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Abstract. We construct a numerical scheme based on the Liouville equation

of geometric optics coupled with the Geometric Theory of Diffraction (GTD)

to simulate the high frequency linear waves diffracted by a corner. While the
reflection boundary conditions are used at the boundary, a diffraction condi-

tion, based on the GTD theory, is introduced at the vertex. These conditions
are built into the numerical flux for the discretization of the geometrical op-

tics Liouville equation. Numerical experiments are used to verify the validity

and accuracy of this new Eulerian numerical method which is able to capture
the physical observable of high frequency and diffracted waves without fully

resolving the high frequency numerically.

1. Introduction. In this paper, we construct a numerical scheme based on the Li-
ouville equation to approximate the high frequency wave equation in two-dimension:

utt − c(x)2∆u = 0, t > 0, (1.1)

u(0) = A(x, 0)eiφ(x,0)/ε, (1.2)

∂u

∂t
(0) = B(x, 0)eiφ(x,0)/ε, (1.3)

here c(x) is the local wave speed and ε� 1. When the essential frequencies in the
wave field are relatively high, and thus the wavelength is short compared to the size
of the computational domain, direct simulation of the standard wave equation will
be very costly, and approximate models for wave propagation based on geometric
optics (GO) are usually used [10, 13].
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We are concerned with the case when there are some wedges in the computational
domain, which contain tips (vertices) and boundaries. When waves hit the vertices,
there will be diffractions in all directions.

One of the approximate models for high frequency wave equation is the Liouville
equation, which arises in phase space description of geometric optics (GO) [10, 35]:

ft +Hv · ∇xf −Hx · ∇vf = 0, t > 0, x,v ∈ Rd, (1.4)

where the Hamiltonian H possesses the form

H(x,v) = c(x)|v| = c(x)
√
v2

1 + v2
2 + · · ·+ v2

d, (1.5)

f(t,x,v) is the energy density distribution of particles depending on position x,
time t and slowness vector v.

The bicharacteristics of this Liouville equation (1.4) satisfies the Hamiltonian
system:

dx

dt
= c(x)

v

|v|
,

dv

dt
= −cx|v|. (1.6)

The derivation of GO does not take into account the effects of geometry of the
domain and boundary conditions, which lead to discontinuous GO solutions in some
regions. Diffractions are lost in the infinite frequency approximation such as the
Liouville equation. In this case, correction terms can be derived, as done in the
Geometric Theory of Diffraction (GTD) by Keller in [26]. The GTD provides a
systematic technique for adding diffraction effects to the GO approximations.

The methods for computing the GO solutions can be divided into Lagrangian
and Eulerian methods.

Lagrangian methods are based on the ODEs (1.6). The simplest Lagrangian
method is the ray tracing method where the ODEs in (1.6) together with ODEs
for the amplitude are solved directly with numerical methods for ODEs. This
approach is very popular in standard free space GO, [5], and the diffractions, [2, 9].
The ray tracing method gives the phase and amplitude of a wave along a ray tube,
and interpolation must be applied to obtain those quantities everywhere when rays
diverge. Such interpolations can be very complicated for diverging rays. On the
other hand, in the ray tracing method, when a ray hits the vertex of the corner,
it will produce diffraction rays in all directions. In computations, one incident ray
must be divided into many diffraction rays to simulate the diffractions, which adds
the computational cost dramatically.

In the last decade, Eulerian methods based on PDEs have been proposed to avoid
some of the drawbacks of the ray tracing method [1]. Eulerian methods discretize the
PDEs on fixed computational grids to control errors everywhere and there is no need
for interpolation. The simplest Eulerian method solves the eikonal and transport
equations in GO. This technique has been used in standard GO [13]. However, the
eikonal and transport equations pick up the so-called viscosity solution [8], which
are not adequate beyond caustics. Rather, the solutions become multivalued, and
more elaborate schemes must be devised. Recently several phase space based level
set methods for high frequency waves, in particular the multivalued solutions in GO
are based on the Liouville equations, see [6, 11, 14, 18, 19, 33].

More recently, a class of Hamiltonian-preserving numerical schemes for the Liou-
ville equation (1.4) were developed to take into account partial transmissions and
reflections [17, 20, 21, 22] for high frequency waves through interfaces.
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There are very few results on Eulerian methods for diffractions. In this direc-
tion, we mention recent numerical methods for creeping waves [31, 32, 42]. For
curved interfaces, the authors [24] constructed an Eulerian method for diffraction
at interfaces that takes into consideration of partial transmissions, reflections and
diffractions. The idea was to revise the transmission/reflection interface condition
used by Jin and Wen [20, 21] for the Liouville equation in the case of critical and
tangent angles to account for diffractions. The diffraction coefficients and decay
rates derived in GTD are used in the interface condition. These interface con-
ditions are then built into the numerical fluxes for the Liouville solver. Such an
Eulerian computational method is able to capture the moments of high frequency
waves without–at least away from the interfaces–numerically resolving the high fre-
quencies, yet still captures the correct interface scattering and diffractions. In [25],
we also derived such a numerical scheme for high frequency wave diffraction by a
half plane.

This paper is to further our previous work [25] to a different geometry, namely,
waves through a corner. When a wave hits a corner, it usually reflects. However,
at the vertex of the corner, it generates diffracted waves into all directions. In
particular, the diffracted waves can reach the shadow zone–the zone that the GO
theory cannot cover. We provide a diffraction condition, based on the GTD theory,
at the vertex to reflect this diffraction nature. We then build this condition, as well
as the reflection boundary condition, into the numerical flux of the Liouville solver,
in order to capture the diffractions.

This paper is organized as follows. The GO approximations by the Wigner
transform for wave equation are sketched in Section 2. In Section 3, we present the
behavior of waves at a corner based on the GTD theory, and provide the conditions
for (1.4) that account for reflections at the boundary of the corner and diffractions
at the vertex of the corner. In Section 4, the diffraction conditions derived in
the previous section is built into the numerical flux in the two space dimension.
In section 5, we study the positivity and l∞ stability of the numerical scheme.
Numerical examples are given in section 6 to validate the model and to verify
the accuracy of the scheme against the full simulation based on the original wave
equation (1.1)-(1.3). Finally, we make some concluding remarks.

2. Geometric optics approximation of the wave equation in phase space.
Consider the two dimensional wave equation

utt − c(x)2∆u = 0, x ∈ R2, t ∈ R, (2.1)

u
∣∣
t=0

= uI , ut
∣∣
t=0

= sI . (2.2)

We introduce the new dependent variables

s = ut, r = ∇u,

to obtain the system 
∂r

∂t
−∇s = 0,

1

c(x)2

∂s

∂t
− divr = 0.

(2.3)

The energy density is given by

E(x, t) =
1

2

1

c(x)2
|ut|2 +

1

2
|∇u|2. (2.4)
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Let w = ( ∂u∂x1
, ∂u∂x2

, s), system (2.3) can be put in the form of a symmetric hyperbolic
system

A(x)
∂w

∂t
+
∑
i

Di
∂w

∂xi
= 0, (2.5)

with initial data

w(0,x) = w0(x).

