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A BLOCH DECOMPOSITION–BASED SPLIT-STEP
PSEUDOSPECTRAL METHOD FOR QUANTUM DYNAMICS WITH
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Abstract. We present a new numerical method for accurate computations of solutions to (linear)
one-dimensional Schrödinger equations with periodic potentials. This is a prominent model in solid
state physics where we also allow for perturbations by nonperiodic potentials describing external
electric fields. Our approach is based on the classical Bloch decomposition method, which allows
us to diagonalize the periodic part of the Hamiltonian operator. Hence, the dominant effects from
dispersion and periodic lattice potential are computed together, while the nonperiodic potential
acts only as a perturbation. Because the split-step communicator error between the periodic and
nonperiodic parts is relatively small, the step size can be chosen substantially larger than for the
traditional splitting of the dispersion and potential operators. Indeed it is shown by the given
examples that our method is unconditionally stable and more efficient than the traditional split-step
pseudospectral schemes. To this end a particular focus is on the semiclassical regime, where the new
algorithm naturally incorporates the adiabatic splitting of slow and fast degrees of freedom.

Key words. Schrödinger equation, Bloch decomposition, time-splitting spectral method, semi-
classical asymptotics, lattice potential

AMS subject classifications. 65M70, 74Q10, 35B27, 81Q20

DOI. 10.1137/060652026

1. Introduction. One of the main problems in solid state physics is to describe
the motion of electrons within the periodic potentials generated by the ionic cores.
This problem has been studied from a physical as well as a mathematical point of
view in, e.g., [1, 8, 28, 29, 33], resulting in a profound theoretical understanding of the
novel dynamical features. Indeed one of the most striking effects, known as Peierls
substitution, is a modification of the dispersion relation for Schrödinger’s equation,
where the classical energy relation Efree(k) = 1

2 |k|2 has to be replaced by Em(k),
m ∈ N, the energy corresponding to the mth Bloch band [7]. The basic idea behind this
replacement is a separation of scales which is present in this context. More precisely
one recognizes that experimentally imposed, and thus called external, electromagnetic
fields typically vary on much larger spatial scales than the periodic potential generated
by the cores. Moreover, this external field can be considered weak in comparison to
the periodic fields of the cores [2].

To study this problem, consider the Schrödinger equation for the electrons in a
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semiclassical asymptotic scaling [11, 29, 31], i.e., in d = 1 dimensions,⎧⎨⎩ iε∂tψ = −ε2

2
∂xxψ + VΓ

(x
ε

)
ψ + U(x)ψ, x ∈ R, t ∈ R,

ψ
∣∣
t=0

= ψin(x),
(1.1)

where 0 < ε � 1 denotes the small semiclassical parameter describing the micro-
scopic/macroscopic scale ratio. The (dimensionless) equation (1.1) consequently de-
scribes the motion of the electrons on the macroscopic scales induced by the external
potential U(x) ∈ R. The highly oscillating lattice-potential VΓ(y) ∈ R is assumed to
be periodic with respect to some regular lattice Γ. For definiteness we shall assume
that

VΓ(y + 2π) = VΓ(y) ∀ y ∈ R,(1.2)

i.e., Γ = 2πZ. In the following we shall assume ψin ∈ L2(R), such that the total mass
is Min ≡ ‖ψin‖L2 = 1, a normalization which is henceforth preserved by the evolution.

The mathematically precise asymptotic description of ψ(t), solution to (1.1), as
ε → 0, has been intensively studied in, e.g., [6, 16, 20, 29], relying on different an-
alytical tools. On the other hand the numerical literature on these issues is not so
abundant [17, 18, 19]. Here we shall present a novel approach to the numerical treat-
ment of (1.1) relying on the classical Bloch decomposition method, as explained in
more detail below. The main idea is to treat in one step the purely dispersive part
∝ ∂xx of the Schrödinger equation together with the periodic potential VΓ, since this
combined operator allows for some sort of “diagonalization” via the Bloch transfor-
mation. The corresponding numerics is mainly concerned with the case ε � 1, but
we shall also show examples for a rather large ε = 1

2 . Our numerical experiments
show that the new method converges with Δx = O(ε) and Δt = O(1), the latter
being a huge advantage in comparison with the more standard time-splitting method
used in [17, 18, 19], and which usually requires Δt = O(ε). Moreover, we find that
the use of only a few Bloch bands is mostly enough to achieve very high accuracy,
even in cases where U(x) is no longer smooth. We note that our method is uncondi-
tionally stable and comprises spectral convergence for the space discretization as well
as second order convergence in time. The only drawback of the method is that we
first have to compute the energy bands for a given periodic potential, although this
is needed only in a preprocessing step rather than during the time marching. On the
other hand, this preprocessing also handles a possible lack of regularity in VΓ, which
consequently does not lead to numerical problems during the time-evolution. In any
case the numerical cost of this preliminary step is much smaller than the costs spent
in computing the time-evolution, and this holds true for whatever method we choose.

We remark that linear and nonlinear evolutionary PDEs with periodic coefficients
also arise in the study of photonic crystals, laser optics, and Bose–Einstein condensates
in optical lattices; cf. [9, 11, 21] and the references given therein. We expect that our
algorithm can be adapted to these kinds of problems too. Also note that in the case
of a so-called stratified medium (see, e.g., [6, 5]), an adaptation of our code to higher
dimensions is very likely. Finally, the use of the Bloch transformation in problems
of homogenization has been discussed in [12, 14] and numerically studied in [13] for
elliptic problems. Our algorithm might be useful in similar time-dependent numerical
homogenization problems.

The paper is organized as follows: In section 2, we recall in detail the Bloch de-
composition method and show how to numerically calculate the corresponding energy
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bands. Then, in section 3 we present our new algorithm, as well as the usual time-
splitting spectral method for Schrödinger equations. In section 4, we show several
numerical experiments and compare both methods. Different examples of U and VΓ

are considered, including the nonsmooth cases. Finally we shall also study a Wentzel–
Kramers–Brillouin (WKB) type semiclassical approximation in section 5 and compare
its numerical solution to the solution of the full problem. This section is mainly in-
cluded since it gives a more transparent description of the Bloch transformation, at
least in cases where a semiclassical approximation is justified.

2. The emergence of Bloch bands. First, let us introduce some notation
used throughout this paper and recall some basic definitions used when dealing with
periodic Schrödinger operators [2, 6, 31, 32].

With VΓ obeying (1.2) we have the following:
• The fundamental domain of our lattice Γ = 2πZ is C = (0, 2π).
• The dual lattice Γ∗ can then be defined as the set of all wave numbers k ∈ R,

for which plane waves of the form exp(ikx) have the same periodicity as the
potential VΓ. This yields Γ∗ = Z in our case.

• The fundamental domain of the dual lattice, i.e., the (first) Brillouin zone,
B = C∗ is the set of all k ∈ R closer to zero than to any other dual lattice
point. In our case, that is B =

(
− 1

2 ,
1
2

)
.

