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Abstract. For the Wigner equation with discontinuous potentials, a phase
space Gaussian beam (PSGB) summation method is proposed in this paper.

We first derive the equations satisfied by the parameters for PSGBs and estab-
lish the relations for parameters of the Gaussian beams between the physical

space (GBs) and the phase space, which motivates an efficient initial data

preparation thus a reduced computational cost than previous method in the
literature. The method consists of three steps: 1) Decompose the initial value

of the wave function into the sum of GBs and use the parameter relations to

prepare the initial values of PSGBs; 2) Solve the evolution equations for each
PSGB; 3) Sum all the PSGBs to construct the approximate solution of the

Wigner equation. Additionally, in order to connect PSGBs at the discontinu-

ous points of the potential, we provide interface conditions for a single phase
space Gaussian beam. Numerical examples are given to verify the validity and

accuracy of method.

1. Introduction. In this paper we present a phase space Gaussian beam method
for solution of the Wigner equation. The Wigner equation describes quantum trans-
port in semiconductor materials and can be derived from the density matrix for-
mulation of quantum mechanics. It describes the time evolution of the Schrödinger
equation using the Wigner Distribution Function [43]

There are two main reasons for using the Wigner formulation in applications.
First, thanks to its form of a quantum Boltzmann equation, the Wigner equation can
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model the scattering phenomena. Second, inspired from classical kinetic models [10],
the quantum-kinetic formulation makes it easier to construct boundary conditions
at the device contacts.

The Wigner function is widely used in describing the properties of electronic
devices such as the Resonant Tunneling Diode (RTD) and others [10]. The Wigner
model is often employed to determine the current-voltage characteristic of these
devices as well as their behavior away from equilibrium. Previous efforts in the
simulations of Wigner equation can be put into two categories, one is determinis-
tic, the other is the Monte Carlo method. The earliest numerical simulations in the
mid-1980s were based on finite-difference schemes [10, 16, 34]. In 1990s, spectral col-
location methods were developed as an efficient improvement for the discretization
of the nonlocal operator LεW ε [35]. In [36] an operator-splitting technique for the
transport term k·∇x and the pseudo-differential term were used to solve the Winger
equation. An analysis of the discrete-momentum Wigner model was performed in
[5, 12]. A deterministic particle method for the Wigner equation was proposed and
analyzed in [3]. The Monte Carlo method was studied from 2002 [28, 38], which
allows the inclusion of more detailed scattering processes. For more recent results
and advances about the Monte Carlo method, see [20, 29] and the review paper [39].
The Monte Carlo method has the potential to make multi-dimensional simulations
feasible.

The Gaussian beam method (GB), which was first developed for the Schrödinger
equation by Heller in 1970s [14], and independently developed by Popov for the
linear wave equation [31], is an efficient approach that allows accurate computation
of the amplitude near caustics. Similar to the classical ray tracing method, the
Gaussian beam solution in physical space for the Schrödinger equation also has
a WKB form. The center of the Gaussian beam follows the ray determined by a
Hamiltonian system. The difference lies in that the Gaussian beam allows the phase
function to be complex off its center, and the imaginary part of the phase function
is positive, which makes the solution decay exponentially away from the center. The
validity of the Gaussian beam method at caustics was analyzed by Ralston in [33].
Its uniform convergence was proved by Robert [37] recently.

The accuracy of the beam is determined by the truncation error of the Taylor
expansion, and the approximate solution is given by a sum of all the beams. The
accuracy of the Taylor expansion was studied by Motamed and Runborg in [27],
and Tanushev in [42]. A Gaussian beam method was presented for the analysis
of the energy of the high frequency solution to the mixed problem of the scalar
wave equation in a convex domain by Akian, Alexandre, Bougacha in [1]. By
computing Wigner measures based on the Gaussian beam formalism, they obtained
more accurate asymptotic estimates for the limit of the energy of the waves than
methods based on pseudo-differential calculus. Higher order Gaussian beam method
that give better accuracy for the linear wave equations was developed and analyzed
in [42]. Also for the Schrödinger equations, Yin and Zheng [44] constructed a
high order Gaussian beam method and derived the interface conditions for the
discontinuous potentials. Eulerian Gaussian beam methods were developed in [19,
21, 22]. See also a recent review on numerical solutions of semicalssical limit of high
frequency waves [17]. Accuracy studies were carried out in [8, 24]. New initial data
decomposition methods were developed in [2, 32, 40, 45].

In this paper, we propose a phase space Gaussian beam (PSGB) method for
the Wigner equation. We first derive the equations satisfied by the parameters
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for PSGBs and establish the relations of parameters for Gaussian beams between
physical space (GBs) and the phase space. This gives efficient initial data prepara-
tion which yields a computational cost lower than previous method in the literature
[15]. The method consists of three steps: 1) Decompose the initial value of the
wave function into the sum of GBs and use the parameter relations to get the ini-
tial values of PSGBs; 2) Solve the evolution equations for each PSGB; 3) Sum all
the PSGBs to construct the approximate solution of the Wigner equation. Addi-
tionally, in order to connect PSGBs at the discontinuous points of the potential, we
establish interface conditions for a single PSGB. Compared to the PSGB method
for the one dimensional Liouville equations with quantum initial conditions in [15],
our approach requires the number of PSGBs to be O(ε−

n
2 ) instead of O(ε−n), thus

significantly reduces the computational cost.
One may argue that the Wigner equation is defined in the phase space, thus an

approximate method such as the PSGB method is much more expensive than a
GB method for the original Schrödinger equaiton. This is true in the pure state
case. However, for mixed state, one needs to use the von Neumann equation, which
doubles the dimension anyway, while the Wigner equation has the same dimension.
This is another motivation for the PSGB other than those mentioned earlier.

