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Abstract

We present a time-dependent semiclassical transport model for coher-

ent pure-state scattering with quantum barriers. The model is based on a

complex-valued Liouville equation, with interface conditions at quantum

barriers computed from the steady-state Schrödinger equation. By retain-

ing the phase information at the barrier, this coherent model adequately

describes quantum scattering and interference at quantum barriers, with a

computational cost comparable to that of the classical mechanics. We con-

struct both Eulerian and Lagrangian numerical methods for this model,

and validate it using several numerical examples, including multiple quan-

tum barriers.

1 Introduction

The motion of electrons in a plasma or a semiconductor can be modeled with
classical mechanics when the change in the applied potential is moderate. But
in a region where the potential changes rapidly over the length on the order of
a de Broglie wavelength, quantum mechanics is required to accurately capture
wave phenomena such as tunneling, resonance, and partial transmission and
reflections. Because quantum-scale parameters often control the accuracy and
consistency of the solution, one often must resolve the dynamics entirely at the
quantum scale. But for large-scale problems, such an approach is numerically
infeasible. If the quantum region is sufficiently localized, a viable approach is
to solve the problem using a multiscale method that combines the large-scale
classical model with the small-scale quantum model.
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In [7, 8] the authors presented a multiscale approach which accurately models
the interaction of a quantum wave packet with a thin barrier in the semiclassical
regime as the scaled Planck constant ε vanishes. This thin-barrier model ac-
curately describes the weak limit of the moments of solutions to the pure-state
Schrödinger and mixed-state von Neumann equation for an isolated thin quan-
tum barrier (a barrier of width on the order of a de Broglie wavelength). This
model assumes that the dwell time of the particle in the barrier is sufficiently
short so that the behavior of the wave packet may be adequately described by
the steady-state Schrödinger equation. Such an assumption is realistic for O(ε)
thin barriers in the semiclassical limit as ε→ 0, but it is inadequate when either
ε is finite or the width of the barrier is significant in comparison to the width
of the wave packet.

Another shortcoming of the thin-barrier model is that it can only generate a
decoherent solution. Quantum mechanics is in essence wave mechanics and the
Schrödinger equation models the evolution of waves. Two or more waves can
constructively and deconstructively interfere over large distances and after long
periods of time. Such behavior, called coherence, is destroyed by random media
leading to decoherence in the classical solution. A model that only captures the
decoherent behavior is adequate for many physical problems, but several devices
such as superconductors and theoretical quantum computers rely on quantum
coherence. Furthermore, a decoherent solution cannot adequately model a pe-
riodic crystalline lattice for which interference plays a key role.

In this article, we extend the thin-barrier model by proposing a coher-
ent model that includes complex phase information. It is based on the com-
plex Liouville equation with suitable interface conditions at quantum barrier
to account for quantum scattering information. The interface conditions uses
complex-valued quantum scattering matrices computed by solving the steady-
state Schrödinger equation, thus retaining the phase information needed for
interference of waves pass through resonant quantum barriers.

Section 2 reviews the correspondence between the classical and quantum
mechanics. We then describe the semiclassical model in Section 3 by review-
ing the thin-barrier model, examining its limitations, and presenting the new
coherent semiclassical model. In Section 4 we discuss Eulerian and Lagrangian
implementations of the model. Finally, Section 5 presents several examples, in-
cluding multiple resonant quantum barriers, to validate the model and verify the
numerical method. Our results indicate that the model correctly captures the
solution of the Schrödinger equation in the entire domain in the semiclassical
limit, including interference at the barriers. Since the construction of quantum
scattering information is at the pre-processing step, the overall computational
cost using the complex-valued Liouville equation or Hamiltonian system is al-
most the same as that of using the classical mechanics.

2



2 Background

The trajectory of a particle such as an electron can be modeled by the classical
Hamiltonian system

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
. (1)

where the Hamiltonian H(x, p) = 1
2m

−1p2 + V (x) gives the total energy and
x denotes the position, p denotes the momentum, and m is the effective mass.
By the Liouville theorem, the probability distribution f(x, p, t) of a particle is
merely advected along the characteristics. Hence from (1), the time evolution
of a distribution of noninteracting particles is given by the Liouville equation

df

dt
=
∂f

∂t
+

p

m

∂f

∂x
− dV

dx

∂f

∂p
= 0. (2)

The dynamics of a particle can also be modeled using the Schrödinger equa-
tion

i~
∂

∂t
ψ = Ĥψ =

(

− ~
2

2m

d2

dx2
+ V (x)

)

ψ, (3)

where ~ is Planck’s constant. The Schrödinger equation describes the time evo-
lution of the probability amplitude ψ(x, t). When the potential is sufficiently
smooth, the probability density ρ(x, t) = |ψ(x, t)|2 in the semiclassical limit as
ε → 0 may adequately be determined by the classical Liouville equation. Con-
sider a characteristic length and time scale Lδx and Lδt where δx is the natural
length scale such as a de Broglie wavelength δx = ~/p for some momentum p.
By rescaling x 7→ x/Lδx and t 7→ t/Lδt in the Schrödinger equation we have

iε
∂

∂t
ψ = Ĥψ =

(

− ε2

2m

d2

dx2
+ V (x)

)

ψ, (4)

where the dimensionless scaled Planck constant ε = [mL(δx)2/δt]−1
~ and the

effective mass m has been nondimensionalized. The Wigner transform is defined
as

W (x, p, t) =
1

2π

∫ ∞

−∞

ψ(x+ 1
2εy, t)ψ(x− 1

2εy, t)e
−ipy dy. (5)

By applying the transform to the Schrödinger equation one has the Wigner
equation [28]

∂

∂t
W +

p

m

∂W

∂x
− ΘεW = 0

where the nonlocal term

ΘεW (x, p, t) =
1

2π

∫ ∞

−∞

i

ε

[

V (x+ 1
2εy) − V (x− 1

2εy)
]

