
The random projection method for sti� detonationwavesWeizhu Bao �and Shi Jin ySchool of Mathematics, Georgia Institute of TechnologyAtlanta, Georgia, GA 30332, USAAbstractIn this paper we present a simple and robust random projection method forunderresolved numerical simulation of sti� detonation waves in chemically reactingows. This method is based on the random projection method proposed by theauthors for general hyperbolic systems with sti� reaction terms [1], where the ig-nition temperature is randomized in a suitable domain. It is simpli�ed using theequations of instantaneous reaction, and then extended to handle the interactions ofdetonations. Extensive numerical experiments, including interaction of detonationwaves, and in two dimensions, demonstrate the reliability and robustness of thisnovel method.1 IntroductionWe consider the reactive Euler equations that model the time-dependent ow of an in-viscid, compressible, reacting ow. Without heat conduction and viscosity, the equationstake the form Ut + F (U)x +G(U)y = 1"	(U); (1.1)
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The dependent variables �(x; y; t), m(x; y; t), n(x; y; t), e(x; y; t) and z(x; y; t) are thedensity, x- and y-momentum, total energy and the fraction of unburnt uid, respectively.The pressure for ideal gas is given byp = ( � 1)�e� 12 �m2 + n2� =�� q0�z�and the temperature is de�ned as T = p=�. Let (u; v) = (m=�; n=�) be the velocity. Theparameters q0, Tc,  and " correspond to chemical heat release, ignition temperature, cpto cv ratio, and reaction time, respectively. The equations have been nondimensionalized,leaving the choice of these four parameters to completely determine the problem.We will focus on the computations of sti� detonation waves. For these waves theviscosity is not as important as for the slower deagration wave solutions.We refer to (1.1)-(1.3) as the reactive Euler equations with Arrhenius kinetics. Wewill also consider (1.1)-(1.3) with �1"�ze�Tc=Treplaced by the Heaviside kinetics �1"�zH(T � Tc);where H(x) = 1 for x > 0 and H(x) = 0 for x < 0.One of the main numerical challenges for reacting ows is that the kinetics equations(1.1) often include reactions with widely varying time scales. The chemical time scales,as characterized by ", may be orders of magnitude faster than the uid dynamical timescale. This leads to problems of severe numerical sti�ness. Actually the sti�ness issuewith the Heaviside kinetics is the more severe one [10]. Even a stable numerical schememay lead to spurious unphysical solutions unless the small chemical time scale is fullyresolved numerically.Numerical methods for this kind of problems have attracted a great deal of attentionsin the last decade. In particular, many works have contributed to the analysis and devel-opment of underresolved numerical methods which are capable of capturing the physicallyrelevant solutions. Of course, when one does not resolve the chemical scale numerically(using grid size larger than the reaction zone of width O(")), it is impossible to capturethe pressure spike in the reaction zone. Thus the best one can hope is to capture thespeed of detonation as well as other features of uid dynamics. It was �rst observed byColella, Majda and Roytburd [8] that an underresolved numerical method, where " is notresolved by suitably small time steps and grid sizes, leads to spurious weak detonationwave that travels one grid per time step. Since then, lots of attention have been paid tostudy this peculiar numerical phenomenon (see [4], [17], [18], [12], [5]). It is known thatnumerical shock pro�le, an essential mechanism in all shock capturing methods, leads totoo early chemical reaction once the smeared value of the temperature in the numericalshock layer is above the ignition temperature. Various approaches have been suggested to�x this numerical problem. For examples, in [10], a temperature extrapolation techniquewas proposed. In [3] the ignition temperature is arti�cially raised. In [19] the reactiontime " was replaced by a larger one thus the reaction zone is made much wider than the2