Here we compare the computational costs of these different approaches. To solve
directly the 2n dimensional Wigner equation in order to resolve ε, the mesh size
must be O(ε) and the time step have to be O(ε1/m), with m the convergence order
of the time discretization. Thus, the total computational cost of direct simulation is
of O(ε−2n−1/m). A direct solver for the von Neumann equation is of O(ε−1.5n−1/m).
since for each time step, the most efficient method [13]–the short time Chebyshev
propagator for the von Neumann equation–needs O(ε−1.5n) operations. As for the
PSGB summation method for the 2n dimensional Wigner equation, the number of
the PSGBs is O(ε−n/2), while the time step can be taken as ∆t = O(ε1/2) in a fourth
order time discretization; the computational cost of the summation process for the
PSGBs is of O(ε−n/2). Therefore, the total computational cost of PSGB summation
method is of O(ε−(n+1)/2). Therefore, the PSGB method significantly reduces the
computational cost, and provide an accurate approximation to the Wigner equation
and von Neumman equaiton, even with a discontinuous potential.

The paper is organized as follows. In Sec. 2, we introduce the PSGB formulation
for the Wigner equation and study the relations between GBs and PSGBs. In Sec.
3, we give the interface conditions at the discontinuous points of the potential.
The strategies to implement the PSGBs summation are illustrated in Sec. 4. To
demonstrate the accuracy and efficiency of our PSGB method, numerical examples
of both one and two space dimensions are given in Sec. 5. Finally, we make some
conclusive remarks in Sec. 6.

2. The Gaussian beam method for the Wigner equation.

2.1. The Wigner equation. The Wigner equation can be derived from the Schrödinger
equation using the Wigner transform. Consider the following Schrödinger equation,

iεψεt (t,x) = −1

2
ε2∆ψε(t,x) + V (x)ψε, x ∈ Rd, t > 0, (2.1)

ψε(0,x) = ψε0(x) = A0(x)eiS0(x)/ε, (2.2)

where x is the position, t is the time, ψ(x, t) is the complex-valued wave function,
V (x) is the potential and ε is the rescaled Plank constant.
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The Wigner transform of ψε is

W ε(t,x, k) =
1

(2π)n

∫
Rn
eik·yψε(t,x− 1

2
εy)ψε(t,x+

1

2
εy)dy, (2.3)

where ψ denotes the complex conjugate of ψ. Then the corresponding evolution
equation for the Wigner distribution function W ε(t,x, k) is,

∂tW
ε(t,x, k) + k · ∇xW

ε(t,x, k) + LεW ε(t,x, k) = 0, (2.4)

where the operator Lε is defined by

LεW ε(t,x, k) = − i

(2π)n

∫
Rn
W ε(t,x, p)

(∫
Rn
ei(k−p)·y 1

ε

(
V (x+

ε

2
y)−V (x− ε

2
y)
)
dy
)
dp,

(2.5)
which is local in x, t and nonlocal in k. The initial data corresponding to (2.2) is
W ε(0,x, k) = W ε

0 (x, k), which is not necessary to be specified for this paper.
The above two formulations (2.1) and (2.3) give the evolution in the physical

space and phase space respectively. In fact one can recover the physical observables
from both the wave function ψε and the Winger function W ε, namely,

position density : ρε = |ψε|2 =

∫
Rn
W ε(t,x, k)dk, (2.6)

density flux : Jε =
ε

2i
(ψε∇ψε − ψε∇ψε) =

∫
Rn
kW ε(t,x, k)dk, (2.7)

kinetic energy : Eε =
ε2

2
|∇ψε|2 =

∫
Rn
|k|2W ε(t,x, k)dk. (2.8)

When V (x) is smooth enough and ε→ 0, the Wigner equation converges to the
Liouville equation [11, 23]

∂tW (t,x, k) + k · ∇xW (t,x, k)−∇xV (x) · ∇kW (t,x, k) = 0. (2.9)

Moreover, if the initial data in the physical space have the WKB form (2.2), as
ε→ 0, the corresponding initial condition for the Liouville equation is

W (0,x, k) = |A0(x)|2δ(k −∇S0(x)).

2.2. The Gaussian beam method for the Schrödinger equation. Similar to
the WKB method, the Gaussian beam solution is given in the form

φε(t,x,y0) = A(t,y)eiT (t,x,y)/ε, (2.10)

where the variable y = y(t,y0) is the center of the beam, to be determined below,
and the phase T (t,x, y) is given by

T (t,x, y) = S(t,y) + p(t,y) · (x− y) +
1

2
(x− y)TM(t,y)(x− y).

This is reminiscent of the Taylor expansion of the phase S around the point y, upon
identifying p = ∇S ∈ Rd,M = ∇2S, the Hessian matrix. The idea is to allow the
phase T to be complex-valued, and keep the imaginary part of M ∈ Cn×n positive
definite so that (2.10) indeed has a Gaussian profile.

Plugging the ansatz (2.10) into the Schrödinger equation (2.1), and ignoring the
higher-order terms in both ε and x− y, one obtains the following system of ODEs:
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dy

dt
= p, (2.11)

dp

dt
= −∇yV, (2.12)

dS

dt
=

1

2
|p|2 − V, (2.13)

dM

dt
= −M2 −∇2

yV, (2.14)

dA

dt
=

1

2

(
Tr(M)

)
A, (2.15)

where p, V,M, S and A are functions of (t,y(t,y0)). Equations (2.11)-(2.12) are
the classical Hamiltonian system defining the ray-tracing algorithms. Equations
(2.11)-(2.15) define the Lagrangian formulation of the Gaussian beams.