2.1. Recapitulation of Bloch’s decomposition method. One of our main
points in all that follows is that the dynamical behavior of (1.1) is mainly governed by
the periodic part of the Hamiltonian, in particular for ε � 1. Thus it will be important
to study its spectral properties. To this end consider the periodic Hamiltonian (where
for the moment we set y = x/ε for simplicity)

H = −1

2
∂yy + VΓ (y) ,(2.1)

which we will regard here only on L2(C). This is possible due to the periodicity of
VΓ, which allows us then to cover all of R by simple translations. More precisely, for
k ∈ B =

[
− 1

2 ,
1
2

]
we equip the operator H with the following quasi-periodic boundary

conditions: {
ψ(t, y + 2π) = e2ikπψ(t, y) ∀ y ∈ R, k ∈ B,

∂yψ(t, y + 2π) = e2ikπ∂yψ(t, y) ∀ y ∈ R, k ∈ B.
(2.2)

It is well known [32] that under very mild conditions on VΓ, the operator H admits
a complete set of eigenfunctions ϕm(y, k),m ∈ N, providing, for each fixed k ∈ B, an
orthonormal basis in L2(C). Correspondingly there exists a countable family of real-
valued eigenvalues which can be ordered according to E1(k) ≤ E2(k) ≤ · · · ≤ Em(k) ≤
. . . , m ∈ N, including the respective multiplicity. The set {Em(k) | k ∈ B} ⊂ R is
called the mth energy band of the operator H and the eigenfunctions ϕm(·, k) are
usually called the Bloch function. (In the following the index m ∈ N will always
denote the band index.) Concerning the dependence on k ∈ B, it has been shown [32]
that for any m ∈ N there exists a closed subset A ⊂ B such that Em(k) is analytic
and ϕm(·, k) can be chosen to be the real analytic function for all k ∈ B\A. Moreover,

Em−1 < Em(k) < Em+1(k) ∀ k ∈ B\A.(2.3)

If this condition indeed holds for all k ∈ B, then Em(k) is called an isolated Bloch
band [31]. Moreover, it is known that

measA = meas {k ∈ B | En(k) = Em(k), n �= m} = 0.(2.4)
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In this set of measure zero, one encounters so-called band crossings. Note that due
to (2.2) we can rewrite ϕm(y, k) as

ϕm(y, k) = eikyχm(y, k) ∀m ∈ N(2.5)

for some 2π-periodic function χm(·, k). In terms of χm(y, k) the Bloch eigenvalue
problem reads {

H(k)χm(y, k) =Em(k)χm(y, k),

χm(y + 2π, k) =χm(y, k) ∀ k ∈ B,
(2.6)

where H(k) denotes the shifted Hamiltonian

H(k) :=
1

2
(−i∂y + k)2 + VΓ(y).(2.7)

Let us now introduce the so-called Bloch transform T of some function ψ(t, ·) ∈
L2(R) for any fixed t ∈ R, as can be found in, e.g., [29, 31]. (Some other variants of
this transformation can also be found in the literature.) The Bloch transformation T
is just the regular Fourier transform F on the factor �2(Γ) followed by a multiplication
with e−iyk, i.e.,

(T ψ)(t, k, y) :=
∑
γ∈Z

ψ(t, y + 2πγ) e−ik(2πγ+y), y ∈ C, k ∈ B.(2.8)

It is then easy to see that

T HT −1 = H(k),(2.9)

which (upon rescaling) provides a link between the eigenvalue problem (2.6) and the
periodic part of our Schrödinger equation acting on ψ(t, ·).

Most importantly, though, the Bloch transformation allows us to decompose our
original Hilbert space H = L2(R) into a direct sum of so-called band spaces, i.e.,

L2(R)=

∞⊕
m=1

Hm, Hm:=

{
ψm(t, y)=

∫
B
f(t, k)ϕm(y, k) dk, f(t, ·) ∈ L2(B)

}
(2.10)

for any fixed t ∈ R. This is the well-known Bloch decomposition method, which implies
that

∀ψ(t, ·) ∈ L2(R) : ψ(t, y) =
∑
m∈N

ψm(t, y), ψm ∈ Hm.(2.11)

The corresponding projection of ψ(t) onto the mth band space is thereby given as

ψm(t, y) ≡ (Pmψ)(t, y) =

∫
B

(∫
R

ψ(t, ζ)ϕm (ζ, k) dζ

)
ϕm (y, k) dk,(2.12)

and we consequently denote by

Cm(t, k) :=

∫
R

ψ(t, ζ)ϕm (ζ, k) dζ(2.13)
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the coefficients of the Bloch decomposition. For a complete description and a rigorous
mathematical proof of this decomposition we refer to, e.g., [30, Chapter XI]. Here
it is important to note only that the Bloch transformation allows us to obtain a
spectral decomposition of our periodic Hamiltonians H upon solving the eigenvalue
problem (2.6). Roughly speaking T can be seen as some sort of Fourier transform
adapted to the inclusion of periodic coefficients (potentials).

This consequently implies that if U(x) ≡ 0, we can indeed Bloch transform the
whole evolution problem (1.1) and decompose it into the corresponding band spaces
Hm, i.e., we gain some sort of “diagonalization” for our evolution problem. In this
case each ψm(t, ·) ∈ Hm then evolves according to the newly obtained PDE{

iε∂tψm = Em(−i∂y)ψm, y ∈ R, t ∈ R,

ψm

∣∣
t=0

= (Pmψin)(y).
(2.14)

Here Em(−i∂y) denotes the pseudodifferential operator corresponding to the (Fourier)
symbol Em(k) (cf. [16, 29, 31]). The above given evolution equation comprises a
rigorous justification of Peierls substitution. Moreover, (2.14) is easily solved invoking
the standard Fourier transformation F on L2(R), which yields

ψm(t, y) = F−1(e−iEm(k)t/ε(F(Pmψin))(k)).(2.15)

Here the energy band Em(k) is understood to be periodically extended on all of R.
Note that the relation

Cm(t, k) = e−iEm(k)t/εCm(0, k)(2.16)

holds, as can be shown by a lengthy but straightforward calculation.
Of course if U(x) �= 0 (the nonperiodic part of the potential), the time evolu-

tion (1.1) in general mixes all band spaces Hm, i.e., we can no longer hope to be
able to diagonalize the whole Hamiltonian operator (which now also involves nonpe-
riodic coefficients). On the other hand, since U(x) = U(εy) varies only slowly on the
fast (periodic) scale y = x/ε, one might hope that even if U(x) �= 0, the effective
Schrödinger-type equation{

iε∂tψ
eff
m = Em(−i∂y)ψ

eff
m + U(εy)ψeff

m , y ∈ R, t ∈ R,

ψeff
m

∣∣
t=0

= (Pmψin)(y)
(2.17)

holds true, at least approximately for small ε � 1. In other words, we expect the
slowly varying external potential to be almost constant on the lattice scale and thus
yielding only a small perturbation of the band structure determined via (2.1). Indeed
this is the case as has been rigorously proved in [11, 20, 29], using different analytical
approaches (for a broader overview, see [31] and the references given therein), where
it is shown that

sup
t∈I

∥∥(Pmψ)(t) − ψeff
m (t)

∥∥
L2(R)