W̌ (x, y, t)e−ipy dy
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with

W̌ (x, y, t) =

∫ ∞

−∞

W (x, p, t)eipy dp

being the Fourier transform of W (x, p, t). When the potential V (x) is suffi-
ciently smooth, one recovers the classical Liouville equation (2) in the semiclas-
sical limit as ε → 0 [5, 18]. It is important to note that the Wigner function
W (x, p, t) is real-valued and and does not correspond to a unique wavefunc-
tion ψ(x, t). The Wigner transform of ψ(x, t)eiθ for any θ produces the same
function W (x, p, t). Because of this, the Liouville equation cannot adequately
model important wave phenomena. In this article, we introduce a complex Li-
ouville equation, which retains the phase information. Formally, we define a
new complex function Φ(x, p, t) =

√

W (x, p, t)eiθ that both retains the linear
superpositioning characteristic of ψ(x, t) and satisfies Liouville equation.

Furthemore, the classical limit is not valid at discontinuities in the potential
[3, 23, 25]. Instead, the potential behaves as a quantum scatterer. Instead, one
may consider a multiscale domain decomposition approach for a solution [4].
The next section presents a semiclassical model for a thin quantum barriers.

3 Semiclassical models

This section discusses the semiclassical models. We begin by presenting an
overview of the thin-barrier model which was developed in [7, 8] for quantum
barriers or wells that are sufficiently thin in comparison to the support of the
wavepacket. The thin-barrier model fails to capture important phenomena such
as interference. Therefore, we extend the thin-barrier model to the coherent
semiclassical model.

3.1 A thin-barrier model

Consider the Hamiltonian system (1). The characteristic of the function H(x, p)
is the integral curve ϕ(t) = (x(t), p(t)). Note that ϕ(t) may not be defined for
all time t ∈ R. When H(ϕ(t)) is differentiable,

d

dt
H(ϕ(t)) =

dx

dt

∂H

∂x
+
dp

dt

∂H

∂t
= 0 (6)

from which it follows that the Hamiltonian is constant along any characteristic
ϕ(t), i.e.,

H(ϕ(t)) = 1
2m

−1p2 + V (x) = E. (7)

Equation (6) is the strong form of the conservation of energy and equation (7)
is the weak form. If the potential V (x) is discontinuous or not defined in the
semiclassical limit in some region Q, the Hamiltonian system fails to have a
global solution. In such cases, it is appropriate to use a Hamiltonian-preserving
scheme.

The key idea behind the Hamiltonian-preserving schemes [9, 10, 11] is (a) to
solve the Liouville equation locally in regions where the gradient of V (x) exists
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and (b) to use the weak form of the conservation of energy to connect the local
solutions together across a barrier using an interface condition that captures
the correct transmissions and reflections. By interpreting a wavefunction as
a statistical ensemble of a large number of particles [22], we may model the
quantum solution using semiclassical characteristics.

Let L be the locally defined set of characteristics of the function H(x, p).
By requiring the Hamiltonian to be constant along trajectories, we create an
equivalence class of characteristics [ϕ] = { ϕ∗ ∈ L | H(ϕ∗) = H(ϕ) }. In one
dimension, an incident characteristic may be connected to a reflected character-
istic or a transmitted characteristic. Let (xin, pin) be the limit of an incoming
trajectory on the barrier and (xout, pout) be the limit of an outgoing trajectory
at the barrier. From the conservation of energy (7), the momenta for a reflected
particle is

pout = −pin (8a)

while the momenta for a transmitted particle is

pout = pin

√

1 + 2m[V (xin) − V (xout)]/p2
in. (8b)

If p2
in < 2m[V (xin) − V (xout)], the momentum of the transmitted particle is

imaginary, and the particle is always reflected. Furthermore, particles may be
split into reflected and transmitted particles as long as the total probability
density f(x, p, t) is conserved:

f1,out + f2,out = f1,in + f2,in. (9)

where f1,in is the incident probability density from the left, f2,in is the incident
probability density from the right, f1,out is the outgoing probability density to
the left, and f2,out is the outgoing probability density to the right. To resolve
such nonuniqueness, we impose an additional interface condition. For thin quan-
tum barriers, the interface condition can be derived from the time-independent
Schrödinger equation across the interface assuming the following conditions:

1. The effective width of a barrier is on the order of a de Broglie wavelength
and the barrier dwell time is O(ε).

2. Each barrier is considered independently of every other barrier. That is,
the coherence time is sufficiently short and therefore interference away
from the barrier may be neglected.

These assumptions impose several limitations on the model which we will ad-
dress in Section 3.2. Removal of these assumptions is the focus of this article.

The interface condition is given by the scattering coefficients to the time-
independent Schrödinger equation. The scattering coefficients may be computed
by considering the barrier as an open quantum system [2] outside of which the
potential is constant. Typically, one may use a quantum transmitting boundary
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method [15], a spectral projection method [19], or a transfer matrix method [1,
13, 6]. In these approaches, one separates the domain into three regions, C1,
Q, and C2. Let the potential V (x) be constant V1 and V2 in regions C1 and C2,
respectively. For an energy E the time-independent Schrödinger equation

− ε2

2m
ψ′′(x) + V (x)ψ(x) = E

has the solution

ψ(x) =











a1e
ip1x/ε + b1e

−ip1x/ε, x ∈ C1,

ψQ, x ∈ Q,
a2e

ip2x/ε + b2e
−ip2x/ε, x ∈ C2,

(10)

where p1,2 =
√

2m(E − V1,2) and the coefficients a1, a2, b1, and b2 are uniquely
determined by the boundary conditions at x1 and x2.