The matrix A(x) = diag(1, 1, 1
c(x)2 ), while each of the matrices Di is constant and

symmetric with entries either 0 or −1.
To study the GO limit of solution of (2.5), we assume that the coefficients of the

matrix A(x) vary on a scale much longer than the scale on which the initial data
vary. Let ε be the ratio of these two scales. Rescaling space and time coordinates
(x, t) by x→ εx, t→ εt, one obtains

A(x)
∂wε

∂t
+
∑
i

Di
∂wε

∂xi
= 0, (2.6)

wε(0,x) = w0(
x

ε
) or u0(

x

ε
,x). (2.7)

Note that the parameter ε does not appear explicitly in (2.6). It enters through the
initial data (2.7). We are interested in the initial data of the standard WKB form

wε(0,x) = A0(x)eiS0(x)/ε. (2.8)

Following [34], one can study the GO limit of (2.6) by using the Wigner distri-
bution matrix W ε:

W ε(t,x,k) =
( 1

2π

)n ∫
eik·ywε(t,x− εy/2)wε(x + εy/2)

t
dy, (2.9)

where n is the space dimension and wt is the conjugate transpose of w. Although
W ε is not positive definite, it becomes so as ε→ 0.

The energy density for (2.6) is given by

Eε(t,x) =
1

2
(A(x)wε(t,x),wε(t,x)) =

1

2

∫
Tr(A(x)W ε(t,x,k))dk. (2.10)

Let

lim
ε→0

W ε(t,x,k) = W (0)(t,x,k).

As ε→ 0, the high frequency limit of Eε(t,x) is

E(0)(t,x) =
1

2

∫
Tr(A(x)W (0)(t,x,k))dk =

∫
a+(t,x,k)dk, (2.11)

where the amplitude a±(t,x,k) is given by

a±(t,x,k) =
1

(2π)2

∫
dyeik·yf±(t,x,x− y/2,k)f±(t,x,x + y/2,k), (2.12)

with

f±(t,x, z,k) =

√
1

2
(∇u(t, z) · k̂)±

√
2

2|c(x)|
∂u

∂t
(t, z), (2.13)

and k̂ = (cos θ, sin θ)t. This shows that

a+(t,x,k) = a−(t,x,−k), (2.14)
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and therefore one needs only to keep track of a+(t,x,k). It satisfies the Liouville
equation [34]

∂a+

∂t
+ c(x)k̂ · ∇xa

+ − |k|∇xc(x) · ∇ka
+ = 0. (2.15)

Therefore, a+ can be interpreted as phase space energy density distribution. It
solves the Liouville equations (1.4)-(1.5), with the zeroth moment giving the spatial
energy density E(0)(t,x) as in (2.11).

The GO approximation is good when ε is very small. For moderately small ε,
diffraction can not be ignored in many applications. Clearly, the Liouville equation
(2.15), valid at ε = 0, does not contain any information about reflection, which
occurs even for ε = 0, nor diffraction which occurs for ε > 0. It is not valid near the
vertex of the wedge. In the next section, we will discuss the behavior at a corner.

3. Wave behavior at a corner. In GO, a wave moves with its energy distribution
governed by the Liouville equation (1.4). When an incident wave hits the edge of a
wedge, it will be completely reflected back [30]. According to the GTD, when the
wave hits the vertex of the wedge, it will produce diffracted waves into all directions
(see Fig. 1),

α
θ

diffracted wave

γ

incident wave

reflected wave

β

φ

diffracted wave

Figure 1. Diffraction by corner

The diffraction coefficients Do is given by Keller [27] as

Do(θ, α) =
ε sin2 π

q

2q2πr

[
1

cos πq − cos θ−αq
∓ 1

cos πq − cos θ+α+π
q

]2

,

with γ = (2−q)π, α is the incident angle, θ is the diffracted angle, both of which are
defined in (−π/2, π). The upper sign applies when the boundary condition on the
edge of the wedge is u = 0 (soft boundary condition), while the lower sign applies
if it is ∂u

∂n = 0 (hard boundary condition) on the edge of the wedge.
A half plane is the case for q = 2, for which Do is given by

D±o (θ, α) =
ε

8πr
[sec

1

2
(θ − α)± csc

1

2
(θ + α)]2.
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In this paper, we only consider the case of a corner (γ = π/2, q = 3/2). In this
case, the diffraction coefficient is

D±0 (θ, α) =
2ε

9πr

[ 1

cos 2
3π − cos 2

3 (θ − α)
∓ 1

cos 2
3π − cos 2

3 (θ + α+ π)

]
. (3.16)

In the GTD, the considered wave propagation phenomena are the incident direct
illumination, reflection, and diffraction by vertex of the corner.

If − 1
2π < α < 0, the above diffraction coefficient is not valid when θ = π + α

or θ = −α i.e. near the shadow boundary and the reflection boundary, and if
1
2π < α < π, the diffraction coefficient is not correct when θ+α = π (the reflection
boundary) or α−θ = π (the shadow boundary). There are boundary layer near the
shadow boundary and the reflection boundary, with thickness of order ε1/2. When
0 < α < 1

2π, there are no shadow boundary and reflection boundary, the diffraction
coefficient (3.16) is correct.

The Uniform Geometric Theory of Diffraction (UTD) [28] can overcome this
difficulty by introducing the transition functions. The uniform diffraction coefficient
for UTD is given by

D(θ, α)± =
2ε

9πr

∣∣∣∣ cot
(π + (θ − α)

3

)
F [ε−1ra+(θ − α)]

+ cot
(π − (θ − α)

3

)
F [ε−1ra−(θ − α)]

∓
{

cot
(π + (θ + α)

3

)
F [ε−1ra+(θ + α)]

+ cot
(π − (θ + α)

3

)
F [ε−1ra−(θ + α)]

}∣∣∣∣2,
(3.17)

where the transition function

F (X) = 2i
√
X exp(iX)

∫ ∞
√
X

exp(−iτ2)dτ ,

in which one takes the principle (positive) branch of the square root, and

α±(β) = 2 cos2
(3N±π − (β)

2

)
,

in which N± are the integers which most nearly satisfy the equations

3πN+ − (β) = π,

3πN− − (β) = −π,

with

(β) = θ ± α.
α±(β) is a measure of the angular separation between the field point and a shadow
or reflection boundary.

The magnitude of the transition function F (x) and the original diffraction co-
efficient Do with incident angle α = − 9

20π and diffraction angle − 1
2π ≤ θ < 9

20π
are presented in Fig. 2. One can see that Do goes to infinite when θ approaches
9
20π, i.e. at the reflection boundary. On the other hand, the magnitude of F (x) is
very small when x� 1, and |F (x)| ≈ 1 when x� 1. Then the discontinuity in the
geometrical-optics field at the reflection boundary is compensated by the transition
function, while outside of the transition regions these factors are approximately
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one, and Keller’s expressions for the diffraction coefficients Do are obtained. The
behavior near the shadow boundary is similar.
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Figure 2. The diffraction coefficient Do and the transition func-
tion F (x)

We will discuss the wave behavior at the corner in more details. Assume the
boundary of the corner is Γ1 =

{
(x, y)

∣∣ x > x0, y = y0

}
,Γ2 =

{
(x, y)

∣∣ x = x0, y <

y0

}
, and the vertex of the corner is (x0, y0). See Fig. (3) where (x0, y0) is marked

as (xi0+1/2, yj0+1/2).
Let x = (x, y) and v = (ξ, η). Assume the incident wave hits the corner with

velocity (ξ, η). There are two possibilities:

1. If the wave hits the corner at Γ1, it will be completely reflected back with
velocity (ξ,−η). If the wave hits the corner at Γ2, it will be completely
reflected back with velocity (−ξ, η).