≤ O(ε)(2.18)

holds true for any finite time-interval I ⊂ R. Here ψ(t) is the solution of the full
Schrödinger equation (1.1) and ψeff

m (t) is the solution of the effective model (2.17) for
the mth energy band. To this end one has to assume that the mth energy band is
isolated from the rest of the spectrum though. If this is not the case, energy transfer
of order O(1) can occur at band crossings, the so-called Landau–Zener phenomena.
In all that follows, the mth band is assumed to be isolated.
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2.2. Numerical computation of the Bloch bands. As a preparatory step
for our algorithm we shall first calculate the Bloch energy bands Em(k) numerically
as follows. Analogously to [18, 26], we consider the potential VΓ ∈ C1(R) and expand
it in its Fourier series, i.e.,

VΓ(y) =
∑
λ∈Z

V̂ (λ) eiλy, V̂ (λ) =
1

2π

∫ 2π

0

VΓ(y) e−iλy dy.(2.19)

Likewise, we expand any Bloch eigenfunctions χm(·, k) in its respective Fourier series

χm(y, k) =
∑
λ∈Z

χ̂m(λ, k) eiλy, χ̂m(λ, k) =
1

2π

∫ 2π

0

χm(y, k) e−iλy dy.(2.20)

(The latter should not be confused with the so-called Wannier functions, which are
given as the Fourier transformation of ϕm with respect to k ∈ B.) Clearly the Fourier
approximation of VΓ, and thus also the one of χm, depends on the regularity of VΓ.
If VΓ ∈ C∞(R), the corresponding Fourier coefficients V̂ (λ) decay faster than any
power, as λ → ±∞, and thus we only need to take into account a few coefficients in
this case.

For λ ∈ {−Λ, . . . ,Λ − 1} ⊂ Z, we consequently aim to approximate the Sturm–
Liouville problem (2.6) by the algebraic eigenvalue problem

H(k)

⎛⎜⎜⎜⎝
χ̂m(−Λ)
χ̂m(1 − Λ)

...
χ̂m(Λ − 1)

⎞⎟⎟⎟⎠ = Em(k)

⎛⎜⎜⎜⎝
χ̂m(−Λ)
χ̂m(1 − Λ)

...
χ̂m(Λ − 1)

⎞⎟⎟⎟⎠ ,(2.21)

where the 2Λ × 2Λ matrix H(k) is given by

H(k) =

⎛⎜⎜⎜⎜⎝
V̂ (0) + (k−Λ)2

2 V̂ (−1) · · · V̂ (1 − 2Λ)

V̂ (1) V̂ (0) + (k−Λ+1)2

2 · · · V̂ (2 − 2Λ)
...

...
. . .

...

V̂ (2Λ − 1) V̂ (2Λ − 2) · · · V̂ (0) + (k+Λ−1)2

2

⎞⎟⎟⎟⎟⎠ .(2.22)

The above given matrix H(k) comprises 2Λ eigenvalues. Clearly, this number has to
be large enough such that all the eigenvalues Em(k) which we need to use in our simu-
lations below are counted, i.e., we need m ≤ 2Λ. The numerical cost for this algebraic
problem is about O(Λ3); cf. [22]. Note, however, that this is the most expensive case,
which becomes considerably smaller if one exploits possible symmetries within the
potential VΓ; cf. Example 4.1 below (see also [9, 26, 21, 34]). In any case the number
Λ is independent of the spatial grid, and thus the numerical costs of this eigenvalue
problem are almost negligible compared to those spend in the evolutionary algorithms
below. The approximate numerical computations of the Bloch bands Em(k) can be
seen as a preprocessing, to be done only once and remain unchanged as time evolves.

Remark 2.1. Accurate computations of the energy bands needed in practical
applications, i.e., in more than one spatial dimension and for different kinds of (com-
posite) material, become a highly nontrivial task. Nowadays, though, there already
exists a huge amount of numerical data comprising the energy band structure of
the most important materials used in, e.g., the design of semiconductor devices;
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cf. [15, 25, 27]. We note that some of these data is available online via the websites
http://www.research.ibm.com/DAMOCLES/home.html, or http://cmt.dur.ac.uk/sjc,
and also http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html. In the context of pho-
tonic crystals the situation is similar [21]. Thus, relying on such data one can in
principle avoid the above given eigenvalue computations (and its generalizations to
more dimensions) completely. To this end, one should also note that given the en-
ergy bands Em(k), we do not need any knowledge about VΓ in order to solve (1.1)
numerically; cf. the algorithm described below.

3. Bloch decomposition–based algorithm vs. time-splitting spectral
methods. For the convenience of computations, we shall consider (1.1) on a bounded
domain D, say on the interval D = [−κ1, κ2], for some large enough κ1, κ2 > 0. More-
over, we shall equip D with periodic boundary conditions. However, this periodic
computational domain D should not be confused with the periodic structure induced
by the lattice potential. Without loss of any generality, we assume that D = [0, 2π].

For practical reasons we shall now introduce, for any fixed t ∈ R, a new unitary
transformation of ψ(t, ·) ∈ L2(R),

ψ̃(t, y, k) :=
∑
γ∈Z

ψ(t, ε(y + 2πγ)) e−i2πkγ , y ∈ C, k ∈ B,(3.1)

which has the properties that ψ̃ is quasi-periodic with respect to y ∈ Γ and periodic
with respect to k ∈ Γ∗, i.e.,

ψ̃(t, y + 2π, k) = ei2πk ψ̃(t, y, k), ψ̃(t, y, k + 1) = ψ̃(t, y, k).(3.2)

One should note that ψ̃ is not the standard Bloch transformation T , as defined in (2.8),
but it is indeed closely related to it, for ε = 1, via

(T ψ)(t, y, k) = ψ̃(t, y, k)e−iyk, k ∈ B.(3.3)

Furthermore, we have the inversion formula

ψ(t, ε(y + 2πγ)) =

∫
B
ψ̃(t, y, k)ei2πkγdk,(3.4)

which is again very similar to the one of the standard Bloch transformation [31].

The main advantage in using ψ̃ instead of T ψ itself is that we can rely on a stan-
dard fast Fourier transform (FFT) in the numerical algorithm below. If one aims to
use T ψ directly, one would be forced to modify a given FFT code accordingly. A
straightforward computation then shows that

Cm(t, k) =

∫
C
ψ̃(t, ζ, k)ϕm (ζ, k) dζ,(3.5)

where Cm(t, k) is the Bloch coefficient, defined in (2.13).
In what follows, let the time step be Δt = T/N for some N ∈ N, T > 0. Suppose

that there are L ∈ N lattice cells within the computational domain D = [0, 2π]. In
this domain, the wave function ψ is numerically computed at L × R grid points for
some R ∈ N. In other words we assume that there are R grid points in each lattice
cell, which yields the discretization⎧⎪⎨⎪⎩

k� = − 1

2
+

�− 1

L
, where � = {1, . . . , L} ⊂ N,

yr =
2π(r − 1)

R
, where r = {1, . . . , R} ⊂ N,

(3.6)
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and thus we finally evaluate ψn = ψ(tn) at the grid points x = ε(2πγ + y), i.e.,

x�,r = ε(2π(�− 1) + yr).(3.7)

We remark that in our numerical computations we can use R � L, whenever ε � 1,
i.e., we use only a few grid points within each cell. Now we shall describe precisely
the Bloch decomposition–based algorithm used to solve (1.1).

