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Abstract

We present a time-splitting spectral scheme for the Maxwell–Dirac system and similar time-splitting methods for the

corresponding asymptotic problems in the semi-classical and the non-relativistic regimes. The scheme for the Maxwell–

Dirac system conserves the Lorentz gauge condition is unconditionally stable and highly efficient as our numerical

examples show. In particular, we focus in our examples on the creation of positronic modes in the semi-classical regime

and on the electron–positron interaction in the non-relativistic regime. Furthermore, in the non-relativistic regime, our

numerical method exhibits uniform convergence in the small parameter d, which is the ratio of the characteristic speed

and the speed of light.
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1. Introduction and asymptotic scaling

The Maxwell–Dirac system (MD) describes the time-evolution of fast, i.e., relativistic spin-1/2 particles,

say electrons and positrons, within external and self-consistent electromagnetic fields. In Lorentz gauge it is

given by the following set of equations:
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i�hotw ¼
P3
k¼1

ak �hc
i ok � qðAk þ Aex

k Þ
� �

wþ qðV þ V exÞwþ mc2bw;

1
c2 ott � D
� �

V ¼ 1
4p�0

q; 1
c2 ott � D
� �

A ¼ 1
4p�0c

J; x 2 R3; t 2 R;

8><>: ð1:1Þ
subject to Cauchy initial data:
V jt¼0 ¼ V ð0ÞðxÞ; otV jt¼0 ¼ V ð1ÞðxÞ;
Ajt¼0 ¼ Að0ÞðxÞ; otAjt¼0 ¼ Að1ÞðxÞ; wjt¼0 ¼ wð0ÞðxÞ:

(
ð1:2Þ
The particle- and current-densities q and J = (j1, j2, j3) are defined by:
q :¼ qjwj2; jk :¼ qchw; akwiC4 � qc�w � akw; k ¼ 1; 2; 3; ð1:3Þ

where the spinor field w ¼ wðt; xÞ ¼ ðw1;w2;w3;w4Þ

T 2 C4 is normalized s.t.
Z
R3

jwðt; xÞj2 dx ¼ 1; ð1:4Þ
with t, x ” (x1,x2,x3), denoting the time-resp. spatial coordinates. Further, V(t,x) and V exðxÞ 2 R are the

self-consistent resp. external electric potential and Akðt; xÞ 2 R, resp. Aex
k ðxÞ 2 R represents the kth-compo-

nents of the self-consistent, resp. external, magnetic potential, i.e., A = (A1,A2,A3). Here and in the follow-

ing we shall only consider static external fields. The complex-valued, Hermitian Dirac matrices, i.e., b, ak,
are explicitly given by:
b :¼
I2 0

0 �I2

� �
; ak :¼

0 rk

rk 0

� �
; ð1:5Þ
with I2, the 2 · 2 identity matrix and rk the 2 · 2 Pauli matrices, i.e.,
r1 :¼
0 1

1 0

� �
; r2 :¼

0 �i

i 0

� �
; r3 :¼

1 0

0 �1

� �
: ð1:6Þ
Finally, the physical constants, appearing in (1.1)–(1.3), are the normalized Planck�s constant �h, the speed

of light c, the permittivity of the vacuum �0, the particle mass m and its charge q.

Additionally to (1.1), we impose the Lorentz gauge condition
otV ðt; xÞ þ cdivAðt; xÞ ¼ 0; ð1:7Þ

for the initial potentials V(0)(x),V(1)(x), and A(0)(x),A(1)(x). That means
1

c
V ð1ÞðxÞ þ r � Að0ÞðxÞ ¼ 0; DV ð0ÞðxÞ þ q

4p�0
jwð0Þj2 þ 1

c
r � Að1ÞðxÞ ¼ 0:
Then the gauge is henceforth conserved during the time-evolution. This ensures that the corresponding elec-

tromagnetic fields E, B are uniquely determined by
Eðt; xÞ :¼ � 1

c
otAðt; xÞ � rV ðt; xÞ; Bðt; xÞ :¼ curlAðt; xÞ: ð1:8Þ
Also it is easily seen that multiplying the Dirac equation with �w implies the following conservation law:
otqþ divJ ¼ 0: ð1:9Þ

The MD equations are the underlying field equations of relativistic quantum electro-dynamics, cf. [24],
where one considers the system within the formalism of second quantization. Nevertheless, in order to ob-

tain a deeper understanding for the interaction of matter and radiation, there is a growing interest in the

MD system also for classical fields, since one can expect at least qualitative results, cf. [15]. Analytical
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results concerning local and global well-posedness of (1.1)–(1.3) have been obtained in [10,11,16,18]. Also

the rigorous study of asymptotic descriptions for the MD system has been a field of recent research. In par-

ticular, the non-relativistic limit and the semi-classical asymptotic behavior (in the weakly coupled regime)

have been discussed in [8,25]. For the former case a numerical study can be found in [3]. Since our numer-

ical simulations shall deal with both asymptotic regimes, let us discuss now more precisely the correspond-
ing scaling for these physical situations.

1.1. The MD system in the (weakly coupled) semi-classical regime

First, we consider the semi-classical or high-frequency regime of fast (relativistic) particles, i.e., particles

which have a reference speed v � c. (Of course for particles with mass m > 0 we always have v < c.) To do so

we rewrite the MD system in dimensionless form, such that there remains only one positive real parameter
j0 ¼
4p�hc�0
q2

: ð1:10Þ
As described in [25], we obtain the following rescaled MD system:
ij0otw ¼ �ij0 a � rw� a � ðAþ AexÞwþ ðV þ V exÞwþ bw;

ðott � DÞV ¼ q;

ðott � DÞA ¼ J;

8><>: ð1:11Þ
where from now on we shall also use the shorthand notation a � r :¼
P

akok. Notice that if |q| = e, i.e.,

in the case of electrons or positrons where q equals the elementary charge ±e, the parameter j0 � 137 is

nothing but the reciprocal of the famous fine structure constant. Thus for fast (relativistic) particles

which are not too heavily charged, j0 in general is not small and therefore asymptotic expansions as

j0 ! 0 do not make sense. In order to describe the semi-classical regime we therefore suppose

that the given external electromagnetic potentials are slowly varying w.r.t. the microscopic scales, i.e.,

Vext = Vext(xe/j0) and likewise Aext = Aext(xe/j0), where from now on 0 < e � 1 denotes the small

semi-classical parameter. Here, we fix j0 and include it in the scaling which conveniently eliminates this
factor from the resulting equations. Finally, observing the time-evolution on macroscopic scales we are

led to
~x ¼ e
j0

x; ~t ¼ e
j0

t ð1:12Þ
and we set
weð~t; ~xÞ ¼ e
j0

� ��3=2

w ~t
j0

e
; ~x

j0

e

� �
� e

j0

� ��3=2

wðt; xÞ; ð1:13Þ
in order to satisfy the normalization condition (1.4). Plugging this into (1.11) and omitting all ‘‘~’’ we obtain
the following semi-classically scaled MD system:
ieotw
e ¼ �ie a � rwe � a � ðAe þ AexÞwe þ ðV e þ V exÞwe þ bwe;