2. The wave hits the vertex (x0, y0) of the corner. In this case, according to the
GTD, the wave can partly diffract and partly travel in the original direction.
Introduce the polar coordinates by

ξ = R cosα, η = R sinα, R =
√
ξ2 + η2 . (3.18)

With the diffraction coefficient D(θ, α), the wave is diffracted with new veloc-
ities (ξd, ηd), d = 1, 2, · · · , with

ξd = Rd cos θ, ηd = Rd sin θ Rd =
√
ξ2
d + η2

d,

where D(θ, α) is given by (3.17) if − 1
2π < α < 0 or 1

2π < α < π, and by (3.16)

if 0 < α < 1
2π.

The solution to the Liouville equation, which is linearly hyperbolic, can be solved
by the method of characteristic. Namely, the density distribution f remains a
constant along a bicharacteristics. However, we need to provide suitable conditions
for the Liouville equation to account for boundary reflections and vertex diffractions.
For the wave hitting the corner at Γ1, it will be completely reflected with new
velocity (ξ,−η), and the following condition will be used

f(t, x, y0, ξ, η) = f(t, x, y0, ξ,−η). (3.19)

If the wave hit the corner at Γ2, it will be completely reflected with new velocity
(−ξ, η), and the following reflecting boundary condition will be used,

f(t, x0, y, ξ, η) = f(t, x0, y,−ξ, η). (3.20)
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At the vertex of the corner, we use the following diffraction condition:

1. if − 1
2π < θ < 0, or 1

2π < θ < π, then

f+(t, x0, y0, R, θ) =

∫ π

−π2
D(θ, α)f−(t, x0, y0, R, α)dα

+
(
1−

∫ π

−π2
D(θ, α)dα

)
f−(t, x0, y0, R, θ),

(3.21)

with f±(t,x,v) = limσ→0 f(t,x± σv,v), R =
√
ξ2 + η2.

2. if 0 < θ < 1
2π, then

f+(t, x0, y0, R, θ) =

∫ π

−π2
D(θ, α)f−(t, x0, y0, R, α)dα. (3.22)

We will explain the conditions (3.21) and (3.22). When a wave hits the corner
besides the vertex, it will be completely reflected with a negative momentum in
each direction. But when a particle hits the vertex of the corner with an incident
angle α, it will be diffracted at angle θ with diffraction coefficient D(θ, α); and the

energy of the particle c(x)|v| = c(x)
√
ξ2 + η2 = c(x)R will not change. In (3.21),

the density distribution function of waves f+(t, x0, y0, ξ, η) is a superposition of the
incident wave that passes through the vertex, and all diffracted waves, generated by
other incident waves, that move in the direction of v = (ξ, η). In (3.21), there are
only the diffracted waves generated from the vertex of corner in this region, since
no incident wave in this direction is possible (since they would have to emerge from
inside the wedge, which is impossible).

Note a condition on D in (3.21) is∫ π

−π/2
D(θ, α) dα ≤ 1 for anyθ .

These conditions will be used in the next section to construct the numerical flux
on the corner.

4. The numerical scheme.

4.1. The numerical flux. We use the Liouville equation

ft +
c(x, y)ξ√
ξ2 + η2

fx +
c(x, y)η√
ξ2 + η2

fy − cx
√
ξ2 + η2fξ − cy

√
ξ2 + η2fη = 0, (4.1)

with boundary condition (3.19)-(3.22) to simulate high frequency wave equation
(1.1).

Without loss of generality, we employ a uniform mesh with grid points at xi+ 1
2
, i =

0, · · · ,M in the x direction, yj+ 1
2
, j = 0, · · · , N in the y direction, ξk+ 1

2
, k =

0, · · · ,K in the ξ direction and ηl+ 1
2
, l = 0, · · · , L in the η direction. The cells are

centered at (xi, yj , ξk, ηl) with xi = 1
2 (xi− 1

2
+ xi+ 1

2
), yj = 1

2 (yj− 1
2

+ yj+ 1
2
), ξk =

1
2 (ξk− 1

2
+ ξk+ 1

2
), ηl = 1

2 (ηl− 1
2

+ ηl+ 1
2
). The mesh sizes are denoted by ∆x =

xi+ 1
2
−xi− 1

2
,∆y = yj+ 1

2
− yj− 1

2
,∆ξ = ξk+ 1

2
− ξk− 1

2
,∆η = ηl+ 1

2
−ηl− 1

2
. Assume the

vertex of the corner is (xi0+1/2, yj0+1/2), and the two boundary Γ1 =
{

(x, y)
∣∣ x >

xi0+ 1
2
, y = yj0+ 1

2

}
,Γ2 =

{
(x, y)

∣∣ x = xi0+ 1
2
, y < yj0+ 1

2

}
(see Fig. 3).
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Figure 3. Meshes near the corner

Let ∆t be the time step, tn = n∆t. The cell average of f is defined as

fijkl =
1

∆x∆y∆ξ∆η

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

∫ ξ
k+1

2

ξ
k− 1

2

∫ η
l+1

2

η
l− 1

2

f(x, y, ξ, η)dηdξdydx, (4.2)

where fnijkl = fijkl(t
n). We approximate c(x, y) by a piecewise bilinear function.

The 2D Liouville equation (4.1) can be discretized spatially as

(fijkl)t +
cijξk

∆x
√
ξ2
k + η2

l

(fi+ 1
2 ,jkl

− fi− 1
2 ,jkl

) +
cijηl

∆y
√
ξ2
k + η2

l

(fi,j+ 1
2 ,kl
− fi,j− 1

2 ,kl
)

−
ci+ 1

2 ,j
− ci− 1

2 ,j

∆x∆ξ

√
ξ2
k + η2

l (fij,k+ 1
2 ,l
− fij,k− 1

2 ,l
)

−
ci,j+ 1

2
− ci,j− 1

2

∆y∆η

√
ξ2
k + η2

l (fijk,l+ 1
2
− fijk,l− 1

2
) = 0.

Here all the numerical fluxes are defined using the upwind discretization, except for
fi0± 1

2 ,jkl
, j ≤ j0 + 1, fi,j0+1± 1

2 ,kl
, i ≥ i0. We will use the conditions (3.19)– (3.21)

to construct these fluxes.
Firstly, we divide the interval [− 1

2π, π] into 3I subinterval [αm, αm+1], αm =

m∆α− 1
2π,∆α = π/2I,m = 0, 1, · · · , 3I − 1. Let Rkl =

√
ξ2
k + η2

l with

ξk = Rkl cos θkl, ηl = Rkl sin θkl.