3.1. The Bloch decomposition–based algorithm (BD). Suppose that at
time tn we are given ψ(tn, x�,r) ≈ ψn

�,r. Then ψn+1
�,r , i.e., the solution at the (next)

time step tn+1 = tn + Δt, is obtained as follows.
Step 1. First, we solve the equation

iε∂tψ = −ε2

2
∂xxψ + VΓ

(x
ε

)
ψ(3.8)

on a fixed time-interval Δt. To this end we shall heavily use the Bloch decomposition
method; see below.

Step 2. In a second step, solve the ordinary differential equation (ODE)

iε∂tψ = U(x)ψ(3.9)

on the same time-interval, where the solution obtained in Step 1 serves as the initial
condition for Step 2. We easily obtain the exact solution for this linear ODE by

ψ(t, x) = ψ(0, x) e−iU(x)t/ε.(3.10)

Remark 3.1. Clearly, the algorithm given above is first order in time. But we
could easily obtain a second order scheme also by the Strang splitting method, which
means that we use Step 1 with time step �t/2, then Step 2 with time step �t, and
finally integrate Step 1 again with �t/2. Note that in both cases the scheme conserves
the particle density ρ(t, x) := |ψ(t, x)|2 also on the fully discrete level.

Indeed Step 1 consists of several intermediate steps which we shall present as
follows.

Step 1.1. We first compute ψ̃ at time tn by

ψ̃n
�,r =

L∑
j=1

ψn
j,r e−ik�·xj,1 .(3.11)

Step 1.2. Next, we compute the mth band Bloch coefficient Cm(t, k), at time tn,
via (3.5), i.e.,

Cm(tn, k�) ≈ Cn
m,� =

2π

R

R∑
r=1

ψ̃n
�,rχm(yr, k�) e−ik�yr

≈ 2π

R

R∑
r=1

ψ̃n
�,r

R/2−1∑
λ=−R/2

χ̂m(λ, k�) e−i(k�+λ)yr ,

(3.12)

where for the second line we simply inserted the Fourier expansion of χm, given
in (2.20). Note that in total we have R Fourier coefficients for χm. Clearly this
implies that we need Λ > R/2 to hold, where Λ is the number of Fourier modes
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required in the numerical approximation of Bloch’s eigenvalue problem as discussed
in section 2.2. Here we take only the R lowest frequency Fourier coefficients.

Step 1.3. The obtained Bloch coefficients are then evolved up to the time tn+1,
according to the explicit solution formula (2.15), taking into account (2.16). This
yields

Cn+1
m,� = Cn

m,� e−iEm(k�)Δt/ε.(3.13)

Step 1.4. From here, we consequently compute ψ̃ at the new time tn+1 by summing
up all band contributions and using the analytical formulas (2.12) and (2.13), i.e.,

ψ̃n+1
�,r =

M∑
m=1

(Pmψ̃)n+1
�,r ≈

M∑
m=1

Cn+1
m,�

R/2−1∑
λ=−R/2

χ̂m(λ, k�) ei(k�+λ)yr .(3.14)

Step 1.5. Finally we numerically perform the inverse transformation to (3.1), i.e.,

we compute ψn+1
�,r from ψ̃n+1

�,r . Thus from (3.4), we get

ψn+1
�,r =

1

L

L∑
j=1

ψ̃n+1
j,r eikjx�,1 .(3.15)

Note that in the BD algorithm, the main numerical costs are introduced via
the FFT in Steps 1.1 and 1.5. This also implies that on the same spatial grid, the
numerical costs of our Bloch transform–based algorithm is of the same order as the
classical time-splitting spectral method below. Moreover, we want to stress the fact
that if there is no external potential, i.e., U(x) ≡ 0, then the above given algorithm
numerically computes the exact solution of the evolutionary problem (1.1), which can
be seen analogous to a standard spectral method, adapted to periodic potentials. In
particular this fact allows us to solve the Schrödinger equation (1.1) for very long time
steps, even if ε is small (see the results given below). Moreover, one should note that a
possible lack of regularity in VΓ requires numerical care only when approximating (2.6)
by the algebraic problem (2.21). In particular, VΓ itself does not enter in the time
evolution but only Em(k).

3.2. A simple time-splitting spectral method (TS). Ignoring for a moment
the additional structure provided by the periodic potential VΓ, one might wish to
solve (1.1) by using a classical time-splitting spectral scheme. Such schemes already
proved to be successful in similar circumstances; see, e.g., [3, 4, 18, 23]. For the
purpose of a detailed comparison, we present this method here.

Step 1. In the first step we solve the equation

iε∂tψ = −ε2

2
∂xxψ(3.16)

on a fixed time-interval Δt, relying on the pseudospectral method.
Step 2. Then, in a second step, we solve the ODE

iε∂tψ =
(
VΓ

(x
ε

)
+ U(x)

)
ψ(3.17)

on the same time-interval, where the solution obtained in Step 1 serves as the initial
condition for Step 2. Again it is easily seen that such a scheme conserves the particle
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density. It is clear, however, that due to the inclusion of VΓ

(
x
ε

)
, the exact solution of

(3.17),

ψ(t, x) = ψin(x) e−i(VΓ(x/ε)+U(x))t/ε,(3.18)

involves high oscillations on different length- and time-scales as ε → 0 (which one
has to resolve), in contrast to (3.10), where only t/ε-oscillations are present. In
our BD algorithm, we compute the dominant effects from dispersion and periodic
lattice potential in one step, and treat the nonperiodic potential as a perturbation.
Because the split-step communicator error between the periodic and nonperiodic parts
is relatively small, the step size can be chosen considerably larger than for the SP
algorithm.

Remark 3.2. Clearly, if there is no lattice potential, i.e., VΓ(y) ≡ 0, the BD
algorithm simplifies to the described time-splitting method TS. Moreover, a second
order scheme (based on the Strang splitting algorithm) can be obtained analogously
to the one described above (see Remark 3.1), and a comparison of these second order
schemes gives similar results to those shown in the following.

For the BD algorithm, the complexities of Steps 1.1 and 1.5 are O(RL log(L)),
the complexities of Steps 1.2 and 1.4 are O(MLR log(R)), and for Step 1.3 we have
O(ML). Also the complexity of the eigenvalue problem (2.21) is O(Λ3). However,
since Λ (or R) is independent of ε and since we only need to solve the eigenvalue
problem (2.21) once in a preparatory step, the computation costs for this problem are
negligible. On the other hand, for the TS algorithm, the complexities of Steps 1 and
2 are O(RL log(RL)) and O(RL), respectively. As M and R are independent of ε, we
can use R � L and M � L whenever ε � 1. Finally the complexities of the BD and
TS algorithms in each time step are comparable.

