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Abstract

We study the behavior of solutions to the inviscid (A = 0) and the viscous (A > 0)

hyperbolic conservations laws with stiff source terms

ut + f(u)x = −
1

ε
W ′(u) + εAuxx ,

with W (u) being the double-well potential. The initial value problem of this equation

gives, to the leading order, piecewise constants solutions connected by shock layers

and rarefaction layers. In this paper we establish the layer motion for the inviscid case

at the next order, which moves exponentially slowly. In the viscous case we study the

patterns of the traveling wave solutions and structures of the internal layers.
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1. Introduction

In this paper we study the inviscid hyperbolic equations with stiff source term

ut + f(u)x =
1

ε
u(1 − u2),

u(x, 0) = u0(x);

(1.1)

and the viscous conservation laws with stiff source term

ut + f(u)x =
1

ε
u(1 − u2) + εAuxx

u(x, 0) = u0(x) ,

(1.2)

In these problems, Aε > 0 is the viscosity coefficient, and ε > 0 is the reaction time.

These are the simplest models for reacting flows, where the source term, being the

derivative of the typical double well potential, accounts for the chemical reaction.

Since most equations governing reacting flows or dynamics of phase transitions

are combinations of inhomogeneous fluid dynamics equations and reaction-diffusion

equations [AK, VK], equations (1.1) and (1.2) can serve as prototype models to study

issues involved in reacting flows. In a reacting flow, the typical scale of the reaction

time ε is much smaller than the characteristic time scale of the fluid, which makes the

source terms in (1.1) and (1.2) stiff (in the so-called fast reaction regime).

First notice that the source terms in (1.1) and (1.2) admit three local equilibria,

namely, 0 and ±1, with 0 being linearly unstable, while ±1 linearly stable. It was

justified in our earlier work [FJT] that as ε → 0, the solution of (1.1) tends to the

two stable local equilibria ±1. When f(u) is convex, the limiting piecewise constant

solutions are connected either by a shock which connects 1 from the left to −1 from the

right and travels with speed 1
2f(1) − f(−1) as determined by the Rankine-Hugoniot

jump condition, or by a rarefaction discontinuity that connects −1 from the left to

1 from the right and travels with characteristic speed at the unstable equilibrium,

f ′(0). These results were extended to the case of the non-convex flux function f(u)

in [Mas1].

While the ε→ 0 limit reveals the leading order behavior of the solution, it is often

interesting to study the behavior at the next order, which is secondary in importance

and affects the long-time dynamics and the steady state solution. Such questions

have been addressed in the context of reaction-diffusion equations [CP, FH, RSK,

WR], or in complex fields described by the nonlinear heat equation and nonlinear
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Schrödinger equation [Neu, E]. In these examples, the next order solution exhibits

exponentially slow motion, since the Ginzburg-Landau type potential, examplified by

the source term in (1.1), has exponentially small eigenvalues. Slow motions in viscous

conservation laws were studied in [KK, KKP, LO1, RW]. Slow motions in the boundary

value problem of a single shock layer was discussed in [LO2]. The more general case

of slow motions due to the interactions of neighboring shock and rarefaction layers in

the convection-reaction equations or convection-reaction-diffusion equations remains

to be explored.

For ε > 0, the shock remains a discontinuity but the rarefaction discontinuity in

the ε = 0 case is a sharp layer of width O(ε), which will be refered to as the rarefaction

layer.

In order to focus our study on the behavior of the solution at the next order, we

assume that, at the leading order, the solution does not move. Namely, we assume

that f(−1)− f(1) = 0 and f ′(0) = 0. This happens in, for example, the Burger’s flux

f(u) = u2/2. When this occurs, the two types of layers do not interact at the ε→ 0+

limit, thus it is quite tempting to believe that such a solution will presist for all time.

However, easy calculation shows that this solution is not the steady state solution to

(1.1). For ε > 0, there is a thin layer of width ε near the discontinuities, within which

the solution decays to ±1 exponentially. The interactions between two neighboring

layers, though exponentially weak, do have a long (exponentially long!) effect on the

solution, and our analysis shows that it takes an exponentially-long time for such an

interaction to have an O(1) effect on the solution and ultimately the steady state,

since the layers move with exponentially small speeds. One of the goals of this paper

is to determine such speeds.

