ON TWO MOMENT SYSTEMS FOR COMPUTING
MULTIPHASE SEMICLASSICAL LIMITS OF THE
SCHRODINGER EQUATION
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AssTrACT. Two systems of hyperbolic equations, arising in the multiphase
semiclassical limit of the linear Schrédinger equations, are investigated. One
stems from a Wigner measure analysis and uses a closure by the Delta func-
tions, whereas the other relies on the classical WKB expansion and uses the
Heaviside functions for closure. The two resulting moment systems are weakly
and non-strictly hyperbolic respectively. They provide two different Euler-
ian methods able to reproduce superimposed signals with a finite number of
phases. Analytical properties of these moment systems are investigated and
compared. Efficient numerical discretizations and test-cases with increasing
difficulty are presented.

1. INTRODUCTION

We aim at computing efficiently the semiclassical limits of the linear Schrédinger
equation with high frequency WKB initial data,

(1) i€d + SAYE = V(x)yf,  x € R,

(2) (%, 0) = Ao (x)ei

In (1) 9°¢ is the complex wave function, € is the scaled Planck constant, and V' (x)
stands for a smooth potential. In the semiclassical regime which corresponds to
a small value of €, the wave function ¥¢(x,t) and its related physical observables
exhibit oscillatory behavior with wave length O(e). This may prevent any strong
convergence as € vanishes, as is well-known, [21, 31, 32].

To obtain physically correct observables numerically when € — 0, a direct nu-
merical discretization of (1)—(2) with a Cartesian grid requires the mesh size and
time step to be o(e) when a finite difference method is used [42]. The use of time-
splitting spectral methods [3] can improve the mesh size to O(e) and time step to
O(1). But still, these constraints make computations in the semiclassical regime
prohibitively expensive, especially in several space dimensions.

A more subtle strategy seeks asymptotic solution in the limit € — 0 by assuming
the form of the solution to be 9¥¢(z,t) = A(z,t) exp(iS(z,t)/€) (this is also called
the Madelung transformation [41]). This is the classical WKB expansion which
gives, to the leading order, an eikonal equation for the phase function S and a
linear transport equation for the intensity (the square of the amplitude |A|?, also
called the position density), see [35] and §2.1:

1
(3) 0SS + §|VS|2 +V(x) =0, O(JAP) + V- (JA2VS) = 0.
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The eikonal equation is a nonlinear Hamilton-Jacobi equation. Even for smooth
initial data, its solution may become singular in finite time, which corresponds to the
focusing of the characteristic curves, i.e. the formation of a caustic. In fact, caustics
do appear as soon as 0,59 < 0 in some interval. Beyond this singularity, most
of modern ‘shock-capturing’ numerical methods will select the very stable viscosity
solution [15, 16], which differs significantly from the dispersive semiclassical limit,
[21], since the viscosity solution violates the superposition principle, an essential
property of the linear Schrodinger equation. In fact, beyond the caustics, solution
becomes multivalued or multiphased, see [52, 34, 48]. Such multiphase solutions
will be the subject of study in this paper, and the goal is to investigate and compare
two Eulerian approaches to numerically compute these multiphase solutions.

We mention that |A|*> can still be understood in the duality sense [7], and this
direction has been investigated after [19, 50]. Precise results about (3) have been
obtained in e.g. [29, 28].

In order to comply with the linear superposition principle for (1), one may track
the characteristic curves of (3) and then deduce the geometric solution of the eikonal
equation in (3). This Lagrangian method amounts to solving a set of ordinary
differential equations along the characteristic curves, and is usually referred to as
the ray tracing method. See [4, 5, 6] for the latest developments in this direction.

A mathematically convenient tool for studying the semiclassical limits is the
Wigner transform [38, 22, 53], which is defined as

1 vy €y \— €y
W(s, ¥)(x,v,t) = @ /n e ¢(X - 7)1/1(3( + ?)dY-
For ¢ satisfying (1), W€ = W[y, 4] can be shown to converge weakly towards a
measure solution of the Liouville equation from classical mechanics:

(4) ow+v-Vyw—VV - -Vew = 0.

As a linear kinetic equation, the Liouville equation naturally unfolds the caustics
and therefore can generate the correct multiphase solutions globally in time.

Nevertheless, numerical computation of kinetic equations is still expensive and
an appropriate Mazwellian distribution that can be used to close moment equations
of the kinetic equation is desirable. This program, briefly outlined in §2.3—4, can be
done in two ways. The first one is to use the fact that W€ converges weakly, before
the formation of caustics, to a so-called ‘monokinetic density’ [11, 13]-which is a
delta measure, and then to study how to extend it to a ‘multiphase density’ beyond
the caustic time. This strategy has been followed for instance in [17, 34], to derive
the resulting (weakly) hyperbolic system satisfied by the corresponding moments.
This approach will be referred to as the delta closure and the corresponding moment
system will be called the §-system.

Another one, proposed by Brenier and Corrias [12], takes for granted (3) and then
uses Heaviside functions to close the kinetic equation (4). This provides a way to
reconstruct the geometrical (multivalued) solution of the Burgers’ equation beyond
the shock. The resulting moment system is a (nonstrictly) hyperbolic system of
balance laws in the ambient space. This approach will be referred to as the Heaviside
closure and the resulting system will be referred to as the H-system.

Although the moment systems are seemingly quite different, they share some
common properties. This will be studied in §3. In one space dimension, when
the number of moments used within the closure process is sufficiently large, the
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two systems are equivalent, as will be proved in §3.2. This statement is confirmed
by the numerical computations of §5, using the numerical schemes constructed
in §4. However, if the semiclassical limit of (1)—(2) develops more phases than the
moments system can support, both closures amount to impose some singular source
terms on the right-hand-side of the kinetic equation (4) and they have not been
proved to generate the same analytical solutions. The numerical discretizations of
these two schemes, using the schemes constructed in §4, give drastically different
results, see Figs. 11, 12 (and also the results given in [47]).

