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Abstract

In this paper we present a simple and robust random projection method for
underresolved numerical simulation of stiff detonation waves in chemically reacting
flows. This method is based on the random projection method proposed by the
authors for general hyperbolic systems with stiff reaction terms [1], where the ig-
nition temperature is randomized in a suitable domain. It is simplified using the
equations of instantaneous reaction, and then extended to handle the interactions of
detonations. Extensive numerical experiments, including interaction of detonation
waves, and in two dimensions, demonstrate the reliability and robustness of this
novel method.

1 Introduction

We consider the reactive Euler equations that model the time-dependent flow of an in-
viscid, compressible, reacting flow. Without heat conduction and viscosity, the equations
take the form

Ui+ F(U), + G(U), = éxy(U), (1.1)
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The dependent variables p(z,y,t), m(z,y,t), n(x,y,t), e(z,y,t) and z(x,y,t) are the
density, x- and y-momentum, total energy and the fraction of unburnt fluid, respectively.
The pressure for ideal gas is given by

p=(y-1) (6—%(m2+n2)/p—qopZ>

and the temperature is defined as T' = p/p. Let (u,v) = (m/p,n/p) be the velocity. The
parameters gy, T¢, v and € correspond to chemical heat release, ignition temperature, c,
to ¢, ratio, and reaction time, respectively. The equations have been nondimensionalized,
leaving the choice of these four parameters to completely determine the problem.

We will focus on the computations of stiff detonation waves. For these waves the
viscosity is not as important as for the slower deflagration wave solutions.

We refer to (1.1)-(1.3) as the reactive Euler equations with Arrhenius kinetics. We
will also consider (1.1)-(1.3) with
—Zpze /T

€

replaced by the Heaviside kinetics

1
——pzH(T - T,),
£

where H(z) =1 for > 0 and H(x) = 0 for z < 0.

One of the main numerical challenges for reacting flows is that the kinetics equations
(1.1) often include reactions with widely varying time scales. The chemical time scales,
as characterized by £, may be orders of magnitude faster than the fluid dynamical time
scale. This leads to problems of severe numerical stiffness. Actually the stiffness issue
with the Heaviside kinetics is the more severe one [10]. Even a stable numerical scheme
may lead to spurious unphysical solutions unless the small chemical time scale is fully
resolved numerically.

Numerical methods for this kind of problems have attracted a great deal of attentions
in the last decade. In particular, many works have contributed to the analysis and devel-
opment of underresolved numerical methods which are capable of capturing the physically
relevant solutions. Of course, when one does not resolve the chemical scale numerically
(using grid size larger than the reaction zone of width O(g)), it is impossible to capture
the pressure spike in the reaction zone. Thus the best one can hope is to capture the
speed of detonation as well as other features of fluid dynamics. It was first observed by
Colella, Majda and Roytburd [8] that an underresolved numerical method, where ¢ is not
resolved by suitably small time steps and grid sizes, leads to spurious weak detonation
wave that travels one grid per time step. Since then, lots of attention have been paid to
study this peculiar numerical phenomenon (see [4], [17], [18], [12], [5]). It is known that
numerical shock profile, an essential mechanism in all shock capturing methods, leads to
too early chemical reaction once the smeared value of the temperature in the numerical
shock layer is above the ignition temperature. Various approaches have been suggested to
fix this numerical problem. For examples, in [10], a temperature extrapolation technique
was proposed. In [3] the ignition temperature is artificially raised. In [19] the reaction
time € was replaced by a larger one thus the reaction zone is made much wider than the



physical one. Recently, a modified fractional step method was introduced [14], where the
structure of the Riemann solution of the homogeneous part is used to determine where
burning should occur in each time step