Consider the initial data of the form:

(1.3)
u(x, 0) = u0(x) =

{

1 +O(1) exp
(

−M
ε
|x− a2j|

)

for a2j+1 > x > a2j ,

−1 +O(1) exp
(

−M
ε
|x− a2j|

)

for a2j−1 < x < a2j ,

j = 1, 2, ...2n ,

where −∞ = a0 < a1 < a2 < · · · < a2n < a2n+1 = ∞, being constants with O(1)

differences, are the locations of u = 0 initially. The constant M satisfies

(1.4) 0 < M ≤ min
u∈[−1,1]

2

f ′′(u)
.
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The initial data (1.3) are depicted in Fig.1.1, where a2j−1 corresponds to the shock

location, while a2j corresponds to the locations of the rarefaction layers.

It is easy to show by an asymptotic analysis (see section 2.4) that, beyond the

initial layer of length O(ε), the solution asymptotically tends to the form (1.3). Thus

we do not lose any generality to start with the initial data (1.3).

One of our main results is the dynamics of the slow motion, given by the following

theorem.

Theorem 1.1. Let aj(t) be the location of u = 0. There exists an T > 0, such that

for t < T , the speed of the rarefaction layer is given by

(1.5)
da2j(t)

dt
= 0, j = 1, 2, ..., n ,

while the speed of the shock is

(1.6)

da2j−1(t)

dt
= O(1) exp

(

−
M

ε
min(|a2j−1(t) − a2j(t)|, |a2j−1(t) − a2j−2(t)|)

)

,

j = 1, 2, ..., n.

This result shows that the rarefaction layer will never move, while the shock

moves with an exponentially small speed. Therefore one should expect the strong

interactions among the neighboring layers after an exponentially long time. This

motion is determined by using the generalized characteristics method [Daf], a purely
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hyperbolic technique, while previous works on the slow motion problems in reaction-

diffusion equations or the nonlinear Schrödinger equation use the matched asymptotic

expansions or spectral analysis [RSK, CP, Neu, E, RW, WR, JO1, JO2] to determine

the dynamics of the slow motion.

For the viscous model (1.2), we prove the existence of traveling wave profiles for

both the shock layer and the rarefaction layer. We also construct the asymptotic

structures of the shock and rarefaction layers. We expect slow motion of these layers

in the viscous case, similar to the results stated in Theorem 1.1. However, this topic

is left for future investigation.

We point out that there have been increasing activities in the study of problems

(1.1) and (1.2) in recent years. The long-time behavior and attractors of hyperbolic

conservation laws with source term that admits multiple equilibria similar to (1.2),

but in the non-stiff regime ε = O(1), have been studied by several authors [FH1, FH2,

Har, Lyb, Mas1, MS, Sin1, Sin2, Sin3]. As mentioned earlier, the zero reaction time

limit ε→ 0+ of (1.1) were studied in [FJT] when the source term is of bistable type.

This result was generalized to the monostable type of source term in [F], while in

[FHa], the degenerate bistable type of source terms were considered. Both large time

behavior and zero reaction time limit was investigated. It turns out the zero reaction

time limit in the degenerate case is similar to the non-degenerate case, although the

convergence rate is of algebraic. The large time behavior, however, is different from

the non-degenerate case. A novel numerical method, called the random projection

method, for problem (1.1) which allows the reaction time ε not to be numerically

resolved, was developed in [BJ].

The rest of this paper is organized as follows. In Section 2, we prove Theorem

1.1 on the slow motion of waves for the inviscid case. In Section 3, we study the

viscous case, (1.2). We establish the existence of wave profiles for both the shock and

rarefaction layers and construct their asymptotic structures.

2. Slow Motion in the Inviscid Case

2.1. Basic waves for inviscid conservation laws

with source terms

It is clear from the usual entropy condition for conservation laws with convex flux

function f , entropy solutions u(x, t) of (1.1) admits jump discontinuities at x = s(t)



6

that satisfy u(s(t)−, t) > u(s(t)+, t). The speed of the shock at x = s(t) is determined

by the Rankine-Hugoniot jump condition

(2.1.1)
ds

dt
=
f(u(s(t)+, t)− f(u(s(t)−, t)

u(s(t)+, t) − u(s(t)−, t)
.