The Wigner approach is naturally multidimensional: a two-dimensional moment
system was given in [34]. It has not been numerically tested yet. The Brenier-
Corrias’ approach has not been extended to several space dimensions — it is the-
oretically possible but technically rather tedious since it needs a delicate ordering
on the values of the velocities.

Since the §-system is weakly hyperbolic, standard shock capturing schemes such
as the Lax-Friedrichs scheme and the Godunov scheme face some numerical dif-
ficulties [9]. In addition, the fluxes maybe discontinuous across the caustics, and
these discontinuities are undercompressive shocks as shown in §3, the numerical ap-
proximation of these moment systems is a delicate task. We use a kinetic scheme
derived from the Liouville equation as in [34] for the §-system. When the potential
is nonconstant, we use a well-balanced idea introduced in [45] to incorporate the
forcing term . For the H-system, a local Lax-Friedrichs scheme is used, which will
also be coupled with the forcing term in a well-balanced way [24, 26]. We also
give a new simple way to approximate the intensity, which results in a much better
numerical resolution. These numerical schemes produce better numerical results
those previously used for similar moment systems.

2. TWO MOMENT SYSTEMS FOR MULTIPHASE SOLUTIONS

2.1. The Wigner measure and the delta-closure. For smooth functions ¢
and v, rapidly decaying at infinity (more precisely, belonging to L. Schwartz’s class
S(R™)), the Wigner distribution is defined as [53]:

6 Wl = g [ o (x= ) (x+ ) ay.

When ¢ solves the Schridinger equation (1), the Wigner distribution
We(x,v,t) = WWJE’ "/}E]

solves the Wigner equation,

(6) OWe +v - VW - Z[VIWE =0,
where the linear operator = can be written as
e e 0 vy e (x — X 4\ e &y AN _ Y
= [vViw _(Zﬁ)"e/Rne Yap (x 2,t)'¢ (x—l— 2,t) [V(x—l— 2) V(x 2)] dy.

It can been shown (see for example [22]) that as e — 0,
EVIWE - ViV - Vyw.

Altogether, in the limit € — 0, the series of Wigner functions W is weakly compact
and converges towards the solution w of the classical Liouville equation,

(7 Ow~+v-Vyw— ViV -Vew = 0.
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In addition, the Wigner transform of the initial wave function (2)

1 Yy | Yy vy iSO TS0 F)
WG(X’V’O):W/ AO(X—Ey)AO(X-i- Ey)e’ Ve = “dy

converges weakly to a classical particle of mass-velocity (po, ug):
(8) w(x,v,0) = po(x)5(v — up(x)),

where ug = VSp, po = |4o|?> and §(-) stands for the Dirac measure. This bridges
the quantum mechanics and classical mechanics, as explained in [35]. Moreover, it
was shown in [21] that the first two moments of W€ converge also weakly towards
those of w, ensuring the consistency of physical observables in the limit € — 0.
Before breakdown time ¢, (when the first caustics forms), the solution keeps on
being a so-called monokinetic density,

9) w(x,v,t) = p(x,t)0(v — u(x,1)).

Applying (9) to the Liouville equation (7) and taking the first two moments yield
a closed system for p and u

615/’ +V- (pu) = 05

(10) O(pu) + V- (pu®u) +pVV = 0.

These are the pressureless gas equations, which form a weakly hyperbolic system
with only one characteristic speed u, and its Jacobian matrix is similar to a Jordan
block. Beyond the break time ¢, the above ansatz (9) is no longer valid. Direct
simulations of the pressureless gas system (10) using shock capturing techniques
yield the viscosity solution', such as the d-shock solution [9], which violates the
superposition principle and does not provide the correct semiclassical limits of the
linear Schrédinger equation.

In fact, the semiclassical solution displays multiphase phenomena once the single
phase ansatz breaks down. If the total number of phases N is finite, the correspond-
ing form of the density distribution, as proved in [34, 48], takes the form (away from
the caustics):

N(x,t)
(11) w(x,v,t) = Z Pk (x,1)0(v — ug(x,t)),

k=1

where each pair of py,u solves the pressureless gas equations (10).

In [34], the ansatz (11) was used to obtain a moment system satisfied by a N-
phase solution for some fixed N € N. For example, in one space dimension and
with (11), the moments are

N
(12) m; = / w(z,v, )o'dv = pruk,  1=0,1,--- ,2N.
R k=1

Lwhich does not match the Crandall-Lions’ one as shown in [47].
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The first 2N one-dimensional moment equations obtained by integration in v from
(7) are

O¢mg +0;m1 = 0,
(13 o e = T T
Omon—1+0;many = —(2N —1)man_2 0, V.

It was proved in [34] that the mapping from mq,--- ,man_1 t0 p1,u1, - , PN, UN
is one-to-one, under the condition that py’s are positive and wuy’s are distinct, which
holds for a truly N-phase solution. Hence one can express (pg,ur), k =1,--- ,N
in terms of my, -+ ,man—_1, and apply it to (12) to close the moment system with
(14) man = Fn(mo,m1, -+ ,man_1),

for some function F. Thus the Liouville equation has been closed ezactly since N
is finite. When N < 5 one can find analytic expression for Fy [37]. For N > 5 one
needs a numerical algorithm to generate Fiv: see [34] for details.

We will refer to the moment system (13)-(14) as the d-system.

For N = 2, the moment system (13)-(14) reads:

8tm0 + awm]_ = O7
(15) Omi + 0yma = —myg 0,V
8tm2 + 6wm3 = _2m1 61:‘/’
Oms +0,ms = —3ms 8,V
with
2 —2 + 3 .
(16) my = mamOmOZ;;:nTg:; m27 if moms — m% 7& 0,
Z—i, Otherwise.

