÞÞdx

¼
XN

j¼1

XNj

i¼1

Z xji
þg

xji
�g

uðxÞf ðxÞdðgðxÞÞdx

¼
Z 1

�1
uðxÞf ðxÞdðgðxÞÞdx: ð4:9Þ
This completes the proof. h
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Theorem 4.2 (Multi-Dimension). Assume gj(x) are C1 continuous functions such that
R

Rd dðgjðxÞÞdx <1 for j = 1, . . ., N. Denote
the zeros sets of gj(x) by Xj. Assume that MðXj1 \Xj2 Þ ¼ 0; 8 j1; j2. Suppose there exists a constant C > 0 such that
jDgjðxÞj > C; 8 j 8 x 2 Xj: ð4:10Þ
Let fj(x) be bounded continuous functions. Define the function j� by
j�ðxÞ ¼
1; jxj < �;
0; jxjP �:

�
ð4:11Þ
Then
f�ðxÞdðgðxÞÞ*
XN

j¼1

fjðxÞdðgjðxÞÞ; �! 0 ð4:12Þ
in the distributional sense. Here
f�ðxÞ ¼
XN

j¼1

fjðxÞj�ðgjðxÞÞ; ð4:13Þ
and g(x) is defined by
gðxÞ ¼ gkx
ðxÞ; ð4:14Þ
where kx is the index such that jgkx
ðxÞj 6 jgjðxÞj;8 j.
Proof. For every fixed test function uðxÞ 2 C1c ðRdÞ, for every fixed g > 0, one can choose h small enough such that
Z
Rd

uðxÞ
XN

j¼1

fjðxÞdðgjðxÞÞdx�
XN

j¼1

Z
Xh

j

uðxÞfjðxÞdðgjðxÞÞdx

�����
����� < 1

2
g; ð4:15Þ
where Xh
j is a subset of Xj with MðXh

j Þ <1 and distðXh
j1
;Xh

j2
Þ > h > 0, " j1, j2. Following the same idea of the proof of The-

orem 4.1, one can further choose a . > 0 small enough, such that if 0 < � < . then
XN

j¼1

Z
Xh

j

uðxÞfjðxÞdðgjðxÞÞdx ¼
Z
[Xh

j

uðxÞf�ðxÞdðgðxÞÞdx: ð4:16Þ
We chose h > 0 small enough so that
Z
Rdn
S

Xh
j

uðxÞ
XN

j¼1

jfjðxÞj
 !

dðgðxÞÞdx <
1
2
g: ð4:17Þ
Combining (4.15), (4.16) and (4.17), we obtain that for every fixed uðxÞ 2 C1c ðRdÞ, and for every fixed g > 0, there exists
. > 0, such that if 0 < � < ., then
Z

Rd
uðxÞ

XN

j¼1

fjðxÞdðgjðxÞÞdx�
Z

Rd
uðxÞf�ðxÞdðgðxÞÞdx

�����
����� < g: � ð4:18Þ
Corollary 4.1. If d P 2 and gj(x) are piecewise C1 continuous functions, then the conclusion of Theorem 4.2 is still true.

Formally, the computational complexity of the reinitialization process (even it is performed after each time step) is the
same as of solving (2.9), (2.10) and (2.11), which is also the same as solving the Liouville equation (2.5) directly. All of them
have order O(Dx�1Dn�1). Furthermore, all of the functions /R,T1,T2 and wR,T1,T2 only need to be solved locally around the zero
level sets of /R,T1,T2. Therefore, the entire algorithm can be implemented using the local level set methods.

5. Numerical examples

In this section, we give several numerical examples. In each example, we compute the density and momentum which are
given by
q ¼
Z

f ðt; x; nÞdn;

qu ¼
Z

nf ðt; x; nÞdn:
We use the upwind scheme to compute all the one-dimensional examples with a minmod slope limiter and the two-
dimensional example with no slope limiter.
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When computing the physical observables, we use the following discretized delta function [4],
dbðxÞ ¼
1

2b ð1þ cos jpxj
b Þ; j x

b j 6 1;
0; otherwise;

(
ð5:1Þ
where the parameter b is taken as b ¼ 0:5
ffiffiffiffiffiffi
Dx
p

.