Among all entropy shocks, only the one with u(s(t)±, t) = ∓1 has a constant speed,

which is (f(1) − f(−1))/2.

There is a traveling wave φ(x− ct) of (1.1) with φ(±∞) = ±1. It is the solution

of

(2.1.2)
− cφ′ + f(φ)′ =

1

ε
g(φ),

φ(±∞) = ±1 ,

where “′” denotes d
dξ and ξ = x− ct.

Theorem 2.1.1. Equation (2.1.2) has a solution if and only if c = f ′(0) where 0 is

the unstable equilibrium point of (1.1). Furthermore, solutions φ satisfy

(2.1.3a) φ(ξ) = 1 +O(1) exp

(

2

ε(f ′(0) − f ′(1))
ξ

)

, as ξ → ∞ ,

and

(2.1.3b) φ(ξ) = −1 +O(1) exp

(

2

ε(f ′(0) − f ′(−1))
ξ

)

, as ξ → −∞ .

Proof. If c 6= f ′(0), then φ′(ξ0) = 0 when φ(ξ0) = 0 and hence φ ≡ φ(ξ0)

by the uniqueness of initial value problems of ordinary differential equations. Thus,

boundary conditions in (2.1.1) cannot be satisfied when c 6= f ′(0). If c = f ′(0), then

φ′ > 0 for all φ ∈ (−1, 1) and hence (2.1.2) has a solution. The first statement of the

theorem then follows.

Estimates (2.1.3) follows immediately from the fact that the eigenvalues of (2.1.2)

at u = ±1 are
2

ε(f ′(0) − f ′(±1))
.

Clearly, the traveling wave in Theorem 2.1.1 corresponds to the rarefaction layer.

There are other continuous traveling waves connecting 0 to 1 or −1. Although we do

not use them in this paper, for completeness, we list the results on the existence of

these waves.
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Theorem 2.1.2. Traveling wave equation (2.1.2)1 has a solution if one the following

holds.

(i) φ(−∞) = 0, φ(∞) = 1 and f ′(0) > c.

(ii) φ(−∞) = 0, φ(∞) = −1 and f ′(−1) > c.

(iii) φ(−∞) = −1, φ(∞) = 0 and f ′(0) < c.

(iv) φ(−∞) = 1, φ(∞) = 0 and f ′(1) < c.

Proof. Omitted.

2.2. Generalized Characteristics of (1.1)

In the next section, we shall use the extremal backward characteristics of (1.1) in

our study of the slow motion in some wave patterns. Here, we recall some properties

of extremal backward characteristics.

A Lipschitzian curve x = ξ(t) defined on an interval [a, b] is called a characteristic

curve associated to the solution u(x, t) of (1.1) if, for almost all t ∈ [a, b],

(2.2.1)
dξ

dt
∈ [f ′(u(ξ(t)+, t)), f ′(u(ξ(t)−, t))].

¿From [Fil], for any (x̄, t̄) ∈ R×(0,∞), there exists at least one backward characteristic

ξ(t; x̄, t̄) defined on a maximal interval (s, t̄], s ≥ 0, with ξ(t̄; x̄, t̄) = x̄. The set of all

backward characteristics through (x̄, t̄) form a funnel confined between the minimal

and the maximal backward characteristics through (x̄, t̄). We denote the minimal

and maximal backward characteristics by ξ−(t; x̄, t̄) and ξ+(t; x̄, t̄) respectively. The

following Lemmas 2.2.1, 2.2.2 and 2.2.3 are from [Daf], while the rest results are from

[FJT].

Lemma 2.2.1. The extremal backward characteristic ξ±(t; x̄, t̄) associated with the

solution u(x, t) of (1.1) satisfies, for t ∈ (s, t̄],

(2.2.2)

dξ

dt
= f ′(v(t)),

dv

dt
=

1

ε
v(1 − v2) ,

with initial conditions

(2.2.3-) (ξ−(t̄; x̄, t̄), v(t̄)) = (x̄, u(x̄−, t̄))
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and

(2.2.3+) (ξ+(t̄; x̄, t̄), v(t̄)) = (x̄, u(x̄+, t̄))

respectively. Furthermore, for both ξ(t) := ξ−(t) and ξ(t) := ξ+(t), equations

(2.2.4) v(t) = u(ξ(t)−, t) = u(ξ(t)+, t)

hold for almost all t ∈ (s, t̄].