By assuming the matching conditions that ψ(x) and its derivative are con-
tinuous, ψQ is uniquely determined by the values a1 and b1 using the boundary
in regions C1. Thus, the coefficients are equated by a scattering matrix

(

b1
a2

)

=

(

r1 t2
t1 r2

)(

a1

b2

)

. (11)

The time evolution of the position density ρ(x, t) = |ψ(x, t)|2 in the Schrödinger
equation, gives the continuity equation

∂ρ

∂t
+
dJ

dx
= 0

where the current-density

J(x) = εm−1 Im(ψ
∂

∂x
ψ) =

{

p1

(

|a1|2 − |b1|2
)

/m, x ∈ C1

p2

(

|a2|2 − |b2|2
)

/m, x ∈ C2.

The positive-valued terms of the J(x) give the flux of right-traveling waves and
the negative-valued terms give the flux of left-traveling waves. In particular, for
a wave incident on the barrier from the left (b2 ≡ 0), we have a2 = t1a1 and
b1 = r1a1. It follows that the reflection coefficient R, the ratio of the reflected
to incident current densities, and the transmission coefficient T , the ratio of the
transmitted to incident current densities, are

R = |r1|2 and T = (p2/p1)|t1|2. (12)

A wave of the same energy incident from the right has the same scattering coef-
ficients. Hence, the real-valued interface condition used to incorporate reflection
and transmission is

f1,out = Rf1,in + Tf2,in (13a)

f2,out = Tf1,in +Rf2,in (13b)

To implement the model, solve the Liouville equation (2) using the interface
conditions given by (13) by matching (8a) and (8b). For a complete description
of the one and two-dimensional thin-barrier models, see [7, 8].
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(a) (b) (c)

Figure 1: Illustration of a wavepacket juxtapositioned with three barriers: a
thin barrier, a wide barrier and a mesoscopic barrier.

3.2 Limitations of the thin-barrier model

As discussed in the previous section, the thin-barrier model divides a domain
into two classical regions separated by a thin quantum barrier. If the bar-
rier is sufficiently thin and the barrier dwell time is sufficiently short so that
it vanishes in the semiclassical limit ε → 0, then it is permissible to consider
instantaneous transmission across the barrier. In such a case, the stationary
Schrödinger equation adequately describes barrier transmission and reflection.
This approximation is valid in the semiclassical limit if the effective width of a
barrier is O(ε) and interactions with each barrier are considered independent.
A thin rectangular well (Figure 1a) can be modeled using a single thin-barrier
interface separating two classical regions. Similarly, a wide rectangular well
(Figure 1b) can be modeled using two independent interfaces separating three
classical regions, because the wavepacket only interacts with one edge at a time.
But the thin-barrier assumption fails for a rectangular well of a width on the
order of the width of the wavepacket. The single-thin-barrier model is inap-
propriate because the transmission time across the well is sufficiently long and
hence the steady-state Schrödinger equation is inadequate. Using two indepen-
dent thin barriers will also give an incorrect solution because wave scattering
at both edges of the well is coupled through interference. In this case, a more
general model is needed.

A second shortcoming of the thin-barrier model is that it does not accurately
measure barrier dwell time. To implement barrier dwell in the thin-barrier
model, one can use the Wigner time delay, the delay to the group velocity of a
wave packet. The reflection and transmission group delay times for unit mass
are given by εp−1d(arg s)/dx where s is either the complex-valued reflection or
transmission coefficient [22]. Such an approach is useful only when the reflected
and transmitted wave packets maintain well-defined peaks, which is not typical
when the barrier is sufficiently wide. If the wavefunction envelope changes while
the particle is trapped in the barrier, then the probability amplitudes cannot be
approximated as being constant in time and the stationary Schrödinger equation
cannot adequately describe barrier transmission and reflection.

A third limitation is that, unlike the Liouville equation and pure-state Schrö-
dinger equation, the thin-barrier model is entropy increasing and hence time-
irreversible. The entropy of a system is given by S[f ](t) = −

∫∫∞

−∞
f log f dx dp

where f(x, p, t) gives the probability density of a particle at (x, p). As a conse-
quence of the Liouville theorem the entropy is conserved dS/dt = 0, as long as
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the potential V (x) is differentiable. Since the S[f ] is a convex-down function of
f , S[Rf1 +Tf2] ≥ RS[f1]+TS[f2] for 0 ≤ R, T ≤ 1. So, by combining solutions
along the characteristics, the entropy increases.

We can correct these shortcomings of the thin-barrier model by including
phase information and, if necessary, dividing a barrier into several thin barriers.
We discuss this approach in the next section.

3.3 A coherent semiclassical model

By linearity of Schrödinger’s equation, two wave functions ψ1 and ψ2 with re-
spective position densities ρ1 and ρ2, are superpositioned as a result of a trans-
mission and reflection. The resultant position density is

ρ1+2 = |ψ1 + ψ2|2 = ρ1 + ρ2 + 2
√
ρ1ρ2 cos θ

where θ = arg(ψ1 − ψ2) is a measure of the phase difference of two wave func-
tions. To account for the nonlinear interference with respect to the probability
densities, we similarly take the coherent semiclassical interface condition as

f1,out = Rf1,in + Tf2,in + 2
√

RTf1,inf2,in cos θ (14a)

f2,out = Tf1,in +Rf2,in − 2
√

RTf1,inf2,in cos θ (14b)

where θ is the phase difference between the incident terms f1,in and f2,in. The
Liouville equation (2) is solved away from the barrier with this new interface
condition. Note that the interface condition (14) merely requires the change in
phase before and after transmission and reflection. The phase shift θ along a
characteristic defined by the Hamiltonian E is given by

∫

ϕ(E)
p/ε ds. Alterna-

tively, the phase shift can be derived as the argument of the complex scattering
coefficients determined by solving the time-independent Schrödinger equation
across the barrier and in the classical region. The coherent model does not in-
corporate tunneling, for which the evanescent wave corresponds to an imaginary
momentum. Such cases can be modeled by using the thin-barrier model over
the entire barrier for those energies.