We first define f at (xi0+ 1
2
, yj0+ 1

2
). f at this point is affected by three neighboring

cells surrounding the point (xi0+ 1
2
, yj0+ 1

2
). It is the summation of incoming and

diffracted waves from these three cells.
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1. If ξk > 0, ηk > 0, the incoming wave is from cell I, while the diffracted waves
are from cells I, II & III.

fi0+ 1
2 ,j0+ 1

2 ,k,l
=
[ I∑
m=0

D(θkl, αm)fi0,j0(ξklm, ηklm)

+

2I∑
m=I+1

D(θkl, αm)fi0,j0+1(ξklm, ηklm)

+

3I∑
m=2I+1

D(θkl, αm)fi0+1,j0+1(ξklm, ηklm)
]
∆α

+

[
1−

3I∑
I=0

D(θkl, αm)∆α

]
fi0,j0(ξk, ηl),

(4.3)

with ξklm = Rkl cosαm, ηklm = Rkl sinαm. The first three terms in the right
of the above equality represent the diffracted waves from I, II and III, re-
spectively, while the last term is the incident wave hitting the corner with
incident angle (ξk, ηl). Since (ξklm, ηklm) may not be grid points, we have to
define them approximately. One can first locate the cell centers that bound
these velocities, and then use a bilinear interpolation to evaluate the value at
(ξklm, ηklm).

2. If ξk < 0, ηl < 0, the incoming wave is from cell III, while the diffracted waves
are from cells I, II & III,

fi0+ 1
2 ,j0+ 1

2 ,k,l
=
[ I∑
m=0

D(θkl, αm)fi0,j0(ξklm, ηklm)

+

2I∑
m=I+1

D(θkl, αm)fi0,j0+1(ξklm, ηklm)

+

3I∑
m=2I+1

D(θkl, αm)fi0+1,j0+1(ξklm, ηklm)
]
∆α

+

[
1−

3I∑
I=0

D(θkl, αm)∆α

]
fi0+1,j0+1(ξk, ηl).

(4.4)

3. If ξk > 0, ηl < 0. This wave direction is moving toward cell IV. Since no
diffracted wave will move in this direction. fi0+ 1

2 ,j0+ 1
2 ,k,l

only comes from cell

II,

fi0+ 1
2 ,j0+ 1

2 ,k,l
= fi0,j0+1(ξk, ηl). (4.5)

4. If ξk < 0, ηl > 0. The wave is moving toward cell II. Since no wave comes
from cell IV, in this case, fi0+ 1

2 ,j0+ 1
2 ,k,l

is only the sum of diffracted waves
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from cells I, II and III.

fi0+ 1
2 ,j0+ 1

2 ,k,l
=
[ I∑
m=0

D(θkl, αm)fi0,j0(ξklm, ηklm)

+

2I∑
m=I+1

D(θkl, αm)fi0,j0+1(ξklm, ηklm)

+

3I∑
m=2I+1

D(θkl, αm)fi0+1,j0+1(ξklm, ηklm)
]
∆α.

(4.6)

Note (xi0+ 1
2
, yj0+ 1

2
) is not where we define the numerical flux. We now define the

fluxes at (xi0 , yj0+ 1
2
) and (xi0+ 1

2
, yj0+1) in an upwind way as follows,

• If ξk < 0, then

fi0,j0+ 1
2 ,k,l

= fi0+ 1
2 ,j0+ 1

2 ,k,l
, ∀l. (4.7)

• If ηl > 0, then

fi0+ 1
2 ,j0+1,k,l = fi0+ 1

2 ,j0+ 1
2 ,k,l

, ∀k. (4.8)

For the numerical fluxes fi0+ 1
2 ,j,kl

, j ≤ j0 (points at Γ1), only the case ξk < 0

needs to be defined using complete reflection boundary condition (3.20),

fi0+ 1
2 ,j,kl

= fi0,j,k1,l, with ξk1 = −ξk.

The numerical fluxes fi,j0+ 1
2 ,kl

, i ≥ i0 + 1 (points at Γ2) needs to be defined only in

the case ηl > 0 by the complete reflection boundary condition (3.19)

fi,j0+ 1
2 ,kl

= fi,j0+1,k,l1 , with ηl1 = −ηl .

All other fluxes are defined by upwind (or its second order TVD extension [29]).
After the spatial discretization is specified, one can use any time discretization

for the time derivative.
The diffraction coefficient D(θ, α) in (3.17) is singular for r = 0, which is the

vertex of the corner (xi0+ 1
2
, yj0+ 1

2
). Since in our numerical scheme, we define the

numerical flux related to the diffraction at (xi0+ 1
2
, yj0+1) and (xi0 , yj0+ 1

2
), we simply

let r = ∆x
2 in (3.17) to define D(θ, α) in our computation.

5. Positivity and l∞ contraction. Since the exact solution of the Liouville equa-
tion is positive when the initial profile is, it is important that the numerical solution
inherits this property.

We only consider the scheme using the forward Euler method in time. Without
loss of generality, we consider the case ci+ 1

2 ,j
> ci− 1

2 ,j
, ci,j+ 1

2
> ci,j− 1

2
for all i, j

(the other cases can be treated similarly with the same conclusion). We consider the
scheme at (xi0+1, yj0+1) (cell III) with ξk < 0, ηl > 0 (the diffraction case. Other
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cells can be treated similarly).

fn+1
i0,j0+1,kl − fni0,j0+1,kl

∆t

=− ci0,j0+1γ

∆x

{ I∑
m=0

D(θkl, αm)fni0,j0(ξklm, ηklm)∆α

+

2I∑
m=I+1

D(θkl, αm)fni0,j0+1(ξklm, ηklm)∆α

+

3I∑
m=2I+1

D(θkl, αm)fni0+1,j0+1(ξklm, ηklm)∆α− fni0,j0+1,kl

}

− ci0,j0+1β

∆y

{
−

I∑
m=0

D(θkl, αm)fni0,j0(ξklm, ηklm)∆α

+

2I∑
m=I+1

D(θkl, αm)fni0,j0+1(ξklm, ηklm)∆α

+

3I∑
m=2I+1

D(θkl, αm)fni0+1,j0+1(ξklm, ηklm)∆α+ fni0,j0+1,kl

}

+RklC
x
i0,j0+1

fni0,j0+1,k+1,l − fni0,j0+1,kl

∆ξ

+RklC
y
i0,j0+1

fni0,j0+1,k,l+1 − fni0,j0+1,kl

∆η
,

(5.9)

with γ = ξk√
ξ2k+η2l

< 0, β = ηl√
ξ2k+η2l

> 0, Cyi0,j0+1 =
c
i0,j0+ 3

2
−c

i0,j0+ 1
2

∆y , Cxi0,j0+1 =

c
i0+ 1

2
,j0+1

−c
i0− 1

2
,j0+1

∆x . The above equation can be rewritten into (we omit the super-
script n of f),

fn+1
i0,j0+1,kl

=
(
1− ci0,j0+1(λx|γ|+ λy|β|)− d1 − d2

)
fi0,j0+1,kl + d1fi0,j0+1,k+1,l

+ d2fi0,j0+1,k,l+1 + ci0,j0+1(λx|γ|+ λy|β|)∆α
[ I∑
m=0

D(θkl, αm)fi0,j0,km,lm

+

2I∑
m=I+1

D(θkl, αm)fi0,j0+1,km,lm +

3I∑
m=2I+1

D(θkl, αm)fi0+1,j0+1,km,lm

]
,

(5.10)

where d1 =
|c
i0+ 1

2
,j0+1

−c
i0− 1

2
,j0+1

|

∆x λξRkl, d2 =
|c
i0,j0+ 3

2
−c

i0,j0+ 1
2
|

∆y ληRkl, λx = ∆x
∆t ,

λy = ∆y
∆t , λξ = ∆ξ

∆t , λη = ∆η
∆t .

