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An asymptotic preserving (AP) scheme is efficient in solving multiscale kinetic equations 
with a wide range of the Knudsen number. In this paper, we generalize the asymptotic 
preserving Monte Carlo method (AP-DSMC) developed in [25] to the multispecies
Boltzmann equation. This method is based on the successive penalty method [26]
originated from the BGK-penalization-based AP scheme developed in [7]. For the
multispecies Boltzmann equation, the penalizing Maxwellian should use the unified 
Maxwellian as suggested in [12]. We give the details of AP-DSMC for multispecies
Boltzmann equation, show its AP property, and verify through several numerical examples 
that the scheme can allow time step much larger than the mean free time, thus making
it much more efficient for flows with possibly small Knudsen numbers than the classical 
DSMC.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Boltzmann type kinetic equations with a wide range of spatial and temporal scales arise in many important applications 
from astronautics, nuclear engineering, semiconductor device modeling to plasma physics. Take the space shuttle reentry 
problem for example, the vehicle will pass from free streaming, rarefied gas, transition to continuum regimes, during which 
the particle mean free path varies from O (1) to about 10−8 meters. Numerical simulation of such multiscale problems is 
daunting. Another challenge comes from the high dimensionality of such phase space models which are six dimensional 
equations plus time. Direct Simulation Monte-Carlo (DSMC) is the most popular choice [1], yet it suffers from huge compu-
tational expenses since one needs to resolve the small mean free time (or Knudsen number) temporally when the vehicles 
are near the earth, in the so-called fluid dynamic regime. Although in this regime one could use the macroscopic models 
such as the compressible Euler or Navier–Stokes equations, these equations are invalid in the rarified regime at which the 
Knudsen number is large.

In recent years, the development of asymptotic-preserving schemes [10], for multiscale kinetic and transport equations, 
has seen a rapid growth [11,6]. The idea of AP schemes is to develop the schemes that preserve the asymptotic transition 
from the kinetic models to the macroscopic fluid or diffusion models, which also need to be efficient for time discretization. 
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Table 1
Dimensionless variables and the corresponding reference values.

Name Physical variable Dimensionless variable Reference value

Position x̃ x L

Velocity ṽ v c̄ =
√

8kT
πm

Time t̃ t τ = L/c̄

Relative velocity g̃ g ḡ = √
2c̄

Collision cross-section σ̃ σ πd2

Distribution function f̃ f fc = n/C3

In particular one favors a scheme in which the time step is independent of the mean free time (or Knudesn number) 
[10]. These AP schemes are attractive since they do not need the coupling of kinetic and fluid models in the domain-
decomposition setting [3,4,9,13,2,15].

For the multiscale Boltzmann equation, a time efficient AP scheme was proposed by Filbet–Jin [7], with the idea of 
penalizing the nonlinear, nonlocal Boltzmann collision operator by the BGK relaxation operator whose implicit discretization 
can be implemented explicitly. The AP property and positivity can be strengthened by a successive penalization as proposed 
by Yan and Jin [26]. Such idea can be used for multiscale Boltzmann equation as was done by Jin and Li [12]. Another 
approach is based on exponential Runge–Kutta approach, see [16,8]. See also [17]. Attempts to develop AP Monte Carlo 
methods can also be found in [22,23,21].

In this article, we extend the AP-DSMC developed in [25] for single species Boltzmann equation to the multispecies 
Boltzmann equation. This work is mainly motivated by developing highly efficient Monte carlo scheme for multiscale flow 
fields related to reentry problems or hypersonic vehicles [18,14] where the gas is usually considered as a binary mixture of 
Oxygen and Nitrogen. For the multispecies system, the conservation laws break down for each single species. When using 
the BGK penalization approach, the unified Maxwellian which depends on the mean velocity and mean temperature is found 
to be suitable in the penalization [12]. We illustrate the AP property of our scheme, and in addition, several multispecies 
examples are used to test our proposed method which will be compared with the conventional DSMC. The numerical results 
show that the proposed method not only has the ability of capturing the macroscopic behavior in flow dynamic regimes, 
as well as the rarified regime, more importantly, it is much more efficient than DSMC in the cases of stiff collision process 
since the AP-DSMC does not need to resolve the small Knudsen number numerically. The numerical results demonstrate 
that the proposed method is very promising in engineering applications.

The rest of the paper is organized as follows. In Section 2, we briefly describe the Boltzmman equation for the mul-
tispecies system and its basic properties. Next, we give details of the AP-DSMC scheme for the multispecies Boltzmman 
equation in Section 3 and discuss its asymptotic behavior in the fluid dynamic regime. We present several examples to 
show the performance of the proposed method in Section 4 and make conclusive remarks in Section 5.