physical one. Recently, a modi�ed fractional step method was introduced [14], where thestructure of the Riemann solution of the homogeneous part is used to determine whereburning should occur in each time stepRecently we proposed the random projection method as a general and systematicmethod to solve hyperbolic systems with sti� reaction term, applicable to reacting owproblems [1]. Unlike the random choice method of Chorin for reacting ow [6], whichwas originated from Glimm's scheme [11], and requires solving a generalized Riemannproblem for hyperbolic systems with source terms [4], our method is a fractional stepmethod, which combines a standard { no Riemann solver is needed { shock capturingmethod for the homogeneous convection with a strikingly simple random projection stepfor the reaction term. In the random projection step, the ignition temperature is chosento be an uniformly distributed random variable between two stable equilibria. Althoughat each time step, this random projection will move the shock with an incorrect speed,the statistical average yields the correct speed, even though the small time scale " isnot numerically resolved. In particular, when the random number is chosen to be theequidistributed van der Corput sampling sequence [13], we can prove, for a model scalarproblem, a �rst order accuracy on the shock speed if a monotonicity-preserving method,which includes all TVD schemes, is used in the convection step [1], [2]. A large amountof numerical experiments for one and two dimensional detonation waves demonstrate therobustness of this novel approach.In this paper, we conduct extensive numerical experiments to examine the applicabilityof the random projection method for reacting ows. We focus on sti� detonation wavesand their interactions with other waves, including the interaction of detonation waves.To this aim, we �rst simplify the convection step using the reacting ow model of zeroreaction zone, meaning that the chemical heat is released instantaneously. Since we areto develop underresolved method, where the reaction zone is much smaller than a gridsize, the equation reduces e�ectively to the zero reaction model, which is given by [9]:Ut + F (U)x +G(U)y = 0; (1.4)
U = 0BBB@ �mne 1CCCA ; F (U) = 0BBB@ mm2=�+ pmn=�m(e + p)=� 1CCCA ; G(U) = 0BBB@ mmn=�n2=�+ pn(e+ p)=� 1CCCA ; (1.5)(1.6)with equation of state p = ( � 1)�e� 12 �m2 + n2� =�� q0�z� (1.7)and the fraction of unburnt gasz = ( 0; if T > Tc;1; if T < Tc: (1.8)3



The random projection method consists of two steps, with the �rst being any standardshock capturing method for (1.4), followed by a random projection for the fraction vari-able z in (1.8), with Tc replaced by a uniformly distributed random sequence. Here theconvection step is slightly simpler than the original one proposed in [1] where the full con-vection equation, including the homogeneous part of the species equation in (1.1)-(1.3),is solved. Algorithms for the collision of detonation waves are also introduced. Many nu-merical examples, including the C-J detonation, strong detonation, unstable detonation,collisions of detonation with shocks, rarefaction wave, or another detonation, as well astwo dimensional examples, will be used to justify the robustness of this novel approach.The paper is organized as follows. In section 2 we provide a random project methodfor the problem (1.4)-(1.8) in one space dimension with general initial data. Algorithmsfor multi-detonations are also introduced. In section 3 this method is extended to twospace dimension. In section 