Now we investigate the positivity of scheme. This is to prove that if fnijkl ≥ 0 for

all (ijkl), then this is also true for fn+1. Since the sum of all coefficients in (5.10) is
less than 1, one just needs to show that all the coefficients for fn are non-negative.

Because D(θkl, αm) ≥ 0, and
∑3I
m=0D(θkl, αm) ≤ 1, a sufficient condition for this

is clearly

1− ci,j(λx|γ|+ λy|β|)− d1 − d2 ≥ 0
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or

∆tmax
ijkl

[
cij
∆x

+
cij
∆y

+

|ci+ 1
2 ,j
− ci− 1

2 ,j
|

∆x

√
ξ2
k + η2

l

∆ξ
+

|ci,j+ 1
2
− ci,j− 1

2
|

∆y

√
ξ2
k + η2

l

∆η

]
≤ 1,

(5.11)
which means that the scheme is positive when a hyperbolic type CFL condition
(5.11) is satisfied.

The l∞-contracting property of this scheme follows easily, because the coefficients
in the schemes are positive and the sum of them is less than 1.

6. Numerical Examples. We present numerical examples to demonstrate the
validity of our scheme and to show its numerical accuracy in this section. In the
numerical computations the second order Runge -Kutta time discretization is used.

Since it is difficult to get the exact solution for this problem, as in [24], we use the
numerical solution with the mesh size small enough to represent the exact solution.
The two-dimensional Lax-Wendroff method with space mesh size ∆x = ∆y = ε

20
and ∆t = ∆x/2 are used to solve the system (2.2) in the form

∂r

∂t
−∇s = 0,

1

c(x)2

∂s

∂t
− divr = 0,

with s = ∂u
∂t , r = ∇u to get the energy density distribution

E(x, t) =
1

2

1

c(x)2
|s|2 +

1

2
|r|2. (6.12)

The numerical energy density is defined as

Eij =
1

2

1

c2ij
|sij |2 +

1

2
|rij |2, (6.13)

where

sij =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

s(x, y)dxdy,

and rij can be defined similarly.
The discrete wave equation is quite dispersive [7], so one needs many grid points

per wavelength to compute it. The mesh size h = ε/20 is the biggest mesh size we
can get satisfactory numerical results for the discrete wave equation.

The limit energy density is the zeroth moment of the density distribution of
Liouville equation

E(0)(x, y, t) =

∫ ∫
f(x, y, ξ, η, t)dηdξ.

The computational tool we used is the super computer in Tsinghua National
Laboratory for Information Science and Technology, 512 Itanium 2 64 bit processor.
The peak computational speed is of 2.662× 1013, the total EMS memory is 1024G,
and the storage space is 26T.
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In the computation, we first approximate the delta function initial data of the
Liouville equation by the product of a discrete delta function in 1-D [12]:

δω(x) =


1
ω (1− | xω |), |

x
ω | ≤ 1,

0, | xω | > 1,
(6.14)

with ω = ∆ξ = ∆η. (For more recent numerical studies on the approximations of
the delta function, see [36, 38, 39, 40, 41]). Then the energy density distribution
are recovered by

E(0)
ij =

∑
kl

fijkl∆ξ∆η. (6.15)

We use the L1-error in the cumulative distribution function (cdf), i.e., the anti-
derivative of energy density [15]∫ +∞

−∞

∫ +∞

−∞

∣∣∣ ∫ x

−∞

∫ y

−∞
E(0)(s, z, t)− E(s, z, t)dsdz

∣∣∣dxdy, (6.16)

which can be expected to flatten as ε is decreased, to measure the weak convergence
in the semiclassical limit. Lemma 2.1 in [3] ensures that (6.16) going to zero is
equivalent to the weak convergence of E(0)(x, y, t)

For a more through discussion about the model error and numerical discretization
error of this approach we refer to our previous work [24].

Example 6.1. Consider the wave equation on the domain with boundary Γ1 ={
(x, y)| x ≥ 0.2, y = 0.3

}
and Γ2 =

{
(x, y)| x = 0.2, y ≤ 0.3

}
.

∂2u

∂t2
− c(x, y)2∆u = 0,

u(0) = 4εei
(x2+y2)

5ε −100x2−100y2 ,

∂u

∂t
(0) = 0,

(6.17)

where ε = 1/2000, c(x, y) = 2 and suitable boundary conditions must be given on
Γ1 and Γ2.

The corresponding Liouville equation is

ft +
2ξ√
ξ2 + η2

fx +
2η√
ξ2 + η2

fy = 0, (6.18)

with initial data

f(0,x,v) = 4(x2 + y2)e−200(x2+y2)δ
(
ξ − 0.4x

)
δ
(
η − 0.4y

)
.

The computation domain is [x, y, ξ, η] ∈ [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1], and time
step is ∆t = 1

3∆x.
Firstly, we consider the problem with the soft boundary condition on Γi, i.e.

u
∣∣
Γ

= 0, i = 1, 2. The physically relevant values for the diffraction coefficient

D−(θ, α) are given by (3.17).
For convenience, we denote our scheme by GTD, and the scheme for Liouville

equation with complete reflection boundary condition (Geometric optics) by GO.
Figure 4 shows the numerical energy densities E , GTD and GO at t = 0.2, 0.3. One
can see that there are some diffracted waves behind the corner-the shadow zone.
The numerical results of GTD can capture the average energy of the solution of the
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wave equation, including the shadow zone, which is below the line connecting the
corner and point (1, 1).

Figure 4. Energy density with soft boundary at t = 0.2 (top)
and t = 0.3 (bottom). left: E , middle: GTD, right GO .

Table 1 gives the l1-errors of numerical GTD (defined in (6.16) but numerically
evaluated by the Riemann sum over all cells) at t = 0.1, 0.2 and 0.3 on different
meshes. The convergence rate is about 1.

Table 1. errors of GTD with soft boundary

mesh type 502 × 502 1002 × 1002 2002 × 2002 4002 × 4002

t=0.1 3.3604e-2 1.6302e-2 7.9748e-3 3.9505e-3

t=0.2 3.7204e-2 1.8449e-2 9.1946e-3 4.5508e-3

t=0.3 4.1802e-2 2.0843e-2 9.9872e-3 4.9725e-3

Table 2 shows the errors of the numerical energy density GTD in the shadow
zone (x ≥ 0.2, y ≤ x + 0.1). The GTD solution is a good approximation to the
solution of the wave equation in the shadow zone. Notice that the convergence rate
in the shadow region is smaller than first order. This is partly because that there is
a boundary layer near the shadow boundary, which is harder to resolve numerically
then elsewhere.

The solutions of GTD and GO depend on wavelength ε. Fig. 5 gives, at t = 0.2,
the relation between the error of GTD and GO and the wavelength ε. One can
see that the error of solution of GO and GTD is of same order–near O(ε), which is
consistent with the theoretic analysis.