4. Numerical experiments. In this section, we shall use several numerical
examples to show the efficiency of our algorithm. We shall choose for (1.1) initial
data ψin ∈ S(R) of the form

ψin(x) =

(
10

π

)1/4

e−5(x−π)2 .(4.1)

Let us perform a decomposition of ψin in terms of the Bloch bands, and take a
summation of the first m = 1, . . . ,M0 energy bands for some finite (cut-off) number
M0 ∈ N. A picture of the corresponding band densities ρεm := |Pε

mψin|2 is given in
Figure 1 for m = 1, . . . , 4. Since ψin is smooth we expect that only very few bands
have to be taken into account in the Bloch decomposition. Indeed we observe that
the amount of mass corresponding to P

ε
mψin, i.e., the mass concentration in each

Bloch band, decays rapidly as m → ∞; see Table 1. In other words, the number
M0 is essentially determined by the regularity of ψin in each cell. Note that M0 is
independent of ε.

To compute the evolution of these initial data we shall take into account M ≥ M0

bands. Note that only in cases where U(x) ≡ 0 can one take M to be identical to
M0, the initial band cut-off. The reason is that if U(x) is nonzero, Step 2 in the
BD algorithm given above mixes all bands. In particular all the ψm(t) are no longer
orthogonal to each other. Roughly speaking, however, if ε is very small, all band
spaces Hm remain “almost orthogonal” and thus the mass within each Bloch band,

i.e., Mε
m(t) :=

∥∥P
ε
mψ(t)

∥∥2

L2(R)
, is “almost conserved.” More precisely it is conserved

up to errors O(ε) on time-scales O(1). Thus, by checking mass conservation after each
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Fig. 1. |Pε
mψin|2, m = 1, . . . , 4, for ε = 1

32
.

Table 1

The values of Mε
m :=

∥∥P
ε
mψin

∥∥
L2(R)

for ε = 1
32

.

m 1 2 3 4
Mε

m 7.91E − 1 1.11E − 1 5.92E − 1 8.80E − 2

m 5 6 7 8
Mε

m 8.67E − 2 2.81E − 3 2.80E − 3 4.98E − 5

time step one gets a rather reliable measure on the amount of mixing of the bands.
In other words if the mass conservation after some time steps gets worse, one has to
take into account more bands to proceed.

We find numerically that the use of M = M0 ≈ 8 bands already yields satisfactory
results for ε = 1

32 . In the following, though, we shall even compute M = 32 energy
bands, which is by far sufficient for our purposes (even if ε = 1

2 ). Note that the
number of required bands M depends on the regularity properties of U(x), as well
as on the considered time-scales (which might be even longer than O(1), the case
considered here). This approximation problem is more or less analogous to the one
appearing in spectral schemes for PDEs with nonsmooth coefficients.

Concerning slowly varying, external potentials U , we shall choose, on the one
hand, smooth functions which are either of the form

U(x) = Ex,(4.2)

modeling a constant (electric) force field E ∈ R, or given by a harmonic oscillator–type
potential

U(x) = |x− π|2.(4.3)

On the other hand, we shall also consider the case of an external (nonsmooth) step
potential, i.e.,

U(x) =

{
1, x ∈

[
π
2 ,

3π
2

]
,

0 else.
(4.4)

Within the setting described above, we shall focus on two particular choices for the
lattice potential, namely, the following two examples.
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Example 4.1 (Mathieu model). The so-called Mathieu model, i.e.,

VΓ(x) = cos(x),(4.5)

as already considered in [18]. (For applications in solid state physics this is rather
unrealistic; however, it fits quite well with experiments on Bose–Einstein condensates
in optical lattices.) In this case all Fourier coefficients V̂ (λ) appearing in (2.19) are

zero, except for V̂ (±1) = 1
2 , and thus H(k), given in (2.22), simplifies to a tridiagonal

matrix.
Example 4.2 (Kronig–Penney model). The so-called Kronig–Penney model, i.e.,

VΓ(x) = 1 −
∑
γ∈Z

1x∈[π
2 +2πγ, 3π2 +2πγ],(4.6)

where 1Ω denotes the characteristic function of a set Ω ⊂ R. In contrast to Mathieu’s
model this case comprises a nonsmooth lattice potential. The corresponding Bloch
eigenvalue problem is known to be explicitly solvable (see, e.g., [18]).

In order to compare the different numerical algorithms we denote by ψts(t, x) the
solution gained from the time-splitting spectral method, whereas ψbd(t, x) denotes the
solution obtained via the new method base on Bloch’s decomposition. Both methods
will be compared to the “exact” solution ψex(t, x), which is obtained using a very fine
spatial grid. We consider the errors

Δbd/ts
∞ (t) :=

∥∥ψex(t, ·) − ψbd/ts(t, ·)
∥∥
L∞(R)

,

Δ
bd/ts
2 (t) :=

∥∥ψex(t, ·) − ψbd/ts(t, ·)
∥∥
L2(R)

(4.7)

between the “exact solution” and the corresponding solutions obtained via the Bloch
decomposition–based algorithm, respectively, the classical time splitting spectral me-
thod. The numerical experiments are now done in a series of three different settings:

• First we shall study both cases of VΓ, imposing additionally U(x) ≡ 0, i.e., no
external potential. The obtained results are given in Table 2, where ε = 1

2 , 1
32 ,

and 1
1024 , respectively. In the last case the oscillations are extremely spurious.

As discussed before, we can use only one step in time to obtain the numerical
solution, because the Bloch decomposition method indeed is “exact” in this
case (independently of ε). Thus, even if we would refine the time steps in the
BD algorithm, we would not get more accurate approximations. On the other
hand, by using the usual time-splitting method, one has to refine the time
steps (depending on ε) as well as the mesh size in order to achieve the same
accuracy. More precisely we find that Δt = O(ε), Δx = O(εα), for some
α ≥ 1, is needed when using TS (see also the computations given in [18]).
In particular α > 1 is required for the case of a nonsmooth lattice potential
VΓ. (Note that if VΓ = 0, it is well known that Δx = O(ε) is sufficient; cf.
[3, 4, 23].)

• In a second series of numerical experiments we shall consider only Example 4.1
for the periodic potential but taking into account all three cases of the external
potentials U , as given above. In Figures 2–7 and Table 3, we show the
obtained numerical results for ε = 1

2 , and ε = 1
1024 , respectively. We observe

that if ε = O(1), the Bloch decomposition method gives almost the same
results as the time-splitting spectral method. However, if ε � 1, we can
achieve quite good accuracy by using the Bloch decomposition method with
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Table 2

The results of Example 4.1 with U(x) = 0.

Spatial discretization error test at time t = 1.0 for ε = 1/2.
For TS �t = 0.0001 and for BD �t = 1.

Mesh size �x/ε 1/2 1/4 1/8 1/16∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

4.33E-1 2.53E-1 2.80E-2 6.42E-6

Convergence order 0.8 3.2 12.1∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

3.01E-1 1.95E-1 1.39E-2 1.17E-6

Convergence order 0.6 3.8 13.5

Spatial discretization error test at time t = 0.1 for ε = 1/32.
For TS �t = 0.00001 and for BD �t = 0.1.

Mesh size �x/ε 1/2 1/4 1/8 1/16∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

2.88E-1 1.08E-1 9.63E-4 1.33E-7

Convergence order 1.4 6.8 12.8∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

2.53E-1 7.34E-2 8.97E-4 4.95E-10

Convergence order 1.8 6.4 20.8

Spatial discretization error test at time t = 0.01 for ε = 1/1024.
For TS �t = 0.000001 and for BD �t = 0.01.