In practical computation, the Gaussian beam summation method for the Schrödinger
equation can be implemented in three steps:

1. Decompose the initial data into summation of Gaussian beams

ψε(0,x) =

N∑
j=1

φεj(0,x);

2. Solve the evolution equations of the parameters (as in (2.11)-(2.15)) for each
Gaussian beam, to find the evolution of each Gaussian beam;

3. Sum up these Gaussian beams to construct an approximation of the wave
function ψε.

2.3. The Lagrangian method in the phase space. In this section, we will
construct the phase space Gaussian beam (PSGB) for the Wigner equation and
derive its evolution equation. The basic idea of a Gaussian beam method is to
locally approximate the potential of the Schrödinger equation by a quadratic form,
and then find out the corresponding evolution dynamics of Gaussian beams. The
similar idea can be extended to the Wigner equation. Let the density distribution
function have the following PSGB form

W (t,x, k) = U(t, q,p) exp
(
− 1

ε
T (t,x, k, q,p)

)
,x,k ∈ Rn, n = 1, 2, 3, (2.16)

where T is defined as

T =

(
x− q(t)
k − p(t)

)T (
N11(t) N12(t)
N21(t) N22(t)

)(
x− q(t)
k − p(t)

)
, Nij(t) ∈ Rn×n, i, j = 1, 2

(2.17)
with NT

12(t) = N21(t). When the potential is a quadratic function of x, i.e. V (x) =
xTBx+b ·x+ c,x ∈ Rn, the Wigner equation coincides with the classical Liouville
equation. Therefore, if we approximate the potential V (x) near q by

V (x) ≈ V (q) +∇xV (q) · (x− q) +
1

2
(x− q)T∇2

xV (q)(x− q),

in the neighborhood of (q,p), the original Winger equation (2.3) reduces to the
Liouville equation

∂W

∂t
+ k · ∇xW − (∇xV (q) +∇2

xV (q)(x− q)) · ∇kW = 0. (2.18)
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We now try to find the evolution dynamics of PSGB (2.16) determined by (2.18).
Define

y =

(
x
k

)
, ξ =

(
k

−(∇xV (q) +∇2
xV (q)(x− q))

)
, z =

(
q
p

)
,

rewrite (2.18) as
∂W

∂t
+ ξ · ∇yW = 0. (2.19)

Note that z depends on t. Inserting the PSGB form (2.16) into (2.18), and collecting
the first two orders with respect to ε, one obtains

O
(1

ε

)
:

∂T

∂t
+∇zT ·

∂z

∂t
+ ξ · ∇yT = 0, (2.20)

O(1) :
∂U

∂t
+∇zU ·

∂z

∂t
= 0. (2.21)

Taking the first and second derivatives with respect to y in (2.20) gives

∂(∇yT )

∂t
+
(
∇yzT

)T ∂z
∂t

+
(
∇yξ

)T∇yT + (∇2
yT )T ξ = 0,(2.22)

∂(∇2
yT )

∂t
+
(
∇yyzT

)T ∂z
∂t

+
(
∇yξ

)T∇2
yT +

(
∇2

yT
)T∇yξ +∇3

yT = 0.(2.23)

Let y = z and noting (2.17), one has

∇yT
∣∣
y=z

= 0, ∇yzT
∣∣
y=z

= −2N, ∇2
yT
∣∣
y=z

= 2N,

with

N =

(
N11(t) N12(t)
N21(t) N22(t)

)
,

so that (2.22) becomes

N(
∂z

∂t
− ξ)

∣∣
y=z

= 0.

If N is nonsingular, then

∂z

∂t
= ξ

∣∣
y=z

=

(
p

−∇qV (q)

)
. (2.24)

Similarly when y = z, (2.23) becomes

∂N

∂t
+
∂z

∂t
· ∇zN +

(
∇yξ

)T
N +N∇yξ = 0. (2.25)

Combining (2.21), (2.24) and (2.25), we obtain the ODE system describing the
evolution of the parameters of the PSGB:

dN

dt
= −

[(
∇yξ)TN +N∇yξ

]
, (2.26)

dU

dt
= 0, (2.27)

dq

dt
= p, (2.28)

dp

dt
= −∇qV (q). (2.29)

To preserve the Gaussian profile, the matrix N(t) must be positive definite. The
equation (2.26) is the Lyapunov equation. Dieci and Eirola proved the following
proposition in [9].
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Proposition 1. The solution of the following Lyapunov equation

Ẋ(t) = C(t)X(t) +X(t)CT (t) +D(t), (2.30)

X(0) = X0, X0 is symmetric, (2.31)

exists and is symmetric for all t > 0. Furthermore, if X(s) or D(s) is positive
definite for some s ≥ 0, then X(t) is positive definite for all t ≥ s.

Directly substitution shows that the solution of the Lyapunov equation (2.30)
satisfies for t ≥ s ≥ 0,

X(t) = Φ(t, s)X(s)Φ(t, s)T +

∫ t

s

Φ(t, τ)D(τ)Φ(t, τ)T dτ (2.32)

where Φ is the solution of

∂tΦ(t, τ) = C(t)Φ(t, τ), Φ(τ, τ) = I. (2.33)

Then the claims follow now from the fact that Φ(t, τ) is non-singular for all t, τ .r
Applying the above proposition to our case with C(t) = −∇yT and D(t) = 0

implies that if the initial data N(0) is symmetric and positive definite, then N(t)
remains so for all t > 0, thus the Gaussian profile will be preserved for all t > 0.

2.4. Relations between the GBs and PSGBs. The ODE system (2.26)-(2.28)
was derived in [15], but only the cases with smooth potentials were considered.
Additionally, the computational cost of the initial data preparation in [15] is very
expensive. In this section, we illustrate a new way of initial data preparation, which
can significantly improve the efficiency.