Next, we consider the problem with the hard boundary condition on Γi, i = 1, 2,
i.e. ∂u

∂n

∣∣
Γi

= 0, i = 1, 2. We use the extrapolation boundary condition for the

Lax-Wendroff method in the fully resolved simulation of the high frequency wave
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Table 2. error of energy density GTD with soft boundary in
shadow region

mesh type 502 × 502 1002 × 1002 2002 × 2002 4002 × 4002

t=0.1 10% 5.1% 4.6% 4.3%

t=0.2 12% 5.9% 5.0% 4.6%

t=0.3 14% 6.9 % 5.5% 5.1%
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Figure 5. The relation between errors of GO and GTD and ε

equation. The physically relevant values for the diffraction coefficient D+(θ, α) are
given by (3.17).

Figure 6 shows the numerical energy densities E , GTD, and GO, at t = 0.2, 0.3.
One can see that the energy of the diffracted waves behind the corner-the shadow
zone is stronger than the case of the soft boundary condition. The numerical results
of GTD is very close to the solution of the wave equation. Table 3 presents errors of
the numerical energy density by GTD computed with different meshes in the phase
space at t = 0.1, 0.2 and 0.3. The convergence rate is of first order.

Table 3. Errors of GTD of Example 5.1 with the hard boundary

mesh type 502 × 502 1002 × 1002 2002 × 2002 4002 × 4002

t=0.1 2.8456e-2 1.4209e-2 7.1033e-3 3.5606e-3

t=0.2 3.2144e-2 1.5965e-2 7.8306e-3 3.8948e-3

t=0.3 3.8442e-2 1.9204e-2 9.1002e-3 4.5453e-3

Table 4 shows the errors of the numerical energy density GTD in the shadow zone.
The GTD solution is a good approximation to the solution of the wave equation in
the shadow zone.
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Figure 6. Energy density with hard boundary at t = 0.2 (top)
and t = 0.3 (bottom). left: E , middle: GTD, right GO.

Table 4. Errors of GTD for Example 5.1 with hard boundary in
the shadow zones

mesh type 502 × 502 1002 × 1002 2002 × 2002 4002 × 4002

t=0.1 11.2% 6.0% 4.7% 4.1%

t=0.2 13.6% 7.6% 5.2% 4.6%

t=0.3 17.8 % 10.7 % 5.8% 5.2%

Example 6.2. Consider the wave equation in 2D with a rectangle boundary Ω:

∂2u

∂t2
− c(x, y)2∆u = 0,

u(0) = 8εei
(x2+y2)

5ε −50x2−50y2 ,

∂u

∂t
(0) = 8ei

(x2+y2)
5ε −50x2−50y2 ,

(6.19)

with ε = 1/4000, c(x, y) = 2(1−x)2, Ω =
{

(x, y) |−0.3 ≤ x ≤ 0.1,−0.5 ≤ y ≤ −0.2
}

and some suitable boundary conditions on Ω.

The corresponding Liouville equation is

ft +
c(x, y)ξ√
ξ2 + η2

fx +
c(x, y)η√
ξ2 + η2

fy − cx
√
ξ2 + η2fξ − cy

√
ξ2 + η2fη = 0, (6.20)

with initial data

f(0,x,v) = 32

[
0.16(x+ y)2 +

1

c(x, y)2

]
e−400x2−400y2δ

(
ξ − 0.4x

)
δ

(
η − 0.4y

)
.

The computational domain is chosen to be [x, y, ξ, η] ∈ [−1, 1]× [−1, 1]× [−1, 1]×
[−1, 1]. The time step is chosen as ∆t = 1

4∆x.
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Firstly, we simulate the problem with the soft boundary condition. The physi-
cally relevant values for the diffraction coefficient D−(θ, α) is given by (3.17).

Figure 7 shows the numerical energy densities E , GTD and GO at t = 0.2, 0.3.
The numerical results of GTD is very close to the solution of the wave equation,
even in the shadow zone.

Figure 7. Energy density with soft boundary at t = 0.2 (top) and
t = 0.3 (bottom). left: E , middle: GTD, right GO.

Table 5 presents the errors of the numerical energy density GTD computed with
different meshes in the phase space at t = 0.1, 0.2 and 0.3. The error is very small.
The convergence rate is about first order.

Table 5. Errors of numerical density GTD of Example 5.2 with
the soft boundary

mesh type 502 × 502 1002 × 1002 2002 × 2002 4002 × 4002

t=0.1 2.4043e-2 1.2021e-2 6.0010e-3 3.0006e-3

t=0.2 2.7024e-2 1.3512e-2 6.7442e-3 3.3721e-3

t=0.3 3.1498e-2 1.5248e-2 7.6118e-3 3.8047e-3

Table 6 shows the errors of the numerical energy density GTD in the shadow
zone. The GTD solution is a good approximation to the solution wave equation in
the shadow zone (y < −0.5).

Finally, we consider the problem with the hard boundary condition on Ω. The
physically relevant values for the diffraction coefficient D+(θ, α) are given by (3.17).

Table 7 presents the errors of the numerical energy density GTD computed with
different meshes in the phase space at t = 0.1, 0.2 and 0.3. The convergence rate is
about first order.
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Table 6. Errors of GTD for Example 5.2 with the soft boundary
in the shadow zones

mesh type 502 × 502 1002 × 1002 2002 × 2002 4002 × 4002

t=0.1 10.2% 6.4% 5.1% 4.4%

t=0.2 13.1% 7.0% 5.5% 5.0%

t=0.3 15.7% 9.4 % 6.1% 5.5%

Figure 8. Energy density with soft boundary at t = 0.1 (top) and
t = 0.2 (bottom). left: E , middle: GTD, right GO.

Table 7. Errors of numerical density GTD of Example 5.2 with
the hard boundary

mesh type 502 × 502 1002 × 1002 2002 × 2002 4002 × 4002

t=0.1 2.4642e-2 1.2176e-2 6.0538e-3 3.0264e-3

t=0.2 2.6054e-2 1.3027e-2 6.5013e-3 3.2489e-3

t=0.3 2.8985e-2 1.4464e-2 7.2192e-3 3.6092e-3

Table 8 shows the errors of the numerical energy density GTD in the shadow
zone. The GTD solution is a good approximation to the solution of wave equation
in the shadow zones.

Remark 1. The typical wave length of visible lights is 400 − 700 nanometers, or
in the order of 10−6 meters. To simulate such a high frequency wave in a domain
of one meter requires at least O(106) mesh points per spatial dimension. It means
O(106) meshes in one space dimension, O(1012) meshes in two space dimension and
O(1018) meshes in three dimension. By including the time direction, one needs
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Table 8. relative l1 error of GTD for Example 5.2 with the hard
boundary in the shadow zones

mesh type 502 × 502 1002 × 1002 2002 × 2002 4002 × 4002

t=0.1 10.1% 6.3% 4.7% 4.2%

t=0.2 13.6% 6.5% 5.1% 4.6%

t=0.3 16.4% 9.6 % 5.5% 5.0%

O(1018) operations in two space dimension and O(1024) in three space dimension.
This is simply impossible for today’s computational equipments.

On the other hand, by using the Liouville equation, although the dimension is
doubled, even to resolve the diffraction the mesh size of O(ε1/2) = O(10−3), one
needs O(1012) meshes in two space dimension and O(1018) meshes in three space
dimension (six dimension in the phase space). But in the time direction, the mesh
size is of O(ε1/2). So including the time direction, one needs O(1015) operations
in two space dimension and O(1021) in three space dimension. This is about 1000
times less operations compared to the full simulation based on the original wave
equation. Thus double the dimension using the Liouville equation provides a much
more efficient approach to high frequency waves when the frequency is very high.