4 many numerical examples will be presented. In section 5some conclusions are drawn.2 One-dimensional detonationsIn this section, we shall describe the random projection method for (1.4)-(1.8) in one spacedimension. Moreover, we will describe its implementation for the case of interaction ofdetonation waves. The problem to be solved is given byUt + F (U)x = 0; (2.1)U = 0B@ �me 1CA ; F (U) = 0B@ mm2=�+ pm(e + p)=� 1CA ; (2.2)with equation of state p = ( � 1)�e� 12m2=�� q0�z� (2.3)and the fraction of unburnt gasz = ( 0; if T > Tc;1; if T < Tc: (2.4)Let the grid points be xi, i = � � � ;�1; 0; 1; � � � ; with equal mesh spacing h = xi+1� xi.The time level t0 = 0, t1, t2, � � � are also uniformly spaced with time step k = tn+1 � tn.We use Uni = (�ni ; mni ; eni ; (�z)ni ) to denote the approximate solution of U = (�;m; e; �z)at the point (xi; tn) = (ih; nk). Our main interest is an underresolved numerical methodwhich allows k = O(h) >> " and still obtains physically relevant numerical solutions.The random projection method is a fractional step method that consists of a standardshock capturing method for (2.1), denoted by SF (k) for one time step, followed by arandom projection step for the fraction variable z de�ned by (2.4) where Tc, the ignitiontemperature, is randomized in a suitable domain. Let Un+1 = SF (k)Un. To obtain zn+1,we replace (2.4) by zn+1j = ( 0; if T n+1j > �n;1; if T n+1j < �n; (2.5)4



where T n+1j = pn+1j =�n+1j and �n is a random number, chosen one per time step, be-tween two equilibrium temperatures on both sides of the detonation. To be more precise,consider the initial data(�(x; 0); u(x; 0); p(x; 0); z(x; 0)) = ( (�l(x); ul(x); pl(x); 0) ; if x � x0;(�r(x); ur(x); pr(x); 1) ; if x > x0; (2.6)where x0 is a given point. Without loss of generality these data are chosen such that thedetonation, initially at x = x0, moves to the right. The case when the detonation movedto the left can be treated similarly. Since our projection always makes z either 1 or 0,therefore, at any time step tn, there is an l(n) = j0, j0 an integer, such thatznj = ( 0; if i � l(n);1; if l > l(n): (2.7)Here l(n) is the location of the jump for z in the approximate solution at time tn and weassume x0 = l(0)h be a grid point. Let�n = (Tl � Tr)#n + Tr; Tl = minx<x0 pl(x; 0)�l(x; 0) ; Tr = maxx>x0 pr(x; 0)�r(x; 0) ; (2.8)with #n being the van der Corput's sampling sequence on the interval [0; 1]. The vander Corput sequence is an equidistributed sequence with the minimal deviation among allrandom sequences [13]. It is obtained as follows: let 1 � n = Pmk=0 ik2k, ik = 0; 1, be thebinary expansion of the integer n. One gets #n on [0; 1] as:#n = mXk=0 ik2�(k+1); n = 1; 2; � � � : (2.9)Since there are other waves in the domain, one cannot project z according to (2.5) in thewhole domain. Instead, we do it around the denotation, a procedure called local randomprojection in [1]. Speci�cally, We move the jump of z according to the following algorithm:Ssp(k) : set l(n + 1) := l(n)� 1;For j = l(n)� 1; l(n); � � � ; l(n) + d; dol(n + 1) := j; if T n+1j > �n;zn+1j = ( 0; if j � l(n+ 1);1; if j > l(n + 1); (2.10)where d is the number of smeared points in the shock layer. From our numerical expe-rience, for C-J detonations and strong detonations, d = 1 works very well. In the abovealgorithm, only d+ 2 points will be scanned.The stability condition for this algorithm, as well as the algorithms for multi-detonations(2.15) and (2.20), is the usual CFL condition determined by the operator SF (k) for theconvection terms.For numerical comparison, we also mention the deterministic projection method usingthe given deterministic ignition temperature Tc in (2.4).5