Example 5.1 (Plane waves). We consider (2.5) with the following parameters:
V ¼
0 x 6 0;

0:045 x > 0;

�

and the initial conditions:
f0ðx; nÞ ¼ q0ðxÞdðn� u0ðxÞÞ; q0ðxÞ ¼ Ifx60g; u0ðxÞ ¼ 0:5:
By the conservation of Hamiltonian,
0:52

2
¼ 0:045þ ðn

þÞ2

2
;

one has n+ = 0.4. Therefore,
aR ¼
ðn� � nþÞ2

ðn� þ nþÞ2
¼ 0:012; aT ¼

4n�nþ

ðn� þ nþÞ2
¼ 0:988: ð5:2Þ
One could solve this problem analytically, and the solution at the time t = 1 is
f ðt; x; nÞ ¼ Ifx60gdðn� 0:5Þ þ 0:012If�0:56x60gdðnþ 0:5Þ þ 1:235If06x60:4gdðn� 0:4Þ:
The analytical density and momentum are given by
q ¼

1 x 6 �0:5;
1:012 �0:5 < x 6 0;
1:235 0 < x 6 0:4;
0 0:4 < x:

8>>><
>>>:

qu ¼

0:5 x 6 �0:5;
0:494 �0:5 < x 6 0;
0:494 0 < x 6 0:4;
0 0:4 < x:

8>>><
>>>:
The errors and comparison figures are given in Table 1 and Fig. 2. The convergence orders for the density and momentum
are 0.5199 and 0.5120.

As we may see from this example, sometimes even though the incident and transmitted angles are fairly large, the reflec-
tion coefficient is still too small to be noticeable; on the other hand, the choice of the coefficients makes no difference in
testing the method, therefore to better illustrate the performance of this numerical method, we will use artificial aR, aT in
the numerical examples thereafter.

Example 5.2 (Harmonic oscillator). We consider (2.5) with the following parameters:
V ¼ x2=20 x 6 0;
x2=20þ 0:045 x > 0:

(
aR ¼ 0:2; aT ¼ 0:8
and the initial conditions:
f0ðx; nÞ ¼ q0ðxÞdðn� u0ðxÞÞ; q0ðxÞ ¼ expð�100ðxþ 0:3Þ2Þ; u0ðxÞ ¼ 0:5:

The reference solution is computed in fine mesh and using small time steps. The comparison is given in Fig. 3.
Example 5.3 (Reinitialization). We consider (2.5) with the following parameters:
V ¼
0 x 6 0;
2x2 þ 0:045 x > 0:

�
aR ¼ 0:2; aT ¼ 0:8
and the initial conditions:
Table 1
Example 5.1, the l1 errors of the density and momentum.

Dx 0.02 0.01 0.005

kqerrk1 8.55 � 10�2 5.87 � 10�2 4.16 � 10�2

k(qu)errk1 3.38 � 10�2 2.33 � 10�2 1.66 � 10�2
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f0ðx; nÞ ¼ q0ðxÞdðn� u0ðxÞÞ; q0ðxÞ ¼ Ifx60g; u0ðxÞ ¼ 0:5:

In this example, the particles will hit the interface frequently due to the strong harmonic potential in the domain {x > 0}.

We assume the speed of the particle becomes zero at x = xturn, then by the conservation of Hamiltonian,
0:52

2
¼ 0:045þ ðn

þÞ2

2
¼ 0:045þ 4x2

turn;
one has n+ = 0.4, xturn = 0.2, which implies a lower bound for the reinitialization time is s1 = 1 (actually the second hitting time
is t = p/2).

We compare the numerical solution with analytical solution at t = 1 and t = 2. When reinitialization, we let j be the fol-
lowing cutoff function
jðxÞ ¼ 1; jxj 6 0:5
ffiffiffiffiffiffi
Dx
p

;

0; jxj > 0:5
ffiffiffiffiffiffi
Dx
p

:

(

Following [27], one can find the analytical solution. The analytical solution at t = 1 is given by
f ð1; x; nÞ ¼ Ifx60gdðn� 0:5Þ þ 0:2If�0:56x60gdðnþ 0:5Þ þ 0:8If06x60:2g
1

0:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p d n� 0:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p� �

þ 0:8If0:2 sin 26x<0:2g
1

0:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p d nþ 0:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p� �

: ð5:3Þ
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The analytical density and momentum at t = 1 are given by
−

0.

1.