2. The multispecies models

2.1. The multispecies Boltzmann equation

The multispecies Boltzmann equation describes the time evolution of the density distribution of a dilute gas that has 
more than two components whose particles usually have different masses. In this paper, we are interested in developing 
efficient numerical scheme for the nonlinear N-species Boltzmann equation which is given by

∂ f̃ i

∂t
+ ṽ · ∇x̃ f̃ i = Q̃ i

(
f̃ , f̃

)
, t ≥ 0,

(
x̃, ṽ

) ∈ Rd × Rd, 1 ≤ i ≤ N, (1)

where f̃ i = f̃
(
x̃, ṽ, t̃

)
is a nonnegative distribution function of the i-th species which move at time t̃ , position x̃ with 

velocity ṽ . Q̃ i is the collision operator to be defined later. Some useful dimensionless variables and the corresponding 
reference values are listed in Table 1, where d and n denote the molecular diameter and the number density respectively. 
k = 1.380622 × 1023 is Boltzmann constant. By introducing dimensionless quantities (see Table 1), Eq. (1) can be rewritten 
in a dimensionless form,

L

τ c̄

∂ f i

∂t
+ v · ∇x f i = σ̃ngL

c̄
Q i ( f , f ) , t ≥ 0, x ∈ Rdx , v ∈ Rdv , 1 ≤ i ≤ N, (2)

where St = L
/

(τ c̄) is Strouhal number which is usually set to unity. Given the relation of c̄
σ̃ng = c̄

ν = λ, the Knudsen 
number ε = λ

/
L defined as the ratio of the mean free path λ over a typical length scale L can be obtained to measure the 

rarefiedness of the gas. Therefore, a dimensionless form of the equation is given as follows

∂ f i + v · ∇x f i = 1
Q i ( f , f ) , t ≥ 0, x ∈ Rdx , v ∈ Rdv , 1 ≤ i ≤ N. (3)
∂t ε
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In Eq. (3), the bilinear collision term is given by⎧⎪⎨
⎪⎩

Q i ( f , f ) =
N∑

k=1
Q ik ( f , f ),

Q ik ( f , f ) (v) = ∫
Sdv −1

∫
Rdv

(
f i
(

v ′) fk
(

v ′∗
)− f i (v) fk (v∗)

)
σik (|v − v∗| ,ω)dv∗dω,

(4)

where f = ( f1, f2, . . . , f N)T , ω is a unit vector, and Sdv −1 is the unit sphere defined in Rdv space. σik denotes the symmetric 
collision kernel (σik = σki ) which depends on the model of forces between particles. v , v∗ are pre-collisional velocities, v ′ , v ′∗
are post-collisional velocities. Define the relative velocity g = v − v∗ , the post-collisional velocities satisfy:{

v ′ = v − μik
mi

(g − |g|ω)

v ′∗ = v∗ + μik
mk

(g − |g|ω)
; μik = mimk

mi + mk
, (5)

where μik is the reduced mass, and mi , mk are the mass for species i and k respectively. These equations are based on 
momentum and energy conservations{

mi v + mk v∗ = mi v ′ + mk v ′∗,
mi v v + mk v∗v∗ = mi v ′v ′ + mk v ′∗v ′∗.

(6)

The collision operator Q ik( f , f ) can also be split into two parts⎧⎪⎪⎨
⎪⎪⎩

Q ik ( f , f ) (v) = Q +
ik ( f , f ) − f i Q −

ik ( f ) ,

Q +
ik ( f , f ) = ∫

Sd−1+

∫
d σik (|v − v∗| ,ω) f i

(
v ′) fk

(
v ′∗

)
dv∗dω,

Q −
ik ( f , f ) = ∫

Sd−1+

∫
d σik (|v − v∗| ,ω) fk

(
v ′∗

)
dv∗dω,

(7)

where Q +
ik and Q −

ik denote gain term and loss term respectively.

2.2. Properties of the multispecies Boltzmann equation

In d-dimensional space, the macroscopic quantities for species i, such as number density ni , density ρi , average veloc-
ity ui , temperature Ti , specific internal energy ei , total energy Ei and heat flux qi can be obtained by taking the moments:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ni = ∫
f idv; ρi = mini;

ui = 1
ni

∫
v fidv; Ti = mi

nid

∫
f i |v − ui|2dv;

ei = d
2 Ti = mi

2ni

∫ |v − ui |2 f idv;
Ei = 1

2ρiu2
i + niei = mi

2

∫ |v|2 f i;
qi = 1

2 mi
∫

(v − ui) |v − ui|2 f idv.

(8)

Based on these quantities, the global quantities for the mixture: the number density n, the total mass density ρ , the mean 
velocity ū, the mean temperature T̄ , the internal energy nē and the total energy E can be obtained as

n =
N∑

i=1

ni; ρ =
N∑

i=1

ρi; ū =
N∑

i=1

ρiui

ρ
; E = nē + 1

2
ρ|ū|2 =

N∑
i=1

Ei; T̄ = 2ē

d
. (9)

In the gas mixture system, for each species, only mass is conserved, while the momentum and energy are not. However, the 
total mass, momentum and energy are conserved:∫

mi Q idv = 0;
N∑

i=1

∫
mi vi Q idv = 0;

N∑
i=1

∫
1

2
mi v2

i Q idv = 0. (10)

When ε = O (1), Eq. (3) is in kinetic regime. For ε 	 1, the gas is near fluid dynamic regime. In particular, when ε → 0, 
Q i ( f ) → 0, which implies

f i = Mi = ni

(
mi

2π T̄

) d
2

exp

(
−mi|v − ū|2

2T̄

)
. (11)