Before going to the details of our initial data decomposition, we review the pro-
cedure used [15]. Firstly, the Monte Carlo method was employed to decompose the
initial data into Gaussian wave packages in the physical space, namely,

ψ(x, 0) ≈
N∑
j=1

Aj exp
[
− aj(x− xj)2 +

i

ε
kj(x− xj)

]
.

Apply the Wigner transform on this approximation, which is further decomposed
into Gaussian beams in the phase space via the Monte-Carlo method,

W ε(t, x, k) ≈
M∑
n=1

An exp
{
−
[
an(x− xn)2 + 2bn(x− xn)(k − kn) + cn(k − kn)2

]}
.

Finally, the ODEs (2.26)-(2.29) were solved for each beam. A large number of
beams is required to approximate the initial data, and O(1/ε) beams are needed to
approximate the Wigner function.

We will use the relation between the GB and PSGB to get a more efficient
decomposition of the initial data.

Take the WKB initial data (2.2). According to [42], one can approximate the
initial data by the sum of a series of GBs

ψε(0,x) = A(x)eiS(x)/ε ≈
N∑
j=1

Aj exp
[ i
ε

(
Sj+pj ·(x−qj)+

1

2
(x−qj)TM(x−qj)

)]
.

(2.34)
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We now take the Wigner transform on the right side of (2.34). Introduce the general
Wigner transform:

W[ψ1, ψ2] =
1

(2π)n

∫
Rn
eik·x̃ψ1(x− ε

2
x̃)ψ2(x+

ε

2
x̃)dx̃, (2.35)

which is a bilinear operator of ψ1 and ψ2.
First of all, we consider the Wigner transform of one single GB. The Wigner

transform for the GBs of the form

φ(t,x) = A0(q) exp
[ i
ε

(
S(q) + p · (x− q) +

1

2
(x− q)TM(x− q)

)]
is

W ε(t,x,k) =
1

(2π)n

∫
Rn
eik·x̃φ(t,x− ε

2
x̃)φ(t,x+

ε

2
x̃)dx̃

=
1

(2π)n

∫
Rn
eik·x̃|A0|2ei[−p−L(x−q)·x̃− ε4 x̃

TKx̃− 1
ε (x−q)TK(x−q)]

=
|A0|2

(πε)n/2|K| 12
exp

[
− 1

ε
(y − z)T M̃(y − z)

]
(2.36)

with L = Re(M),K = Im(M), |K| = detK and

M̃ =

(
K + LTK−1L −LTK−1

−K−1L K−1

)
.

From (2.36), one can express the parameters of PSGB in (2.16), (2.17) by the
parameters of GB,

U(t) = |A(t)|2/
√

(πε)n|K|, (2.37)

N11 = K + LTK−1L, (2.38)

N12 = −LTK−1, (2.39)

N21 = −K−1L (2.40)

N22 = K−1. (2.41)

Next, we consider the Wigner transform for the summation of GBs. We only
need to consider the case of a summation of two GBs:

ψ(t,x) =

2∑
j=1

φj(t,x) =

2∑
j=1

Aj(x) exp
[ i
ε

(
Sj+pj ·(x−qj)+

1

2
(x−qj)TMj(x−qj)

)]
,

whose Wigner transform is

W ε(t,x,k) =
1

(2π)n

∫
Rn
eik·x̃ψ(t,x− ε

2
x̃)ψ(t,x+

ε

2
x̃)dx̃

=
1

(2π)n

∫
Rn
eik·x̃(φ−1 + φ−2 )(φ+

1 + φ+
2 )dx̃

=
1

(2π)n

∫
Rn
eik·x̃(φ−1 φ

+
1 + φ−2 φ

+
1 + φ−1 φ

+
2 + φ−2 φ

+
2 )dx̃

= W[φ−1 , φ
+
1 ] + W[φ−2 , φ

+
2 ] + W[φ−1 , φ

+
2 ] + W[φ−2 , φ

+
1 ],

where

φ±j = φj(x±
ε

2
x̃), j = 1, 2.
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The Wigner transform for φ1, φ2 is known from (2.36). The rest is to derive the

formula for the crossing terms φ−2 φ
+
1 and φ−1 φ

+
2 . We first calculate

1

(2π)n

∫
Rn
eik·x̃φ−2 φ

+
1 dx̃ =

A1A2

(2π)n
e−

(x−q1)TK1(x−q1)+(x−q2)TK2(x−q2)
2ε

∫
Rn
eikx̃eiτ12/εeiτ(x̃)eg(x̃)dx̃,

with

Lj = Re(Mj), Kj = Im(Mj), j = 1, 2,

τ12 = (S2 − S1) + (p2 · (x− q2)− p1 · (x− q1))

+
1

2

(
(x− q2)TL2(x− q2)− (x− q1)TL1(x− q1)

)
,

τ(x̃) =
1

2

[
(p1 + p2) + L2(x− q2) + L1(x− q1)

]
· x̃+

ε

8
x̃T (L2 − L1)x̃,

g(x̃) = − ε
8
x̃T (K2 +K1)x̃+

1

2
(K1(x− q1)−K2(x− q2)) · x̃.

After a tedious but trivial calculation, one gets

W[φ−2 , φ
+
1 ] =

A1A2√
(πε2 )n|i(M2 −M1)|

e

[
− 1

2ε

(
(x−q1)TK1(x−q1)+(x−q2)TK2(x−q2)

)
+i

τ12
ε

]
×e
[

2i
ε

(
k−p̂+ i

2

(
K2(x−q2)−K1(x−q1)

))T(
M2−M1

)−1(
k−p̂+ i

2

(
K2(x−q2)−K1(x−q1)

))]
,

where

p̂ =
p1 + p2

2
+

1

2

(
K2(x− q2) +K1(x− q1)

)
.