Since (14) is difficult to implement numerically, we propose an alternative,
equivalent coherent semiclassical model. We impose a linear interface condition
by defining the complex semiclassical amplitude Φ(x, p, t) such that f(x, p, t) =
|Φ(x, p, t)|2 by taking

Φ(x, p, t) =
√

f(x, p, t)eiθ(x,p)

where θ(x, p) is the phase difference from the initial conditions. In this case,
from (11) and (12) the correct matching conditions are

Φ1,out = r̂2Φ1,in + t̂2Φ2,in = r1Φ1,in +

√

p1

p2
t2,inΦ2,in (15a)

Φ2,out = t̂1Φ1,in + r̂1Φ2,in =

√

p2

p1
t1,inΦ1,in + r2Φ2,in (15b)
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where Φ1,in and Φ2,in are the left and right limits of the solution incident on the
barrier with momenta p1 and p2, respectively. Furthermore, if dΦ/dt = 0, then
the Liouville condition df/dt = 0 follows directly. Hence, we solve

Φt + pΦx − VxΦp = 0 (16)

in the classical region using the interface condition (15) at the quantum barrier.
Each of these two approaches (either solving f or solving Φ) presents several

numerical implementation difficulties. In the first approach, to implement (14)
we need to determine θ. In the second approach, ρ(x, t) =

∫

f(x, p, t) dp is not
a conserved quantity. Furthermore, numerical viscosity introduces decoherence.
Because the phase shift changes as dθ/dp ∼ 1/ε, even a small numerical vis-
cosity, which leads to the mixing of the cells of different momenta, results in
a substantial error in the phase shift. Maintaining the correct phase shift is
critical for the coherent model. We address these concerns in the next section.

4 Numerical implementation

This section presents the numerical implementation of the Eulerian formulation
of the coherent model using a finite volume method and the implementation of
the Lagrangian formulation using a particle/ray-tracing method. Each numer-
ical approach has advantages and disadvantages. For example, the Lagrangian
approach is a robust method that can easily be extended to higher dimensions.
One or two-barrier problems may often be solved analytically by tracking all
possible characteristics. But several barriers typically require a Monte Carlo
splitting along the characteristics. Even in one dimension, the Monte Carlo La-
grangian method provides a noisy solution with low order convergence. The Eu-
lerian approach gives a consistent solution but it cannot in the authors’ opinion
be extended beyond one dimension without substantial changes. For more com-
plex systems, one might choose between Lagrangian and Eulerian approaches
to simplify integration with the rest of the system.

4.1 Eulerian approach

One can either solve (2) with interface conditions (14) to determine f(x, p, t) or
solve (16) with interface conditions (15) to determine the phase shift θ. When
the momentum is discontinuous across an interface, the flux from incident cells
must be separated and recombined into the transmitted cells. [9, 7] For noncon-
stant potentials, the flux from incident cells must be separated and recombined
in the transmitted cells. This mixing between characteristics leads to numerical
viscosity, and because dθ = dp/ε, it ultimately degrades the coherence in the
solution when ε is small. We simplify the implementation for one-dimensional
problems by solving over the (x,E)-domain instead of the (x, p)-domain. In
either case, discontinuities in V (x) result in discontinuous momenta p along the
solution characteristics, but the energy E remains continuous along the solution
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characteristics. Because the Hamiltonian E is constant along any characteristic,
we simplify implementation of the Liouville equation by assigning

F (x,E, t) ≡ f(x, p, t)

with E = 1
2p

2 + V (x). Then

dF

dt
=
∂F

∂t
+ p

∂F

∂x
= 0

where p(x) = ±
√

2(E − V (x)). In conservation form,

∂Q

∂t
+

∂

∂x
(pQ) = 0 with Q(x) = F (x)/p(x). (17)

From (15) using Φ =
√
Qpeiθ it follows that the interface condition is

Q1,out = |r1
√

Q1,ine
iθ1 + t2

√

Q2,ine
iθ2 |2 (18a)

Q2,out = |t1
√

Q1,ine
iθ1 + r2

√

Q2,ine
iθ2 |2 (18b)

where eiθ1 = Φ1,in/|Φ1,in| and eiθ2 = Φ2,in/|Φ2,in| are computed by solving Φ.
Note,

ρ(x, t) =

∫

Ω(x,p)

f(x, p, t) dp =

∫

Ω(x,E)

F (x,E, t)
dE

p
=

∫

Ω(x,E)

QdE.

Define the complex-valued function

S(x,E, t) = Φ(x,E, t)/p(x)

which satisfies the (complex-valued) Liouville equation:

∂

∂t
S +

∂

∂x
(pS) = 0 (19)

with interface conditions (15)

S1,out = r1S1,in,+

√

p1

p2
t2S2,in (20a)

S2,out =

√

p2

p1
t1S1,in + r2S2,in. (20b)

A vanishing momentum may lead to loss of precision and care must be taken to
avoid a mesh point at which p(x) = ±

√

2(E − V (x) ≈ 0. We only divide by p(x)
to transform the initial conditions and to enforce the interface condition(20), in
which the transmission probability is also small if p(x) is small.

Consider a uniform mesh {xi} and grid spacing ∆x. Define a cell Ci =
[xi−1/2, xi+1/2) ensuring that a cell boundary does not coincide with p(xi±1/2) =
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0. We shall consider the quantum barrier to be located at a cell interface xZ+1/2

for some integer(s) Z. Define the cell average over the cell Ci as

Qn
i =

1

∆x

∫

Ci

Q(x,E, tn) dx.