Since momy — m? = p1pa(u; — uz)? in the case N < 2, a discontinuous flux my is
introduced to represent a double phase and a single phase respectively. In the case
of a single phase, the definition of m4 makes the two-phase equations equivalent to
the single phase system—the pressureless gas system. In addition, in this system,
the density myg is always positive, thus one does not face the vacuum problem.

A numerically more convenient form of the above system can be written as

(17) Oym + 0, (A(p, ¢)m) = B(m),
where
0 1 0 0
| —¢ p 0 0
A(p, q) - 0 —q P 0 ’
0 0 —q p
and

B(m) = =8,V (0,mo,2m,,3ms)"
with p, ¢ defined as

mgmopo—mimsa — H 2 .
. { e (= uy +u2), if momy —m3i #0;

mi
mo?

1
(18) Otherwise,
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and
— 2 .
(19) ¢ % (= uruz), if momas —m? # 0;
0, Otherwise.

Similarly for N = 3, one can define,

P11 = U1 +u2+us
msm?2 — msmamg + MaMmzmo — Mamima + mzm3 — mym?
mam3 — mamamo + mimo — 2mimoms + m3
P2 = uiuz + uiu3 + Ugus

?

M5M3Mo — MsMamy + Mam3 — Mimo + mamszmy — ma2m3
mami — mamamg + mimg — 2mymams + m3

bl
pP3 = Ui1U2u3
msmmi1Mms — m5m§ — mﬁml =+ 2m4m3m2 — mZml — mg
mam?2 — mamamo + mimg — 2mymams + m3

Then the d-system takes a similar form

(20) dym + 9, (A(p1, p2,p3)m) = B(m),
with
B(m) = -3,V (0,mq, 2m1, 3ma, 4ms, 5my) 7,
and
0 1 0 0 0 0
0 0 1 0 0 0
pP3s —p2 N 0 0 0
A =
(p17p27p3) 0 Ps —pa P 0 0
0 0 p3 —p2 p1 O

0 0 0 p3s —p2 ;1
To identify the number of phases, one can use the indicator functions,

— 2
$1 = mema —mg,

21
(21) 2 = mam? —mamamg +mimg — 2mimaoms +m3,

which are the denominators of p;. If ¢, is negative, then N > 3. Similarly, if
¢1 > 0, N > 2. Otherwise, N = 1. One can easily verify that in the single phase
domain (when ¢ > 0,¢1 < 0), the system will be reduced to the (single phase)
pressureless gas equations. In the double phase case (when ¢o > 0,¢; > 0), the
triple phase system reduces to that of the double phase (17). Thus the triple phase
system is valid for single, double and triple phases.

For a general problem, one first gives an a priori estimate on N. In one dimension
such an estimate was given in [34]. In multi-d this is not so easy and one needs some
physical intuition or numerical experiments to begin with. Once N is determined,
one solves the N-phase system, which is valid for all n-phase situations with n < N.

2.2. Bicharacteristic curves and their inverse mappings. Introducing the
Hamiltonian flow for the Liouville equation (7)

x'(t) = v, x(0)=xo,
(22) {v’(t) = -VV(x), v(0(3=VO-

The curves (x,v) are usually referred to as the bicharacteristics in the phase space.
They generate for ¢ € RT a Lagrangian manifold which can be understood as the
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geometric solution to the eikonal equation (3) and describe the classical behavior
of the solution to (10). In this case, S is the action associated to the Hamiltonian
H(x,p) = 3p? + V(x), with p being the momentum. Their projection onto the
physical space with vo = V.Sy gives the characteristic curves (the rays) of the
field-driven Burger’s equation for the velocity:

(23) ot V(GP V() =0, u(,0) =S,

It matches also the momentum equation of the pressureless gas equation (10) in
the case when its solution is smooth.

Let (xo(x,V,t),vo(x,v,t)) denote the inverse mapping of the bicharacteristic
curves. We emphasize that it is an unambiguous object as a consequence of Cauchy-
Lipschitz’s theorem for (22). Since the solution of the Liouville equation (7) is a
constant along the bicharacteristic curves defined by (22), one has

(24) ’U)(X,V,t) = ’U)(X()(X,V,t),Vo(X,V,t),O).
Define another mapping R® — R™ by

(25) q)xt(v) = VO(X)vat) - uO(XO (X,V,t)).

The zeroes of ®x¢(v) give the velocities in (11), {ux(z,t),k =1,2,--- , N} and the
expression of the intensity p = myg reads,

N N
(26) p(x,t) — Zpk(x t Z pO XO X llk X t) t))
k=1 k=1

M’"* [(ur(x,t))

One novelty in this paper will be to use this exact formula for the numerical
computations of the intensities pi, when using the forthcoming Brenier-Corrias’
formulation. This improves the numerical results in the sense that much coarser
grids can be used in comparison with [26, 27].

2.3. The Heaviside closure by Brenier-Corrias. In this subsection, we recall
the construction of nonnegative ‘multibranch solutions’ to (23) in one space dimen-
sion through the kinetic formulation proposed in [12] (see also [11]). Let K € N.
Consider a set of test-functions,

ox:={9eCO®; o) >0 (D)},
together with bounded compactly supported kinetic densities:
Fr>o := {f € L™, 0< f<1a.e. with Supp,(f) C [O,L]}.
Each f € Fr, induces a moment vector 7 (f) € RE whose components read:
(27) mk(f):/RJrka(v)dv, k=0,... K—1.
It is therefore possible to define the set of ‘realizable moments’
ML — {m € RK;3f € Fy, such that 7 = m(f)},

onto which one treats the following minimization problem:

6(v) f(v)dv where m(f) =M € ML and 6 € ®K} .
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For any m € Mf(, there exists a unique solution to this problem which is called the
K-branch Maxwellian: it is independent of 8 € © g and reads

K

(28) MK,T_ﬁ(u17“‘7uK7U) = Z(_l)kilH(uk _U)a Uk > Uk+1 > 05

k=1
with H standing for the Heaviside function. Thus we can consider the following
map m : [0, L)% — MEL:

1 K

— —1)F 1 ()1, j=0,....,.K -1,
1+Jk:1( )

(29) mj(U1,...,uK) =

and 17 realizes an one-to-one C'*° correspondence as long as ug > ugy1, k < K.