Lemma 2.2.2. Any two extremal backward characteristics do not intersect.

Lemma 2.2.3. If the solution |u(x, t)| ≤ C for some constant C > 0, then backward

characteristics associated with u(x, t) are defined on [0, t̄].

Lemma 2.2.4. If f ∈ C1(R; R) and 1 ≥ u0(x) ≥ 0, then the solution of (1.1) satisfies

(2.2.5) 1 ≥ u(x, t) ≥ 0 for t > 0 .

Corollary 2.2.5. Backward characteristics through the point (x̄, t̄) are defined on

[0, t̄].

We say that a curve x = ζ(t) crosses the curve x = ξ(t) from the left (right) as t

decreases if there is a t0 in the domains of definition of ζ and ξ such that ζ(t0) = ξ(t0)

and ζ(t0 + δ) < (>)ξ(t0 + δ), ζ(t0 − δ) > (<)ξ(t0 − δ) for sufficiently small δ > 0.

Lemma 2.2.6. ¿From any point (x̄, t̄), t̄ > 0, there is a unique forward generalized

characteristics ζ(t; x̄, t̄) of (1.1) defined as

(2.2.7)

dζ

dt
=

{

f ′(u(ζ(t), t)), if u(ζ(t)−, t) = u(ζ(t)+, t),
f(u(ζ(t)−,t))−f(u(ζ(t)+,t))

u(ζ(t)−,t)−u(ζ(t)+,t)
, if u(ζ(t)−, t) > u(ζ(t)+, t),

ζ(t̄) = x̄, t > t̄.

Furthermore a minimal backward characteristics x = ξ−(t) of (1.1) cannot cross x =

ζ(t) from the left as t decreases. Similarly, a maximal backward characteristics x =

ξ+(t) of (1.1) cannot cross x = ζ(t) from the right as t decreases.

2.3. Slow motions in inviscid conservation laws

with source terms



9

¿From last section, we see that there are two types of traveling waves of (1.1) that

connect stable equilibrium points. One of them is the ordinary shock wave at x = s(t)

with u(s(t)−, t) = 1 = −u(s(t)+, t). The other type of the wave is the continuous

traveling wave of (1.1) provided by Theorem 2.1.1, corresponding to the rarefaction

layer. Since the goal is to understand the behavior of these waves at the next order,

we set f ′(0) = f(1)−f(−1) = 0 so that the speed of both waves, at the leading order,

are 0. We shall investigate the interaction between two types of basic waves of (1.1).

For this purpose, we consider the following initial value problem of (1.1):

(2.3.1)

ut + f(u)x =
1

ε
u(1 − u2),

u(x, 0) = u0(x) =

{

1 +O(1) exp
(

−M
ε |x− a2j|

)

, for a2j+1 > x > a2j ,

−1 +O(1) exp
(

−M
ε
|x− a2j |

)

, for a2j−1 < x < a2j,

j = 1, 2, ...2n,

where −∞ = a0 < a1 < a2 < · · · < a2n < a2n+1 = ∞ are constants, and the constant

(2.3.2) 0 < M ≤ min
u∈[−1,1]

2

f ′′(u)
.

Here, we only present the case where there are even number of aj ’s for the simplicity

of presentation. The cases when there are odd number of aj’s or when u0(x) =

−1 +O(1)e−M|x−a1|/ε for x < a1 can be handled similarly to get similar conclusions.

We also leave the constants M and the coefficient in front of the exponential term

unspecified. A simple matched asymptotic analysis, as presented in section 2.4, can

determine these constants.

We first recall the following results on the structure of the solution of (2.3.1)

obtained in [FJT]:

Lemma 2.3.1.. There are Lipschitz continuous curves x = aj(t), j = 1, 2, ..., 2n,

defined on [0, Tj] satisfying the following:

(i) aj(0) = aj .

(ii) Curves x = aj(t), j = 1, 2, ..., 2n, do not intersect each other except at t = Tj .