Recently we proposed the random projection method as a general and systematic
method to solve hyperbolic systems with stiff reaction term, applicable to reacting flow
problems [1]. Unlike the random choice method of Chorin for reacting flow [6], which
was originated from Glimm’s scheme [11], and requires solving a generalized Riemann
problem for hyperbolic systems with source terms [4], our method is a fractional step
method, which combines a standard — no Riemann solver is needed — shock capturing
method for the homogeneous convection with a strikingly simple random projection step
for the reaction term. In the random projection step, the ignition temperature is chosen
to be an uniformly distributed random variable between two stable equilibria. Although
at each time step, this random projection will move the shock with an incorrect speed,
the statistical average yields the correct speed, even though the small time scale ¢ is
not numerically resolved. In particular, when the random number is chosen to be the
equidistributed van der Corput sampling sequence [13], we can prove, for a model scalar
problem, a first order accuracy on the shock speed if a monotonicity-preserving method,
which includes all TVD schemes, is used in the convection step [1], [2]. A large amount
of numerical experiments for one and two dimensional detonation waves demonstrate the
robustness of this novel approach.

In this paper, we conduct extensive numerical experiments to examine the applicability
of the random projection method for reacting flows. We focus on stiff detonation waves
and their interactions with other waves, including the interaction of detonation waves.
To this aim, we first simplify the convection step using the reacting flow model of zero
reaction zone, meaning that the chemical heat is released instantaneously. Since we are
to develop underresolved method, where the reaction zone is much smaller than a grid
size, the equation reduces effectively to the zero reaction model, which is given by [9]:

U, + F(U), + G(U), =0, (1.4)
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and the fraction of unburnt gas
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The random projection method consists of two steps, with the first being any standard
shock capturing method for (1.4), followed by a random projection for the fraction vari-
able z in (1.8), with T, replaced by a uniformly distributed random sequence. Here the
convection step is slightly simpler than the original one proposed in [1] where the full con-
vection equation, including the homogeneous part of the species equation in (1.1)-(1.3),
is solved. Algorithms for the collision of detonation waves are also introduced. Many nu-
merical examples, including the C-J detonation, strong detonation, unstable detonation,
collisions of detonation with shocks, rarefaction wave, or another detonation, as well as
two dimensional examples, will be used to justify the robustness of this novel approach.

The paper is organized as follows. In section 2 we provide a random project method
for the problem (1.4)-(1.8) in one space dimension with general initial data. Algorithms
for multi-detonations are also introduced. In section 3 this method is extended to two
space dimension. In section 4 many numerical examples will be presented. In section 5
some conclusions are drawn.

2 One-dimensional detonations

In this section, we shall describe the random projection method for (1.4)-(1.8) in one space
dimension. Moreover, we will describe its implementation for the case of interaction of
detonation waves. The problem to be solved is given by

P m
v=|m |, FU)y=| m*fp+p |, (2.2)
e m(e +p)/p
with equation of state
1
p=0r=1) (= 5m*/0— ap) (23)
and the fraction of unburnt gas
0, it T >T,,
‘= { 1, WfT<T. (24)
Let the grid points be z;, ¢ =---,—1,0,1,---, with equal mesh spacing h = z; 1 — z;.
The time level ty = 0, t1, t3, - - - are also uniformly spaced with time step k = t,,1 — t,.

We use U = (p,mP, e, (pz)?) to denote the approximate solution of U = (p, m, e, pz)
at the point (z;,t,) = (ih,nk). Our main interest is an underresolved numerical method
which allows k& = O(h) >> ¢ and still obtains physically relevant numerical solutions.
The random projection method is a fractional step method that consists of a standard
shock capturing method for (2.1), denoted by Sg(k) for one time step, followed by a
random projection step for the fraction variable z defined by (2.4) where T, the ignition
temperature, is randomized in a suitable domain. Let U™ = Sgr(k)U". To obtain 2"t
we replace (2.4) by
il if T+ >0,

0,



where T/ = pi*!/pi*! and 6, is a random number, chosen one per time step, be-
tween two equilibrium temperatures on both sides of the detonation. To be more precise,
consider the initial data