We now extend the random projection method to handle the problems involving morethan one detonation waves. For clarity of presentation we only present the case of twodetonations. It is straightforward to extend to the case where there are more than twodetonations.Consider (2.1)-(2.4) with initial data(�(x; 0); u(x; 0); p(x; 0); z(x; 0)) = 8><>: (�l(x); ul(x); pl(x); 0) ; if x � x1;(�m(x); um(x); pm(x); 1) ; if x1 < x < x2;(�r(x); ur(x); pr(x); 0) ; if x2 � x: (2.11)These data are chosen such that the two detonations move toward each other, i.e. thedetonation initially at x = x1 moves to the right and the one initially at x = x2 moves tothe left. Thus after some time, the two detonations will collide.Let Tl = minx<x1 pl(x)�l(x) ; Tm = maxx1<x<x2 pm(x)�m(x) ; Tr = minx>x2 pr(x)�r(x) (2.12)and �(1)n = (Tl � Tm)#n + Tm; �(2)n = (Tr � Tm)#n + Tm: (2.13)Since the projection always makes z either 1 or 0, the pro�le of z at any time step isa piecewise constant function. Therefore, at any time step tn, there are l1(n) = j1 andl2(n) = j2 with j1 � j2 integers, such thatznj = 8><>: 0; if j � l1(n);1; if l1(n) < j < l2(n);0; if l2(n) � j: (2.14)Here we assume that x1 = l1(0)h, and x2 = l2(0)h are grid points. Since x1 � x2, thenl1(0) � l2(0). One can use the following algorithm to obtain zn+1, if the positions of thetwo detonations at time tn, i.e. l1(n) and l2(n), are known. The detailed algorithm to�nd zn+1 isScp(k) : lmid = (l1(n) + l2(n))=2;set l1(n+ 1) := l1(n)� 1;For j = l1(n)� 1; l1(n); � � � ;min fl1(n) + d; lmid + 1g dol1(n+ 1) := j; if T n+1j > �(1)n ;set l2(n+ 1) := l2(n) + 1;For j = l2(n) + 1; l2(n); � � � ;max fl2(n)� d; lmid � 1g dol2(n+ 1) := j; if T n+1j > �(2)n ;zn+1j = 8><>: 0; if j � l1(n + 1);1; if l1(n + 1) < j < l2(n + 1);0; if l2(n + 1) � j: (2.15)Another case is when two detonations move away from each other. Consider the initial6



data(�(x; 0); u(x; 0); p(x; 0); z(x; 0)) = 8><>: (�l(x); ul(x); pl(x); 1) ; if x < x1;(�m(x); um(x); pm(x); 0) ; if x1 � x � x2;(�r(x); ur(x); pr(x); 1) ; if x2 < x: (2.16)These data are chosen such that the two detonations move away from each other, i.e. thedetonation initially at x = x1 moves to the left and the one initially at x = x2 moves tothe right. In this case, there is no collision of detonations at all.Let Tl = maxx<x1 pl(x)�l(x) ; Tm = minx1<x<x2 pm(x)�m(x) ; Tr = maxx>x2 pr(x)�r(x) (2.17)and �(1)n = (Tm � Tl)#n + Tl; �(2)n = (Tm � Tr)#n + Tr: (2.18)At any time step tn, there are l1(n) = j1 and l2(n) = j2 with j1 � j2 integers, such thatznj = 8><>: 1; if j < l1(n);0; if l1(n) � j � l2(n);1; if l2(n) < j: (2.19)The detailed algorithm to �nd zn+1 is:Sbp(k) : set l1(n + 1) := l1(n) + 1;For j = l1(n) + 1; l1(n); � � � ; l1(n)� d; dol1(n + 1) := j; if T n+1j > �(1)n ;set l2(n + 1) := l2(n)� 1;For j = l2(n)� 1; l2(n); � � � ; l2(n) + d; dol2(n + 1) := j; if T n+1j > �(2)n ;zn+1j = 8><>: 1; if j < l1(n+ 1);0; if l1(n+ 1) � j � l2(n+ 1);1; if l2(n+ 1) < j: (2.20)3 The two-dimensional methodIn this section, the random projection method is extended to two space dimensionalproblem (1.4)-(1.8). For simplicity, we consider the detonation waves in a two dimensionalchannel. Let the initial data be(�(x; y; 0); u(x; y; 0); v(x; y; 0); p(x; y; 0); z(x; y; 0)) = ( (�l; ul; 0; pl; 0); if x � �(y);(�r; ur; 0; pr; 1); if x > �(y);(3.1)where �(y) is a given function of y and these data are chosen such that the detonationmoves to the right. Let�n = (Tl � Tr)#n + Tr; Tl = pl�l ; Tr = pr�r ; (3.2)7