The finite-volume discretization of the Liouville equation (17) is

Qn+1
i = Qn

i − ∆t

∆x

[

(pQ)−i+1/2 − (pQ)+i−1/2

]

(21)

with the limits of F = pQ defined by

(pQ)±i+1/2 = lim
x→x±

i+1/2

p(x,E)Qn(x,E).

Upwinding is used to approximate the fluxes Q±
i+1/2. The finite-volume approx-

imation for Sn
i is defined similarly.

The left and right limits of Q and S in the cells immediately downwind of
the quantum barrier are determined by the interface condition

Q+
out =

∣

∣

∣

∣

r2(E)
S+

in

|S+
in|

√

Q+
in + t1(E)

S−
in

|S−
in|

√

Q−
in

∣

∣

∣

∣

2

S+
out = r2(E)S+

in +

√

p2

p1
t1(E)S−

in



















for p > 0

Q−
out =

∣

∣

∣

∣

t2(E)
S+

in

|S+
in|

√

Q+
in + r1(E)

S−
in

|S−
in|

√

Q−
in

∣

∣

∣

∣

2

S−
out =

√

p1

p2
t2(E)S+

in + r1(E)S−
in



















for p < 0

For a first-order method, we take the approximation Q±
i∓1/2 = Qi and

S±
i∓1/2 = Si. For a second-order method we use a flux-limited piecewise-linear

interpolant to approximate the right and left limits

Q±
i∓1/2 = Qi ∓ 1

2 (1 − λ)σ(Qi−1, Qi, Qi+1) (22)

where λ = ∆t/∆x and the slope σ(·) is calculated using a minmod limiter [16].
We use a similar approximation for S±

i∓1/2. See [7].

4.2 Lagrangian approach

Analogously to the thin-barrier model, we define the semiclassical probability
amplitude as the linear superposition

Φ(x, p, t) =
∑

k

sk(H(x, p))Φk(x, p, t) (23)
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where

Φk(x, p, t) =

∫

Φ(x̃, p̃, 0)ϕk(x, p, t; x̃, p̃) dx̃ dp̃

is the solution along the k-th characteristic for the Hamiltonian H(x̃, p̃) with

ϕk(x, p, t; x̃, p̃) = δ(x(t) − x̃)δ(p(t) − p̃).

The scattering term sk(H(x, p)) is defined as the product of complex-valued
transmission and reflection coefficients along the kth characteristic:

(

Φ1,out

Φ2,out

)

=

(

r̂1 t̂2
t̂1 r̂2

)(

Φ1,in

Φ2,in

)

.

The coherent probability density is given by

f(x, p, t) =

∣

∣

∣

∣

∣

∑

k

sk(H(x, p))Φk(x, p, t)

∣

∣

∣

∣

∣

2

(24)

and the decoherent probability denity is given by

f(x, p, t) =
∑

k

|sk(H(x, p))Φk(x, p, t)|2 . (25)

A particle is the approximation to a Dirac measure using some type of cutoff
function [24]. The initial distribution

Φ0(x, p) =

∫∫

Φ0(x
′, p′)δ(x− x′)δ(p− p′) dx′ dp′

is approximated by a linear combination of Dirac measures

Φh
0 =

N
∑

j=1

wjδ(x− xj)δ(p− pj)

for some set {xj , pj , wj} where the weight wj > 0 and N is the sample size.
In a Monte Carlo approach, the position (xj , pj) is randomly sampled from a
distribution and sets wj = N−1

∫

Φ0(x, p) dx dp. In a deterministic approach,
one assigns (xj , pj) based on a uniform or nonuniform mesh and sets

wj =

∫

Cj

Φ0(x, p) dx dp

for a cell Cj ∈ R
d×R

d. To solve the Liouville equation, where δ(x(t)−x′)δ(p(t)−
p′) defines a single characteristic for the Hamiltonian H(x, p), we solve the
Hamiltonian system of equations (1) for each particle sampled from f0(x, p).

To determine Φ(x, p, t), solve ẋ = p, ṗ = −dV/dx with initial distribution
Φ(x, p, 0) = Φ0(x, p) and interface conditions

r̂Φ1,out + t̂Φ2,out = Φ1,in. (26)

12



The transmission and reflection at the interfaces can be handled either in a
deterministic manner by tracking all paths or with a Monte Carlo routine by
randomly choosing a path.

The deterministic method is the direct numerical adaption of the model (23)
and every barrier interaction adds an additional path to follow. While single
or double barrier problems, can be efficiently implemented with a deterministic
routine, tracking every paths required for three or more barriers is impractical.

Rather than take every branch, the Monte Carlo approach instead takes
one branch (either transmission or reflection) at each barrier intersection, by
sampling from a uniform distribution ξ ∈ [0, 1]. Take the transmission branch
if

ξ <
|t̂|

|t̂| + |r̂|
. (27)

Otherwise, take the reflection branch. To incorporate the phase shift and con-
serve total mass, the weight after passing the barrier is set to

wout = (|t̂| + |r̂|)eiθwin (28)

where

eiθ =

{

r̂/|r̂|, for reflection

t̂/|t̂|, for transmission
(29)

The expected weight for a transmitted particle, determined from (27), (28) and
(29) using the law of large numbers, is t̂win. Similarly, the expected weight for
reflected particle is r̂win. This agrees with the interface condition (26).