ðott � DÞV e ¼ ejwej2;
ðott � DÞAe

k ¼ ehwe; akweiC4 ; k ¼ 1; 2; 3;

8><>: ð1:14Þ
with 0 < e� 1. Note the additional factor e in the source terms appearing on the right-hand side of

the wave equations governing Ve and Ae, which implies that we are dealing with a weak nonlinearity

in the sense of [14,23]. The scaled particle-density in this case is qe :¼ |we|2 and we also have

Je :¼ ðhwe; akweiC4Þk¼1;2;3.
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Remark 1.1. Note that, equivalently, we could consider small asymptotic solutions we � Oð
ffiffi
e

p
Þ which

again satisfy the semi-classical scaled MD system (1.14) but with source terms of order Oð1Þ in the wave

equations. This point of view is adopted in [25].
1.2. The MD system in the non-relativistic regime

We shall also deal with the non-relativistic regime for the MD system, i.e., we consider particles which

have a reference speed v � c. Introducing a reference length L, time T and writing v = L/T, we rescale the

time and the spatial coordinates in (1.1) by
~x ¼ x

L
; ~t ¼ t

T
: ð1:15Þ
Moreover, we set ~wð~t; ~xÞ ¼ L3=2wðt; xÞ, such that (1.4) is satisfied, and we also rescale the electromagnetic

potentials by
~A
ðexÞð~t; ~xÞ ¼ kAðexÞðt; xÞ; ~V

ðexÞð~t; ~xÞ ¼ kV ðexÞðt; xÞ; ð1:16Þ

where k = q/(4pLe0), cf. [3,6]. In this case we have again two important dimensionless parameters, namely
d ¼ v
c
� 1; j ¼ 4p�hve0

q2
: ð1:17Þ
Note that for v � c we get j � j0. Choosing for convenience v = q2/(4p�he0) and L = q/4pe0, we shall from

now on denote by wdð~t; ~xÞ the rescaled wave function ~wð~t; ~xÞ, which is obtained for this particular choice

of v = L/T. Then, similarly as before, wd satisfies a dimensionless one-parameter model (again omitting

all ‘‘~’’), given by
iotw
d ¼ � i

d a � rwd � a � ðAd þ AexÞwd þ ðV d þ V exÞwd þ 1

d2
bwd;

ðd2ott � DÞV d ¼ jwdj2;
ðd2ott � DÞAd

k ¼ hwd; akwdiC4 ; k ¼ 1; 2; 3:

8><>: ð1:18Þ
In analogy to the semi-classical case, this system will be called the non-relativistically scaled MD system. In

this case the scaled particle density is qd: = |wd|2, whereas Jd :¼ d�1ðhwd; akwdiC4Þk¼1;2;3. Note that in this scal-

ing Jd � Oð1Þ;Ad � OðdÞ (due to a rather complex cancellation mechanism already known in the linear case

cf. [6]) such that the magnetic field is a relativistic effect which does not appear in the zeroth order approx-

imation of the MD system, cf. [6,8,21] (see also [7] for a similar study).

As in the corresponding numerical simulations for semi-classical nonlinear Schrödinger equations, cf.

[1], the main difficulty is to find an efficient and convenient numerical scheme with best possible

properties in the limiting regimes e ! 0 and d ! 0, i.e., in particular with uniform convergence

properties in d.
In the following we present a time-splitting spectral method for the MD system, and its semi-

classical and non-relativistic limiting systems. The time-splitting spectral methods have been proved

to be the best numerical approach to solve linear and nonlinear Schrödinger type systems in the

semi-classical regime, cf. [1,2]. Besides the usual properties of the time-splitting spectral method, such

as the conservation of the Lorentz gauge condition and the unconditionally stability property, here

we shall pay special attention to its performance in both the semi-classical and non-relativistic re-

gimes. Note that in particular the semi-classical asymptotics has not been studied in [3]. The method

proposed here is similar to the one used for the Zakharov system in [20]. A distinguished feature of
the scheme developed in [20] is that it can be used, in the sub-sonic regime, with mesh size and time

step independent of the subsonic parameter, a possibility not shared by works before [4,5]. For the
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MD system, our time-splitting spectral method allows the use of mesh size and time steps independent

of the relativistic parameter d, allowing coarse grid computations in this asymptotic regime. This is

achieved by the Crank–Nicolson time discretization for the Maxwell equations, a scheme shown to

perform better for wave equations in the subsonic regime than the exact time integration, as studied

in [20]. For the same reason, the previously proposed time-splitting spectral method for the MD sys-
tem in [3] does not possess this property since it uses the exact time integration for the Maxwell

equations.

The paper is now organized as follows: In Section 2, we give the time-splitting spectral method for the

MD system and one simple example to show the reliability, efficiency and the convergent rate of our

method. Our method has spectral convergence for space discretization and second order convergence for

time discretization. In Sections 3 and 4, we discuss the time-splitting methods for the asymptotic systems

(the semi-classical regime and non-relativistic regime) and give some examples for them, respectively. We

conclude the paper in Section 5.
2. A time-splitting spectral method for the Maxwell–Dirac system

2.1. A time-splitting method

Before we describe our time-splitting spectral method, we combine the rescaled MD system (1.14) and

(1.18), using two parameters:
ieotw ¼ � ie
d a � rw� a � ðAe þ AexÞwþ ðV e þ V exÞwþ 1

d2
bw;

ðd2ott � DÞV ¼ ejwj2;
ðd2ott � DÞAk ¼ ehw; akwiC4 ; k ¼ 1; 2; 3:

8><>: ð2:1Þ
In the following we shall denote by
DAðDÞw :¼ a � ð�ir� AexðxÞÞwþ bwþ V exðxÞw; ð2:2Þ
the standard Dirac operator with (external) electromagnetic fields, D: = i$. The corresponding 4 · 4 matrix-

valued symbol is given by
DAðnÞ ¼ a � ðn� AexðxÞÞ þ bwþ V exðxÞ; ð2:3Þ

where x, n 2 R3. Likewise the free Dirac operator will be written as
D0ðDxÞw :¼ �ia � rwþ bw: ð2:4Þ

Its symbol admits a simple orthogonal decomposition given by
D0ðnÞ � a � nþ b ¼ k0ðnÞPþ
0 ðnÞ � k0ðnÞP�

0 ðnÞ; ð2:5Þ

where
k0ðnÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnj2 þ 1

q
; ð2:6Þ
and
P�
0 ðnÞ :¼

1

2
I4 �

1

k ðnÞD0ðnÞ
� �

: ð2:7Þ

0
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The time-splitting scheme we propose is then as follows:

Step 1. Solve the system
ieotw� 1

d2
D0ðdeDxÞw ¼ 0;

ðd2ott � DÞV ¼ ejwj2;
ðd2ott � DÞAk ¼ ehw; akwi; k ¼ 1; 2; 3;

8><>: ð2:8Þ
on a fixed time-interval Dt, using the spectral decomposition (2.5).