Definition 1. We call K-multivalued solution any measurable function f(z,v,t) €
{0,1} on R x R* x R satisfying the following Viasov equation in the sense of
distributions

(30)  Ouf +v0af = BuVOuf = (-1)* 101, f(t,7,0) = Mi.(s),
where m is a nonnegative Radon measure on R x Rt x Rt.

Existence results for these K-multivalued solutions are provided in [12] by means
of BGK approximations. Hence one establishes an equivalence between these K-
multivalued solutions and the hyperbolic system of the ‘realizable moments’.

Proposition 1. (Brenier & Corrias, [12])

A measurable function Fr~o > f(t,z,v) = Zszl(—l)k_lH(uk(x,t) —v) is a K-
multivalued solution in the sense of Def. 1 if and only if the following entropy
inequalities hold in D'(RT X R) for all 0 € Ok:

(31) O /IR+0(v)f(v).dv + 0y .

Equality holds in case 8X0(v) = 0.

v (v) f(v).dv + (%V/ 0'(v) f(v).dv < 0.

R+

The moment system coming out of the kinetic formulation (30), (28) has only
K = N equations and governs the evolution of velocities uy:

O¢mo +90,m; = 0,
(32) O¢my +0yma = —mg 0V,
omik 1+ 0:mkg = —(K—-1mg_20,V,
in which,

m; :/ flz,v,t)dv, j=0,1,--- K.
R+
Once again, closing it amounts to finding a nonlinear function such that:
(33) mK:FK(m07m17'” 7mK71)-

Their expression is generally involved. For K < 5, it is available in [47]. To obtain
the density, it was proposed in [26, 27] to solve the linear conservation equation

(34) 6tpk +6$(ukpk) :07 for k = ]-5 7N'
We refer to the moment system (32)-(33) as the H-system.
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The H-system for K = 2 reads

{ Omgo + 0ymy = 0,

(35) omy + 9, ms = —mgy 9,V

where the relations between the moments m;’s and Riemann coordinates u;’s are

1
mo = U1 — U2, my = 5((“1)2 - (U2)2)-
This can obviously be inverted,
m1 mo u mi mo
Ul = — —_— = — - —,
! mo 2’ 2 mo 2
which implies that:
1 _ 2 3
my = g((ul)3 - (U2)3) = F3(mo,m1) = ("77:0) + (nzg)

Hence the mapping mg,m; — F(mg, m;) is continuous across a phase boundary.

In this simple case, u1, us are solutions of an invertible linear algebraic system. For

K = 3, following [47],

(m0)3 + 6ma — 6momy _ —4((m0)3 — 3m2) + VA
3((m0)2 + 2m1) 12((m0)2 + 2m1)

Uz = 5 U1,3 =

together with:
A= 16((m0)3 - 3m2)2 - 24((m0)2 + 2m1) ((m0)4 + 12(m1)2 - 12m2m0).

One can write mg = F3(mg,mi,ms) = 1((u1)* — (u2)* + (u3)?) in terms of
mg, M1, Mo to close the system

O¢mo +0,m1 = 0,
(36) oymyi + Oyms = —mgy 0,V

6tm2 + Bzmg = —2m1 6EV

When one is led to use for instance the double phase system (35) in a single
phase domain (where u; = us), the moments m1 > = 0 and this corresponds to the
vacuum for the Euler equations. This is the reason why, as in [26, 47], we shall use
initial data for which a single phase is split into slightly different ones by means
of a small parameter (see §5.1 for instance). This stabilizes also their numerical
processing since it brings back the system inside a strict hyperbolicity region as its
characteristic velocities are given by the uy’s.

Uniqueness results for both (32) and (13) are very sparse: see [39, 29, 8] in the
case K = N =1, [51] for K = 2 and [1, 7, 23, 26] for K > 2 in the strictly
hyperbolic case and 8,V € L' N L*°(R).

3. SOME ANALYTICAL PROPERTIES OF THE 1-D MOMENT EQUATIONS

Let us point out differences between the two moment systems.

e The H-system is a non-strictly rich 1D hyperbolic system whereas the §-
system is only weakly hyperbolic.

e The H-system decouples the computation of velocity uy from the inten-
sity (defined by (34)), but the J-system couples the computation of these
quantities.
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e The H-system is a mathematical formulation without too much physical
meaning while the J-system arises from a rigorous Wigner analysis for the
semiclassical limit of the Schrédinger equation.

Next we explore some common features of both moment systems.

3.1. Propagation of the phase boundaries. First, we characterize the nature
of the phase boundaries and study their propagations. As an example, we study
the phase boundary from a single phase to triple phases. The transition properties
in other circumstances is similar.

Lemma 1. Assume K = N = 3 and let (Z,t) be a phase boundary separating a
triple phase region on the left from a single phase one on the right. Assume

- p3(-,t), us(.,t) are continuous at T,

- pi(z,t) = p2(z,t) =0 and ui(z,t) = ua(z,t) = us(x,t) for z >z,

- ul('i'_at) = ’U‘Q(E_at);
as shown in Fig 1 then its characteristic speed is 0 = ua(T—,t) for both moment
systems (20) and (36).

If o discontinuity ot (Z,t) separates a single phase region on the left from a
triple phase one on the right, then under similar assumptions, the speed of the
phase boundary is ¢ = us(T+,1).