S vt MR FEE

where 7 is a given point. Without loss of generality these data are chosen such that the
detonation, initially at © = xy, moves to the right. The case when the detonation moved
to the left can be treated similarly. Since our projection always makes z either 1 or 0,
therefore, at any time step t,, there is an I(n) = jo, jo an integer, such that

(o if i < I(n),
7= { 1, ifl>I(n). (27)
Here I(n) is the location of the jump for z in the approximate solution at time ¢, and we
assume xo = [(0)h be a grid point. Let

0, = (T, —T.)9, + T, Tl—mlnp(x ,0) T, — max 2 P (2, 0)
r<T0 pl(l‘ 0) T>T0 pr(.fb' 0)

(2.8)

with 9, being the van der Corput’s sampling sequence on the interval [0,1]. The van
der Corput sequence is an equidistributed sequence with the minimal deviation among all
random sequences [13]. It is obtained as follows: let 1 < n = 7, ix2%, i, = 0,1, be the
binary expansion of the integer n. One gets ¥, on [0, 1] as:

O = ix27®D p=1,2,... . (2.9)

Since there are other waves in the domain, one cannot project z according to (2.5) in the
whole domain. Instead, we do it around the denotation, a procedure called local random
projection in [1]. Specifically, We move the jump of z according to the following algorithm:

Sep(k) = set l(n+1):=1I(n) —
For j =1(n) — 1,l(n),---,l(n) +d, do
I(n+1):=j, if T} >0,;

n+l __ 07 lf] S l(n+1)7
T { 1, if 7> 1(n+1); (2.10)
where d is the number of smeared points in the shock layer. From our numerical expe-
rience, for C-J detonations and strong detonations, d = 1 works very well. In the above
algorithm, only d + 2 points will be scanned.

The stability condition for this algorithm, as well as the algorithms for multi-detonations
(2.15) and (2.20), is the usual CFL condition determined by the operator Sr(k) for the
convection terms.

For numerical comparison, we also mention the deterministic projection method using
the given deterministic ignition temperature 7, in (2.4).
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We now extend the random projection method to handle the problems involving more
than one detonation waves. For clarity of presentation we only present the case of two
detonations. It is straightforward to extend to the case where there are more than two
detonations.

Consider (2.1)-(2.4) with initial data

(pr(z), w (), p(x),0), if v <uxy,
(pr(2), ur (), pr(2),0), if 7y <w.

(2.11)
These data are chosen such that the two detonations move toward each other, i.e. the
detonation initially at x = x; moves to the right and the one initially at x = x5 moves to
the left. Thus after some time, the two detonations will collide.

Let
T, = min pl(x), T,, = max pm(x), T, = min P () (2.12)
<o1 py(x) n<T<Es Py (1) 22 pr ()
and
O = (T) — T0,)0, + Tpm, 02 = (T, — Tp) 0y + Tp. (2.13)

Since the projection always makes z either 1 or 0, the profile of z at any time step is
a piecewise constant function. Therefore, at any time step t,, there are [;(n) = j; and
lo(n) = jo with j; < j5 integers, such that

O, lf] < ll(n),
zi =49 1, if 11(n) < j <ly(n), (2.14)

Here we assume that x; = [;(0)h, and x5 = [3(0)h are grid points. Since z; < x5, then
1,(0) < 13(0). One can use the following algorithm to obtain 2"*', if the positions of the
two detonations at time t,, i.e. l;(n) and ly(n), are known. The detailed algorithm to
find z"* is

Sep(k) = lmia = (l(n )+lz( ))/
set l1(n+1) :=1(n) —
For j =11(n) — 1,l1(n ) -,min{l;(n) +d, lniq + 1} do
Ln+1):=j, if T;@“ > AW,
set lo(n+1) :=Ily(n) +1
For j = ly(n) + 1,1(n), - -, max {lo(n) — d, lmg— 1} do
b(n+1) =7 if T/ >0%;

= {1, if [i(n4+1) <j<lo(n+1), (2.15)
0, if L(n+1) < j.