Step 2. Then, in a second step we solve
ieotwþ a � ðAþ AexÞw� ðV þ V exÞw ¼ 0; ð2:9Þ

on the same time-interval, where the solution obtained in step 1 serves as initial condition for step 2. Also

the fields A, V are taken from step 1. It is then easy to see that this scheme conserves the particle density and

the Lorentz gauge.
2.2. The numerical algorithm

In the following, for the convenience of computation, we shall deal with the system (2.1) on a bounded

domain, for example, on the cubic domain
X ¼ fx ¼ ðx1; x2; x3Þjaj 6 xj 6 bj; j ¼ 1; 2; 3g; ð2:10Þ

imposing periodic, boundary conditions. We choose the time step Dt = T/M and spatial mesh size

Dxj = (bj � aj)/Nj, j = 1,2,3, in xj-direction, with given M ;Nj 2 N and [0,T] denoting the computational

time interval. Further we denote the time grid points by
tn ¼ nDt; tnþ1=2 ¼ nþ 1

2

� �
Dt; t ¼ 0; 1; . . . ;M ð2:11Þ
and the spatial grid points by
xm ¼ ðx1;m1
; x2;m2

; x3;m3
Þ; where xj;mj :¼ aj þ mjDxj; j ¼ 1; 2; 3; ð2:12Þ
and m ¼ ðm1;m2;m3Þ 2 M, with
M ¼ fðm1;m2;m3Þj0 6 mj 6 Nj; j ¼ 1; 2; 3g: ð2:13Þ

In the following let Wn

m, V n
m and An

m be the numerical approximations of w(tn,xm), V(tn,xm), and

A(tn,xm), respectively. Suppose that we are given Wn, Vn, and An, then we obtain Wn+1, Vn+1 and

An+1 as follows:

Step 1. For the first step we denote the value of W at time t by U(t). Then we approximate the spatial
derivative in (2.8) by the spectral differential operator. More precisely we first take a discrete Fourier trans-

form (DFT) of (2.8):
otÛ ¼ � i

ed2
ðeda � nþ bÞÛ � M1Û;

ðd2ott þ jnj2ÞV̂ ¼ e djUj2 ;
ðd2ott þ jnj2ÞÂk ¼ eh dU; akUi; for k ¼ 1; 2; 3;

8>><>>: ð2:14Þ
where f̂ is the DFT of function f. As the matrix M1 2 C4�4 is diagonalizable, i.e., there exists a Hermitian

matrix D1 such that
�DT
1M1D1 ¼ diag½k; k;�k;�k	 � K ð2:15Þ
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is a purely imaginary diagonal matrix with entries
k ¼ i

ed2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2d2jnj2

q
: ð2:16Þ
Then the value of Û at time tn+1 is given by
Û
nþ1 ¼ D1 expðKDtÞ�DT

1 Ŵ
n ¼

ck � isk 0 �iedskn3 �edskðn2 þ in1Þ
0 ck � isk edskðn2 � in1Þ iedskn3

�iedskn3 �edsðn2 þ in1Þ ck þ isk 0

edskðn2 � in1Þ iedskn3 0 ck þ isk

0BBB@
1CCCAŴ

n
;

ð2:17Þ
where
ck :¼ cosð�ikDtÞ; sk :¼ sinð�ikDtÞð1þ jednj2Þ�1=2
: ð2:18Þ
Then we obtain the value of Un+1 by an inverse discrete Fourier transform (IDFT). Hence from (2.14), we

can find the values of V̂ and Â by the Crank–Nicolson scheme, i.e.,
1þ Dt2jnj2

4d2

 !
V̂

nþ1

dtV̂
nþ1

 !
¼

1� Dt2jnj2

4d2
Dt

� Dtjnj2

d2
1� Dt2jnj2

4d2

0@ 1A V̂
n

otV̂
n

 !
þ e

Dt2

4d2

Dt
2d2

 !
ðq̂n þ q̂nþ1Þ ð2:19Þ
and
1þ Dt2jnj2

4d2

 !
Â

nþ1

otÂ
nþ1

 !
¼

1� Dt2jnj2

4d2
Dt

� Dtjnj2

d2
1� Dt2jnj2

4d2

0@ 1A Â
n

otÂ
n

 !
þ ed

Dt2

4d2

Dt
2d2

 !
ðĴn þ Ĵ

nþ1Þ; ð2:20Þ
where for k = 1,2,3, we denote
qn ¼ jWnj2; qnþ1 ¼ jUnþ1j2; Jn
k ¼ d�1hWn; akWni; Jnþ1

k ¼ d�1hUnþ1; akUnþ1i: ð2:21Þ
Performing an IDFT of V̂
nþ1

and Â
nþ1

, we finally obtain Vn+1 and An+1.

Step 2. Since V and Ak do not change in Step 2, we only have to update W. First we shall rewrite the
equation (2.9) in the following form:
otW ¼ i
e
a � ðAþ AexÞW� ðV þ V exÞW � M2W: ð2:22Þ
Then there exists again a Hermitian matrix D2 such that
�DT
2M2D2 ¼ diag½l1; l1; l2; l2	 � H; ð2:23Þ
where H is a purely imaginary diagonal matrix with
l1 ¼ � i
e
ððV þ V exÞ � jAþ AexjÞ; l2 ¼ � i

e
ððV þ V exÞ þ jAþ AexjÞ: ð2:24Þ
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Hence, the value of W at time tn+1 is given by
Wnþ1 ¼D2 expðHDtÞ�DT
2U

nþ1 ¼

c1þc2�iðs1þs2Þ
2

0 A3

jAj ðc0� is0Þ A1�iA2

jAj ðc0� is0Þ

0 c1þc2�iðs1þs2Þ
2

A1þiA2

jAj ðc0� is0Þ � A3

jAj ðc0� is0Þ
A3

jAj ðc0 � is0Þ A1�iA2

jAj ðc0 � is0Þ c1þc2�iðs1þs2Þ
2

0

A1þiA2

jAj ðc0� is0Þ � A3

jAj ðc0 � is0Þ 0 c1þc2�iðs1þs2Þ
2

0BBBBBB@

1CCCCCCAUnþ1;

ð2:25Þ
where we use a notation analogous to (2.18) and write
expðl1DtÞ � c1 � is1; expðl2DtÞ � c2 � is2; c0 :¼ c1 � c2; s0 :¼ s1 � s2: ð2:26Þ
Clearly, the algorithm given above is first order in time. We can get a second order scheme by the Strang-

splitting method, which means that we use Step 1 with time-step Dt/2, then Step 2 with time-step Dt, and
finally integrate Step 1 again with Dt/2. Our algorithm given above is an �explicit� and unconditional stable

scheme. The main costs are DFT and IDFT.