The solution Φ(x, p, t) =
∫∫∞

−∞
wδ(x − x̃, p − p̃, t) dx̃ dp̃ is reconstructed by

interpolating over a uniform mesh using a smoothing kernel such as a bicubic
spline. Let ∆x denote the mesh spacing and let the nearest mesh point to x be
xi for some i. Let r = (x− xi)/∆x denote the offset from that mesh point. For
l ∈ {−2, . . . , 2} define mesh-constrained approximation to Φ(x, p, t) as

Φ̃i+1(p, t) = wσ(r, l)/∆x (30)

with the cubic b-spline cut-off function [17]

σ(r, l) =































1
384 (2r − 1)4 l = −2
19
96 − 11

24r + 1
4r

2 + 1
6r

3 − 1
6r

4 l = −1
115
192 − 5

8r
2 + 1

4r
4 l = 0

19
96 + 11

24r + 1
4r

2 − 1
6r

3 − 1
6r

4 l = 1
1

384 (2r + 1)4 l = 2

The semiclassical Monte Carlo algorithm can be summarized as follows:

0. Initialization. Compute the complex scattering coefficients associated with
each momentum incident to each quantum barrier by using transfer matrix
method [1, 13, 6] or transmitting boundary method [15].
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1. Choose an initial particle x0 from the initial distribution using Monte
Carlo sampling.

2. For each particle, while tn < tmax

(a) Compute the trajectory in the classical region either analytically or
using a symplectic solver.

(b) At a barrier use a uniform random sampling to determine reflection
or transmission. Use (27) to decide transmission or reflection and
use (28) to incorporate phase shift and mass conservation.

(c) Take p = −p for reflection and take p = q = p
√

1 − 2∆V/p2 for
transmission.

3. Reconstruct the solution using (30). Go back to step 1.

5 Examples

In this section, we present four examples to validate the coherent semiclassi-
cal model. We consider a harmonic oscillator with a delta-function barrier, a
resonant double-delta potential, a resonant multiple delta potential, and a rect-
angular barrier. Examples 1, 2 and 4 are solved analytically using a Lagrangian
method in order to compare the convergence of the solutions to the Schrödinger
equation to the the solution to the semiclassical model in the ε → 0 limit. Ex-
ample 2 is also solved numerically using the Lagrangian Monte Carlo scheme.
Example 3 is solved numerically using the Eulerian scheme—an analytical so-
lution is infeasible. For all examples, we take the effective mass m = 1.

5.1 Harmonic oscillator with delta-function barrier

Consider the harmonic oscillator with a delta-function barrier

V (x) = 1
2x

2 + εαδ(x).

and the initial conditions

ψ0(x) = (πσ2)−1/4 exp

(

−x− x0

2σ2

)

exp
(

iε−1p0x
)

, (31a)

f0(x, p) = (πσ)−1 exp

(

− (x− x0)
2

σ2

)

δ(p− p0) , (31b)

Φ0(x, p) = (πσ)−1/2 exp

(

− (x− x0)
2

2σ2

)

δ(p− p0 , ) (31c)

for the Schrödinger equation, the decoherent semiclassical model, and the co-
herent semiclassical model, respectively. The initial density distribution

ρ0(x) = |ψ0(x)|2 =

∫ ∞

−∞

f0(x, p) dp =

∫ ∞

−∞

|Φ0(x, p)|2 dp

14



is given by

ρ0(x) = (πσ)−1 exp

(

− (x− x0)
2

σ2

)

.

for each of the initial conditions. To simplify the solution, choose x0 so that
ρ0(x) is negligible for x < 0.

The coherent and thin-barrier models are solved analytically using the La-
grangian formulation, tracking the trajectories backwards in time and branching
characteristics at each barrier. For a simple harmonic oscillator V (x) = 1

2x
2,

the semiclassical solution is the rotation of the initial distribution about the
origin in phase space by an angle t − tan−1(p/x). Because the trajectory is
closed, we may disregard the phase changes from the harmonic oscillator and
only track the phase changes from the delta potential barrier. The decoherent
and coherent position densities are calculated from (24) and (25) by taking the
projection of the characteristic onto the x-axis:

decoherent: ρ(x, t) =
ρ0(|x sec t|)

| sec t|
∑

∣

∣

∣

∣

(

m

n

)

(iαx sec t)n

(iαx sec t− α2)m

∣

∣

∣

∣

2

(32a)

coherent: ρ(x, t) =
ρ0(|x sec t|)

| sec t|

∣

∣

∣

∣

∑

(

m

n

)

(iαx sec t)n

(iαx sec t− α2)m

∣

∣

∣

∣

2

(32b)

with the Hamiltonian E = 1
2 (p2 + x2). The sums are taken over even indices

n = 0, 2, . . . ,m if x > 0 and over odd indices n = 1, 3, . . . ,m if x < 0 where m
is the number of full half-periods of revolution (the integer part of t/π + 1/2).

The scattering matrix for delta potential V (x) = εαδ(x) is [27]

S =

(

r̂1 t̂2
t̂1 r̂2

)

=







−iα
iα+ |p|

|p|
iα+ |p|

p

iα+ |p|
−iα

iα+ |p|






=







−iα
iα+

√
2E

p

iα+
√

2E
2E

iα+
√

2E

−iα
iα+

√
2E






. (33)

The quantum classical scattering coefficients are R = |r̂|2 = α2/(p2 + α2) and
T = |t̂|2 = p2/(p2 + α2).

The Schrödinger equation is solved numerically using the Crank-Nicolson
scheme

ψ(xi, t+ ∆t) = (I + 1
2 iε

−1∆tH)−1(I − 1
2 iε

−1∆tH)ψ(xi, t) (34)

where the discrete Hamiltonian operator

Hij =
−ε2
2

δi,j−1 − 2δij + δi,j+1

(∆x)2
+ V (xi)δij (35)

with Kronecker delta δii = 1 and δij = 0 if i 6= j. The delta-function is
approximated using as 1/∆x if xi = 0 and 0 otherwise, for a meshsize ∆x. In
order to guarantee correct approximation to physical observables for small ε
using the Crank-Nicolson scheme, one needs to take ∆x = o(ε) and ∆t = o(ε)
[20].
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The scattering matrix S given in (33) is a unitary matrix which rotates an
input vector by −i tan−1(α/2E). We computed the solutions a delta-potential
of strength α =

√
3, which permits 25% transmission. The Schrödinger equation

is solved using grid spacing and time steps ∆x = ∆t = 5 × 10−5. The l1-errors
for solutions at time t = 1.85 are listed in Table 1. The convergence rate of the
l1-error is about 1.4 as ε→ 0.