Proof. Tt is merely a consequence of the classical Rankine-Hugoniot conditions.
We perform the computation first for the H-system (36). From (29), we deduce
that

1
mo =uy —uy +uz, My = 5((111)2 — (u2)? + (U3)2)-

Hence the hypotheses of Lemma 1 imply: ([-] standing for the jump of a quantity)

[(u1)? = (u2)?]

w1 = us]

(Ul(i'—,t) + Ug(i‘—,t)) = 'LLQ(H_I—,t).

DN =

1
o=
2

Concerning the d-system (20), we recall from the moments’ expression (12) that,
mo(Z—,t) = p1 + p2 + p3, mo(Z+,t) = ps3.

ma(Z—,t) = prur + paus + psus, mq(T+,t) = psus.

This clearly leads to:
o=l _ us (3=, 1)
[mo]

O

Such discontinuities across which the phase number N(z,t) changes are under-
compressive shocks since the characteristics from one side are parallel to the shock,
while from the other side they impinge into it. Thus they do not satisfy the strict
Lax inequalities.

3.2. Equivalence of weak solutions with enough moments. We now aim at
establishing the equivalence of the two moment systems (13) and (32) when a large
enough number of moments is involved.
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FIGURE 1. Illustration of the case considered in Lemmal.

Theorem 1. Let K = N € N be fixred, 0 < po and ug be a given smooth func-
tion, fM(x,v,t) a solution to the Liouville equation (7) with initial condition,
F(z,v,0) = H(v —ug(x)). Consider the set:

C= {v € Rt such that fO (z,v,t) =1, f(z,0,0) = H(v— uo(x))}

Assume that it has only M connected components. If

-M=L(K+1) (K odd) or M = K/2 (K even),

-N =K in (13),
then the §-system (13) and the H-system (32)-(26) produce the same weak solution
(pkauk); k= 1, 5N

Proof. From Theorem 3.5 in [12], we know that the singular source term /M in
(30) is null under our assumptions which guarantee that the number of moments
involved is big enough. Then both moment systems (13) and (32) are obtained by
integration in v of the following Liouville equation (see (7) and (30)):

(37) Oyw + vo,w — V'(2)0,w = 0,
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with two different initial data:
w (z,v,0) = po(2)d(v — uo(z)), w?(z,v,0) = H(ug(z) —v).
Using the bicharacteristic curves defined in (22) one gets the exact solution of (37),
w(z,v,t) = w(zo(z,v,t),v0(z,v,t),0).
In particular with the above initial conditions, we have,
wM (z,0,t) = po(zo(2,v,1))0(Bat(v)), WP (z,0,t) = H(—B4(v)),

with ®,;(v) defined in (25). Corresponding to w(?), velocities {ugcl),k =1,---,N}
are the zeroes of ®,;(v), so are the velocities corresponding to w(®. So both system
yield the same velocities. For the H-system, if one uses the formula, (see (26))

t
pk(xﬂt):pO(xO(x’Uk’ ))5 k:]-aza"'aNa

| @ ()|

then the two systems produce the same density solutions as well. [

If we do not use enough moments, these two moment systems generate differ-
ent ’viscosity’ solutions by introducing different cuts (shocks) across the under-
represented phases: see numerical experiments in Section 5.

4. NUMERICAL DISCRETIZATIONS OF THE MOMENT SYSTEMS

We shall consider from now on a Cartesian computational grid determined by
the positive parameters Az, At which stand respectively for the uniform mesh size
and the time step. Accordingly we will denote z; = jAx and t, = nAt.

4.1. Kinetic schemes for the é-system: 9,V = 0. Kinetic schemes were used in
[34] to solve the moment system. It has been shown in [34, 9] that kinetic schemes
are best suited for such weakly hyperbolic equations of the pressureless gas type
when considering both their accuracy and their robustness in treating the vacuum.
Let us first consider the case with a constant potential,

(38) Ow + vo,w =0,
for which the exact solution, within one time step, is given by
w(z,v,t) = w(x —v(t —t"),v,t,)-

Using the ansatz (11) with N(z,t) = N € N,

N
w(e,v,t) = Y pu(a, 3 (v - us(@, 1)),
k=1
one integrates (38) over (z;_1/2,%;41/2) X Ry X (tn,tn41) and gets,

At .a !
(39) (M) = (Mg + = (£ =0 4) =0,
where, for [ =0,...,2N — 1,
(40)

“itg my(z, tn) ® !
(mi)n,; —/m de:c, fn’j+% = A, Rw(xH% —vt, v, t,)v dv.

Nj=

i—
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The first order scheme given by (40) corresponds to a flux-splitting,

N
l _ 1
(41) Ry = Dokl g + (ol g .
k=1
Here we have used the conventional notations
1 1
wh=Sul+w),  w == (] - w)

One can use a piecewise linear construction for (pg,ur) to obtain a formally
second order scheme (the indices k,n are dropped for convenience),
p(x) = pj+Dpj(z—x;), _ ,
(42) { u(z) = T+ Duj(z — xj), for  @joaj2 <T<Tjprye,
where u; is chosen as
_ Dp;Du; 9
(43) U; = uj — éTjJAx ,
in order to have the conservation property. Namely, the cell average of g;(z) =

pj(x)u;j(z) must be ¢; = - fzz”l% p(x)u(z)dr. After some calculation, one gets
2

N R
l 1 [%i+3 _ 1 [%i+1 _
w10, =Y 5 [ n@u@ e - 5 [ et s,
2 k=1 “”ﬁrl Tl
it3 3
where
(45)
m Az + — Az —
L (u; + 5*Duj)" g (j+1 — 5" Dujt1)
Tjt1/2 = Tit1/2 1+ AtDu; ’ Ti+1/2 = Tj1/2 F 1+ AtDujq

The numerical flux can be written in explicit form,
-1 1 1
1) _ s s l—s—1 l—s L l—s
fivy = ZOCI—I(uk)j(Duk)j [70 Y (Pk)j((gﬁx) — (241 — ;) )