Mesh size �x/ε 1/2 1/4 1/8 1/16∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

5.14E-1 1.94E-1 1.08E-3 6.08E-8

Convergence order 1.4 7.5 14.1∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

2.64E-1 6.83E-2 2.29E-4 1.71E-10

Convergence order 2.0 8.2 20.4
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|ψex(t, x)|2, |ψex(t, x) − ψts(t, x)| and |ψex(t, x) − ψbd(t, x)| at t = 1.0

Fig. 2. Numerical results for Example 4.1 with U(x) given by (4.2) and ε = 1
2
. We use

�t = 1
100

, �x = 1
64

for the TS and BD methods, and �t = 1
100000

, �x = 1
8192

for the “exact”
solution.

Δts
∞(t) = 5.39E − 2, Δbd

∞ (t) = 5.07E − 2, Δts
2 (t) = 1.56E − 2, Δbd

2 (t) = 1.51E − 2.

Δt = O(1) and Δx = O(ε). On the other hand, using the standard TS
algorithm, we again have to rely on much finer spatial grids and time steps
to achieve the same accuracy.

• We finally show the numerical results obtained by combining external fields
and a nonsmooth lattice potential given by Example 4.2. As before we include
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Fig. 3. Numerical results for Example 4.1 with U(x) given by (4.2) and ε = 1
1024

. We use

�t = 1
5000

, �x = 1
16384

for the TS method, �t = 1
20

, �x = 1
8192

for the BD method, and

�t = 1
100000

, �x = 1
131072

for the “exact” solution.

Δts
∞(t) = 1.23E − 1, Δbd

∞ (t) = 1.20E − 1, Δts
2 (t) = 2.29E − 2, Δbd

2 (t) = 2.31E − 2.
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Fig. 4. Numerical results for Example 4.1 with U(x) given by (4.3) and ε = 1
2
. We use

�t = 1
10

, �x = 1
32

for the TS and BD methods, and �t = 1
100000

, �x = 1
8192

for the “exact”
solution.

Δts
∞(t) = 3.47E − 3, Δbd

∞ (t) = 1.04E − 3, Δts
2 (t) = 1.96E − 3, Δbd

2 (t) = 3.65E − 4.
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Fig. 5. Numerical results for Example 4.1 with U(x) given by (4.3) and ε = 1
1024

. We use

�t = 1
10000

, �x = 1
16384

for the TS method, �t = 1
100

, �x = 1
16384

for the BD method, and

�t = 1
100000

, �x = 1
131072

for the “exact” solution.

Δts
∞(t) = 1.37E − 2, Δbd

∞ (t) = 5.52E − 3, Δts
2 (t) = 2.76E − 3, Δbd

2 (t) = 1.20E − 3.

all three cases for the external potential U . The cases ε = 1
2 and 1

1024 are
studied and the obtained results are given in Figures 8–13 and Table 4, re-
spectively. We observe that the results of the Bloch decomposition are much
better than the time-splitting spectral method, even if ε = 1

2 . Moreover, as
ε gets smaller, the advantages of the Bloch decomposition method are even
better visible.
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Fig. 6. Numerical results for Example 4.1 with U(x) given by (4.4) and ε = 1
2
. We use

�t = 1
10

, �x = 1
32

for the TS and BD methods, and �t = 1
100000

, �x = 1
8192

for the “exact”
solution.

Δts
∞(t) = 3.26E − 2, Δbd

∞ (t) = 2.72E − 2, Δts
2 (t) = 1.51E − 2, Δbd

2 (t) = 1.45E − 2.
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Fig. 7. Numerical results for Example 4.1 with U(x) given by (4.4) and ε = 1
1024

. We use

�t = 1
10000

, �x = 1
16384

for the TS method, �t = 1
10

, �x = 1
8192

for the BD method, and

�t = 1
100000

, �x = 1
131072

for the “exact” solution.

Δts
∞(t) = 3.04E − 2, Δbd

∞ (t) = 4.25E − 3, Δts
2 (t) = 5.35E − 3, Δbd

2 (t) = 1.21E − 3.

To convince ourselves that only a few Bloch bands contribute to ‖ψ‖L2(R), even af-

ter time steps O(1), we show in Table 5 the numerical values of Mε
m(t) =

∥∥P
ε
mψ(t)

∥∥2

L2(R)

for m = 1, . . . , 8, corresponding to the solution of Example 4.1 with U given by (4.3).
We also check the conservation of the total (discrete) mass, i.e., ‖ψ(t)‖l2(D). We

find that numerically it is of the order 10−6 for the smooth lattice potential (4.5) and
10−3 for the nonsmooth case (4.6). The latter, however, can be improved by using a
refined spatial grid and more time steps.

In summary we find (at least for our one-dimensional computations) that, relying
on the new Bloch decomposition–based algorithm, one can use much larger time steps,
and sometimes even a coarser spatial grid, to achieve the same accuracy as that for
the usual time-splitting spectral method. This is particularly visible in cases where
the lattice potential is no longer smooth and ε � 1. Indeed in these cases the BD
algorithm turns out to be considerably faster than the TS method.

Remark 4.1. In view of our results the earlier numerical studies based on TS
methods [18, 17, 19] should be taken with some care, in particular when comparing
the full Schrödinger solution to the semiclassical approximation beyond caustics.

5. Asymptotic analysis in the semiclassical regime. For completeness we
shall also compare the numerical solution of the Schrödinger equation (1.1) with its
semiclassical asymptotic description. To this end we shall rely on a multiple scales
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Table 3

The results of Example 4.1 with linear external potential (4.2).

Spatial discretization error test at time t = 0.1 for ε = 1/2.
For TS �t = 0.0001 and for BD �t = 0.01.

Mesh size �x/ε 1/2 1/4 1/8 1/16∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

2.73E-1 9.22E-2 5.78E-3 4.73E-6

Convergence order 1.6 4.0 10.3∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

3.15E-1 1.55E-1 1.32E-2 3.36E-6

Convergence order 1.0 3.6 11.9

Spatial discretization error test at time t = 0.01 for ε = 1/1024.
For TS �t = 0.00001 and for BD �t = 0.001.

Mesh size �x/ε 1/2 1/4 1/8 1/16∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

5.22E-1 1.98E-1 1.53E-2 3.19E-5

Convergence order 1.4 3.7 8.9∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

4.71E-1 1.61E-1 9.17E-3 6.08E-6

Convergence order 1.5 4.1 10.6

Temporal discretization error test at t = 0.1 for ε = 1/2 and �x/ε = 1/128.

Time step �t 1/10 1/20 1/40 1/80∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

2.59E-4 6.47E-5 1.62E-5 4.04E-6

Convergence order 2.0 2.0 2.0∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

4.86E-5 1.23E-5 3.08E-6 7.60E-7

Convergence order 2.0 2.0 2.0

Temporal discretization error test at t = 0.01 for ε = 1/1024 and �x/ε = 1/128.