From the fact

W[φ−1 φ
+
2 ] = W[φ−2 φ

+
1 ],

the summation of the crossing terms in the Wigner transform of two GBs is

W[φ−1 , φ
+
2 ] + W[φ−2 , φ

+
1 ] = 2Re

(
W[φ−2 , φ

+
1 ]
)
, (2.42)

which represent the interference between different GBs.
Until now, we are able to get the Wigner transform of the initial data. Using

the relations (2.37)-(2.41), again, one can derive the evolution equations for the
parameters of PSGBs from (2.11)-(2.15):

q̇ = p, (2.43)

ṗ = −∇qV, (2.44)

U̇ = 0, (2.45)

Ṅ11 = ∇2
qV N12 +N21∇2

qV, (2.46)

Ṅ12 = −N11 +∇2
qV N22, (2.47)

Ṅ21 = −N11 +N22∇2
qV, (2.48)

Ṅ22 = −(N12 +N21), (2.49)

which are exactly the same as (2.26)-(2.28). Each PSGB proceeds with time and
we can reconstruct W ε(t,x,k) at any fixed time by the summation of all PSGBs
and their interferences. The details about the reconstruction will be described in
section 4.

In summary, the initial value of the wave function in the physical space can
be decomposed into the sum of GBs. After the Wigner transform, each GB is
transformed into a PSGB, and the obtained parameters of these PSGBs will be
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used as the initial value of the ODE system (2.43)-(2.49). Namely, we solve the
following initial value problem for each PSGB,

q̇ = p, q(0) = q(0),

ṗ = −∇qV, p(0) = p(0),

U̇ = 0, U(0) = |A(0)|2/
√

(πε)n|K(0)|,
Ṅ11 = ∇2

qV N12 +N21∇2
qV, N11(0) = K(0) +

(
LTK−1L

)
(0),

Ṅ12 = −N11 +∇2
qV N22, N12(0) = −

(
LTK−1

)
(0),

Ṅ21 = −N11 +N22∇2
qV, N21(0) = −

(
K−1L

)
(0),

Ṅ22 = −(N12 +N21), N22(0) = K−1(0).

(2.50)

Furthermore, the configuration of the PSGB will be preserved as time evolves,
which can be seen as follows. From (2.38)-(2.41), we have

yT M̃y =

(
x
k

)T (
K + LTK−1L −LTK−1

−K−1L K−1

)(
x
k

)
= xTKx+ (Lx− k)TK−1(Lx− k).

From the theory of GB, K is positive definite if the initial data of K is positive
definite. This indicates that the coefficient matrix M̃ of the PSGB is positive
definite if the coefficient matrix of the initial data is chosen to be positive definite.

Compared to the method in [15] which needs O(ε−n) Gaussian beams for the 2n
dimensional Wigner equation, we only need O(ε−n/2) Gaussian beam due to the
efficient initial data decomposition. Thus our method reduces the computational
cost dramatically.

3. The interface conditions. If the potential V (x) has some isolated disconti-
nuities, the PSGB method will break down at these discontinuous points. Some
interface conditions must be found to connect the PSGB at the interfaces. From
the interface conditions for GB and the relations between GB and PSGB, one can
find the interface conditions for PSGB.

We recall the interface conditions for GB [18, 44]. Assume that the interface is a
line (if n = 2) or a flat surface (if n = 3) locate at q1 = 0. With q, p, A, M being
the parameters as before, we introduce the following notations, see Figure 1:

Region 1 : {q|q1 < 0}, q− = [0−, q2, · · · , qn], V1(q−) := lim
q→q−

V1(q);

Region 2 : {q|q1 > 0}, q+ = [0+, q2, · · · , qn]. V2(q+) := lim
q→q+

V2(q);

the incident wave vector : pi := (pi1, p2, . . . , pn);

the reflected wave vector : pr := (−pi1, p2, . . . , pn);

the transmitted wave vector : pt := (pt1, p2, . . . , pn),

the amplitudes of the incident/transmitted/reflected beam : Ai/At/Ar,

the Hessian matrices of the incident/transmitted/reflected beam : M i/M t/Mr.
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interface

Region 1 Region 2
V1 ) V2 )+−(q (q

( p ,r ,M r A )r

reflected beam

transmitted beam
)( p ,t M ,t At

incident beam
(p i, M ,i Ai )

Figure 1. beams at the interface

When the interface is as in Figure 1, the interface conditions for PSGB are given
as follows. For wave vector p, the Hamiltonian must be conserved,

pr2 = pi2, p
r
3 = pi3,

1

2
|pr|2 + V1(q−) =

1

2
|pi|2 + V1(q−), (3.1)

pt2 = pi2, p
t
3 = pi3,

1

2
|pt|2 + V2(q+) =

1

2
|pi|2 + V1(q−). (3.2)

The interface conditions for the amplitudes are

Ar = αrAi, αr =
pi1 − pt1
pi1 + pt1

, (3.3)

At = αtAi, αt =
2pi1

pi1 + pt1
. (3.4)

For Hessian matrices, one has

M t = QtM iQt − 1

pt1
e1v

TQt, (3.5)

Mr = QrM iQr, (3.6)

where

Ql =

1
1

pi1/p
l
1

 , l = r, t, v = ∇qV2(q+)−∇qV1(q−).