2.

de
ns

ity
q ¼

1 x 6 �0:5;
1:2 �0:5 < x 6 0;

1ffiffiffiffiffiffiffiffiffiffiffiffi
1�25x2
p 0 < x 6 0:2 sin 2;

2ffiffiffiffiffiffiffiffiffiffiffiffi
1�25x2
p 0:2 sin 2 < x 6 0:2;

0 x > 0:2:

8>>>>>><
>>>>>>:

qu ¼

0:5 x 6 �0:5;
0:4 �0:5 < x 6 0;
0:4 0 < x 6 0:2 sin 2;
0 0:2 sin 2 < x:

8>>><
>>>:
The analytical solution at t = 2 is given by
f ð2; x; nÞ ¼ Ifx60gdðn� 0:5Þ þ 0:2If�16x60gdðnþ 0:5Þ þ 0:64Ifp=4�16x<0gdðnþ 0:5Þ þ 0:8If06x60:2g

� 1

0:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p d n� 0:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p� �

þ 0:8If06x<0:2g
1

0:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p d nþ 0:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p� �

þ 0:16If06x60:2 sin 2ð2�p=2Þg
1

0:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p d n� 0:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 25x2
p� �

: ð5:4Þ
The analytical density and momentum at t = 2 are given by
q ¼

1 x 6 �1;
1:2 �1 < x 6 p=4� 1;
1:84 p=4� 1 < x 6 0;

2:2ffiffiffiffiffiffiffiffiffiffiffiffi
1�25x2
p 0 < x 6 0:2 sin 2ð2� p=2Þ;

2ffiffiffiffiffiffiffiffiffiffiffiffi
1�25x2
p 0:2 sin 2ð2� p=2Þ < x 6 0:2;

0 x > 0:2:

8>>>>>>>>><
>>>>>>>>>:

qu ¼

0:5 x 6 �1;
0:4 �1 < x 6 p=4� 1;
0:08 p=4� 4 < x 6 0;
0:08 0 < x 6 0:2 sin 2ð2� p=2Þ;
0 0:2 sin 2ð2� p=2Þ < x:

8>>>>>><
>>>>>>:
Since the density blows up at x = 0.2, we apply the following formula to calculate f(2,x,n) and then the physical
observables
f ð2; x; nÞ ¼ ðwR � IfxP0gw
T2Þdð/RÞ þ IfxP0gw

T1dð/T1Þ þ wT2dð/T2Þ: ð5:5Þ
This formula is equivalent to (3.8). The advantage of (5.5) is that it singles out the pure reflection part and thus decreases
the effect of the very large q on the momentum near 0.2. The comparison of the numerical solution and the analytical solu-
tion is given in Figs. 4–6.

We now compare with the direct method, in which one discretizes the d function initial data and solves the Liouville
equation directly. Using the same discretized delta function (5.1) with the same parameter b ¼ 0:5

ffiffiffiffiffiffi
Dx
p

, we compute the
solution of this example by the direct method. The comparison of the results at time t = 1 and t = 2 is given in Figs. 7 and
8, which shows that the decomposition method proposed in this paper gives a much more accurate solution especially
for longer time.
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Fig. 4. Example 5.3, the comparison of density and momentum between the reference solution and numerical solution at t = 1.
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Fig. 6. Example 5.3, the comparison of density and momentum between the reference solution and numerical solution at t = 2 with a finer grid and
b ¼ 0:15

ffiffiffiffiffiffi
Dx
p

, reinitialization was performed at t = 1.
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Example 5.4 (2d example). We consider a two-dimensional interface problem in the domain [�1,1] � [�1,1]. The potential
well is given by
V ¼
0 ðx; yÞ 2 X;

1 ðx; yÞ 2 Xc:

�
aR ¼ 0:2; aT ¼ 0:8;
where X = {(x,y)jy > �0.4, y � x � 0.5 < 0, y + x � 0.5 < 0}. The initial condition is
f0ðx; nÞ ¼ q0ðxÞd n� u0ðxÞð Þ; q0ðxÞ ¼ q0ðx; yÞ ¼ Ifjxþ0:5j<0:05; y>0:2g; u0 ¼ ð0;�
ffiffiffi
2
p
Þ:
See Fig. 9 for the illustration of the interface and the initial data.