and #n (see (2.9) for detail) being the van der Corput's sampling sequence on the interval[0; 1].Let the grid points (xi; yj) = (ih; jh); i; j = � � � ;�1; 0; 1; � � �, with equal mesh spacingh. The time level tn = nk, k = 0; 1; 2; � � � are also uniformly spaced with time step k.Let Uni;j = ��ni;j; mni;j; nni;j; eni;j; (�z)ni;j� be the approximate solution of U = (�;m; n; e; (�z))at (xi; yj; tn) = (ih; jh; nk). Let SFG(k) be a standard shock capturing method for (1.4).Notice that, at any time step, for each j, there is an lj(n) = jn, jn an integer, such thatzni;j = ( 0; if j � lj(n);1; if i > lj(n): (3.3)Here lj(n) is the location of the jump for z at the grid line y = yj in the approximatesolution at time tn = nk. Then the random project algorithm to �nd zn+1 follows:S2p(k) : For j doSet lj(n + 1) := lj(n)� 1;For m = lj(n)� 1; lj(n); � � � ; lj(n) + d; dolj(n+ 1) := m; if T n+1m;j > �n;zn+1i;j = ( 0; if i � lj(n + 1);1; if i > lj(n+ 1): (3.4)The stability condition for this algorithm is still the usual CFL condition determinedfrom the convection step SFG(k).4 Numerical examplesIn order to verify the performance of the random projection method proposed in thispaper, we conduct extensive numerical experiments, including the Chapman-Jouguet (C-J) detonation, strong detonation, unstable detonation, collision of a detonation with ashock, a rarefaction wave, and another detonation. We also give two dimensional exam-ples. In our computation, the operator SF (k) and SFG(k) are chosen as the second orderrelaxed scheme [16], which is a TVD scheme without the usage of Riemann solvers orlocal characteristic decompositions. We choose d = 5 in (2.10), (2.15), (2.20) and (3.4) inour computations in this section.Example 4.1: A Chapman-Jouguet (C-J) detonation. This is the example 4.1 in [1]revisited. We choose here the case of ozone decomposition C-J detonation discussed andcomputed in [8] and [4]. We use CGS units and the following parameter values: = 1:4; q0 = 0:5196� 1010; 1" = K = 0:5825� 1010; Tc = 0:1155� 1010:The initial data are taken as the piecewise constant data de�ning a C-J detonation asa single wave (recall that in the Chapman-Jouguet model a C-J detonation corresponds8



to a sonic detonation, or, in other words, a sharp reaction wave that moves at minimalspeed relative to the unburnt gas). The initial state was given by(�; u; p; z)(x; 0) = ( (�l; ul; pl; 0); if x � 0:005;(�r; ur; pr; 1); if x > 0:005;where pl = pCJ = 6:270 � 106, �l = �CJ = 1:945 � 10�3, ul = uCJ = 4:162 � 104; andpr = 8:321� 105, �r = 1:201� 10�3, ur = 0. The speed of the sharp front in this exampleis D = DCJ = 1:088�105. In this example the width of the reaction zone is approximately5� 10�5 ( [4] and [8]).This problem is solved on the interval [0; 0:05]. The `exact' solution is obtained byusing a resolved calculation with h = 5 � 10�6 (i.e. 10001 grid points on the interval[0; 0:05]) and k = 5� 10�12. The mesh size and time step resolve the chemical scale. Nowwe compare the results obtained by the random projection method and the deterministicmethod when the reaction time is underresolved. We use h = 5 � 10�4 (i.e. 101 gridpoints for the interval [0; 0:05]) and k = 5 � 10�10 and output the numerical solution att = 2� 10�7.Figure 4.1(a) shows the numerical solution by using the random projection method(2.10), while Figure 4.1(b) shows the numerical solution obtained by the deterministicmethod. It can be seen that the random projection method can capture the correctspeed of the discontinuity of the C-J detonation wave even when the chemical reactionscale is not numerical resolved. As mentioned earlier, with an underresolved method it isimpossible to capture the pressure spike which has a width in the order of reaction scale". there are small post shock statistical uctuations due to the random nature of themethod, but they are at an acceptable level. The deterministic method produces spuriouswaves, as was observed in earlier literatures.In all of the following examples, the deterministic method always produces spuriouswaves when the chemical scale is not resolved. We will not report those results, and willonly present the solutions obtained by the random projection method.Example 4.2: A strong detonation. This is Example 4.3 in [1] revisited. The set upof this example