Then for L = Re(M),K = Im(M), we obtain the following interface conditions

Kl = QlKiQl, l = r, t. (3.7)

Lt = QtLiQt − 1

pt1
e3v

TQt, (3.8)

Lr = QrLiQr. (3.9)

One can derive

|Kl| = |Ql|2|Ki| =
(pi1
pl1

)2

|Ki|, l = r, t.
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Combining the above equation with (2.37), we obtain the interface conditions for
U ,

Ur = βrU i, with βr =
∣∣∣pi1 − pt1
pi1 + pt1

∣∣∣2, (3.10)

U t = βtU i, with βt =
pt1
pi1
· 4pi1p

t
1

|pt1 + pi1|2
. (3.11)

For p, the interface condition is the same as for GB’s in (3.1) and (3.2).
On the other hand, from (2.38)-(2.41) and (3.7)-(3.9), we get the interface con-

ditions for N ,

Nr
11 = Qr(N i

22)−1Qr +Qr(N i
21)T (N i

22)−1N i
21Q

r, (3.12)

N t
11 = Qt(N i

22)−1Qt + [Qt(N i
21)T (N i

22)−1Qt − 1

pt1
QtvT ]

·(Qt)−1N i
22(Qt)−1[Qt(N i

22)−1N i
21 −

1

pt1
e1v

T ]Qt, (3.13)

N l
22 = (Ql)−1N i

22(Ql)−1, l = r, t, (3.14)

N t
21 = (Qt)−1N i

21Q
t + (Qt)−1N i

22(Qt)−1 1

pt1
e1v

TQt, (3.15)

Nr
21 = (Qr)−1N i

21Q
r. (3.16)

We will use these interface conditions in our practical computations.
For the general case, one can apply the above techniques in the normal direction

of the interface as in [30]. Take ξ1, ξ2 to be orthogonal coordinates on the interface.
Defining Γ(0, 0) = Γ0, we can define the interface near ξ1 = ξ2 = 0 as

Γ(ξ1, ξ2) = Γ0 + ξ1t1 + ξ2t2 +

2∑
i,j=1

Cijξiξjt3, (3.17)

where tj , j = 1, 2 are orthogonal unit vectors in the tangent plane at Γ0, and t3 is
the unit normal of Γ at Γ0.

The interface conditions for the reflected GB are

pr · tj = pi · tj , j = 1, 2,

|pr|2

2
+ V1(q−) =

|pi|2

2
+ V1(q−),

(3.18)

and the connection conditions for the transmitted wave

pt · tj = pi · tj , j = 1, 2,

|pt|2

2
+ V2(q+) =

|pi|2

2
+ V1(q−).

(3.19)

For Hessian matrices M , the reflected GB satisfies

Mr = PTr M
iPr, (3.20)

where
Pr = QiQ

−1
r , Qj = (pj , t1, t2), j = r, i,

and the transmitted GB satisfies

M t = PTt M
iPt +Q−Tt DQ−1

t , (3.21)

where
Pt = Q−Tt Qi, Qj = (pj , t1, t2), j = i, t,
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and

D =

pi · ∇qV1(q−)− pt · ∇qV2(q+) t1 · v t2 · v
t1 · v 2(pi − pt) · t3C11 2(pi − pt) · t3C12

t2 · v 2(pi − pt) · t3C21 2(pi − pt) · t3C22

 .

The amplitudes A are connected by the following conditions

Ar = αrAi, αr =
(pi − pt) · t3
(pi + pt) · t3

, (3.22)

At = αtAi, αt =
2pi · t3

(pi + pt) · t3
. (3.23)

Then by using the relation between the GB and PSGB, one can derive the interface
conditions for the PSGB.

Ur = βrU i, with βr =
∣∣∣ (pi − pt) · t3
(pi + pt) · t3

∣∣∣2 · |P−1
r |, (3.24)

U t = βtU i, with βt =
4(pi · t3)(pt · t3)

|(pi + pt) · t3|2
|P−1
t |. (3.25)

For p, the interface conditions are the same as for GB’s in (3.19) and (3.18).
The interface conditions for N are given as following

Nr
11 = PTr (N i

22)−1Pr + PTr (N i
21)T (N i

22)−1N i
21Pr, (3.26)

Nr
21 = P−1

r N i
21Pr, (3.27)

Nr
22 = P−1

r N i
22P

−T
r , (3.28)

N t
11 = PTt (N i

22)−1Pt +
[
Q−Tt DQ−1

t − Pt(N i
21)T (N i

22)−1PTt
]

·P−1
t N i

22P
−T
t

[
Q−Tt DQ−1

t − PTt (N i
22)−1N i

21Pt
]
, (3.29)

N t
21 = P−1

t N i
21Pt − P−1

t N i
22P

−T
t Q−Tt DQ−1

t , (3.30)

N t
22 = P−1

t N i
22P

−T
t . (3.31)

4. PSGB Summation. Now we reconstruct the approximate solution of the Winger
equation from PSGBs. One difficulty is that the phase information of GBs is lost
in the Wigner transform. So one can not recover directly the interference terms of
different PSGBs. We will recover the phase information from the parameters of the
GB. The Wigner function of one single GB is a PSGB, which is always positive.
However, the Wigner function of the sum of two GBs is not always positive. The
negative part comes form the cross terms of these two beams.