The harmonic oscillator with delta-function barrier provides a good example
of the entropy-preserving, time-reversible behavior of the coherent semiclassi-
cal model and the entropy increasing behavior of the decoherent thin-barrier
model. See Figure 2. Notice that over time the decoherent thin-barrier model
approaches an equilibrium state with an equal distribution of the particle den-
sity to the right and left of the barrier. In contrast, the solutions to the coherent
model and the Schrödinger equation do not approach an equilibrium state.

Table 1: Errors in solutions for different values of ε for Example 5.1.

ε 50−1 100−1 200−1 400−1

l1-error 0.670 0.290 0.0969 0.0398

5.2 Double delta potential

The resonant double-delta potential barrier

V = αε [δ(x− ℓ/2) + δ(x+ ℓ/2)]

is an idealized double-barrier quantum well structure associated with resonant
tunneling diodes (RTDs) [14, 21, 26]. An RTD consists of thin layers of different
semiconductors which are sandwiched together. The length of the entire RTD
structure is on the scale of a de Broglie wavelength. The region outside the bar-
rier is doped to provide a sufficient number of free electrons. The transmission
probability of an RTD is oscillatory and admits narrow peaks of total or almost
total transmission well below the cutoff energy for classical transmission. By
changing the strength α and separation εℓ of the barriers, the resonance may
be tuned to admit electrons of varying energies. If the well is sufficiently wide,
resonant particles are trapped in the well and slowly escape over time.

To compute the scattering coefficients for each barrier, we use the transfer
matrices M = P1/2DP1/2 where the transfer matrix for the delta potential P and
the transfer matrix for the displacement D are given by

P =

(

eiℓp 0
0 e−iℓp

)

and D =

(

1 + α/ip α/ip
−α/ip 1 − α/ip

)

.

The scattering matrix is given by

S =

(

r1 t2
t1 r2

)

=

(

−m21/m22 1/m22

det(M)/m22 m12/m22

)

,
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Figure 2: Solution to Example 5.1 at t = 0, 2π, 4π and 6π. The solid curve in
each of the plots is solution to the Schrödinger equation. The dotted curve is
solution to the semiclassical model.
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so the transmission and reflection coefficients are

t̂ = t1 = t2 =
i|p|

−α+ i|p|e
i|p|ℓ (36)

r̂ = r1 = r2 =
α

−α+ i|p|e
i|p|ℓ. (37)

The thin-barrier model combines the two delta potentials into a single barrier
using the transfer matrix PDP, for which the transmission coefficient is

T =
p4

|α2
(

e2i|p|ℓ − 1
)

+ 2iα|p| + p2|2

When α = −|p| cot(ℓ|p|), the barrier is resonant and admits total transmission
T = 1.

Consider the Gaussian initial conditions (31) with p0 = −1, x0 = 1 and
σ = 0.2. Take p0 = −1, ℓ = 10, and α = − cot(ℓ). The Schrödinger equation
was solved using the Crank-Nicholson scheme using grid spacing and time steps
∆x = ∆t = 5 × 10−5. The semiclassical solution was computed analytically
using the general solution presented in Example 5.4. The semiclassical solution
was also computed numerically to verify the Monte Carlo Lagrangian algorithm.

The solutions are plotted in Figure 3 at time t = 1.85. The first plot com-
pares the thin-barrier model using a single barrier with the solution of the
Schrödinger equation. This approximation is good when the barrier separation
is sufficiently small, and it clearly fails in this example. The second plot com-
pares the solution of the decoherent model with the solution of the Schrödinger
equation. The decoherent model treats each delta barrier as a separate thin
barrier but does not include complex phase information. The third plot com-
pares solution of the coherent model, which uses the Liouville equation between
two delta-function potentials, with the solution of the Schrödinger equation The
intrabarrier solution to the Schrödinger equation is highly oscillatory because
of interference of reflected and transmitted waves. In each of the three plots,
the “weak” (or averaged) solution to the Schrödinger equation is depicted. The
“weak” solution is computed by averaging the upper and lower envelopes of
the solutions to the Schrödinger equation. The upper and lower envelopes are
approximated by cubic spline interpolation by using the relative extrema of the
oscillations as knots for the spline.

The l1-difference between the solutions to Schrödinger solution and the so-
lution to the coherent semiclassical model at time t = 1.85 are listed in Table 2.
The convergence rate of the l1-error is about 1.0 as ε→ 0.

5.3 Multiple delta potentials

A natural extension to the two barrier example is a multiple barrier exam-
ple. Such a potential, similar to the Kronig-Penney model, approximates the
Coulomb potentials of atoms in a crystalline lattice. In this case, we use eleven
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Figure 3: Solution to Example 5.2 at t = 1.85. The solid curve in each of the
plots is the weak solution to the Schrödinger equation and the dotted curve is
solution to the semiclassical model.
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Table 2: Errors in solutions for different values of ε for Example 5.2.

ε 50−1 100−1 200−1 400−1

l1-error 0.306 0.166 0.080 0.0362

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

Figure 4: Solution to the coherent semiclassical model of Example 5.2 at time
t = 1.85 using the Monte Carlo method using 105 particles and the exact solution
computed from the Schrödinger equation.

equally spaced delta function potentials,

V (x) =

5
∑

j=−5

−εδ(x− 20jε)

with ε = 200−1. The initial conditions are given by (31) with x0 = 1.25, σ = 0.2
and p0 = −1. The coherent semiclassical model is solved numerically using the
finite-volume method detailed in Section 4.1. See Figure 5. The l1-error in
the numerical solution at t = 2.0 is approximated by comparing the numerical
solution with N meshpoints in spaces and N time steps with the numerical
solution with 6400 points in space and steps in time. The error is given in
Table 3. The convergence rate of the l1-error is about 1.25 as ∆x,∆t→ 0.