We compare the numerical solution with analytical solution at t = 1. The analytical solution of the density at t = 1 can be
obtained by the method of generalized characteristics, and it takes the following form:
qðx; yÞ ¼ Ireg1dðu� ð0;�
ffiffiffi
2
p
ÞÞ þ 0:2Ireg2dðu� ð�

ffiffiffi
2
p

; 0ÞÞ þ 0:8ffiffiffi
3
p Ireg3d u� ð2 sinðp=12Þ;�2 cos p=12Þð Þ

þ 0:16ffiffiffi
3
p Ireg4d u� ð2 sinðp=12Þ;2 cosp=12Þð Þ þ 1:28 cosðp=12Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 cos2ðp=12Þ � 6
p Ireg5dðu� ð2 sinðp=12Þ;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 cos2ðp=12Þ � 2

q
Þ;
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Fig. 7. Example 5.3, the comparison of density and momentum between the solutions obtained by our method and by the direct method.
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Fig. 8. Example 5.3, the comparison of density and momentum between the solutions obtained by our method and by the direct method.
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Fig. 9. Illustration of the potential well and initial conditions in Example 5.4.
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where
Fi
reg1 ¼ fðx; yÞj y� x� 0:5 > 0; �0:55 < x < �0:45:g;
reg2 ¼ fðx; yÞj y� x� 0:5 > 0; �0:05 < y < 0:05:g;

reg3 ¼ fðx; yÞj y� x� 0:5 < 0; y > �0:4; y < 0:05� ðxþ 0:45Þ= tanðp=12Þ; y > �0:05� ðxþ 0:55Þ= tanðp=12Þg;

reg4 ¼ fðx; yÞj y� x� 0:5 < 0; y > �0:4; y > �0:4þ ðx� x1Þ= tanðp=12Þ; y < �0:4þ ðx� x2Þ= tanðp=12Þg;

reg5 ¼ ðx; yÞj y� x� 0:5 < 0; y < �0:4; y < �0:4� ðx� x1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 cos2ðp=12Þ � 2

p
2 sinðp=12Þ ;

(

y > �0:4� ðx� x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 cos2ðp=12Þ � 2

p
2 sinðp=12Þ

)
;

x1 ¼ 0:45 tanðp=12Þ � 0:45; x2 ¼ 0:35 tanðp=12Þ � 0:55:
The comparison of the numerical solution and the exact solution was shown in Fig. 10, where the densities after the third
transmission and reflection are ignored since their magnitudes are already very small. The absolute value of the difference
between the numerical solution and exact solution was shown in Fig. 11. The mesh size is Dx = 0.000625,D y = 0.000625 and
the time step is taken to be Dt = 0.000125. In Table 2, the l1 errors are given for different Dx = Dy. The convergence order is
0.5064.
Fig. 10. Example 5.4, the comparison of density between the numerical solution (left) and true solution (right) at t = 1.

g. 11. Example 5.4, the difference between the numerical solution and true solution at t = 1 (left), a bird’s eye view of the difference (right).



Table 2
Example 5.4, the l1 errors of the density.

Dx = Dy 0.0025 0.00125 0.000625

kqerrk1 1.128 � 10�1 7.92 � 10�2 5.59 � 10�2

Fig. 12. Example 5.4, a bird’s eye view of the density. Left: numerical solution. Right: true solution.

Fig. 13. Example 5.4, a bird’s eye view of the density with interface plotted, to better illustrate the result, density was taken to be 2.5 times the original one.
Left: numerical solution. Right: true solution.
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Fig. 12 gives a bird’s eye view of the solution.
Fig. 13 gives a bird’s eye view of the solution with interface plotted. To better illustrate the result, the density in Fig. 13

was taken to be 2.5 times the original one.
6. Concluding remarks

In this paper, we proposed a level set method for the semiclassical limit of the Schrödinger equation with discontinuous
potentials that correspond to potential barriers. At a potential barrier, waves can be partially transmitted and reflected. We
combine the method of Jin–Wen [14,16]–using an interface condition for the Liouville equation to account for partial trans-
missions and reflections, and the level set decomposition method of [9], in order to have a level set method for partial trans-
missions and reflections with a higher numerical accuracy. We introduced two new ideas here. First, we decompose the
solutions involving partial transmissions and reflections into a finite sum of solutions solving problems involving only com-
plete transmissions and those involving only complete reflections, since for problems involving only complete transmission
or complete reflection, the method of [9] can be applied for a higher numerical accuracy. This decomposition is only valid
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when waves or particles hit the interface at most once. For more general problems, a reinitialization technique is introduced
so that waves coming from multiple transmissions and reflections can be combined seamlessly as new initial value prob-
lems. This is implemented by rewriting the sum of several delta functions as one delta function with a suitable weight, which
can be easily implemented numerically. Both one and two space dimension problems were used to demonstrate the validity
of this new numerical method. One can extend the method to higher order accuracy by combining the technique proposed
here and high order methods for computing physical observables, e.g., [28].
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