Lemma 2.1. Our numerical scheme conserves the particle density in the discrete l2 norm (discrete total charge)

and the Lorentz gauge.
Proof. From (2.17) and (2.25), it is easy to check that the discrete total charge is conserved. From the initial

conditions and (2.19). we have
dotV̂
0 þ in � Â0 ¼ 0; eq̂0 ¼ jnj2V̂ 0 � idn � otÂ

0
; q̂1 ¼ q̂0 � iDt

2d
n � ðĴ0 þ Ĵ

1Þ:
From (2.19) and (2.20), we obtain
1þ Dt2jnj2

4d2

 !
ðdot V̂

nþ1 þ in � Ânþ1Þ ¼ 1� Dt2jnj2

4d2

 !
ðdot V̂

n þ in � ÂnÞ þ Dt
d
ð�jnj2V̂ n þ idn � otÂ

nÞ

þ eDt
2d

q̂n þ q̂nþ1 þ iDt
2d

n � ðĴn þ Ĵ
nþ1Þ

� �
:

Then it is clear that for all n, we have
dotV̂
n þ in � Ân ¼ 0; eq̂n ¼ jnj2V̂ n � idn � otÂ

n
; q̂nþ1 ¼ q̂n � iDt

2d
n � ðĴn þ Ĵ

nþ1Þ: �
In order to test the numerical scheme we consider the example of an exact solution for the full MD sys-

tem, cf. [13]. In all of the following examples, we take the computational domain X to be the unit cubic

[�0.5,0.5]3.

Example 2.1 (Exact solution for the MD system). Let us consider the MD system for e = d = 1 with initial

data
wð0ÞðxÞ ¼ expðin�xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þjnj2�

ffiffiffiffiffiffiffiffiffi
1þjnj2

p� �q v; v ¼ ðn3; n1 þ in2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jnj2

q
� 1; 0Þ;

V ð0ÞðxÞ ¼ V ð1ÞðxÞ ¼ 0; Að0ÞðxÞ ¼ Að1ÞðxÞ ¼ 0;

8><>: ð2:27Þ
and external fields given by
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V ex ¼ � t2

2
; Aex ¼ � t2n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jnj2

q ; n ¼ ð2p; 4p; 6pÞ 2 R3: ð2:28Þ
In this case, there is an exact plane wave solutions for the MD system in the following form, cf. [13]:
wðt;xÞ ¼ exp i n�x�t
ffiffiffiffiffiffiffiffiffi
1þjnj2

p� �� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þjnj2�

ffiffiffiffiffiffiffiffiffi
1þjnj2

p� �q v;

V ðt; xÞ ¼ t2

2
; Aðt; xÞ ¼ t2n

2
ffiffiffiffiffiffiffiffiffi
1þjnj2

p :

8>>><>>>: ð2:29Þ
In Fig. 1, we see that our method gives a very good agreement with the exact result.

To test the accuracy of our time-splitting method for the MD system, we did the spatial and temporal

discretization error tests (see Tables 1 and 2). Table 1 shows the spectral convergence for spatial
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Table 3

Charge conservation test: under Dx = 1/32, Dt = 1/1024 (e = d = 1)

Time t = 0 t = 0.5 t = 1.0

kwDx;Dtðt; �Þkl2 1.00000000 0.99999998 0.99999997

Table 1

Spatial discretization error test: at time t = 0.25 under Dt = 1/1024 (e = d = 1)

Mesh size Dx = 1/4 Dx = 1/8 Dx = 1/16 Dx = 1/32

kwDx;Dtðt;�Þ�wðt;�Þkl2
kwðt;�Þkl2

8.40E�2 2.68E�3 6.95E�5 5.00E�8

Convergence order 4.9 5.3 10.4

Table 2

Temporal discretization error test: at time t = 0.25 under Dx = 1/32 (e = d = 1)

Time step Dt ¼ 1
16

Dt ¼ 1
32

Dt ¼ 1
64

Dt ¼ 1
128

kwDx;Dtðt;�Þ�wðt;�Þkl2
kwðt;�Þkl2

2.59E�4 5.14E�5 1.29E�5 3.21E�6

Convergence order 2.3 2.0 2.0
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discretization. Table 2 shows the convergence rate for temporal discretization is about 2.0. Here wDx,Dt(t, Æ)
is the numerical solution for mesh size Dx and time step Dt, and w(t, Æ) is the exact solution given by (2.29).

In the following also show the charge conservation test (see Table 3).
3. The semi-classical regime

We shall consider in the following the semi-classically scaled MD system (1.14). First we shall discuss the

(formal) asymptotic description as e! 0 and then consider some particular numerical test cases.

3.1. Formal asymptotic description

To describe the limiting behavior of we as e ! 0 we introduce the following notations:

Analogously to the free Dirac operator, the matrix-valued symbol DAðnÞ can be (orthogonally) decom-

posed into
DAðnÞ ¼ hþAðnÞPþ
AðnÞ þ h�AðnÞP�

AðnÞ; n 2 R3; ð3:1Þ

where
h�AðnÞ :¼ �kAðnÞ þ V ðxÞ; ð3:2Þ

with
kAðnÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jn� AexðxÞj2

q
þ V exðxÞ: ð3:3Þ
The corresponding (orthogonal) projectors P�
AðnÞ are then given by
P�
AðnÞ :¼

1

2
I4 �

1

kAðnÞ
ðDAðnÞ � V exðxÞI4ÞÞ

� �
: ð3:4Þ
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Clearly, we obtain the corresponding decomposition of the free Dirac operator (2.5) and (2.7), by setting

Aex(x) = 0 and Vex(x) = 0 in the above formulas. Note that h�AðnÞ is nothing but the classical relativistic

Hamiltonian (corresponding to positive resp. negative energies) for a particle with momentum n. These par-
ticles can be interpreted as positrons and electrons, resp., at least in the limit e ! 0, as we shall see below.

Finally, we also define the relativistic group-velocity by
x�
AðnÞ :¼ rnh

�
AðnÞ: ð3:5Þ
The group velocity for free relativistic particles is then x�
0 ðnÞ ¼ n=k0ðnÞ.

The semi-classical limit for solution of the weakly nonlinear MD system (1.14) can now be described by

means of WKB-techniques as given in [25] (see also [26]). To do so we assume (well prepared) highly oscil-

latory initial data for we, i.e.,
wð0ÞðxÞ � uþI ðxÞei/
þ
I ðxÞ=e þ u�I ðxÞei/

�
I ðxÞ=e þ OðeÞ: ð3:6Þ
We then expect that we(t,x) can be described in leading order (as e ! 0) by a WKB-approximation of the

following form:
weðt; xÞ � uþðt; xÞei/þðt;xÞ=e þ u�ðt; xÞei/�ðt;xÞ=e þ OðeÞ: ð3:7Þ

Here, the phase functions /�ðt; xÞ 2 R, resp. satisfy the electronic or positronic eiconal equation
ot/
�ðt; xÞ þ h�Aðr/�ðt; xÞÞ ¼ 0; /�ð0; xÞ ¼ /�

I ðxÞ: ð3:8Þ

As usual in WKB-analysis we can expect an approximation of the form (3.7) to be valid only locally in time,

i.e., for |t| < tc, where tc denotes the time at which the first caustic appears in the solution of (3.8).