Another case is when two detonations move away from each other. Consider the initial



(pl(x)aul(x)apl(x)al)a ifx<x1,
(p(x,0),u(z,0),p(x,0),2(x,0)) =< (pm(), um(x), pm(x),0), if x1 < <o,
(pr(x), up(z), pr(x), 1), if xo < .

(2.16)
These data are chosen such that the two detonations move away from each other, i.e. the
detonation initially at x = x1 moves to the left and the one initially at x = x5 moves to
the right. In this case, there is no collision of detonations at all.

Let
T, = max pl(x), T,, = min pm(x), T, = max P () (2.17)
r<T1 pl(x) xr1<xr<r2 pm(x) T>T2 pr(x)
and
o) = (T,, — T))9, + Ty, 02 = (T, — T,)0, + T (2.18)
At any time step t,, there are [1(n) = j; and lz(n) = jo with j; < j, integers, such that
1, if 7 <1y (n),
zi =1 0, if l1(n) <j <la(n), (2.19)
1, if lg(’n) < J.

The detailed algorithm to find 2"*! is:

Sep(k) = set ly(n+1):=1(n)+1;
For j =1l1(n) +1,l1(n),---,l;(n) —d, do
Lin+1)=j, if TP >0,
set lo(n 4+ 1) :=1Iy(n) — 1;
For j = lo(n) — 1,13(n),---,ls(n) +d, do
Lbn+1)=j, if TP >0,
1, if j <li(n+1),
a2 0 L) <) < bn+1), (220)
1, if lo(n+1) < j.

3 The two-dimensional method

In this section, the random projection method is extended to two space dimensional
problem (1.4)-(1.8). For simplicity, we consider the detonation waves in a two dimensional
channel. Let the initial data be

(plvulvoaplao)v if z < g(y)a
(prsur, 0,07, 1), if 2> €(y);

(3.1)
where £(y) is a given function of y and these data are chosen such that the detonation
moves to the right. Let

(p(2,9,0),u(z,y,0),v(z,¥,0),p(r,y,0), 2(2,,0)) = {

en - (ﬂ - Tr)'&n +Tra ﬂ = Q, Tr = &7 (32)
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and 9, (see (2.9) for detail) being the van der Corput’s sampling sequence on the interval
[0, 1].

Let the grid points (z;,y;) = (ih,jh),i,j =--+,—1,0,1,---, with equal mesh spacing
h. The time level ¢, = nk, £k = 0,1,2,--- are also uniformly spaced with time step k.
Let Ul; = (pz’-fj, mi i, g, er, (pz)f]) be the approximate solution of U = (p, m, n, e, (pz))
at (r;,y;,tn) = (ih, jh,nk). Let Spq(k) be a standard shock capturing method for (1.4).
Notice that, at any time step, for each j, there is an [;(n) = j,, j, an integer, such that

0 it § < 1(n)

P L =, 3.3

’J { 1, if i > 1;(n). (3:3)

Here [;(n) is the location of the jump for z at the grid line y = y; in the approximate
solution at time ¢, = nk. Then the random project algorithm to find z"*! follows:

Sop(k) : For j do
Set lj(n + 1) = l](n) — 1,
For m =1;(n) — 1,1;(n),---,l;(n) +d, do
Li(n+1):=m, if T;t >0,
0 if i <Li(n+1)
n+1l __ ) =0 )
Gy T { 1, if i >1;(n+1). (3-4)

The stability condition for this algorithm is still the usual CFL condition determined
from the convection step Spa(k).

4 Numerical examples

In order to verify the performance of the random projection method proposed in this
paper, we conduct extensive numerical experiments, including the Chapman-Jouguet (C-
J) detonation, strong detonation, unstable detonation, collision of a detonation with a
shock, a rarefaction wave, and another detonation. We also give two dimensional exam-
ples. In our computation, the operator Sr(k) and Sgg(k) are chosen as the second order
relaxed scheme [16], which is a TVD scheme without the usage of Riemann solvers or
local characteristic decompositions. We choose d = 5 in (2.10), (2.15), (2.20) and (3.4) in
our computations in this section.