In the reconstruction process, besides the summation of all the PSGBs, we need
to add the crossing terms (2.42), namely, the solution is

W ε(t, x, k) =

J∑
j=1

Uj exp{−1

ε
(z − zj)TNj(z − zj)}+

J∑
j,l=1,l<j

Ujl. (4.1)

In order to find Ujl, we must express (2.42) by the parameters of PSGBs. From

equations (2.38)-(2.41), one can write Lj and Kj as functions of N
(j)
lm , l,m = 1, 2,

Lj = −(N
(j)
22 )−1N

(j)
21 , Kj = (N

(j)
22 )−1, j = 1, 2, · · · , J.
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Thus, the crossing terms can be expressed by the parameters of PSGBs:

Ujl = W[φ−j φ
+
l ] =

AjAl√
(πε2 )n|iM̃jl|

e

[
− 1

2ε ((x−ql)
T (N

(l)
22 )−1(x−ql))+(x−qj)

T (N
(j)
22 )−1(x−qj))+i

τlj
ε

]

×e
[

2i
ε

(
k−p̂jl+ i

2 ((N
(j)
22 )−1(x−qj)−(N

(l)
22 )−1(x−qj))

)T
M̃−1
lj

(
k−p̂jl+ i

2 ((N
(j)
22 )−1(x−qj)−(N

(l)
22 )−1(x−ql))

)]
,

where

M̃lj = −(N
(j)
22 )−1N

(j)
21 + i(N

(j)
22 )−1 + (N

(l)
22 )−1N

(l)
21 − i(N

(l)
22 )−1,

p̂jl =
pl + pj

2
+

1

2
((N

(j)
22 )−1(x− qj) + (N

(l)
22 )−1(x− ql)),

τlj = (Sj − Sl) + (pj · (x− qj)− pl · (x− ql))

−1

2
((x− qj)T (N

(j)
22 )−1N

(j)
21 (x− qj) + (x− ql)T (N

(l)
22 )−1N

(l)
21 (x− ql)).

In the above formula, Sj and Aj , j = 1, · · · , J include the phase information and
can not be recovered directly. From the equations of GB, we know

Ṡj(t) =
1

2
|pj |2 − V (qj), (4.2)

Ȧj(t) = −1

2
(Tr(Mj))Aj(t). (4.3)

Since

|Aj(t)|2 = Uj(t)
√

(πε)n|Kj | = Uj(t)

√
(πε)n|(N (j)

22 )−1|, 0 ≤ j ≤ J,

we can rewrite Aj(t) = |Aj(t)|eΦj , then

Φ̇j(t) = −1

2
Tr(Kj(t)) = −1

2
Tr((N

(j)
22 )−1(t)). (4.4)

From (4.2) and (4.4), for j = 1, · · · , N , we obtain

Sj(t) = Sj(0) +

∫ t

0

[pj(τ)2

2
− V (qj(τ))

]
dτ, (4.5)

Φj(t) = Φj(0)− 1

2

∫ t

0

Tr((N
(j)
22 )−1(τ))dτ. (4.6)

Finally, the crossing term can be recovered. The approximate solution W (t,x,k)
obtained form the above summation can be negative due to the crossing term Ujl,
which gives important corrections near the caustics.

We summarize our PSGB method as follows,

1. Decompose the initial wave function into a sum of GBs.
2. Define the centers (qj(0),pj(0)) of the GBs as the centers of PSGBs, and

use the relations (2.37)-(2.41) to define the initial values of Uj(t), N
(j)
11 (t),

N
(j)
12 (t), N

(j)
21 (t), N

(j)
22 (t) for PSGB from the parameters of the corresponding

GB.
3. Solve the ODE system (2.50) for each PSGB, and connect the beams at dis-

continuous points with interface conditions (3.12)-(3.16).
4. Use (4.1) to reconstruct the Wigner function W ε(t,x,k) from the PSGBs.
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5. Numerical Examples. In this section we present four numerical examples to
demonstrate the validity of our scheme and to show its numerical efficiency. In the
numerical computations the fourth order Runge -Kutta time discretization is used.

Example 5.1. Consider the 1-D Schrödinger equation (2.1) and (2.2). Let

V = 10, A0(x) = exp(−25x2), S0(x) =
1

5
log(2 cosh(5x)).

The corresponding Wigner equation is

∂tW
ε(t, x, k) + k · ∇xW ε(t, x, k) = 0, (5.1)

with initial value defined by the Wigner transform of ψ(0,x).

In this example, the reference solutions are computed by the time splitting spec-
tral method for the Schrödinger equation in [7].

We choose ε = 1/1000, the number of PSGBs is 150 and time step ∆t = 1/200.
Figure 2 compares the position densities, the fluxes and the kinetic energies of
the direct simulation of the Wigner equation and our PSGB method. The PSGB
summation method provides an accurate approximation even in the region of the
cusp caustics.

For different ε, Figure 3 gives the l1 and l2 errors of the solution computed by
the PSGB method for position density at time t = 0.5. We use 250 Gaussian beams
and ∆t = 1/1000 in the PSGB method. The convergence rate of both l1 and l2

errors is about first order with respect to ε.

Example 5.2. Consider the Schrödinger equation (2.1), (2.2), where

A0(x) = exp(−50(x+ 0.2)2), S0(x) = 1.6x, V (x) =

{
0, x < 0.2,

1, x > 0.2,

the corresponding Wigner equation is

∂tW
ε(t, x, k) + k · ∇xW ε(t, x, k) + LεW ε(t, x, k) = 0, (5.2)

and initial condition is given by the Wigner transform of ψ(0,x).

In this example, the potential contains a discontinuity at x = 0.2. We use
200 PSGBs to simulate the Wigner equation, and the time step is chosen to be
∆t = 1/200. We need the interface conditions (3.12)-(3.16) to connect the reflected
and transmitted PSGB to the incident PSGB.

For the sake of comparison, a reference solution for each potential is computed
by the characteristic expansion method as in [44].

Figure 4 shows the position density, fluxes and kinetic energies of the solution
obtained by directly simulating the Wigner equation and the solution computed by
our phase space Gaussian beam summation method. When an incident wave hits the
singular point of the potential, it splits into a reflected wave and a transmitted wave.
The PSGB method captures the reflected wave and transmitted wave accurately.
The numerical results verify the validity of the interface conditions for PSGB.