Remark 3.1. We want to stress that the self-consistent fields A�, Ve do not enter in (3.8), i.e., the eiconal

equation is found to be the same as in the linear case. This is due to the weakly nonlinear scaling described
in the introduction. In particular, i.e., for the Dirac equation without Maxwell coupling, this setting allows

us to compute the rays of geometrical optics, i.e., the characteristics for (3.8), independently of A�, Ve.

It is shown in [25], for the simplified case where Aex(x) = Vex(x) = 0, that the principal-amplitudes

u�ðt; xÞ 2 C4 solve a nonlinear first order system, given by
ðot þ ðxþ
0 ðr/þÞ � rÞÞuþ þ 1

2
divðxþ

0 ðr/þÞÞuþ ¼ iNþ½u	uþ;
ðot þ ðx�

0 ðr/�Þ � rÞÞu� þ 1
2
divðx�

0 ðr/�ÞÞu� ¼ iN�½u	u�;

(
ð3:9Þ
with initial condition
u�ð0; xÞ :¼ P�
0 ðr/�

I ÞuIðxÞ: ð3:10Þ

The nonlinearity on the r.h.s. of (3.9) is given by
N�½u	 :¼ A � x�
0 ðr/�Þ �V; ð3:11Þ
where the fields V;A are computed self-consistently through
ðott � DÞV ¼ q0; ðott � DÞA ¼ J0: ð3:12Þ

with source terms
q0 :¼ juþj2 þ ju�j2; J0 :¼ xþ
0 ðr/þÞjuþj2 þ x�

0 ðr/�Þju�j2: ð3:13Þ

The polarization of u± is henceforth preserved, i.e.
u�ðt; xÞ ¼ P�
0 ðr/�Þu�ðt; xÞ; for all jtj < tc; ð3:14Þ
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and we call u+ the (semi-classical) electronic amplitude and u� the (semi-classical) positronic amplitude. Note

that in this case, i.e. without external fields, we have the simplified relation
/þðt; xÞ ¼ �/�ðt; xÞ; ð3:15Þ

if this holds initially, which we will henceforth assume. The fact that (3.9) conserves the polarization of

u± is crucial. It allows us to justify the interpretation in terms of electrons and positrons. In other words,
the WKB-analysis given above shows that the energy-subspaces, defined via (3.4), remain almost invariant

in time, i.e., up to error terms of order OðeÞ. This, so-called, adiabatic decoupling phenomena is already

known from the linear semi-classical scaled Dirac equation [9,27,28]. However, we want to stress the fact

that in our non-linear setting rigorous proofs so far are only valid locally in time [25]. More precisely, it

holds
sup
06jtj<te�s

weðtÞ �
X
�

u�ðtÞei/�ðtÞ=e

�����
�����
L2ðR3Þ�C4

¼ OðeÞ; for every 0 < s < tc: ð3:16Þ
On the other hand we want to remark that in the case of the linear Dirac equation, global-in-time results

are available which also confirm the adiabatic decoupling for all t 2 R, cf. [27,28].

Note that the nonlinearity in (3.9) is purely imaginary. Hence for the densities q±: = |u±|2 we find
otq
� þ divðx�

0 ðr/�Þq�Þ ¼ 0; ð3:17Þ

which clearly implies the important property of charge-conservation:
Z

R3

ðqþðt;xÞ þ q�ðt; xÞÞ dx ¼ const: ð3:18Þ
In the case of non-vanishing external fields, i.e., Aex(x) 6¼ 0, Vex(x) 6¼ 0 the system (3.9) becomes much

more complicated. First x�
0 has to be replaced by x�

A in the above given formulas and second, an addi-

tional matrix-valued potential has to be added, the, so called, spin-transport term, cf. [9,27,28], which

mixes the components of each 4-vector u± (cf. [28] for a broad discussion on this). We shall not go into

further details here since in our (semi-classical) numerical examples below we shall always assume

Aex(x) = 0 and Vex(x) = 0, since we are mainly interested in studying the influence of the self-consistent

fields. The only exception is Example 3.3 below, where we treat the harmonic oscillator case with
Vex(x) = |x|2.

Remark 3.2. Strictly speaking, the results obtained in [25] do not include the most general case of non-

vanishing external fields and mixed initial data, i.e., u±(0,x) 6¼ 0. Rather, the given results only hold in one

of the following two (simplified) cases: Either Aex(x) = Vex(x) = 0 and u±(0,x) 6¼0, or: Aex(x) 6¼ 0, Vex(x) 6¼ 0.
but then one needs to assume u+(0,x) = 0, or u�(0,x) = 0, respectively. The reason for this is that the

analysis given in [25] heavily relies on a one-phase WKB-ansatz, which is needed (already on a formal level)

to control the additional oscillations induced for example through the, so called, Zitterbewegung [24] of Je,

cf. [25,26] for more details.
3.2. Numerical methods for the WKB-system

In order to solve the Hamilton–Jacobi equation (3.8) numerically we shall rely on a relaxation method as

presented in [19]. Then we can solve the system of transport equations (3.9) by a time-splitting spectral

scheme, similar to the one proposed for the full MD system (cf. Section 2.2). Using similar notations, sup-

pose that we know the values u±,n, Vn and An.



Step 1. First, we solve the following problem:
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otu� þ r � vðu�Þ ¼ gðu�Þ;
ðott � DÞV ¼ q0;

ðott � DÞA ¼ J0;

8><>: ð3:19Þ
by a pseudo-spectral method, where we use the shorthanded notations
vðu�Þ :¼ x�
0 ðr/�Þ � u�; gðu�Þ :¼ 1

2
divðx�

0 ðr/�ÞÞu�: ð3:20Þ
First, we take a DFT of (3.19), i.e.,
ot û
� þ in � v̂ðu�Þ ¼ ĝðu�Þ;

ðott þ jnj2ÞV̂ ¼ q̂0;

ðott þ jnj2ÞÂ ¼ Ĵ
0
:

8><>: ð3:21Þ
Let us denote by u±,n, the value of u± at time tn in Step 1. Then we can find the values of û�;nþ1, V̂
nþ1

, and

Â
nþl

by the Crank–Nicolson scheme. After an IDFT, we obtain the values of u±,n+1, Vnþ1, and Anþ1.

Step 2. It remains to solve the ordinary differential equation
otu� ¼ iN�½u	u�; ð3:22Þ

with N given by (3.11). Because N�½u	 does not change in step 2, we have
u�;nþ1 ¼ expðiN�½u	DtÞu�;n:
Remark 3.3. We can also use the Strang-splitting method to obtain a second order scheme in time. Again, it

is easy to see that this algorithm conserves (3.18).