Example 4.1: A Chapman-Jouguet (C-J) detonation. This is the example 4.1 in [1]
revisited. We choose here the case of ozone decomposition C-J detonation discussed and
computed in [8] and [4]. We use CGS units and the following parameter values:

1
v =14, g0 = 0.5196 x 10", - = K =0.5825 x 10'°, T, = 0.1155 x 10'.

The initial data are taken as the piecewise constant data defining a C-J detonation as
a single wave (recall that in the Chapman-Jouguet model a C-J detonation corresponds



to a sonic detonation, or, in other words, a sharp reaction wave that moves at minimal
speed relative to the unburnt gas). The initial state was given by

_ (plaulaplao)a if x S 0005,
(p,u,p, 2)(2,0) = { (pr Ups Pry 1), if > 0.005;

where p; = p., = 6.270 x 10% p = p,, = 1.945 x 1073, w; = u,, = 4.162 x 10* and
p, = 8.321 x 105, p, = 1.201 x 1073, u,, = 0. The speed of the sharp front in this example
is D= D,_, =1.088x10°. In this example the width of the reaction zone is approximately
5x 107" ( [4] and [8]).

This problem is solved on the interval [0,0.05]. The ‘exact’ solution is obtained by
using a resolved calculation with A = 5 x 107% (i.e. 10001 grid points on the interval
[0,0.05]) and k& = 5 x 10~"2. The mesh size and time step resolve the chemical scale. Now
we compare the results obtained by the random projection method and the deterministic
method when the reaction time is underresolved. We use h = 5 x 107* (i.e. 101 grid
points for the interval [0,0.05]) and & = 5 x 107! and output the numerical solution at
t=2x10".

Figure 4.1(a) shows the numerical solution by using the random projection method
(2.10), while Figure 4.1(b) shows the numerical solution obtained by the deterministic
method. It can be seen that the random projection method can capture the correct
speed of the discontinuity of the C-J detonation wave even when the chemical reaction
scale is not numerical resolved. As mentioned earlier, with an underresolved method it is
impossible to capture the pressure spike which has a width in the order of reaction scale
€. there are small post shock statistical fluctuations due to the random nature of the
method, but they are at an acceptable level. The deterministic method produces spurious
waves, as was observed in earlier literatures.

In all of the following examples, the deterministic method always produces spurious
waves when the chemical scale is not resolved. We will not report those results, and will
only present the solutions obtained by the random projection method.

Example 4.2: A strong detonation. This is Example 4.3 in [1] revisited. The set up
of this example is similar to those in Example 4.1 (i.e. 7, qo, K = % and T, are the same)
except that the initial data are changed to

_ | (o, w1, 0), if z <0.005;
(b1, 2)(2,0) = { (Prs tr, Pry 1), if z > 0.005,

where u; = 9.162 x 10* > u_,, pp = po,, m = 8.27 x 10° > p_, and p,, Uy, pr, Doy Ug,
and p_, are the same as those in Example 4.1. In this case there is a strong detonation,
a contact discontinuity and a shock, all moving to the right.

The ‘exact’ solution is obtained similarly as that in Example 4.1. Figure 4.2 shows
the numerical solutions by the random projection method (2.10) with A =5 x 107 (i.e.

101 grid points for the interval [0,0.05]) and £ =5 x 1071 at time t =2 x 10~".

Example 4.3: An unstable detonation. We consider an example defining an overdrive
detonation wave with overdrive factor f = 1.6. The data is taken from [15]. Let v = 1.2,

9



qo = 50, T, = 3.0 and % = K = 230.75. The initial state was given by

(plaulaplao)a if © S ].0,
(Prs Uy, Pry 1), if = > 10,

(p,u,p, 2)(x,0) = {

where p, = 1.0, p, = 1.0, u, = 0, and p, = 54.8244, p; = 3.64282, w, = 6.2489. By
selecting these data, the “half reaction length” L, is the spatial unit 1 [15].