The macroscopic quantities defined in Eq. (8) and Eq. (9) satisfy the compressible Euler equations.
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⎧⎪⎨
⎪⎩

∂tρi + ∇x · (ρi ū) = 0,

∂t (ρū) + ∇x · (ρū ⊗ ū + nT̄ I
)= 0,

∂t E + ∇x · [(E + nT̄
)

ū
]= 0,

(12)

where I is the identity matrix. This is easy to verify formally since the local Maxwellian Mi satisfies 
∫

mi Midv =
N∑

i=1

∫
mi vi Midv =

N∑
i=1

∫ 1
2 mi v2

i Midv = 0.

3. AP-DSMC scheme for the multispecies Boltzmann equation

In this section, the AP-DSMC scheme proposed in [25] is extended to solve the multispecies Boltzmann equation. The 
details of the numerical procedures of AP-DSMC are given as follows.

3.1. Time splitting of the multispecies Boltzmann equation

The multispecies Boltzmann equation is solved by a simple time splitting scheme:{
∂ f i
∂t + v · ∇x f i = 0,

∂ f i
∂t = 1

ε Q i ( f , f ) .
(13)

The algorithm consists of two parts for each time step. In the first step (convection step), with a given original distribution 
function f n , particles are convected by the first equation in (13) to give the distribution function f ∗ , which is taken as the 
initial data for the next collision step. Considering most numerical difficulties are coming from the second step (collision 
step given by the second equation of (13)), more description will be given below for this step.

3.2. The BGK-penalization in the space homogeneous equation

In order to handle the equation for all range of ε, one needs to handle the collision term efficiently when ε 	 1 since 
the collision term becomes numerically stiff. The DSMC will need to take �t 	 O (ε). In order to overcome this difficulty, 
a BGK-penalization method with penalty term Pi ( f ) = β (Mi − f i) was introduced by Filbet and Jin [7]. The idea is to use 
Pi( f ) to penalize Q i , and only treat Pi( f ) term implicitly which can be solved explicitly. The positive constant β is an upper 
bound of the coefficient of the loss term Q −

i . For multispecies system, one has to choose a suitable Maxwellian for the 
BGK penalty function. As discussed in [12], one has to use Maxwellian (11) instead of the species Maxwellian which is (11)
with u and T replaced by ui and Ti , since the latter does not involve interactions between different species. Therefore, the 
collision equation can be written with the BGK-penalization term:

∂ f i

∂t
= 1

ε
(Q i ( f , f ) − Pi ( f ))︸ ︷︷ ︸

less stiff

+ 1

ε
Pi ( f )︸ ︷︷ ︸
stiff

. (14)

On the right hand side, the first term is less stiff comparing with the second term. The time splitting scheme is applied to 
this equation again.{

∂ f i
∂t = 1

ε (Q i ( f , f ) − Pi ( f )) ,

∂ f i
∂t = 1

ε Pi ( f ) .
(15)

The first equation is solved explicitly since it is less stiff:

f ∗∗
i − f ∗

i

�t
= 1

ε

(
Q i

(
f ∗, f ∗)− Pi

(
f ∗)) . (16)

Time step for the second equation is divided into L subintervals and the same treatment as [26] is used for the equation 
with more stiff term:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f n+1,1
i − f ∗∗

i
�t/L = 1

ε Pn+1,1
i ,

f n+1,2
i − f n+1,1

i
�t/L = 1

ε Pn+1,2
i ,

. . . ,

f n+1
i − f n+1,L−1

i = 1 Pn+1,

(17)
�t/L ε i
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where Pn+1,k
i = β

(
Mn+1,k

i − f n+1,k
i

)
, k = 1, . . . , L. Since ρ , u and T are conserved for space homogeneous problem, one has 

Mn+1,1
i = . . . = Mn+1

i = M∗∗
i , then the above equations can be rewritten as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f n+1,1
i = cf ∗∗

i + (1 − c) M∗∗
i

f n+1,2
i = cf n+1,1

i + (1 − c) M∗∗
i

. . .

f n+1
i = cf n+1,L

i + (1 − c) M∗∗
i

; c =
(

1 + β�t

εL

)−1

. (18)

A general formula for any L can be obtained as

f n+1
i = cL f ∗∗

i +
(

1 − cL
)

M∗∗
i . (19)

Since M∗∗
i = M∗

i and Q̂ i ( f , f ) = Q i ( f , f )+β f i , by combining Eq. (16) and Eq. (19) a much more clear form can be obtained 
as follows

f n+1
i = cL

[
f ∗

i + �t

ε

(
Q i

(
f ∗, f ∗)− Pi

(
f ∗))]+

(
1 − cL

)
M∗

i

= cL f ∗
i + cL �t

ε
Q i

(
f ∗, f ∗)− cL �t

ε
β
(
M∗

i − f ∗
i

)+
(

1 − cL
)