The solution of the Hamilton–Jacobi equation (3.8) may develop singularities at caustic manifolds,

also the group velocities x�
0 ðr/�Þ and the principal amplitudes become singular. This makes the

numerical approximation of the transport equations (3.9) a difficult task. Actually, we are not aware

of a previous numerical study on such transport equations with caustic type singularities. Our compu-
tational experience indicates that it is important to conserve the density in the transport problem (3.9),

which relies on an accurate (high-order) numerical approximation of the terms x�
0 ðr/�Þ and

divðx�
0 ðr/�ÞÞ. However, the Hamilton–Jacobi equation is typically solved by a shock capturing type

method, which reduces to first order at singularities. In order to get a better numerical approximation,

we still use a shock capturing method, namely the relaxation scheme developed in [19], spatially for the

Hamilton–Jacobi equation (3.8), but use the fourth order Runge–Kutta method temporally. For the

transport problem (3.9) we found that the pseudo-spectral method behaves better than finite difference

schemes.
3.3. Numerical examples in the semi-classical regime

In all of the following examples we shall assume for simplicity
V ð0ÞðxÞ ¼ V ð1ÞðxÞ ¼ 0; Að0ÞðxÞ ¼ Að1ÞðxÞ ¼ 0; ð3:23Þ

since different, i.e. non-zero, initial conditions would only add to the homogeneous solution of the corre-

sponding wave equation.
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Remark 3.4. Remark that in the following numerical examples /I has to be chosen such that it satisfies the

periodic boundary conditions.

Example 3.1 (Self-consistent steady state). Consider the system (1.14) with initial condition
wejt¼0 ¼ v exp � jxj2

4d2

 !
; v ¼ ð1; 0; 0; 0Þ; d ¼ 1=16; ð3:24Þ
and zero external potentials, i.e. Aex
k ðxÞ ¼ V exðxÞ ¼ 0. This example models a wave packet with initial

width d and zero initial speed, propagating only under its self-interaction. Note that in this case

/�
I ðxÞ � 0 and u+(0,x) is simply given by (3.24), whereas u�(0,x) ” 0, hence u�(t,x) = 0, for t > 0. First,

we choose e = 10�2 and compare the solution of the full MD system with the numerical solution obtained

by solving the asymptotic WKB-system (3.8) and (3.9). From Fig. 2 we see that the two numerical

solutions agree very well for such a small e. In particular, the creation of positrons in the full MD system

is small, i.e., O(e) as one expects from the semi-classical analysis. This is clearly visible in cf. Fig. 3, which

shows that the projectors P�
0 ðr/Þ are indeed good approximations of P�

0 ð�ierÞ for e is small. However

for e = 1 this is no longer true. Furthermore, because in this case the WKB-phase is found to be simply

given by /+(t,x) = � t, we thus have $/+ ” 0 and r � xþ
0 ¼ 0, and hence the transport equation (3.9)

simplifies to
otuþ þ iVuþ ¼ 0;
which implies |u+(t,x)|2 to be constant. In this particular case, we can use a very coarse mesh to get satis-

factory results (cf. Table 4). Remark that the results in Table 4 also illustrate the validity of (3.16).
Example 3.2 (Purely self-consistent motion). In this example, again zero external fields are assumed, but we

modify the initial condition for we as follows:
wejt¼0 ¼ vðxÞ exp � jxj2

4d2
þ i

/IðxÞ
e

 !
; d ¼ 1=16; ð3:25Þ
where the phase function describing the e-oscillations is given by
/IðxÞ ¼
1

40
ð1þ cos 2px1Þð1þ cos 2px2Þ ð3:26Þ
and we choose the initial amplitude such that Pþ
0 ðr/IðxÞÞvðxÞ ¼ vðxÞ, i.e.
vðxÞ ¼ n21ðxÞ þ n22ðxÞ

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jnj2

q
� 1Þ

;� n3ðxÞðn1ðxÞ þ in2ðxÞÞ

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jnj2

q
� 1Þ

; 0;
n1ðxÞ þ in2ðxÞ

2

0B@
1CA; n ¼ r/IðxÞ: ð3:27Þ
As in the above example we thus have u�(t,x) ” 0. Note that for /I = 0, (3.25) reduces to (3.24). The

numerical solution of the eiconal equation (3.8) [19] indicates a kink-type singularity in the phase of our

asymptotic description at about t. 0.56, cf. Fig. 4. Hence the asymptotic WKB-type approximation for

the spinor field is no longer correct for t > 0.56.

The numerical results for both the MD system and the semi-classical limit for e = 0.01 are given in Fig. 5.

Table 5 attempts to show the validity of (3.16). Compared to Table 4, the difference between two systems is

somewhat larger than O(e). Our experience indicates that this has to do with the numerical difficulties

mentioned before and with the fact that discretization errors ‘‘pollute’’ the solution of the semi-classical



Fig. 2. Numerical results for Example 3.1. The left column shows the graphs of the solution of the MD system, the right column shows

the graphs of the solution of the asymptotic problem. Here e = 0.01, Dt ¼ 1
128
; Dx ¼ 1

32
.
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Fig. 3. Numerical results of the densities of electron/positron projectors for Example 3.1. The left column is jP�
0 ð�ierÞweðt;xÞjx3¼0j

2
,

the right column is jP�
0 ðr/Þweðt;xÞjx3¼0j

2
. Here t = 0.25, Dx ¼ 1

32
; Dt ¼ 1

128
.
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Fig. 4. The graph of the phase /ðt;xÞjx3¼0 at t = 0.5625 for Example 3.2. It shows the phase becomes singular at the tip.

Table 4

Difference between the asymptotic solution and the full MD system for Example 3.1 (Dt = 1/128, Dx = 1/32)

e 0.0001 0.001 0.01

sup06t60:25 we �
P
�
u�ei/

�=e

				 				
L2ðXÞ�C4

3.20E�3 3.34E�2 2.98E�1

sup06t60:25 we �
P
�
u�ei/

�=e

				 				
L1ðXÞ�C4

4.90E�3 5.01E�2 4.40E�1
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system as time evolves, preventing a more accurate comparison at later time. Due to our computing

capacity, we are unable to conduct more refined calculation, which would have provided a better
justification of the ansatz (3.16) for this problem. For the same problem, we also present the numerical

solutions of the Maxwell–Dirac system at later time in Fig. 6. (Fig. 7) We also present a numerical

simulation of the case e = 1.0, i.e., away from the semi-classical regime, see Fig. 8. From the plots it

becomes clear that the ‘‘exact’’ spinor field and the solution of the asymptotic WKB-problem are

qualitatively ‘‘close’’ for small values of e and before caustics, while they are even qualitatively different

away from the semi-classical regime.