Time step �t 1/1000 1/2000 1/4000 1/8000∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

6.60E-2 1.54E-2 3.81E-3 9.45E-4

Convergence order 2.1 2.0 2.0

time step �t 1/100 1/200 1/400 1/800∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

3.32E-3 7.54E-4 1.42E-4 3.16E-5

Convergence order 2.1 2.4 2.2

WKB-type expansion methods, even though there are currently more advanced tools
at hand; cf. [16, 29, 31]. The WKB method, however, has the advantage of giving a
rather simple and transparent description of ψ(t), solution to (1.1), for ε � 1 (at least
locally in-time). Since the Bloch decomposition method itself is rather abstract we
include this approximative description here too, so that the reader gets a better feeling
for the appearing quantities. Moreover, this two-scale WKB method can also be used
for nonlinear Schrödinger dynamics [11], a problem we shall study numerically in an
upcoming work.

5.1. The WKB formalism. To this end let us suppose that the initial condition
is of (two-scale) WKB type. More precisely assume

ψin(x) =

M∑
m=1

um

(
x,

x

ε

)
eiφ(x)/ε,(5.1)

with some given real-valued phase φ ∈ C∞(R) and some given initial (complex-valued)
band amplitudes um(x, y + 2π) = um(x, y), each of which admits an asymptotic de-
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Fig. 8. Numerical results for Example 4.2 with U(x) given by (4.2), ε = 1
2
. We use �t = 1

100
,

�x = 1
64

for the TS method, �t = 1
2
, �x = 1

32
for the BD method, and �t = 1

100000
, �x = 1

8192
for the “exact” solution.

Δts
∞(t) = 3.31E − 1, Δbd

∞ (t) = 1.77E − 1, Δts
2 (t) = 6.16E − 2, Δbd

2 (t) = 1.38E − 2.
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|ψex(t, x)|2, |ψex(t, x) − ψts(t, x)| and |ψex(t, x) − ψbd(t, x)| at t = 0.1

Fig. 9. Numerical results for Example 4.2 with U(x) given by (4.2), ε = 1
1024

. We use

�t = 1
10000

, �x = 1
65536

for the TS method, �t = 1
10

, �x = 1
8192

for the BD method, and

�t = 1
100000

, �x = 1
131072

for the “exact” solution.

Δts
∞(t) = 1.65, Δbd

∞ (t) = 9.14E − 2, Δts
2 (t) = 2.63E − 1, Δbd

2 (t) = 1.39E − 2.
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Fig. 10. Numerical results for Example 4.2 with U(x) given by (4.3) and ε = 1
2
. We use

�t = 1
200

, �x = 1
64

for the TS method, �t = 1
5
, �x = 1

32
for the BD method, and �t = 1

100000
,

�x = 1
8192

for the “exact” solution.

Δts
∞(t) = 7.30E − 2, Δbd

∞ (t) = 8.30E − 3, Δts
2 (t) = 4.02E − 2, Δbd

2 (t) = 3.89E − 3.

scription of the following form:

um(x, y) ∼ u0
m (x, y) + εu1

m (x, y) + O(ε2) ∀m ∈ N.(5.2)

Here and in the following we shall be concerned only with the leading order asymptotic
description.
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Fig. 11. Numerical results for Example 4.2 with U(x) given by (4.3) and ε = 1
1024

. We use

�t = 1
50000

, �x = 1
65536

for the TS method, �t = 1
10

, �x = 1
8192

for the BD method, and

�t = 1
100000

, �x = 1
131072

for the “exact” solution.

Δts
∞(t) = 1.61, Δbd

∞ (t) = 9.16E − 2, Δts
2 (t) = 2.63E − 1, Δbd

2 (t) = 1.71E − 2.
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Fig. 12. Numerical results for Example 4.2 with U(x) given by (4.4), ε = 1
2
. We use �t = 1

100
,

�x = 1
32

for the TS method, �t = 1
5
, �x = 1

32
for the BD method, and �t = 1

100000
, �x = 1
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for the “exact” solution.
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∞(t) = 4.01E − 2, Δbd

∞ (t) = 5.00E − 2, Δts
2 (t) = 1.85E − 2, Δbd

2 (t) = 1.98E − 2.
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Fig. 13. Numerical results for Example 4.2. Here U(x) is given in (4.4), ε = 1
1024

. We

use �t = 1
10000

, �x = 1
65536

for the TS method, �t = 1
10

, �x = 1
8192

for the BD method, and

�t = 1
100000

, �x = 1
131072

for “exact” solution.

Δts
∞(t) = 1.35, Δbd

∞ (t) = 3.48E − 3, Δts
2 (t) = 2.23E − 1, Δbd

2 (t) = 1.14E − 3.

Remark 5.1. Note that we consider only a single initial WKB phase φ(x) for
all bands m ∈ N. We could of course also allow for more general cases, like one
WKB phase for each band or even a superposition of WKB states within each band.
However, in order to keep the presentation clean we hesitate to do so. The stan-
dard WKB approximation, for nonperiodic problems, involves real-valued amplitudes
ũ0(x), ũ1(x), . . . which depend only on the slow scale.
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Table 4

The results of Example 4.2 with harmonic external potential (4.3).

Spatial discretization error test at time t = 0.1 for ε = 1/2.
For TS �t = 0.0001 and for BD �t = 0.01.

Mesh size �x/ε 1/2 1/4 1/8 1/16∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

2.71E-1 8.87E-2 5.19E-3 1.32E-4

Convergence order 1.6 4.1 5.3∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

3.23E-1 9.08E-2 7.03E-3 1.27E-4

Convergence order 1.8 3.7 5.8

Spatial discretization error test at time t = 0.01 for ε = 1/1024.
For TS �t = 0.00001 and for BD �t = 0.001.

Mesh size �x/ε 1/2 1/4 1/8 1/16∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

3.99E-1 3.67E-1 2.19E-1 1.10E-1

Convergence order 0.1 0.7 1.0∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

2.06E-1 5.64E-2 8.16E-3 6.40E-4

Convergence order 1.9 2.8 3.7

Temporal discretization error test at t = 0.1 for ε = 1/2 and �x/ε = 1/128.

Time step �t 1/10 1/20 1/40 1/80∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

1.02E-3 6.41E-4 3.80E-4 2.18E-4

Convergence order 0.7 0.8 0.8∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

4.20E-6 1.02E-6 2.22E-7 5.56E-8

Convergence order 2.0 2.2 2.0

Temporal discretization error test at t = 0.01 for ε = 1/1024 and �x/ε = 1/128.