Figure 5 gives the l1 and l2 errors between the solution of the direct simulation
of the Wigner equation and the solution computed by the PSGB method at time
t = 0.4. We use 250 PSGBs and ∆t = 1/1000. The convergence orders of both l1

and l2 errors are about one half with respect to ε. We have seen in Example 5.1
that the convergence order is 1 in ε when V (x) is smooth, whereas in this example
the order reduces to 1/2 due to the discontinuities in V (x).
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(a) position density

(b) density flux

(c) kinetic energy

Figure 2. Example 5.1. Evolution of solutions when ε = 1/1000.
Left: reference solution; right: approximate solution by PSGB
method, using 150 PSGBs and ∆t = 1/200.

Example 5.3. Consider the Schrödinger equation (2.1), (2.2), when

A0(x) = exp(−100(x+ 0.4)2), S0(x) = 1.8x, V (x) =



0, x < 0,

1− 0.2x, 0 < x < 0.5,

−0.2x, 0.5 < x < 1.5,

1− 0.2x, 1.5 < x < 2,

−0.5, x > 2,
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Figure 3. Example 5.1: the convergence rate in ε of the l1 and l2

of the position density. Here we use 250 PSGBs and the time step
is chosen as 1/1000.

the corresponding Wigner equation is

∂tW
ε(t, x, k) + k · ∇xW ε(t, x, k) + LεW ε(t, x, k) = 0, (5.3)

and the initial value is defined by the Wigner transform of ψ(0,x).

The potential V (x), as depicted in Figure 6, possesses the form of the potentials
for the resonant-tunneling diode (RTD) [10]. This kind of potentials appears in
nanostructure and has been considerably explored in the field of semiconductor
technology.
V (x) has four discontinuities, and we need the interface conditions for PSGBs

at these points. We use 200 phase space Gaussian beams to simulate the Wigner
equation, and the time step is chosen to be ∆t = 1/200. Figure 7 shows the posi-
tion density, fluxes and kinetic energies of the reference solution and the solutions
computed by our PSGBs summation method. Thanks to the interface condition-
s, our method captures the reflected wave and transmitted wave accurately. The
numerical results verify the validity of the interface conditions for PSGBs.

Figure 8 gives the l1 and l2 errors between the reference solution and the solution
obtained by the phase space Gaussian beam method at time t = 1.8, where we use
200 PSGBs and and the time step ∆t = 1/1000. The convergence rates of both l1

and l2 errors are about half order in ε.

Example 5.4. Finally, we consider the 2-D Schrödinger equation (2.1) and (2.2),
where

A0(x, y) = exp(−100((x+ 0.5)2 + y2)), S0(x, y) = 1.5x, V (x, y) =

{
0, x < 0,

1, x > 0,

the corresponding Wigner equation is

∂tW
ε(t,x,k) + k · ∇xW

ε(t,x, k) + LεW ε(t,x, k) = 0, (5.4)

and initial condition is given by the Wigner transform of ψ(0,x).
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(a) position density

(b) density flux

(c) kinetic energy

Figure 4. Example 5.2. Evolution of solutions with ε = 1/1000:
left, the reference solution, right, the approximate solution by PS-
GB method

V (x) has a jump at x = 0, so we need the interface conditions for PSGBs at
this interface. In this example, a plane wave propagates form left to right, hits the
interface and gives rise to a reflected wave and a transmitted wave. We use 200
phase space Gaussian beams to simulate the 2-D Wigner equation with ε = 1/400,
and the time step is chosen to be ∆t = 1/200. Figure 9 and Figure 10 show the
position density, fluxes and kinetic energies of the reference solution and the solution
computed by our PSGBs summation method. Thanks to the interface conditions,
our method captures the reflected wave and transmitted wave accurately. The
numerical results verify the validity of the interface conditions for PSGBs.
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Figure 5. Example 5.2: the convergence rate in ε of the l1 and l2

errors of the position density. Here we use 250 PSGBs and ∆t =
1/1000.

V(x)=−0.5

V(x)=1−0.2x

V(x)=−0.2x

V(x)=1−0.2x

V(x)=0

Figure 6. Example 5.3: An electric potential V (x) in Resonant
Tunneling Diode.

6. Conclusion. In this paper, We constructed a PSGB summation method for
the Wigner equation with discontinuous potentials. By expanding the potential
into a quadratic function locally, we derive the formulation of the PSGB method
for the Wigner equation. We explore relations of the GB and the PSGB. Using
these relations, we derive an efficient initial data decomposition method and the
interface conditions for PSGBs and develop a summation method for the PSGBs.
The computational cost of the PSGB method is much less than the direct simulation
of the Wigner equation, but similar to the GB in physical space.

In the future, we will extend our method to the Wigner-Poisson and Wigner-
Boltzmann equations.
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(a) position density

(b) density flux

(c) kinetic energy

Figure 7. Example 5.3. Evolution of solutions when ε = 1/1000.
Left: the reference solution; right: the approximate solution by our
PSGB method, using 200 PSGBs and ∆t = 1/200.
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(a) position density
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Figure 9. Example 5.4. Solutions when ε = 1/400. Left: the
reference solution; right: the approximate solution by our PSGB
method, using 200 PSGBs and ∆t = 1/200. Upper: t = 0.4, Lower:
t = 0.64.
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Figure 10. Example 5.4. Kinetic energy when ε = 1/400. Left:
the reference solution; right: the approximate solution by our PS-
GB method, using 200 PSGBs and ∆t = 1/200. Upper: t = 0.4,
Lower: t = 0.64.
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