is similar to those in Example 4.1 (i.e. , q0, K = 1" and Tc are the same)except that the initial data are changed to(�; u; p; z)(x; 0) = ( (�l; ul; pl; 0); if x � 0:005;(�r; ur; pr; 1); if x > 0:005;where ul = 9:162� 104 > uCJ , �l = �CJ , pl = 8:27 � 106 > pCJ and pr, ur, �r, pCJ , uCJand �CJ are the same as those in Example 4.1. In this case there is a strong detonation,a contact discontinuity and a shock, all moving to the right.The `exact' solution is obtained similarly as that in Example 4.1. Figure 4.2 showsthe numerical solutions by the random projection method (2.10) with h = 5� 10�4 (i.e.101 grid points for the interval [0; 0:05]) and k = 5� 10�10 at time t = 2� 10�7.Example 4.3: An unstable detonation. We consider an example de�ning an overdrivedetonation wave with overdrive factor f = 1:6. The data is taken from [15]. Let  = 1:2,9



q0 = 50, Tc = 3:0 and 1" = K = 230:75. The initial state was given by(�; u; p; z)(x; 0) = ( (�l; ul; pl; 0); if x � 10;(�r; ur; pr; 1); if x > 10;where pr = 1:0, �r = 1:0, ur = 0, and pl = 54:8244, �l = 3:64282, ul = 6:2489. Byselecting these data, the \half reaction length" L 12 is the spatial unit 1 [15].This problem is solved on the interval [0; 100]. The 'exact' solution are obtained byusing a resolved calculation h = 0:005 (i.e. 20001 grid points on the interval [0; 100])and k = 0:00025. Figure 4.3 shows the numerical solution using the random projectionmethod (2.10) with h = 1:0 (i.e. 101 grid points for the interval [0; 100]) and k = 0:05 attime t = 8:0.Example 4.4: Collision of a detonation with a rarefaction wave. The set up of thisexample is similar to those in Example 4.3 (i.e. , q0, K = 1" and Tc are the same) exceptthe following change in initial data:(�; u; p; z)(x; 0) = 8><>: (�l; ul; pl; 0); if x � 10;(�m; um; pm; 0); if 10 < x � 20;(�r; ur; pr; 1); if 20 < x;where pl = 40:0, �l = 2:0, ul = 4:0; pm = 54:8244, �m = 3:64282, um = 6:2489 andpr = 1:0, �r = 1:0, ur = 0.In this example there is a right moving detonation, a right moving rarefaction wave, aright moving contact discontinuity, and a left moving rarefaction wave before the collisionhappens. After some time, there is a collision between the detonation and the rightmoving rarefaction wave.The `exact' solution is obtained similarly as those in Example 4.3. Figure 4.4 showsthe numerical solution by using the random projection method (2.10) with h = 0:25 (i.e.401 grid points for the interval [0; 100]) and k = 0:01 at time t = 2 (before collision) andt = 8:0 (after collision), respectively.Example 4.5: A detonation interacting with an oscillatory pro�le. The set up of thisproblem is similar to those in Example 4.3 (i.e. , q0, and Tc are the same) except thatwe change K = 1000:0 and the initial data to:(�; u; p; z)(x; 0) = ( (�l; ul; pl; 0); if x � �2 ;(�r(x); ur; pr; 1); if �2 < x;where pl = 21:53134, �l = 1:79463, ul = 3:0151; and pr = 1:0, �r(x) = 1:0 + 0:5 sin 2x,ur = 0.This problem is solved on the interval [0; 2�]. The `exact' solutions are obtained byusing h = �10000 (i.e. 20001 grid points on the interval [0; 2�]) and k = h20 . This is aresolved calculation.Figure 4.5 shows the numerical solutions by using the random projection method (2.10)with h = �400 (i.e. 801 grid points for the interval [0; 2�]) and k = h20 at time t = �20 andt = �5 , respectively. 10