— S
o (Dp); (A2) T — (aky — ;)]
(I—s+1)At 7\ its
-1

3 3 —8— 1 —3 1 —s
+ E Cl—l(“'k)j+1(DUk)§'+1 ! [7” — S)At (Pk)j+1 ((-Z‘ﬁ_% - $j+1)l — (—EAJL')Z )
s=0

1 R l—s+1 1 l—s+1
+m(DPk)j+1(($j+% — Tjt1) = (=542) )]

The slope limiters are chosen as follows,

1
Dp; = §(Sgn(pj+1 — pj) +sgn(p; — Pj—1))
| |pi+1 = pil |pj — pi-1] 2p;

x mm{ Az 7 Az Az’
Du; =5 (Sgn(uj+1 —uj) + sgn(u; — uj—1)

« 1min |uj1 — vyl |uj —uj ] 1

(1= AzDp;/6p;j)Az’ (1+ AzDp;/6p;)Ax’ At |

It is chosen so as to ensure several important properties (see [9]) such as the posi-
tivity of the intensity and the maximum principles on the velocities uy.

(46)
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In the numerical implementation, given py, ug, the indicator functions (21) are
computed first to detect the number of phases. We then utilize the scheme (39) to
update the moments. The multivalued intensity and velocity can be recovered from
these moments as described in section 2.4. For all the numerical tests presented in
this paper, we take NV < 3. In the single phase region, we take,

my

pr=mg, p2=p3=0, up=uy=uz=u=—.
Mo

4.2. A kinetic scheme for varying potential: 0,V # 0. Several numerical
methods for hyperbolic systems with geometrical source terms have been recently
proposed. These schemes are well-balanced in the sense that smooth steady-state
solutions are preserved numerically either exactly or with at least a second order
accuracy [14, 30, 25, 33, 45]. Indeed, the J-system (13) admits steady solutions,

2
(47) pr >0, pkukZCk,u?k%-V(w):Dk, k=1,2,--- N,
in which Cy and Dy are constants.

In this section, we will follow mostly the method proposed by Perthame and
Simeoni [45] which relies on energy balancing at the microscopic level. Namely,
particles from adjacent cells can cross the interfaces as long as their kinetic energy
is big enough to overcome the potential jump. Otherwise they will be reflected
backwards? (their velocity will change sign). This idea gives rise to the following
scheme for the kinetic equation,

Wpt1,) = W <—ﬂv w —wt
nLd T T Ay Ui+ Tng—3 )

where the one-sided numerical fluxes are given by:

wn,j+%(”) = wn;(v) lisoy + Wy, j(—0) 1{v<0}ﬁ{v2§2AVj+%}

Fwn 1 (= /02 = 2AVJ-+%) 1{v<0}ﬂ{v2>2AVj+%}7

and
w:,jfé (v) = wn;(v) Lycoy + wn,i(—v) 1{">0}m{v25_AVf‘%}
+TWn,j—1 (\/m) 1{”>0}”{”2>7AVJ'— 3b
with

Vi€Z, AVyy=Via -V

Integrating with respect to v, one immediately obtains a ’conservative’ scheme in
the physical space,

At r.—q 1
(48) (ml)ﬂ‘i‘Lj = (ml)n7j - A_.Z'( ) - f+( ) 1)3 I = 05 52N - ]-a

nv]+% naj_E

2There is no "tunnel effect" anymore at this scale.
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with the numerical fluxes, (we drop the n index for clarity)

= _ -

Fojiy = /ij-i-év dv

N

= (1) (k) 1 (un); >0 + (Pr)s (—(ug);)! Li(un);>01n{(m)2<24v,, 1 }
k=1 2
5 -1

+(pr) i1 (ur) 1 (= \/(uk)j+1 +2AV 1) 1{(uk)j+1<0}ﬁ{(uk)?+1>72AV:7.+%}7
and
er(.l)1 = /wJ.r vldv
ny—3 R 772

N
= Z(Pk)j(uk)é‘ L(uy); <0y + ()i (= (ug);)! 1{(uk)j<0}ﬂ{(uk)§§—2AV}_%}

. -1
+(Pk)j—1(uk)j—1(\/(uk)§_1 —2AV; 1) 1{(uk)j_1>0}ﬂ{(uk)12._l>2AVj_%}'

If 9,V = 0, one can verify that this numerical scheme reduces to the one given in
the previous section. So far this method has not been extended to second order.

4.3. A local Lax-Friedrichs scheme for the H-system. Discretization of the
H-system (32) could be done using similar kinetic scheme starting from the homo-
geneous Liouville equation (33) (38). According to (28), the first-order numerical
fluxes are now given by

K

0 1 _ _

(49) fT(L,)H% =Ir1 Z(—l)k ! [(uiut);‘ + (b, )?H], 1=0,...,K —1.
k=1

However a better outcome is obtained by the so-called local Laz-Friedrichs (LLxF

for short) scheme which in the present setting reads: (compare with (49))
0 B i
Frig = vt T D 04 + 04,

z z ] 1=0,...,.K—1.
— maxg, jj+1 |Uk|"((m )i41 — (m )?)’

(50) -
Both kinetic and LLxF discretizations are endowed with similar numerical dissipa-
tion. The main difference between them stems from the rendering of N-waves which
appear for instance when bifurcating from a one-phase to a three-phases solution;
see Figs. 3 and 4. Its second order extension is the Nessyahu-Tadmor (NT) scheme
already used in [17, 26, 47]; it has the drawback of being less stable in the vicinity of
non-strictly hyperbolic points. In order to compute the densities pi, we shall use an
approximation of the explicit formula (26). As long as 0,V = 0, the Hamiltonian
flow (22) can be solved exactly as:

v(t) = vy,  x(t) = B0 + Vot = T + V(t)t.
Thus characteristics z(t) are straight lines along which wug(z(t),t) is constant, and
B, (v) = v —ug(x — vt).
Consequently

6@&(1))
ov

zt

8<I>v (uk(z,t)) = 1+ tug(z — up(z, t)t).