It is important also to point out that only near the vertex we need to impose
∆x,∆y ∼ O(ε1/2). Away from it we can use ∆x,∆y,∆ξ,∆η = O(1) if we program
the method in the adaptive mesh framework. This will be a tremendous saving
compared with the full wave simulation.

7. Conclusion. In this paper, we revise our previous work [25] to a different geom-
etry, namely, high frequency waves through a corner. When a wave hits a corner, it
usually reflects. However, at the vertex of the corner, it generates diffracted waves
into all directions. In particular, the diffracted waves can reach the shadow zone–the
zone that the GO theory cannot cover. We provide a diffraction condition, based
on the GTD theory, at the vertex to reflect this diffraction nature. We then build
this condition, as well as the reflection boundary condition, into the numerical flux
of the Liouville solver, in order to capture the diffractions. This gives an Eulerian
computational method for high frequency waves through a corner, which is able to
capture wave reflection and diffractions at a corner without fully resolving the high
frequency waves in the entire computational domain.

The initial data were chosen to be the WKB form (1.2)-(1.3). For more general
initial data one could use an initial data decomposition, for example a Gaussian
beam type [37], so they become a linear superposition of initial data of this form.
Each of the decomposed solutions can be constructed by the approach of this paper.
Due to the linearity of the problem one just needs to superimpose the decomposed
solutions.

This paper deals with only the right corner. For corners of different angle γ, the
same approach can still apply, but one must use a geometry-aligned mesh for the
implementation of this approach.

The Liouville or geometrical optics based approach is very effective for very small
ε. For moderate ε one could use other more accurate approaches, one example being
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the Gaussian beam method which can also be cast in the Eulerian framework using
Liouville equations [23].

Similar ideas, including those in our previous work [25], can also be applied
to other geometries, and to elastic and electromagnetic waves, which will be the
subjects of future research.
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[5] V. Cĕrvený, “Seismic Ray Theory,” Cambridge University Press, 2001.

[6] L.-T. Cheng, H.-L. Liu and S. Osher, Computational high-frequency wave propagation using

the Level Set method, with applications to the semi-classical limit of Schrödinger equations,
Comm. Math. Sci., 1 (2003), 593–621.

[7] G. Cohen, “Higher-Order Numerical Methods for Transient Wave Equations,” Springer,

Berlin; New York, 2002.
[8] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.

Amer. Math. Soc., 277 (1983), 1–42.

[9] G. A. Deschamps, High frequency diffraction by wedges, IEEE Transactions on Antennas and
Propagation. AP-33 (1985), 357–368.

[10] B. Engquist and O. Runborg, Computational high frequency wave propagation, Acta Numer-
ica, 12 (2003), 181–266.

[11] B. Engquist, O. Runborg, and A.-K. Tornberg, High frequency wave propagation by the seg-

ment projection method , J. Comput. Phys., 178 (2002), 373–390.
[12] B. Engquist, A. -K. Tornberg and R. Tsai, Discretization of dirac delta functions in level set

methods, J. Comput. Phys., 207 (2005), 28–51.

[13] E. Fatemi, B. Engquist and S. Osher, Numerical solution of the high frequency asymptotic
expansion for the scalar wave equation, J. Comput. Phys., 120 (1995), 145–155.

[14] S. Fomel and J. A. Sethian, Fast phase space computation of multiple arrivals, Proc. Natl.

Acad. Sci. USA, 99 (2002), 7329–7334.
[15] L. Gosse and N. J. Mauser, Multiphase semicalssical approximation of an electron in a one-

dimensional crystalline lattice – III. From ab initio models to WKB for Schrödinger-Poisson,

J. Comput. Phys., 211 (2006), 326–346.
[16] S. Jin and X. Li, Multi-phase computations of the semiclassical limit of the Schrödinger

equation and related problems: Whitham vs Wigner , Physics D, 182 (2003), 46–85.

[17] S. Jin and X. Liao, A Hamiltonian-preserving scheme for high frequency elastic waves in
heterogeneous media, J. Hyperbolic Diff Eqn., 3 (2006), 741–777.

[18] S. Jin, H. L. Liu, S. Osher and R. Tsai, Computing multi-valued physical observables for high
frequency limit of symmetric hyperbolic systems, J. Comp. Phys., 210 (2005), 497–518.

[19] S. Jin and S. Osher, A level set method for the computation of multi-valued solutions to
quasi-linear hyperbolic PDEs and Hamilton-Jacobi equations, Comm. Math. Sci., 1 (2003),
575–591.

[20] S. Jin and X. Wen, Hamiltonian-preserving scheme for the Liouville equation with discontin-

uous potentials, Comm. Math. Sci., 3 (2005), 285–315.
[21] S. Jin and X. Wen, A Hamiltonian-preserving scheme for the Liouville equation of geometric

optics with partial transmissions and reflections, SIAM J. Num. Anal., 44 (2006), 1801–1828.

http://www.ams.org/mathscinet-getitem?mr=MR2028837&return=pdf
http://dx.doi.org/10.1023/A:1025339522111
http://www.ams.org/mathscinet-getitem?mr=MR1655848&return=pdf
http://dx.doi.org/10.1137/S0036142997317353
http://www.ams.org/mathscinet-getitem?mr=MR0119789&return=pdf
http://dx.doi.org/10.1002/cpa.3160130109
http://www.ams.org/mathscinet-getitem?mr=MR2069945&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0690039&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1983-0690039-8
http://dx.doi.org/10.1109/TAP.1985.1143598
http://www.ams.org/mathscinet-getitem?mr=MR2249156&return=pdf
http://dx.doi.org/10.1017/S0962492902000119
http://www.ams.org/mathscinet-getitem?mr=MR1899181&return=pdf
http://dx.doi.org/10.1006/jcph.2002.7033
http://dx.doi.org/10.1006/jcph.2002.7033
http://www.ams.org/mathscinet-getitem?mr=MR2143581&return=pdf
http://dx.doi.org/10.1016/j.jcp.2004.09.018
http://dx.doi.org/10.1016/j.jcp.2004.09.018
http://www.ams.org/mathscinet-getitem?mr=MR1345031&return=pdf
http://dx.doi.org/10.1006/jcph.1995.1154
http://dx.doi.org/10.1006/jcph.1995.1154
http://www.ams.org/mathscinet-getitem?mr=MR1907838&return=pdf
http://dx.doi.org/10.1073/pnas.102476599
http://www.ams.org/mathscinet-getitem?mr=MR2168880&return=pdf
http://dx.doi.org/10.1016/j.jcp.2005.05.020
http://dx.doi.org/10.1016/j.jcp.2005.05.020
http://www.ams.org/mathscinet-getitem?mr=MR2002860&return=pdf
http://dx.doi.org/10.1016/S0167-2789(03)00124-6
http://dx.doi.org/10.1016/S0167-2789(03)00124-6
http://www.ams.org/mathscinet-getitem?mr=MR2289613&return=pdf
http://dx.doi.org/10.1142/S0219891606000999
http://dx.doi.org/10.1142/S0219891606000999
http://www.ams.org/mathscinet-getitem?mr=MR2160634&return=pdf
http://dx.doi.org/10.1016/j.jcp.2005.04.020
http://dx.doi.org/10.1016/j.jcp.2005.04.020
http://www.ams.org/mathscinet-getitem?mr=MR2069944&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2165017&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2263030&return=pdf
http://dx.doi.org/10.1137/050631343
http://dx.doi.org/10.1137/050631343


316 SHI JIN AND DONGSHENG YIN

[22] S. Jin and X. Wen, Computation of transmissions and reflections in geometric optics via the
reduced Liouville equation, Wave Motion, 43 (2006), 667–688.