M∗
i

= cL f ∗
i + cL �tβ

ε

Q̂ i ( f ∗, f ∗)
β

+
(

1 − cL − cL �tβ

ε

)
M∗

i

= b0 f ∗
i + b1

Q̂ i ( f ∗, f ∗)
β

+ b2M∗
i . (20)

The weights in Eq. (20) are defined as⎧⎪⎨
⎪⎩

b0 = c1

b1 = c1c2

b2 = 1 − c1 − c1c2

;
{

c1 = cL = (
1 + μ

L

)−L

c2 = μ = �tβ
ε

. (21)

Note that the term Q̂ i ( f ∗, f ∗)
/

β can be taken as a distribution function. It can be see that the scheme defined in Eq. (21)

is positivity preserving since the weights bi are nonnegative (0 < c1 < 1 and 0 < c2 < 1) and satisfy 
2∑

i=0
bi = 1.

3.3. Asymptotic preserving property of the proposed scheme

As summarized by Jin [10], a scheme which has the following features can be considered as an AP scheme: First, it 
preserves the discrete analogy of the Chapman–Enskog expansion; second, implicit collision terms can be implemented 
efficiently. Therefore, the scheme defined in Eq. (20) has the asymptotic preserving property only if the nonnegative weights 
bi satisfy the following condition.

lim
μ→∞ b0 = 0, lim

μ→∞ b1 = 0, lim
μ→∞ b2 = 1. (22)

It can be deduced easily that the scheme cannot be considered as a strongly-AP scheme if L = 1 because it leads to 
lim

μ→∞ b1 = 1. (In [7] such a scheme is called a relaxed-AP scheme.) For any L > 1, the weights satisfy this condition and 

consequently f n+1
i → M∗

i which leads to the correct Euler limit. Meanwhile, the scheme has the AP property in the sense 
that

f n − Mn = O (ε) , for any n ≥ 1 and any initial data. (23)

In this paper, we choose L = 2 as in [25] because it can be considered as an optimal one in the view of computational 
efficiency. Fig. 1 shows the variations of weights bi with different μ. It is obvious that b2 tends to 1 while both b0 and b1
go to 0 if μ is large enough. As a matter of fact, the proposed scheme will become the exponential Runge–Kutta method 
(ExpRK) [5] which is also an AP scheme if L → ∞. For the hydrodynamic limit, both the AP-DSMC and ExpRK reduce to 
a Euler solver (b0 = b1 = 0) and the computational costs are almost the same. However, for near-continuum regime it is 
evident that AP-DSMC is about 20% faster than ExpRK. The main reason is that b2 of ExpRK is larger than that of AP-DSMC 
in the same typical simulations and the relaxation part (controlled by b2) is usually more time-consuming comparing with 
the collision part. More detailed quantitative demonstration can be found in [25].
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Fig. 1. Weights bi of AP-DSMC with varying μ.

For cases with large μ, the conventional DSMC has to use �t 	 ε, thus it spends most of computing time at solving 
collision process. Specifically, the computational cost of the collision treatments in DSMC is proportional to the number of 
dummy collision pairs Nc .

Nc = 1

2
Nρσmax�t

/
ε, (24)

where N is the particle numbers in one cell. As for AP-DSMC, the computational cost is proportional to (0.5b1 + b2)N . It 
implies that the stiff collision process (corresponding to large μ) can be solved much more efficiently by AP-DSMC. In the 
next section, performance of AP-DSMC and DSMC will be compared in detail with different computational conditions.

3.4. The computational procedure

The computational procedure of the multispecies AP-DSMC during one time step can be summarized as:

Step 1 (Convection): All simulation particles move with their constant velocity for one time step �t:

xn+1
i = xn

i + vn
i �t . (25)

Step 2 (Weights): Weights b0, b1, b2 can be obtained according to Eq. (21). And then, both Nc (the number of collision pairs 
to select) and NM (the number of particles sampled from the Maxwellian) are calculated as⎧⎪⎨

⎪⎩
Nn

c =
⌊

b1Nn
/

2 + χn−1
Nc

⌋
Nn

M =
⌊

b2Nn + χn−1
NM

⌋ ; χn−1
x =

{
0, tn = 0

xn−1 − ⌊
xn−1

⌋
, tn = n�t

(26)

where x� is the integer part of x.

Step 3 (Collision): Compute the collision term with the Monte Carlo method. It is noted that β is considered as a variable 
and updated at each time step if necessary in order to obtain a better estimation. In this computation, β is chosen as ρσmax
which is the maximal cross area. The detail of the computation of the collision part used in the AP-DSMC is almost the 
same as that in DSMC.

Step 4 (Relaxation): Compute the Maxwellian term with Pullin’s method [24]. The core idea of this method is to select 
the new velocity components from a normal distribution instead of the calculation of a large number of collisions in each 
cell. In order to achieve this goal, two important parameters have to be calculated first. The first one is the mass average 
velocity ū,

ū j =
NM∑
i=1

mi vij

/
mtot =

NM∑
i=1

mi vij

/
NM∑
i=1

mi, j = 1,2,3, (27)

where mtot is the total mass of the Maxwellian particles. The other one is e′ which is defined as the total specific thermal 
energy stored in the single degree of freedom divided by the mass of one particle:
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Table 2
Physical parameters for different species used in the numerical examples.