=1+ tug(z — vt) =
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Given uy, a simple way to deduce the py’s numerically follows from (26):

(51) (@)% =1+ touh (jAZ — ta(wr)?),  (ox)} = po (l'j|(_qj;r-}(|uk)?) _

In the case of a nonconstant smooth potential V(z), one observes simply that
the (vector of the) numerical fluxes of the LLxF scheme (50) read:

f~"a1'+% = f(ﬂ?’ﬂ?ﬂ) ’ RY 5 ay = ((uk)?)k:O,...,K—l :

At this point, from [24, 26], we use the fact that any conservative flux for homoge-
neous conservation laws can be modified to handle source terms in a well-balanced
(WB, for short) manner in the following way:

+1_ At (FwB FWB :
w == 3 (R )
e =A@, ),
(52) with 17?+%,, =v(z;), Opu(x)? = 2V'(x), v(zj41) = 77;'1+1§
B o
fn,j—§,+ - f(ﬁy—%ﬁr’ﬁ?)’
with @, = wv(z;), 0:0(2)* = 2V'(2), v(wj—1) =T}y

The WB property for steady-state solutions is obvious since in this case, both

1T;+ , _and 11’;?7 1, are equal to @} and therefore one obtains trivially ﬂ’;‘“ = uj.
2 2

Since the steady equations read 8,7(z)? = 2V'(z), they can be solved analytically:
’1_1/77%,*_ = \/(E_?—l)2 - ZA‘/]—%7 17;_’_%,7 = \/(11?4-1)2 + 2AV7+%7

together with a convenient choice of the signs. There is however a little diffi-
culty lying in the fact that the steady-state relations are singular for instance if
((uk);tl)2 < 2AV;_1 and this corresponds to the case where particles are re-
flected in the kinetic interpretation of §4.2. In this case, the square roots can
become complex-valued. The easiest way out is thus to replace f (12’7_ 1 @7}) with
f (@} q, 11’;.‘7%,7) for which the square root will surely be real-valued because AVJ-_;

will have the opposite sign. Deducing the intensities is done in a way similar to the
homogeneous case but one needs to take into account the curvature of the charac-
teristic curves. For moderate values of ¢, > 0, one may approximate system (22)
by the Trapezoidal rule

2(t") = o + %tn(u tug),  u(tn) =uo — %tn (V’(xo) + V’(x(t"))),

and the value of zy can be found iteratively by the Newton’s method. At this point,
formula (51) can still be used. Of course, for greater values of t,, one can (should!)
iterate this recipe on convenient time intervals.

For N = K > 2, it doesn’t seem possible to perform a rigorous convergence
analysis even for the flux-splitting schemes (39), (41) and (49), and uniqueness
results for (13) and (32), in order to relate these numerical approximations to the
semiclassical limit. Therefore we plan to rely on numerical experiments to validate
these approaches.
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5. NUMERICAL EXPERIMENTS

5.1. A free particle model for a Gaussian pulse. We first consider the follow-
ing problem which models the evolution in time of a pulse-type signal for (1), (2)
in the semiclassical limit. More precisely, for z € [—1, 1], we choose p € N:

1,2 . . -
(53) po(z) = exp ( —(z - 5) ), uo(z) = — sin(7x)| sin(wz)|P L.
Intuitively, the decreasing interval of the velocity profile will eventually lead to
caustics.

The mesh size and time steps are Ax = At = 0.006 respectively for all the runs
(except otherwise stated) and results are shown at time T' = 1. To approximate the
H-system (36) and the d-system (20) (both allow at most three phases to be fully
rendered), we use the first order LLxF scheme (50) and the kinetic schemes ((44)
and (48)) respectively. The multivalued phase functions S(.,t,) can be deduced
from the uy(.,t,) by numerical integration as in [26]. The numerical results are
compared with those obtained using the ray tracing (denoted by “ray” in all figures).

One cusp caustic: p=1. In this case, the exact solution of the rays contains
self-interference, develops a cusp singularity, and hence admits at most three phases.
The density blows up on the caustic curve. The rays are displayed on Fig. 2.
Some numerical approximations obtained with the H-system (36) with K = 3
are presented on Fig. 3: initial data were chosen as in [26], namely u, (¢ = 0,.) =
up+ %, uz(t =0,.) =ug, u3z(t =0,.) =ug— f—g. The densities are computed based
on the explicit formula (51). Meanwhile, the numerical results for the §-system are
depicted in Fig. 4.

Since the number of physical phases does not exceed the number of phases that
the systems (36) and (20) support, the numerical solutions agree nicely with the
exact ones, which are produced by simple ray tracing. A spurious shock in the
velocity solution can be observed around the sonic point at x = 0 in the results
of the kinetic scheme. This is due to the loss of consistency of the scheme at this
point, as studied in [2, 9]. For instance in the case of single phase, if u; > 0 and
uj+1 < 0, then the first order kinetic scheme gives,

(pu)jr1 = pjuj + pir1ujpr = 2p(z;y 1)u(z,, 1) + O(Az).
2 2 2

This lack of consistency appears more severely in the first order kinetic scheme and
becomes smaller as one uses higher order schemes.

For the delta-system (20), the numerical solution p» often displays spurious peaks
[34], whereas the multivalued velocities u;,us and ug can usually be well produced.
This is because the computation of the multivalued intensities involves inverting a
matrix of the Vandermonde type, which is ill conditioned near the phase boundaries
(i.e. where ug or uq get close to us). Therefore, we also rely on the formula (51)
for the computation of p,.

Meanwhile in Fig. 5, we compare the first order LLXF to solve the the delta-
system and compared the numerical solutions with the ones from kinetic scheme.
The result of LLxF for the § system is not competitive compared to the kinetic
scheme for the same system, while for the H-system the LLxF seems to outperform
the kinetic scheme.