Time step �t 1/1000 1/2000 1/4000 1/8000∥∥∥ψts
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

1.21E-1 1.18E-1 1.10E-1 1.10E-1

Convergence order 0.04 0.1 0.0

time step �t 1/100 1/200 1/400 1/800∥∥∥ψbd
�x,�t(t, ·) − ψex(t, ·)

∥∥∥
l2

3.30E-5 5.21E-6 1.23E-6 3.16E-7

Convergence order 2.6 2.1 2.0

Table 5

The mass of ψ(t, x), solution to Example 4.1 with external potential (4.3), decomposed into the
Bloch bands for ε = 1

32
at time t = 1.

m 1 2 3 4
Mε

m 7.89E − 1 1.10E − 2 5.92E − 1 9.38E − 2

m 5 6 7 8
Mε

m 7.15E − 2 3.50E − 3 1.80E − 3 5.63E − 5

It is well known then (cf. [11, 20]) that the leading order term u0
m, m ∈ N, can

be decomposed as

u0
m

(
x,

x

ε

)
= fm(x)χm

(x
ε
, ∂xφ(x)

)
,(5.3)

where we assume fm ∈ S(R). In other words, there is an adiabatic decoupling between
the slow scale x and fast scale x/ε. Indeed, a lengthy calculation, invoking the classical
stationary phase argument (cf. [6, Chapter 4.7]), shows that the band projection P

ε
mψ
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can be approximated via

P
ε
mψ(x) ∼ fm(x)χm

(x
ε
, ∂xφ(x)

)
eiφ(x)/ε + O(ε).(5.4)

This approximate formula shows the origin of the high oscillations induced either
by VΓ, described by χm, or by the dispersion, described by φ(x). We note that in
general the higher order terms (in ε), such as u1

m, etc., are of a more complicated
structure than (5.3), but we shall neglect these terms in what follows (see, e.g., [11]
for more details). One consequently finds that ψ(t) obeys a leading order asymptotic
description of the form

ψ(t, x) ∼
M∑

m=1

am(t, x)χm

(x
ε
, ∂xφm(t, x)

)
eiφm(t,x)/ε + O(ε),(5.5)

where φm(t, x) ∈ C∞([0, tc) × R) satisfies the mth band Hamilton–Jacobi equation{
∂tφm(t, x) + Em(∂xφm) + U(x) = 0, m ∈ N,
φm

∣∣
t=0

= φ(x).
(5.6)

Also, the (complex-valued) leading order WKB amplitude am(t, x) ∈ C∞([0, tc)× R)
satisfies the semiclassical transport equations{

∂tam + ∂kEm(∂xφm)∂xam +
1

2
∂x(∂kEm(∂xφm))am

−(βm(t, x)∂xU(x)) am = 0, am
∣∣
t=0

= fm(x),
(5.7)

with βm(t, x) := 〈χm(y, k), ∂kχm(y, k)〉L2(C), evaluated at k = ∂xφm, the so-called
Berry phase term.

Remark 5.2. Note that the Berry term is purely imaginary, i.e., βm(t, x) ∈ iR,
which implies the following conservation law:

∂t|am|2 + ∂x
(
∂kEm(∂xφm)|am|2

)
= 0 ∀m ∈ N.(5.8)

Of course the above WKB-type expansion method is valid only up to (in general
finite) time 0 ≤ tc < ∞, the caustic onset-time in the solution of (5.6). Here we
shall simply assume that tc > 0 holds, i.e., no caustic is formed at time t = 0, which
is very well possible in general. We note that in the considered numerical examples
below we indeed have tc > 0 and we refer to [10] for a broader discussion on this. For
t ≥ tc one would need to superimpose several WKB-type solutions corresponding to
the multivalued solutions of the flow map (x, t) �→ Xt(x) ≡ Xt(x; ∂xφ(x)), where{

Ẋt = ∂kEm(Ξt), X0 = x,

Ξ̇t = − ∂xU(Xt), Ξ0 = ∂xφ(x).
(5.9)

Numerically we shall use the relaxation method introduced in [24] to solve the Hamil-
ton–Jacobi equation (5.6). Consequently we can solve the system of transport equa-
tions (5.7) by a time-splitting spectral scheme similar to the ones used above.

5.2. Numerical examples. We shall finally study the WKB approach, briefly
described above, using some numerical examples. Denote by

ψsc(t, x) :=

M∑
m=1

fm(t, x)χm

(x
ε
, ∂xφm

)
eiφm(t,x)/ε(5.10)
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Table 6

Difference between the asymptotic solution and the Schrödinger equation for Example 5.1 (�t =
10−4, �x = 1/32768).

ε 1/32 1/1024

sup
0≤t≤1

‖ψ(t, x) − ψsc(t, x) ‖L2(R) 6.68E − 3 3.08E − 4

sup
0≤t≤1

‖ψ(t, x) − ψsc(t, x) ‖L∞(R) 5.57E − 2 2.38E − 3

Table 7

Difference between the asymptotic solution and the Schrödinger equation for Example 5.2 for
initial condition (5.11) (�t = 10−4, �x = 1/32768).

ε 1/32 1/1024

sup
0≤t≤0.1

‖ψ(t, x) − ψsc(t, x) ‖L2(R) 1.18E − 2 1.08E − 3

sup
0≤t≤0.1

‖ψ(t, x) − ψsc(t, x) ‖L∞(R) 9.34E − 2 7.74E − 3

the approximate semiclassical solution to the Schrödinger equation (1.1). In the
following examples we only take into account a harmonic external potential of the
form (4.3).

Example 5.1 (Mathieu’s model). We first consider Mathieu’s model (4.5) and
choose the initial condition in the form

ψin(x) = e−5(x−π)2χ1

(x
ε
, 0
)
,(5.11)

i.e., we choose φ(x) = 0 and restrict ourselves to the case of only one band with
index m = 1. (The analytical results of [6, 11, 20] then imply that we can neglect the
contributions from all other bands m > 1 up to errors of order O(ε) in L2(R)∩L∞(R),
uniformly on compact time-intervals.) In this case, we numerically find that no caustic
is formed within the solution of (5.6) at least up to t = 1, the largest time in our
computation. Note that (5.11) concentrates at the minimum of the first Bloch band,
where it is known that

Em(k) ≈ |k|2
2m∗ + Em(0).(5.12)

This is the so-called parabolic band approximation, yielding an effective mass m∗ ∈ R.
In Table 6, we show the results with an additional harmonic external potential (cf.
(4.3)) for ε = 1

32 and ε = 1
1024 , respectively. Note that these numerical experiments,

together with those given below, confirm the analytical results given in [6, 11, 20].
Example 5.2 (Kronig–Penney model). Here, we consider again the Kronig–

Penney model (4.6). First we use the same initial condition as given in (5.11) but
with m = 2. The corresponding numerical results for ε = 1

32 and 1
1024 are shown in

Table 7. In a second case, we alternatively choose initial data of the form

ψin(x) = e−5(x−π)2χ2

(x
ε
, sin(x)

)
e−i cos(x)/ε,(5.13)

i.e., φ(x) = − cos(x). Here we find (numerically) that the caustic onset time is roughly
given by tc ≈ 0.24; cf. Figure 14. The corresponding numerical results are given in
Figure 15 and Table 8.
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Fig. 14. The graph of ∂xφ2(t, x) at t = 0.24.
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Fig. 15. Numerical results for Example 5.2 with U(x) given by (4.3), �t = 1
10000

, �x =
1

32768
. The left column shows the situation before the caustic, whereas the other two columns show,

respectively, during the numerical results and after the caustic.
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Table 8

Difference between the asymptotic solution and the Schrödinger equation for Example 5.2 for
initial condition (5.13) (�t = 10−4, �x = 1/32768).

ε 1/32 1/1024

sup
0≤t≤0.1

‖ψ(t, x) − ψsc(t, x) ‖L2(R) 1.68E − 2 3.19E − 3

sup
0≤t≤0.1

‖ψ(t, x) − ψsc(t, x) ‖L∞(R) 2.73E − 1 7.33E − 2
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