Number gas Symbol m [10−27 kg] dref [10−10 m] Tref [K] ω

Species-1 Krypton Kr 139.1 4.76 273 0.80
Species-2 Argon Ar 66.3 4.17 273 0.81

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E ′ = 1
2

3∑
j=1

NM∑
i=1

mi vi, j− 1
2

NM∑
j=1

mi

3∑
j=1

ū j,

ν =
NM∑
i=1

(3 + ξi),

⇒ e′
dof = E ′

ν
,⇒ e′ = Nse′

dof

ms
, (28)

where E ′ is the total thermal energy of all particles in the cell and ν is the total number of degrees of freedom. ξ is 
the number of fully excited degrees of freedom of the molecular structure (ξ = 0 for monatomic particles and ξ = 2 for 
diatomic species). Only monatomic particles are considered in this work. e′

dof is the mean thermal energy per single degree 

of freedom. Ns (satisfy 
N∑

s=1
Ns = NM ) and ms are the particle number and particle mass for one species respectively. After 

that, the new velocity components of the equilibrium particles are sampled in the way that the mean and variance of the 
finite sample conform to values determined by the requirement that the total energy and momentum be conserved [19].

4. Numerical examples

In this section, several examples with different purposes are chosen to test the developed multispecies AP-DSMC scheme. 
The aim of the first example is to test the effectiveness of the BGK-penalization for multispecies temperature relaxation. The 
next two one-dimensional examples (shock profile and Sod shock tube) are used to show the computational efficiency of 
our proposed scheme under different computational conditions. The proposed method’s ability of effectively simulating the 
relatively complicated engineering problems with a large time step is demonstrated in the last example. As mentioned 
before, a large time step which satisfies �t > ε can be used in the proposed method due to its asymptotic preserving 
property. It should be noticed that both the �t = �t̃

/
τ = �t̃c̄

/
L and the ε = λ

/
L are dimensionless parameters in 

Eq. (3). The overall mean free path λ for a mixture of ns separate gas species is [1]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ =
ns∑

p=1

np
n

{
ns∑

q=1

[
π
(
dref

)2
pq nq

((
Tref

)
pq

T

)ωpq− 1
2 (

1 + mp
mq

) 1
2

]}−1

(
dref

)
pq =

(
dref

)
p+(

dref
)

q
2 ; (

Tref
)

pq =
(
Tref

)
p+(

Tref
)

q
2 ; ωpq = ωp+ωq

2

(29)

where number density n satisfies 
ns∑

p=1
np = n. ω is the temperature exponent and it can also be used to determine the 

viscosity coefficient μ which is proportional to a power law temperature T ω . The values of the reference diameter dref , 
reference temperature Tref , temperature exponent ω and molecular mass m for each species are presented in Table 2. For 
simplicity but without loss of generality, the characteristic length L is set to be 1 and only two species with equal mass 
fraction (0.5) are considered in each example.

4.1. Temperature relaxation in a homogeneous gas

In the first example, we consider a two monatomic species model with different initial conditions evolving to an equilib-
rium state. Due to the homogeneous spatial distribution, this example can be considered as a “zero-dimensional problem” 
and thus only one cell in the physical space is needed. The initial velocities for each species are obtained by sampling from 
the Maxwellian distribution functions. First, initial data with only different temperature for each species are given as follows

Case 1 :
{

T1 = 600 K; n1 = 1.144 × 1021/1.144 × 1024; u1 = 0 m/s,

T2 = 400 K; n2 = 1.144 × 1021/1.144 × 1024; u2 = 0 m/s.
(30)

In order to obtain accurate solutions, a large number of particles (N p = 50 000) in the cell are used for both AP-DSMC and 
DSMC. We choose time step (�t̃ = 2.417 × 10−7 s) and the corresponding dimensionless time step (�t = 1.0 × 10−4) can be 
obtained easily according to Table 1. The Knudsen number ε are 1 × 10−3 and 1 × 10−6 respectively for these two different 
number densities. Temperature relaxation processes of these two species calculated by AP-DSMC and DSMC method are 
compared in Fig. 2. It can be found that the AP-DSMC results are in good agreement with DSMC results for these two cases 
with different ε: the temperature of each species (T1; T2) gradually converges to a mean temperature (about 500 K) and 
the smaller ε gives a faster convergence rate due to more collisions during one time step.
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Fig. 2. Temperature relaxation in a homogenous gas for Case 1. Left: ε = 1.0 × 10−3; Right: ε = 1.0 × 10−6. T1 and T2 represent the temperature for species 
1 and species 2 respectively.

Fig. 3. Relaxation in a homogenous gas for Case 2. Left: Temperature; Right: Velocity. U1 and U2 represent the velocity for species 1 and species 2 
respectively.