Example 4.6: Collision of a detonation with a shock and a rarefaction. The set upof this problem is similar to those in Example 4.3 (i.e. , q0, K = 1" and Tc are the same)except that we change the initial data to:(�; u; p; z)(x; 0) = 8><>: (�l; ul; pl; 0); if x � 10;(�m; um; pm; 1); if 10 < x � 40;(�r; ur; pr; 1); if 40 < x;where pl = 54:8244, �l = 3:64282, ul = 6:2489; pm = 1:0, �m = 1:0, um = 0:0 andpr = 10:0, �r = 4:0, ur = 0.In this example there is a right moving detonation, a right moving rarefaction, astationary contact discontinuity, and a left moving shock before the collision happens.After some time, there are collisions of detonation with the shock and the rarefaction.The `exact' solution is obtained similarly as that in Example 4.3. Figure 4.6 (a)-(c)show the numerical solution by using the random projection method (2.10) with h = 0:125(i.e. 801 grid points for the interval [0; 100]) and k = 0:005 at time t = 2 (before collision),t = 4 (during collision), and t = 8:0 (after collision), respectively.This example shows that the random projection method works very well before, duringand after collisions. It captures precisely the collision time.Example 4.7: Collision of two detonations. The set up in this example is similar tothose in Example 4.3 (i.e. , q0, K = 1" and Tc are the same) except that we change theinitial data to (�; u; p; z)(x; 0) = 8><>: (�l; ul; pl; 0); if x � 10;(�m; um; pm; 1); if 10 < x < 90;(�r; ur; pr; 0); if 90 � x;where pl = 30:0, �l = 1:79463, ul = 3:0151; pm = 1:0, �m = 1:0, um = 0:0 and pr =21:53134, �r = 1:79463, ur = �8:0.In this example there is a right moving detonation, a left moving strong detonationand other waves. After some time, there is a collision between the two detonations.The `exact' solution is obtained similarly as that in Example 4.3. Figure 4.7 showsthe numerical solution by using the random projection method (2.15) with h = 0:25 (i.e.401 grid points for the interval [0; 100]) and k = 0:01 at time t = 4 (before collision), andt = 6:0 (after collision), respectively.From the above examples, we can see that our random project method works very wellfor one dimensional detonation wave problems even if the reaction scale is not numericallyresolved. It not only captures the correct speeds of detonations but also is able to handlethe interactions between detonations, and between a detonation with another wave.Example 4.8: A two-dimensional detonation wave. We consider the problem (1.4)-(1.8) in a two dimensional channel, the upper and lower boundaries are solid walls. Wechoose , q0, K = 1" and Tc the same as those in Example 4.3. The initial data (3.1)11



are chosen as pl = 54:8244, �l = 3:64282, ul = 6:2489, vl = 0:0; and pr = 1:0, �r = 1:0,ur = 0:0, vr = 0:0. This problem is solved on [0; 300]� [0; 50] with a 301� 51 mesh, and�(y) = ( 10 jy � 25j � 15;25� jy � 25j jy � 25j < 15:Thus the mesh size h = 1. The time step is chosen as k = 0:01.Figure 4.8 shows density contours at several di�erent times. One can see that the triplepoints, which is the important feature of the solution, travel in the transverse directionand bounce back and forth against the upper and lower walls. On the contrary, the triplepoints cease to move after some time by using the usual deterministic method [10].Example 4.9: Another two-dimensional detonation wave. This example is similar toExample 4.8 (i.e. the setup, boundary condition, the parameters , q0, K = 1" and Tc arethe same) except that we choose pl = 21:53134, �l = 1:79463, ul = 6:015114, vl = 0:0;pr = 1:0, �r = 1:0, ur = 0:0, vr = 0:0 and�(y) = ( 10 0 � y � 5 or 35 � y � 50;25� jy � 20j 5 < y < 35:This problem is solved on [0; 300] � [0; 50] with a 301 � 51 mesh. Thus the mesh sizeh = 1. The time step is chosen as k = 0:01.Figure 4.9 shows pro�les of pressure, p, temperature, T , and 10 times the fraction ofunreacted uid, 10z (here we show 10z not z in order to make it visible in one picture forthe three pro�les) on the line y = 25 at four di�erent times, i.e. t = 8, t = 16, t = 24,t = 32 by using the random projection method (3.4). On the other hand, if one uses thedeterministic method, spurious wave is generated if the same grid size and time step areused.5 ConclusionsIn this paper we presented a simple and robust random projection method for underre-solved numerical