Two cusps merging into one: p—=2. In this case, the initial data ug has an
inflection point at x = 0 and two cusp singularities develop inside the geometric
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solution which exhibits at most five phases. But these two singularities will eventu-
ally merge when time goes to infinity. More precisely, the size of the interval where
five different values appear in uy shrinks like® O(1/t), see Fig. 6. Therefore it is
attempting to simulate this problem with just the 3-phase closure: see the numeri-
cal results on Fig. 7 and Fig. 8 . We stress that it would be possible to reconstruct
by symmetry the whole spectrum of u (but not p since pg doesn’t admit z = 0
as a center of symmetry) as in [26]. Notably, the two advocated formulations pro-
vide different results: the H-closure produces better solutions, particularly for the
top and the bottom branch. But the §-closure captures the locations of the phase
boundaries more accurately. We performed another run on the same configuration
with a much finer grid Az = 0.0006; one observes that in this case, the H-systems
displays more accurate phases’ boundaries. The results are very similar to the ones
generated by the §-system: see Fig.9.

The ‘square signal’: p=100. In this case, the initial data develops two cusp
singularities involving five phases which stand still forever: see the rays in Fig.12.
We consider this test case as a way to visualize the effects of the 'measure source
terms’ responsible for the closure of the Vlasov equation (7), (30) onto the geometric
solution of (23) when the number of phases used in the moment system is too low.
We use 3-phase systems for both closures. We used the H-system (36) with the
following initializations which exploit the symmetry property of ug:

ul(t = 0, ) = u01z<0 + ?_(.’f, ug(t = 0, ) = u01z<0, u3(t = 0, ) = u01z<0 — ?_(?
With the H-system involving three moments and Az = 0.006, the numerical solu-
tions miss completely the exact one (see top figure in Fig 11). If one refines the
grid (as for p = 2) or exploits symmetry, as explained in [26], results are improved
significantly although some discrepancy still exists because of the signals’ sharpness
(see bottom figure in Fig 11). The §-system, despite of the moments’ shortage, gives
much better approximation. See Fig.12. Note that the two different closures again
display different ’cuts’ in the numerical solutions.

5.2. The harmonic oscillator. In the last numerical experiment, we consider the
Schrédinger equation (1) with a confining potential

1
V(z) = §m2,
together with the initial conditions:
1
(54) po(z) = exp ( — (= - 5)2), uo(z) = — tanh(5z).

The exact solution can be found by the method of characteristics since the system
(22) can be integrated as follows for zo € R:

z(t) = cos(t)zo + sin(t)ug(xo), u(z(t),t) = — sin(t)zo + cos(t)ug(xo)-

See Fig. 13 for the rays. This corresponds to a rotation in the phase space at
unitary angular speed. For d-system, the well-balanced kinetic scheme presented in
§4.2 is used and the numerical solutions at T' = 0.5 are displayed on Fig. 15. On
the other hand, the results on Fig.14 have been obtained using the H-system (52)
and (51) for which no iterative algorithm is necessary since V'(z) = z is linear.

3We have ug(z) = — sin(rz)| sin(rz)| and following (22), ddeo = 1+t.up(zo) = 1—t.7|sin(27z)|

since V/ = 0, hence the exact size is %| arcsin(1/tx)|.
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An adaptive time-step algorithm has been used in order to keep a constant CFL
number around 0.95. Both numerical methods produce good results comparing to
the exact ones. Since the potential is smooth, direct splitting of the moment systems
(the hyperbolic part and the potential part) may also produce good results for the
d-system. In the case of the H-closure, a time-splitting approach is unstable as
noted in [11]. For a discontinuous or singular potential, the well balanced schemes
can achieve much better results (see for example [14, 30, 25, 33, 45]), but one then
deals with nonconservative products, [36].

6. CONCLUSION

We addressed the issue of reproducing efficiently the semiclassical (WKB) limit of
the linear Schrédinger equation (1)—(2) by means of a kinetic formalism involving
the Vlasov equation (7) which can be closed in two ways, following either [34,
48] or [12, 26]. The former closure will generate a system of weakly hyperbolic
system. This second choice produces the systems (32) which are less demanding
numerically and represent an interesting alternative for 1D computations. In the
multi-dimensional case, only the Dirac closure leading to (13) can be exploited
[34]. Both moment systems provide Eulerian methods to compute the multivalued
intensity and velocity only in the physical space. We compare analytical properties
of these two moment systems, and introduce new numerical methods to solve these
moment systems which have been extensively tested and compared with each other
and with the solution obtained by the ray tracing. The numerical results obtained
in this paper gives better results than those previously produced for similar moment
systems.

We point out that solving the moment system is a delicate numerical task com-
pared to a standard strongly hyperbolic system, even when the total number of
phases is known a priori. The moment systems are not strongly hyperbolic, and
the fluxes maybe discontinuous across the caustics. The discontinuities at which
the phase number changes are undercompressive shocks. Each of these contributes
to the numerical challenges not faced by standard shock capturing techniques. Al-
though the numerical results we obtained are more reasonable than the previous
efforts, they are still not very satisfactory when judged by the modern standard of
shock capturing for strongly hyperbolic systems. More investigations and better
methods seem to be needed in this exploration.

The applications of the moment methods are not restricted to the computation
of the semiclassical limits of the Schrédinger equation. Similar problems arise
in geometric optics [17, 47], seismic imaging and multiple arrivals [50] where the
computation of multivalued solutions are essential. Recently there has been an
increasing interest in designing efficient methods being able to capture multivalued
physical variables instead of the viscosity solution: see [47, 17, 18, 26, 49, 20, 43].
The techniques discussed in this paper are based on the physical space, thus offer
greater efficiency compared with the computation in the phase space. However,
when the number of phases becomes very large, the moment systems become very
complex and a hybrid method that combines the low phase number moment system
and the Liouville equation would certainly be desirable.
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FIGURE 2. Characteristics for (53) with p = 1.
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