Case 2 :
{

T1 = 600 K; n1 = 1.144 × 1024; u1 = −300 m/s,

T2 = 400 K; n2 = 1.144 × 1024; u2 = 300 m/s.
(31)

Next, another initial data with different velocity are used to test the AP-DSMC. In this case, time step and particle 
number are the same as those used in Case 1. The results are given in Fig. 3. It can be found that the numerical results 
obtained by the AP-DSMC again match well with those computed by the DSMC. Therefore, the numerical results show that 
the proposed AP-DSMC has the ability to handle the multispecies relaxation problems even if �t is greatly larger than ε.

Although the numerical results obtained by these two methods are almost the same, the computational costs are quite 
different with different ε. Take the case-1 for example, the total execution time of AP-DSMC and DSMC for ε = 1 × 10−3 are 
5.6 s and 6.7 s respectively. However, when ε is 1 × 10−6, the computational time of AP-DSMC (32.8 s) is much less than 
that of DSMC (223.6 s). More thorough discussions about the comparison computational efficiency between AP-DSMC and 
DSMC will be presented in the next two examples.

4.2. Stationary shock structure

In the second example, an one-dimensional stationary shock profile of two species at different shock Mach numbers is 
simulated by the proposed AP-DSMC. The DSMC1S.FOR [1] is used to compute the reference solutions. The computational 
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Table 3
Comparison between dimensionless time step and Knudsen number for Example 2.

Case Ma �t̃ [s] T [K] c̄ [m/s] �t ε �t
/

ε

1 2 2.0 × 10−5 608.9 456.6 9.13 × 10−3 6.25 × 10−3 1.46
2 4 2.0 × 10−5 1717.9 766.9 1.53 × 10−2 5.82 × 10−3 2.64
3 6 2.0 × 10−5 3551.1 1102.6 2.21 × 10−2 6.63 × 10−3 3.33
4 8 2.0 × 10−5 6115.5 1466.9 2.89 × 10−2 7.56 × 10−3 3.83

Fig. 4. The stationary shock profile with different Mach numbers for Example 2. Left: Mach = 2; Right: Mach = 8; Den and Tem represent density and 
temperature respectively. All the values are normalized by the initial data.

domain is [−0.3 m, 0.3 m] with the mesh number N = 600. The boundary conditions are farfield conditions. The number 
density n and temperature T in the upstream side (x < 0) are 1.0 × 1020 and 293 K respectively. Four Mach numbers 
(Ma = 2.0, 4.0, 6.0, 8.0) are considered in this example. The time step is �t̃ = 2 × 10−5 s and 100 particles per cell are 
given in the upstream. According to the Mach number and the Rankine–Hugoniot relations, the initial data and the particle 
number in each cell in the downstream can be computed. See Table 3 for other computational parameters. The numerical 
results obtained by AP-DSMC are DSMC are averaged by 1 × 104 samples.

Fig. 4 shows the stationary shock structures obtained by the AP-DSMC and DSMC1S.FOR at different Mach numbers. The 
numerical results indicate very good agreement with each other in all cases. Like DSMC scheme, AP-DSMC has the ability 
to capture the correct size of the separation between density and temperature in a shock, which is caused by the finite 
relaxation times for momentum and energy transport. Furthermore, the computational efficiency of these two methods are 
studied. The detailed computational CPU time of AP-DSMC and DSMC are shown in Table 4 and in Fig. 6 (left). In the left of 
the Fig. 6, the computational CPU times of each case is normalized with the total time of DSMC in the case with Mach =
1. It can be found that the total time of AP-DSMC is composed of the convection time, collision time and relaxation time, 
while the total time of DSMC comprises of the convection time and collision time. We can see that the computational costs 
of these two methods increase as the Mach number increase and AP-DSMC saves more computing time than the DSMC in 
the case with larger Mach numbers. For Case 4, the computing time of AP-DSMC is around 50% less than that of DSMC. 
In Fig. 5 (left), one can find the reasons for high computational efficiency of AP-DSMC with large Mach numbers. One the 
one hand, increasing the velocity leads to more collisions during a time step; on the other hand, a higher mach number 
causes higher density in the downstream region (x > 0) according to the Rankine–Hugoniot relations. As a result, more 
time-consuming collision process (controlled by b2) will be transferred to the relaxation process (controlled by b3) in the 
cases with larger Mach numbers.

4.3. Shock tube: Sod problem

In this example, Sod’s shock tube problem is applied to test the AP-DSMC’s capability of capturing unsteady profiles and 
to show the advantage in computational efficiency with various Knudsen number, compared with DSMC. The computational 
domain is [0, 0.01 m] with a unified mesh of N = 500 and the time step is �t̃ = 1 × 10−6 s. The initial data are given by{

p = ξ Pa, T = 300 K, u = 0 m/s x ≤ 0.005 m,

p = 0.125ξ Pa, T = 300 K, u = 0 m/s x > 0.005 m.
(32)
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Table 4
Comparisons of computational CPU time (minutes) taken by different methods for Example 2. Percentage means the ratio of AP-DSMC’ total time to the 
corresponding DSMC’s total time.