Example 3.3 (Harmonic oscillator). Finally, we take Aex(x) = 0 and include a confining electric potential of
harmonic oscillator type, i.e., Vex(x) = |x|2. Hence /± satisfies
ot/
�ðt; xÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr/�j2 þ 1

q
þ jxj2 ¼ 0; /�ð0; xÞ ¼ /IðxÞ; ð3:28Þ
which implies x�
AðnÞ ¼ x�

0 ðnÞ in this case. Due to the presence of the external potential, the semi-classical

transport equations (3.9) have to be generalized by including a spin-transport term, cf. [27], which however

only enters in the phase of u±. Thus the conservation law for the densities q± is the same as in (3.17).

Let us consider the system (1.14) with initial condition
wejt¼0 ¼ v exp �ðx1 � 0:1Þ2 þ ðx2 þ 0:1Þ2 þ x23
4d2

 !
; v ¼ ð1; 0; 0; 0Þ; d ¼ 1=16; ð3:29Þ



Fig. 5. Numerical results for Example 3.2. The left column shows the graphs of the solution of the MD system, the right column shows

the graphs of the solution of the asymptotic problem. Here e = 0.01, Dt ¼ 1
128
; Dx ¼ 1

32
.
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Table 5

Difference between the asymptotic solution and the full MD system for Example 3.2 (Dt = 1/128, Dx = 1/64)

e 0.01 0.1

sup06t60:125 we �
P
�
u�ei/

�=e

				 				
L2ðXÞ�C4

0.196 0.926

sup06t60:125 we �
P
�
u�ei/

�=e

				 				
L1ðXÞ�C4

0.115 0.646
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In this case we choose e = 10�2, Dt = 1/32, Dx = 1/32. The numerical results are give in Fig. 9. We see that

the wave packet moves in circles due to its interaction with the harmonic potential.

Remark 3.5. In analogy to the spectral-splitting method for the Schrödinger equation analyzed in [1], we

find that Dx ¼ OðeÞ and Dt ¼ Oð1Þ, as e ! 0, is sufficient to guarantee well-approximated observable of the

MD system. A more refined grid in temporal direction is necessary to obtain a good approximation for the

reps, components of the spinor field itself, typically Dt ¼ Oðe2Þ is needed.
4. The non-relativistic regime

Finally we shall also consider the non-relativistic regime for (1.18) as d ! 0. Again we shall first describe

the formal asymptotics and then discuss numerical examples.
4.1. Formal description of the asymptotic problem

To describe the non-relativistic limit of the MD system we first define two pseudo-differential operators

Pd
e=pðDÞ via their symbols
Pd
e=pðnÞ :¼

1

2
I4 �

1

k0ðdnÞ
D0ðdnÞ

� �
; ð4:1Þ
where k0(n), D0ðnÞ are given by (2.6), (2.4). We then define the (non-relativistic) electronic and the (non-

relativistic) positronic component wd
e , w

d
p by
wd
eðt; xÞ :¼ eit=d

2

Pd
eðDÞw

dðt; xÞ; wd
pðt; xÞ :¼ e�it=d2Pd

pðDÞw
dðt; xÞ; ð4:2Þ
where wd solves the non-relativistically scaled MD system (1.18). Note the difference in sign of the

phase-factors. This corresponds to subtracting the rest energy, which is positive for electrons but neg-

ative for positrons cf. [6,8,22]. The above given definition of electronic/positronic wave functions should

not be confused with the one obtained in the semi-classical regime, since both definitions are adapted to

the particular scaling of the resp. system under consideration. We remark that up to now there is no

satisfactory interpretation in terms of electrons and positrons for the solution of the full MD system

(1.1), (1.2). Indeed, there is no such interpretation even for the linear Dirac equation with external

fields, see e.g. [24].



Fig. 6. Numerical results of the MD system for Example 3.2. Here e = 0.01, Dt ¼ 1
128
; Dx ¼ 1

32
.
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Fig. 7. Numerical results of the densities of electron/positron projectors for Example 3.2. The left column is jP�
0 ð�ierÞweðt;xÞjx3¼0j

2
,

the right column is jP�
0 ðr/ÞweðtÞjx3¼0j

2
. The graphs show that the matrices P�

0 ðr/Þ do not mimic P�
0 ð�ierÞ after the caustic point.

Here e = 0.01, Dx ¼ 1
32
; Dt ¼ 1

128
.
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Fig. 8. Numerical results of the MD system for Example 3.2. Here e = 1.0, Dt ¼ 1
128
; Dx ¼ 1

32
.
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Remark 4.1. It is easy to see that the formal limit d ! 0 of the operators Pd
e=pðDÞ yields,
P0
e ¼

I2 0

0 0

� �
; P0

p ¼
0 0

0 I2

� �
: ð4:3Þ
This explains the interpretation of electrons (resp. positrons) as the upper (resp. lower) components of the

4-vector wd for small values of d, cf. [24].
It is then shown in [8] (see also [6] for easier accessible proofs in the linear case) that
wd
e=pðt; xÞ !

d!0
ue=pðt; xÞ; in H 1ðR3Þ � C4; ð4:4Þ
where ue, up solve the mixed electronic/positronic Schrödinger–Poisson system:
iotue ¼ � D
2
ue þ ðV þ V exÞue;

iotup ¼ þ D
2
up þ ðV þ V exÞup;

�DV ¼ jupj
2 þ juej

2
;

8><>: ð4:5Þ



Fig. 9. Numerical results of the density at different time for Example 3.3. Here e = 0.01, Dx ¼ 1
32
; Dt ¼ 1

32
.
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In contrast to the asymptotic problem obtained in the semi-classical limit, this system is globally well posed.

The appearance of the Poisson equation can be motivated by performing a naive Hilbert expansion in the

self-consistent fields, cf. [21], i.e.
V d ¼ V þ d~V þ Oðd2Þ; Ad ¼ Aþ d~Aþ Oðd2Þ: ð4:6Þ

Plugging this into (1.18), comparing equal powers in d, and having in mind that Jd � Oð1Þ [6] gives (4.5).

In [8] the electric potential is proved to converge in H 1ðR3Þ as d ! 0, whereas the convergence of the mag-

netic fields is not studied in detail. Indeed, it is shown in [8] that if one only aims for a derivation of the

Schrödinger–Poisson system, one can even allow for initial data Ad(0,x), otA
d(0,x) which do not converge

as d ! 0.
Remark 4.2. If we would, in addition, consider terms of order OðdÞ too, we (formally) would obtain a

Pauli equation for ue/p, including the matrix-valued magnetic field term
P

rkBk, i.e. the, so called, Pauli-

Poiswell system, cf. [6,21]. Moreover we remark that the authors in [8] considered the MD system in

Coulomb gauge, i.e. div A = 0, instead of the Lorentz gauge condition imposed in this work (1.7).