This problem is solved on the interval [0,100]. The ’exact’ solution are obtained by
using a resolved calculation A = 0.005 (i.e. 20001 grid points on the interval [0, 100])
and k£ = 0.00025. Figure 4.3 shows the numerical solution using the random projection
method (2.10) with A = 1.0 (i.e. 101 grid points for the interval [0, 100]) and k£ = 0.05 at
time ¢ = 8.0.

Example 4.4: Collision of a detonation with a rarefaction wave. The set up of this
example is similar to those in Example 4.3 (i.e. 7, qo, K = % and T, are the same) except
the following change in initial data:

(plaulaplao)a if x < ].0,
(s, 2, 2)(2,0) = (P thms Prns 0), if 10 < 2 < 20,
(praurapra 1)7 if 20 < T,

where p; = 40.0, p; = 2.0, u; = 4.0; p,, = 54.8244, p,, = 3.64282, u,, = 6.2489 and
pr =1.0, p, = 1.0, u, = 0.

In this example there is a right moving detonation, a right moving rarefaction wave, a
right moving contact discontinuity, and a left moving rarefaction wave before the collision
happens. After some time, there is a collision between the detonation and the right
moving rarefaction wave.

The ‘exact’ solution is obtained similarly as those in Example 4.3. Figure 4.4 shows
the numerical solution by using the random projection method (2.10) with A = 0.25 (i.e.
401 grid points for the interval [0, 100]) and £ = 0.01 at time ¢ = 2 (before collision) and
t = 8.0 (after collision), respectively.

Example 4.5: A detonation interacting with an oscillatory profile. The set up of this
problem is similar to those in Example 4.3 (i.e. v, qo, and T, are the same) except that
we change K = 1000.0 and the initial data to:

o (plaulapl70)7 if z S %’
(p,u,p, 2)(x,0) = { (pr(x), up, pr, 1), if % <

where p; = 21.53134, p, = 1.79463, u; = 3.0151; and p, = 1.0, p.(z) = 1.0 4+ 0.5sin 2z,
u, = 0.

This problem is solved on the interval [0,27]. The ‘exact’ solutions are obtained by
using h = o= (i.e. 20001 grid points on the interval [0,27]) and k = L. This is a
resolved calculation.

Figure 4.5 shows the numerical solutions by using the random projection method (2.10)
with A = & (i.e. 801 grid points for the interval [0,27]) and k = 2 at time ¢ = 2= and
t = %, respectively.
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Example 4.6: Collision of a detonation with a shock and a rarefaction. The set up
of this problem is similar to those in Example 4.3 (i.e. 7, qo, K = % and T, are the same)
except that we change the initial data to:

(plaulaplao)a if x < ].0,
(py 19, 2)(,0) = & (s U Py 1), if 10 < z < 40,
(praurapral)a if 40 < X,

where p; = 54.8244, p; = 3.64282, w; = 6.2489; p,, = 1.0, p,, = 1.0, u,, = 0.0 and
pr = 10.0, p, = 4.0, u, = 0.

In this example there is a right moving detonation, a right moving rarefaction, a
stationary contact discontinuity, and a left moving shock before the collision happens.
After some time, there are collisions of detonation with the shock and the rarefaction.

The ‘exact’ solution is obtained similarly as that in Example 4.3. Figure 4.6 (a)-(c)
show the numerical solution by using the random projection method (2.10) with A = 0.125
(i.e. 801 grid points for the interval [0,100]) and & = 0.005 at time ¢ = 2 (before collision),
t =4 (during collision), and ¢t = 8.0 (after collision), respectively.

This example shows that the random projection method works very well before, during
and after collisions. It captures precisely the collision time.