[23] S. Jin, H. Wu and X. Yang, Gaussian beam methods for the Schrodinger equation in the

semi-classical regime: Lagrangian and Eulerian formulations, Comm. Math. Sci., 6 (2008),
995–1020.

[24] S. Jin and D. S. Yin, Computational high frequency waves through curved interfaces via
the Liouville equation and geometric theory of diffraction, J. Comput. Phys., 227 (2008),

6106–6139.

[25] S. Jin and D. S. Yin, Computation of high frequency wave diffraction by a half plane via the
Liouville equation and geometric theory of diffraction, Communications in Computational

Physics, 4 (2008), 1106–1128.

[26] J. B. Keller, Geometric theory of diffraction, J. Opt. Soc. of America, 52 (1962), 116–130.
[27] J. B. Keller and R. Lewis, Asymptotic methods for partial differential equations: The re-

duced wave equation and maxwell’s equations, In “Surveys in Applied Mathematics”(eds. D.

McLaughlin J. B. Keller and G. Papanicolaou), Plenum Press, New York, 1995.
[28] R. G. Kouyoumjian and P. H. Parthak, A uniform geometrical theory of diffraction for an

edge in a perfectly conducting surface, Proc. Of the IEEE, 62 (1974), 1448–1461.

[29] R. LeVeque, “Numerical Methods for Conservation Laws,” Birkhauser, 1992.
[30] L. Miller, Refraction of high-frequency waves density by sharp interfaces and semiclassical

measures at the boundary, J. Math. Pures Appl., 79 (2000), 227–269.
[31] M. Motamed and O. Runborg, A fast phase space method for computing creeping rays, J.

Comput. Phys., 219 (2006), 276–295.

[32] M. Motamed and O. Runborg, A multiple-patch phase space method for computing trajectories
on manifolds with applications to wave propagation problems, Commun. Math. Sci., 5 (2007),

617–648.

[33] S. Osher, L. T. Cheng, M. Kang, H. Shim and Y. -H. Tsai, Geometric optics in a phase-
space-based level set and Eulerian framework , J. Comput. Phys., 179 (2002), 622–648.

[34] L. Ryzhik, G. Papanicolaou and J. Keller, Transport equations for elastic and other waves in

random media, Wave Motion, 24 (1996), 327–370.
[35] C. Sparber, N. Mauser and P. A. Markowich, Wigner functions vs. WKB techniques in mul-

tivalued geometric optics, J. Asympt. Anal., 33 (2003), 153–187.

[36] P. Smereka, The numerical approximation of a delta function with application to level set
methods, J. Comput. Phys., 211 (2006), 77–90.

[37] N. M. Tanushev, B. Engquist and R. Tsai, Gaussian beam decomposition of high frequency
wave fields, J. Comp. Phys., 228 (2009), 8856–8871.

[38] J. D. Towers, Two methods for discretizing a delta function supported on a level set , J.

Comput. Phys., 220 (2007), 915–931.
[39] X. Wen, High order numerical methods to a type of delta function integrals, J. Comput.

Phys., 226 (2007), 1952–1967.
[40] X. Wen, High order numerical methods to two dimensional delta function integrals in level

set methods, J. Comput. Phys., 228 (2009), 4273–4290.

[41] X. Wen, High order numerical methods to three dimensional delta function integrals in level

set methods, SIAM J. Sci. Comput., 32 (2010), 1288–1309.
[42] L. Ying and E. J. Candés, Fast geodesics computation with the phase flow method , J. Comput.

Phys., 220 (2006), 6–18.

Received August 2010; revised November 2010.

E-mail address: jin@math.wisc.edu

E-mail address: dyin@math.tsinghua.edu.cn

http://www.ams.org/mathscinet-getitem?mr=MR2267278&return=pdf
http://dx.doi.org/10.1016/j.wavemoti.2006.06.001
http://dx.doi.org/10.1016/j.wavemoti.2006.06.001
http://www.ams.org/mathscinet-getitem?mr=MR2511703&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2418355&return=pdf
http://dx.doi.org/10.1016/j.jcp.2008.02.029
http://dx.doi.org/10.1016/j.jcp.2008.02.029
http://dx.doi.org/10.1364/JOSA.52.000116
http://dx.doi.org/10.1109/PROC.1974.9651
http://dx.doi.org/10.1109/PROC.1974.9651
http://www.ams.org/mathscinet-getitem?mr=MR1750924&return=pdf
http://dx.doi.org/10.1016/S0021-7824(00)00158-6
http://dx.doi.org/10.1016/S0021-7824(00)00158-6
http://www.ams.org/mathscinet-getitem?mr=MR2273378&return=pdf
http://dx.doi.org/10.1016/j.jcp.2006.03.024
http://www.ams.org/mathscinet-getitem?mr=MR2352334&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1911378&return=pdf
http://dx.doi.org/10.1006/jcph.2002.7080
http://dx.doi.org/10.1006/jcph.2002.7080
http://www.ams.org/mathscinet-getitem?mr=MR1427483&return=pdf
http://dx.doi.org/10.1016/S0165-2125(96)00021-2
http://dx.doi.org/10.1016/S0165-2125(96)00021-2
http://www.ams.org/mathscinet-getitem?mr=MR1977767&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2168871&return=pdf
http://dx.doi.org/10.1016/j.jcp.2005.05.005
http://dx.doi.org/10.1016/j.jcp.2005.05.005
http://www.ams.org/mathscinet-getitem?mr=MR2558781&return=pdf
http://dx.doi.org/10.1016/j.jcp.2009.08.028
http://dx.doi.org/10.1016/j.jcp.2009.08.028
http://www.ams.org/mathscinet-getitem?mr=MR2284331&return=pdf
http://dx.doi.org/10.1016/j.jcp.2006.05.037
http://www.ams.org/mathscinet-getitem?mr=MR2356401&return=pdf
http://dx.doi.org/10.1016/j.jcp.2007.06.025
http://www.ams.org/mathscinet-getitem?mr=MR2356401&return=pdf
http://dx.doi.org/10.1016/j.jcp.2009.03.004
http://dx.doi.org/10.1016/j.jcp.2009.03.004
http://www.ams.org/mathscinet-getitem?mr=MR2652078&return=pdf
http://dx.doi.org/10.1137/090758295
http://dx.doi.org/10.1137/090758295
http://www.ams.org/mathscinet-getitem?mr=MR2281627&return=pdf
http://dx.doi.org/10.1016/j.jcp.2006.07.032

	1. Introduction
	2. Geometric optics approximation of the wave equation in phase space 
	3. Wave behavior at a corner
	4. The numerical scheme 
	4.1. The numerical flux

	5.  Positivity and l  contraction
	6. Numerical Examples
	7. Conclusion
	Acknowledgments
	REFERENCES