The reason is rather technical and it is not clear yet if a generalization of their work to the Lorentz

gauged system is possible.
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As before we shall use a time-splitting spectral method [2] to solve the coupled system of Schrödinger–

Poisson equations (4.5):

Step 1. First, we solve the following problem:

io u ¼ � Du ;
8

Fig. 10

row is
t e 2 e

iotup ¼ þ D
2
up;

�DV ¼ jupj
2 þ juej

2
;

><>: ð4:7Þ
Step 2. Then we solve the coupled equations
iotue ¼ ðV þ V exÞue;

iotup ¼ ðV þ V exÞup;

(
ð4:8Þ
In step 1. we again use the pseudo-spectral method. In step 2, we can get the exact solution for this linear

ODE system in time, since |up|
2 and |ue|

2, resp., are kept invariant by step 2.
. Numerical results for Example 4.1 at t = 0.5. The first row is the solution of the MD system with d = 1.0. whereas the second

the solution of the MD system with d = 0.01, the third line is the solution of the Schrödinger–Poisson system.



ig. 11. Numerical results of the magnetic fields for Example 4.1 at t = 0.5. The first row is the solution of the MD system with d = 1.0,

hereas the second row is the solution of the MD system with d = 0.01.
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F

w

Fig. 12. Numerical results for Example 4.1 at t = 1.0. The first row is the solution of the MD system with d = 1.0, the second row is the

solution of the MD system with d = 0.01, and the third row is the solution of the Schrödinger–Poisson problem.
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Remark 4.3. Let us fix e = 1 and consider d ! 0 in the algorithm given in Section 2.2. Based on the expan-

sion of (2.17)–(2.20), we obtain
Fig. 13

and th

Table

Conve

d

sup06t6
Û
nþ1 ¼ expðKðt � tnÞÞŴ

n þ OðdÞ; ð4:9Þ

where in the limit d ! 0 the matrix K 2 C4�4 simplifies to
K ¼ diag½k; k;�k;�k	; k ¼ �iðd�2 þ jnj2=2Þ:

We also have
jnj2ðV̂ n þ V̂
nþ1Þ ¼ djWnj2 þ djUnþ1j

2

þ OðdÞ ð4:10Þ

and
jnj2ðÂn þ Â
nþ1Þ ¼ OðdÞ; ð4:11Þ
because hUnþ1; akUnþ1i ¼ OðdÞ. If we denote the upper (resp. lower) components of the 4-vector W by We,

(resp. Wp), we obtain
. Numerical results of the magnetic fields for Example 4.1 at t = 1.0. The first row is the solution of the MD system with d = 1.0

e second row is the solution of the MD system with d = 0.01.

6

rgence test for Example 4.1 (here Dt = 1/128, Dx = 1/64)

0.01 0.1 1.0

1=4jwd
e � uej

2 þ jwd
p � upj

2 0.101 0.345 2.407



Fig. 14

system

respect
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otðe�it=d2Ûe=pÞ ¼ �i
jnj2

2
ðe�it=d2Ûe=pÞ þ OðdÞ; ð4:12Þ
and from (2.25), we find
Wnþ1 ¼ expð�iV DtÞUnþ1
e þ OðdÞ: ð4:13Þ
Combining Eqs. (4.10)–(4.13), we conclude that the numerical solutions of our algorithm, given in Sec-

tion 2.2, uniformly converge to the numerical solutions of the above algorithm. This analysis, previously

done for a time-splitting spectral method for the Zakharov system [20], shows that one can choose h, Dt
independent of d.
. Numerical results of the density for Example 4.2. The first and third column are jwdðt;xÞj2jx3¼0 and V dðt;xÞjx3¼0 for MD

, respectively. The second and fourth column are ðjueðt; xÞj
2 þ jupðt;xÞj

2Þjx3¼0 and V ðt; xÞjx3¼0 for Schrödinger–Poisson equation,

ively. Here d = 0.01, Dx ¼ 1
64
; Dt ¼ 1

128
.
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4.2. Numerical examples for the non-relativistic regime

Example 4.1 (Purely self-consistent motion II). Here we consider the MD system (1.18) in a unit cubic with

periodic boundary conditions, zero external fields, and initial data
wdðxÞjt¼0 � wð0ÞðxÞ ¼ v exp � jxj2

4d2

� �
; v ¼ ð1; 1; 1; 1Þ; d ¼ 1

16
;

�DV ð0Þ ¼ jwð0Þj2; V ð1ÞðxÞ ¼ 0;

�DAð0Þ
k ¼ hwð0Þ; akwð0ÞiC4 ; Að1ÞðxÞ ¼ 0:

8>><>>: ð4:14Þ
Note that the above choice of initial data for V and Ak is done to avoid initial layers. The impact of this

choice on the numerical resolution, i.e., the mesh strategy etc., is analogous to the Zakharov system dis-

cussed in [20]. We also consider the Schrödinger–Poisson problem (4.5) with the initial data
ueðt; xÞjt¼0 ¼ Pd
eðDÞw

ð0ÞðxÞ; upðt; xÞ=t¼0 ¼ Pd
pðDÞw

ð0ÞðxÞ; ð4:15Þ
We compare the solution of the MD system with the (coupled) Schrödinger–Poisson problem, cf. Figs. 10
and 12. Table 6, Figs. 10 and 12 illustrates the validity of (4.4). The Figs. 10–13 also show that

jAdj ¼ OðdÞjV dj, as d ! 0.

Example 4.2 (Harmonic oscillator II). Finally, we choose Aex(x) = 0 but include a confining electric poten-

tial of harmonic oscillator type, i.e., Vex(x) = C|x|2. To compete with the effect of the diffusion term Dwd, we

choose the large constant C = 100. Let us consider the system (1.18) with initial condition
wdjt¼0 ¼ v exp �ðx1 � 0:1Þ2 þ ðx2 þ 0:1Þ2 þ x23
4d2

 !
; v ¼ ð1; 0; 1; 0Þ; d ¼ 1=16: ð4:16Þ
In this case we choose d = 10�2, Dt = 1/128, Dx = 1/64. The numerical results are shown in Fig. 14.

We see that the wave packet moves in circles due to its interaction with the harmonic potential and

the diffusion term Dwd. Note that agreement with the non-relativistic results is very good also for
this test.
5. Conclusion

In this work, we presented a time-splitting spectral scheme for the MD system and similar time-splitting

methods for the corresponding asymptotic problems in the (weakly nonlinear) semi-classical and in the

non-relativistic regime. The proposed scheme conserves the Lorentz gauge condition, is unconditionally

stable and highly efficient as our numerical examples show. In particular, we presented numerical studies

for the creation of positronic modes in the semi-classical regime as well as numerical evidence for the small-

ness of the magnetic fields in the considered non-relativistic scaling. A distinct feature of our time-splitting
spectral method, not shared by previous methods (using the time-splitting spectral approach), is that in the

non-relativistic limit, the scheme exhibits a uniform convergence in the small parameter d.
We finally remark that there are several open questions that deserve further exploration. For example, it

would be an interesting project to derive a better numerical method for the system of eiconal and transport

equations, describing the semi-classical limit, which consequently would allow for a more accurate compar-

ison between the solution of the MD system and limiting WKB-description. A second step then should be

the numerical study of the semi-classical MD equations with stronger nonlinearities, in particular O(1)-
nonlinearities, a so far completely open problem, even from an analytical point of view.
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