Mach Method Convection Collision Relaxation Total time Percentage

2.0 AP-DSMC 1.98 5.07 5.45 20.11 72.78%
2.0 DSMC 1.96 18.39 – 27.62 –
4.0 AP-DSMC 2.64 6.03 10.77 29.29 60.51%
4.0 DSMC 2.60 36.88 – 48.40 –
6.0 AP-DSMC 2.97 5.87 12.89 31.74 53.89%
6.0 DSMC 2.91 46.95 – 58.89 –
8.0 AP-DSMC 3.11 5.32 15.23 32.49 46.31%
8.0 DSMC 3.09 60.04 – 70.17 –

Fig. 5. Comparison of function b for different examples. Left: Example 2; Right: Example 3. It should be noted that the function b2 and b3, whose specific 
expressions are shown in Eq. (21), represent the weight coefficient for the collision process and the relaxation process respectively.

Fig. 6. Comparisons of normalized computational CPU time for different examples. Left: Example 2; Right: Example 3; The shadowed region in each red or 
blue bar represents the percentage of the collision time from the total time. Take the case with pressure = 1 example, the normalized total computational 
CPU time is 1, while the number 72% in the red bar means the normalized total computational CPU time of the collision process is about 0.72. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Different Knudsen numbers listed in Table 5 can be obtained by choosing different ξ = 1, 10, 100, 1000. Both AP-DSMC 
and DSMC use the same particle number (Np = 50 in each cell of upstream regime and the corresponding particle number 
in each cell of downstream regime can be calculated with the flowfield parameters) and sample number (Ns = 1000). The 
computation stops at t̃ = 8 × 10−4 s. Fig. 7 shows the comparisons of the numerical results of AP-DSMC and DSMC with 
different ε (from rarefied to continuum) regimes. The numerical results (pressure and temperature) are normalized with 
reference values (ξ and 300 K). Fig. 7 indicates that both AP-DSMC and DSMC can capture the positions and profiles of the 
expansion wave, contact discontinuity and the shock wave from rarefied to continuum regimes. Next, we will focus on the 
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Table 5
Comparison between dimensionless time step and Knudsen number for Example 3.

Case P [Pa] �t̃ [s] T [K] c̄ [m/s] �t ε �t/ε

1 1 1.0 × 10−6 300.0 320.5 3.2 × 10−4 4.77 × 10−3 0.067
2 10 1.0 × 10−6 300.0 320.5 3.2 × 10−4 4.77 × 10−4 0.67
3 100 1.0 × 10−6 300.0 320.5 3.2 × 10−4 4.77 × 10−5 6.7
4 1000 1.0 × 10−6 300.0 320.5 3.2 × 10−4 4.77 × 10−6 67.0

Table 6
Comparisons of computational CPU time taken by different methods for Example 3. Percentage means the ratio of AP-DSMC’ total time to the corresponding 
DSMC’s total time.

Knudsen number Method Convection Collision Relaxation Total time Percentage

4.8 × 10−1 AP-DSMC 3.5 0.6 2.8 14.2 120.3%
4.8 × 10−1 DSMC 3.3 2.4 – 11.8 –
4.8 × 10−2 AP-DSMC 3.0 9.8 6.7 26.1 90.9%
4.8 × 10−2 DSMC 3.2 22.8 – 28.7 –
4.8 × 10−3 AP-DSMC 4.0 9.4 49.4 71.6 30.0%
4.8 × 10−3 DSMC 3.9 231.7 – 238.9 –
4.8 × 10−4 AP-DSMC 4.2 2.1 72.0 82.3 3.5%
4.8 × 10−4 DSMC 4.0 2364.4 – 2370.6 –

Fig. 7. Comparison of normalized results with different pressures for Example 3. Left: Pressure, Right: Temperature. Pre represents pressure.

comparison of computational efficiency. Table 6 and Fig. 6 (right) show the detailed computational CPU time of AP-DSMC 
and DSMC. In the right of the Fig. 6, the computational CPU times of each case is normalized with the total time of DSMC 
in the case with pressure = 1. When ε is very large, there is little difference between AP-DSMC and DSMC in computational 
efficiency. It should be noted that AP-DSMC costs about 20% CPU time more than DSMC in Case 1. The reason is that the 
relaxation part costs more computational time than the collision part if ε is large. As ε decreases, the computational cost 
of DSMC starts to soar because the small ε leads to large number of collisions. Thus most of computing time has to be 
spent on resolving the collision process. However, in this situations, an appropriate relaxation process replaces most parts 
of collision in AP-DSMC (see right subfigure of Fig. 5). Take Case 4 for example, the computing time taken by DSMC is almost 
twenty-night times as much as that of AP-DSMC. Therefore, it can be concluded that AP-DSMC is much more efficient than 
DSMC when ε is vanishing.

4.4. The interaction of jets with crossflow

The studies of high-speed jets in crossflow mostly consider application to thrust vectoring for hypersonic vehicles [20]. 
Generally, a very large range of ε exists in this multispecies flowfield, which provides an appropriate case to test the 
proposed method. Just as shown in Fig. 8 (left), the two dimensional computational domain is split into three sub-regions. 
The A, B and C sub-regions are divided into 600 × 400, 60 × 400 and 800 × 400 cells respectively. The diffusive boundary 
condition (the velocities of the reflected molecules are distributed in accordance with the Maxwellian distribution) is applied 
on the wall and the wall temperature is fixed at 300 K. The computations are initialized with at least 5 particles in the 
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Fig. 8. Schematic plot for the interaction of jet with crossflow problem. Left: computational domain, Right: streamline of the flow obtained by AP-DSMC 
with time step �t̃ = 5 × 10−8 s.