Table 3: Errors in solutions for different mesh sizes for Example 5.3.

N 100 200 400 800

l1-error 0.207 0.087 0.036 0.015
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Figure 5: Solution to the coherent semiclassical model of Example 5.2 at times
t = 0, 0.8, 1.6 and 2.4 using the finite volume approach (dotted curve) along
with the averaged solution to Schrödinger equation (solid curve).
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5.4 Two step potentials

Finally, we consider the solution of the pure-state Schrödinger equation with
rectangular barrier formed by two step potentials

V (x) =











V1, x ∈ C1 = (−∞, 0)

V2, x ∈ C2 = (0, L)

V3, x ∈ C3 = (L,∞)

(38)

where L = 1
10 , V1 = 0, V2 = 1

2 , and V3 = −1.
We compute the analytical solution to the semiclassical model by using the

method of characteristics. We simplify the solution by taking the initial condi-
tions Φ0(x, p) = 0 for x > 0. Let L = εℓ. Then Φ(x, p, t) equals















































































Φ0(x− p1t, p1), x ∈ C1, p > 0

r̂12Φ0(−x− p1t,−p1) +
∑

n≥0

t̂12t̂21r̂23(r̂23r̂21)
nΦ0(−x− p1t+

p1

p2
(n+ 1)2L, p1), x ∈ C1, p < 0

∑

n≥0

t̂12(r̂23r̂21)
nΦ0(

p1

p2
x− p1t+

p1

p2
n2L, p1), x ∈ C2, p > 0

∑

n≥0

r̂23t̂12(r̂23r̂21)
nΦ0(−

p1

p2
(L− x) +

p1

p2
(2n+ 1)L− p1t, p1), x ∈ C2, p < 0

∑

n≥0

t̂12t̂23(r̂23r̂21)
nΦ0(

p1

p3
(x− L) +

p1

p2
(2n+ 1)L− p1t, p1), x ∈ C3, p > 0

0, x ∈ C3, p < 0

where the t̂ij denotes the transmission coefficient for a particle from region Ci

to Cj with r̂ij denotes the reflection coefficient for a particle in region Ci with a
barrier separating regions Ci and Cj . The momenta in the three regions Cj are

given by pj =
√

p2 − 2(Vj − V1). The initial distribution

Φ0(x, p) =
1

∆x

(

p

pj

∫ x+∆x/2

x−∆x/2

f0(x, p) dx

)1/2

.

To compute the scattering coefficients, we decompose the well into a barrier
located at x = 0 and a barrier located at x = L. The transfer matrices associated
with a potential jump and the displacement εℓ/2 are

Pij = 1
2

(

1 + pi/pj 1 − pi/pj

1 − pi/pj 1 + pi/pj

)

and Di =

(

eiℓpi/2 0
0 e−iℓpi/2

)

.

The associated quantum scattering matrix for the transfer matrix DiPijDj is

Sij =
1

pi + pj

(

(pi − pj)e
iℓpi 2pje

iℓ(pi+pj)/2

2pie
iℓ(pi+pj)/2 (pj − pi)e

iℓpj

)

.
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From (15), the associated semiclassical scattering coefficients are

r̂ij =
pi − pj

pi + pj
ei2ℓpi and t̂ij =

2
√
pipj

pi + pj
eiℓ(pi+pj).

We computed the solutions to the Schrödinger equation and semiclassical
model at time t = 1.5 for a distribution centered at (x0, p0) = (−1, 1.08) with
spread σ = 0.2. The Schrödinger equation is solved using Crank-Nicolson
scheme with ∆x = ∆t = 5 × 10−5. The solutions are plotted in Figure 6.
The solution to the Schrödinger equation exhibits oscillations in region C2 due
to interference from reflected and transmitted waves. The weak limit in region
C2 is approximated by averaging the upper and lower envelopes of the solutions
when ε = 4001 and 800−1. The l1-difference in the solutions at time t = 1.5 are
listed in Table 1. The convergence rate of the l1-error is about 1.5 as ε→ 0.

Table 4: Errors in solutions for different values of ε for Example 5.2.

ε 100−1 200−1 400−1 800−1

l1-error 0.4537 0.1192 0.0615 0.0218

6 Conclusion

In this article, we proposed a one-dimensional time-dependent semiclassical
transport model that accurately describes the weak limit of the pure-state
Schrödinger equations. This model extends the thin-barrier models introduced
in [7, 8] by including phase information so that the model can treat problems
in which quantum coherence is critical. This model uses the complex-valued
Liouville equation with an interface condition determined using complex-valued
quantum scattering coefficients. Both Eulerian and Lagrangian numerical im-
plementations were introduced and several numerical examples, including reso-
nant multiple barriers, demonstrated the validity of the model in capturing the
semiclassical limit across quantum barriers where interference can occur.

In the future we will investigate multi-dimensional numerical implementation
of the model. It is also interesting to seek a mathematical justification of this
model as the semiclassical limit of the Schrödinger equation using some sort of
Wigner transformation.

We also point out that the complex-valued Liouville equation has also been
used recently to construct Gaussian beam approximation to the Schrödinger
equation [12]. Gaussian beam method is another asymptotic method for high
frequency waves that is able to capture the correct phase shift at caustics.
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Figure 6: Solution to Example 5.4 at time t = 1.5. The solid curve is the solu-
tion to the Schrödinger equation. The dotted curve is solution to the coherent
semiclassical model. The solutions to the Schrödinger equation for ε = 200−1

and 400−1 are highly oscillatory in [0, 0.1] and the “weak” limits are computed
by averaging the upper and lower solution envelopes.
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