Example 4.7: Collision of two detonations. The set up in this example is similar to
those in Example 4.3 (i.e. v, qo, K = % and T, are the same) except that we change the
initial data to

(plaulaplao)a if x < ].0,
(0,1, 05 2)(2,0) = (Pims ms P, 1), if 10 < 2 < 90,
(praurapra 0)7 if 90 S T,

where p; = 30.0, p, = 1.79463, u; = 3.0151; p,, = 1.0, p,, = 1.0, u,, = 0.0 and p, =
21.53134, p, = 1.79463, u, = —8.0.

In this example there is a right moving detonation, a left moving strong detonation
and other waves. After some time, there is a collision between the two detonations.

The ‘exact’ solution is obtained similarly as that in Example 4.3. Figure 4.7 shows
the numerical solution by using the random projection method (2.15) with h = 0.25 (i.e.
401 grid points for the interval [0,100]) and &£ = 0.01 at time ¢ = 4 (before collision), and
t = 6.0 (after collision), respectively.

From the above examples, we can see that our random project method works very well
for one dimensional detonation wave problems even if the reaction scale is not numerically
resolved. It not only captures the correct speeds of detonations but also is able to handle
the interactions between detonations, and between a detonation with another wave.

Example 4.8: A two-dimensional detonation wave. We consider the problem (1.4)-

(1.8) in a two dimensional channel, the upper and lower boundaries are solid walls. We
choose v, qo, K = % and T, the same as those in Example 4.3. The initial data (3.1)
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are chosen as p; = 54.8244, p; = 3.64282, u; = 6.2489, v; = 0.0; and p, = 1.0, p, = 1.0,
u, = 0.0, v, = 0.0. This problem is solved on [0, 300] x [0, 50] with a 301 x 51 mesh, and

g(y)_{ 25 — |y — 25| ly — 25| < 15.

Thus the mesh size h = 1. The time step is chosen as £ = 0.01.

Figure 4.8 shows density contours at several different times. One can see that the triple
points, which is the important feature of the solution, travel in the transverse direction
and bounce back and forth against the upper and lower walls. On the contrary, the triple
points cease to move after some time by using the usual deterministic method [10].

Example 4.9: Another two-dimensional detonation wave. This example is similar to
Example 4.8 (i.e. the setup, boundary condition, the parameters 7, ¢, K = % and 7T, are
the same) except that we choose p; = 21.53134, p, = 1.79463, u; = 6.015114, v, = 0.0;
pr = 1.0, p, = 1.0, u,, = 0.0, v, = 0.0 and

() = 10 0<y<5Hor3d <y <5h0,
Y= 25— |y — 20| 5 <y < 35

This problem is solved on [0,300] x [0,50] with a 301 x 51 mesh. Thus the mesh size
h = 1. The time step is chosen as k£ = 0.01.

Figure 4.9 shows profiles of pressure, p, temperature, 7', and 10 times the fraction of
unreacted fluid, 10z (here we show 10z not z in order to make it visible in one picture for
the three profiles) on the line y = 25 at four different times, i.e. t =8, ¢t = 16, t = 24,
t = 32 by using the random projection method (3.4). On the other hand, if one uses the
deterministic method, spurious wave is generated if the same grid size and time step are
used.

5 Conclusions

In this paper we presented a simple and robust random projection method for underre-
solved numerical simulation of stiff detonation waves in chemically reacting flows. This
method is based on the random projection method proposed by the authors for gen-
eral hyperbolic systems with stiff reaction terms [1], where the ignition temperature is
randomized in a suitable domain. The method is simplified using the equations of instan-
taneous reaction, and then extended to handle the interactions of detonations. Extensive
numerical experiments, including interaction of detonation waves, and in two dimensions,
demonstrate that this method, although very simple and efficient, are very reliable and
robust in calculating a wide range of problems in reacting flows.
In the future we hope to generalize this method to multispecies reactions.
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Figure 4.1: Numerical solutions of Example 4.1 at ¢t = 2 x 107 calculated with h =
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