Table 7
The computational parameters in Example 4.

– Pressure [Pa] Temperature [K] Mach number Angle [◦] Species

Inflow 200.0 300.0 8.0 0.0 Kr
Jet 5000.0 600.0 2.0 90.0 Ar

Table 8
Comparisons of computational CPU time (hour) taken by different time steps for Example 4.

Case �t̃ �t
/

ε Convection Collision Sample Total time

1 1.0 × 10−7 s 23.7 5.6 12.5 2.8 27.8
2 5.0 × 10−8 s 11.8 6.8 14.4 4.2 36.6
3 1.0 × 10−8 s 2.4 25.5 26.1 19.3 118.5

minimal cell. The computational parameters related to the inflow and jet flow are listed in Table 7. Only AP-DSMC is 
used for this example since DSMC is almost impossible due to the tremendous computation costs caused by the small 
time step. In this example, three relatively large time steps �t̃ = 1 × 10−8, 5 × 10−8, 1 × 10−7 s are compared and their 
corresponding dimensionless time step are larger than the Knudsen number (ε = 1.65 × 10−6) which is calculated with the 
jet flow parameters. The flowfields for these three different time steps reach steady-state after about 450 000, 90 000, 45 000
samples respectively. The output results are averaged by the subsequent 50 000 samples.

Fig. 8 (right) shows some basic flow characteristics of the interaction between jets and the crossflow. A bow shock forms 
ahead of the jet due to the low momentum of the jet fluid relative to the crossflow, barrel shocks are observed at its 
periphery, and the jet fluid forms a Mach disk as it expands into and bends toward the crossflow. The interaction of the 
bow shock wave with the portion of the upstream boundary layer causes the flow to separate. In the recirculation zones, the 
high momentum gas is convected from the freestream down to the wall. Fig. 9 and Fig. 10 show the contour of macroscopic 
quantities and jet particles distribution for AP-DSMC with �t̃ = 5 × 10−8 respectively. It can be found that more relaxation 
processes are needed in the areas near the jet exit and shocks. Both the pressure and heat transfer coefficients [1] on the 
wall defined as follows are used to give a further comparison,

C p = 2p

ρ∞u2∞
, C H = 2ρqw

ρ∞u3∞
, (33)

where subscript p and H denote pressure and heat transfer respectively. ρ∞ and u∞ are the density and velocity mag-
nitudes of the inflow. Fig. 11 shows the comparison of wall information obtained by AP-DSMC with different time steps. 
Except few differences near the peak of heat transfer, the wall information obtained with different time steps are similar. As 
explained in [25], it is hard for the schemes based on projection onto a Maxwellian to capture the peak heat flux value with 
a small deviation from a Maxwellian. Finally, in order to show the advantage of AP-DSMC with large time step in computa-
tional efficiency, the comparisons of computational CPU time with different time steps are shown in Table 8 in details. Due 
to the huge computational costs, the computations of these cases are conducted under the MPI parallel environment (using 
64 cores). We can see that Case 1, Case 2 and Case 3 cost 27.8, 36.6 and 118.5 hours respectively. The case with small time 
step has to use more samples to confirm that the flowfield has already reached the stead state. If time step satisfies the 
relation of �t 	 ε as in DSMC, more samples are required and this will lead to the soar of computational cost. Therefore, 
this example demonstrates that AP-DSMC with large time step is very promising in real-world engineering applications.
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Fig. 9. Contour of macroscopic quantities for AP-DSMC with time step �t̃ = 5 × 10−8 s. Top left: Temperature, Top right: Density, Bottom left: Function b2, 
Bottom right: Function b3.

Fig. 10. Distribution of jet particles for AP-DSMC with time step �t̃ = 5 × 10−8 s.

5. Conclusion

In this paper, we extend the asymptotic preserving Monte Carlo method, originally introduced in [25] for the single 
species Boltzmann equation, to its multispecies counterpart. In order to overcome the new difficulty coming from the 
breaking down of the conservation laws for each species due to the interaction between different species, as was done in 
[12], we use an appropriate BGK operator which is defined by the mean velocity and mean temperature to penalize the stiff 
collision operator for multispecies Boltzmann equation. Several numerical examples are used to test the proposed method 
by comparing it with the conventional DSMC method. Numerical results show that the proposed method not only has the 
ability to capture the hydrodynamic limit, but also allows the time step to be independent of the Knudsen number. Thus, 
this AP scheme is very suitable for simulating the multispecies Boltzmann equation efficiently in both the kinetic and fluid 
regimes. In the future, we will work on developing the AP Monte Carlo scheme for diatomic molecular simulations and 
applying the proposed method in more complicated engineering problems.
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Fig. 11. Comparison of wall information of AP-DSMC with different time steps. Left: pressure coefficient, Right: heat transfer coefficient.
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