simulation of sti� detonation waves in chemically reacting ows. Thismethod is based on the random projection method proposed by the authors for gen-eral hyperbolic systems with sti� reaction terms [1], where the ignition temperature israndomized in a suitable domain. The method is simpli�ed using the equations of instan-taneous reaction, and then extended to handle the interactions of detonations. Extensivenumerical experiments, including interaction of detonation waves, and in two dimensions,demonstrate that this method, although very simple and e�cient, are very reliable androbust in calculating a wide range of problems in reacting ows.In the future we hope to generalize this method to multispecies reactions.References[1] W. Bao and S. Jin, The random projection method for hyperbolic conservation lawswith sti� reaction terms, J. Comp. Phys., submitted.12
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Figure 4.1: Numerical solutions of Example 4.1 at t = 2 � 10�7 calculated with h =5� 10�4, k = 5� 10�10. { : `exact' solutions; ++ : computed solutions. (a): the randomprojection method.
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Figure 4.1 (cont'd). (b): the deterministic method.
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Figure 4.2: Numerical results at t = 2 � 10�7 for a strong detonation in Example 4.2calculated by the random projection method (2.10). h = 5� 10�4, k = 5� 10�10. { :`exact' solutions; ++ : computed solutions.
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Figure 4.3: Numerical results of an unstable detonation in Example 4.3 using the randomprojection method (2.10). h = 1, k = 0:05, t = 8. { : `exact' solutions; ++ :computed solutions.
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Figure 4.4: Numerical results of Example 4.4 involving the collision of a detonation witha rarefaction wave using the random projection method (2.10). h = 0:25, k = 0:01.{ : `exact' solutions; ++ : computed solutions. (a): t = 2 (before collision).
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Figure 4.4 (cont'd). (b) t = 8 (after collision).
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Figure 4.5: Numerical results of Example 4.5 by the random projection method (2.10).h = �400 , k = h20 . { : `exact' solutions; ++ : computed solutions. (a). t = �20 .
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Figure 4.5 (cont'd). (b) t = �5 .
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Figure 4.6: Numerical results of Example 4.6 involving the collisons of a detonation with ashock and then a rarefaction wave by the random projection method (2.10). h = 0:125,k = 0:005. { : `exact' solutions; ++ : computed solutions. (a): t = 2 (before collision).
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Figure 4.6 (cont'd) (b): t = 4 (during collision).
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Figure 4.6 (cont'd) (c): t = 8 (after collision).
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Figure 4.7: Numerical results of Example 4.7 involving the collision of two detonationsby the random projection method (2.15). h = 0:25, k = 0:01. { : `exact' solutions;++ : computed solutions. (a): at t = 4 (before collision).
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Figure 4.7 (cont'd). (b): at t = 6 (after collision).
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Figure 4.8. Numerical density contours for Example 4.8 by the 2d random projectionmethod (3.4). h = 1:0, k = 0:01.
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Figure 4.9: Pro�les of pressure, p, temperature, T , and the fraction of unreacted uidmultiplied by 10, 10z, on the line y = 25 for di�erent times in Example 4.9 by using the2d random projection method (3.4). h = 1:0, k = 0:01.
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