(iii) Two curves x = aj(t) and x = aj′ may intersect only at the end points of their

domain of definition, Tj = Tj′ where the curve x = aj′(t) is one of the curves

among x = ak(t), k = 1, 2, ..., 2n adjacent to x = aj(t) for t close to Tj .

(iv) The sign of u(x±, t), the solution of (2.3.1), is fixed for x between adjacent points

among aj(t).
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(v) The curves x = aj(t), j = 1, 2, ...2n, are forward characteristics of (2.3.1).

We now determine the behavior of u near the shock and rarefaction fronts.

Lemma 2.3.2. Let aj(t) be functions defined in Lemma 2.3.1 and the constant M >

0 be that in (2.3.2). If t < min1≤j≤2n Tj , then the following hold:

(i)

(2.3.3) a2j(t) ≡ a2j.

(ii) If a2j−1(t) < a2j, then

(2.3.4) u(a2j−1(t)−, t) = −1 +O(1) exp

(

−
M

ε
|a2j−1(t) − a2j |

)

.

(iii) If a2j−1(t) > a2j−2, then

(2.3.5) u(a2j−1(t)+, t) = 1 +O(1) exp

(

−
M

ε
|a2j−1(t) − a2j−2|

)

.

Proof: (i) By the definition of aj(t), one has

(2.3.6) lim
x→a2j(t)−

sign(u(x±, t)) = −1,

and

(2.3.7) lim
x→a2j(t)+

sign(u(x±, t)) = 1.

Let x̄ < a2j(t̄) and close to a2j(t̄) and consider the minimal backward characteristics

issued from (x̄, t̄), ξ−(t; x̄, t̄). Since u(x̄, t̄) < 0 and the sign of u does not change

along extremal backward characteristics, as seen from (2.2), one has dξ−(t;x̄,t̄)
dt < 0

and hence

(2.3.8) ξ−(0; x̄, t̄) > ξ−(t̄; x̄, t̄) = x̄.

Also, it holds that

(2.3.9) ξ−(t; x̄, t̄) < a2j(t),

for all t ∈ (0, T2j) because if otherwise, u would change sign along ξ−(t; x̄, t̄) which is

impossible. Similarly, one can consider ξ+(t; x̄1, t̄) for x̄1 > a2j(t̄) and close to a2j(t̄).

By the same reasoning as above, one obtains

(2.3.10)
dξ+(t; x̄1, t̄)

dt
> 0,
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and

(2.3.11) ξ+(t; x̄1, t̄) > a2j(t),

for all t ∈ (0, T2j). In particular,

(2.3.12) ξ+(0; x̄1, t̄) < ξ+(t̄; x̄1, t̄) = x̄1.

Now let x̄→ a2j(t̄)− and x̄1 → a2j(t̄)+. Then estimates (2.3.8-12) yield

a2j(t̄) = lim
x̄→a2j(t̄)−

ξ−(t̄; x̄, t̄) ≤ lim
x̄→a2j(t̄)−

ξ−(0; x̄, t̄) ≤ a2j(0)

≤ lim
x̄1→a2j(t̄)+

ξ+(0; x̄1, t̄) ≤ lim
x̄1→a2j(t̄)+

ξ+(x̄1; x̄1, t̄) = a2j(t̄) ,

and hence

(2.3.13) a2j(t̄) ≡ a2j(0).

(ii) We consider the case where t < min(Tj ; j = 1, 2, ..., 2n) and hence a2j−1(t) <

a2j(0). Let x̄ > a2j−1(t̄) and close to a2j−1(t̄) enough. Then the condition t <

min(Tj ; j = 1, 2, ..., 2n) implies that

(2.3.14) ξ−(0; x̄, t̄) ≤ a2j(0),

because if otherwise, ξ(t; x̄, t̄) would intersect the forward characteristics x = a2j(t) ≡

a2j(0) from the left while t > 0 is decreasing, which is impossible. The choice of x̄

and (2.3.14) imply that a2j−1(0) < x̄ < ξ(0, x̄, t̄) ≤ a2j(0) and hence

(2.3.15) u(ξ(0, x̄, t̄), 0) ≤ 0 .

Integrating the system (2.2.2) of equations governing the extremal backward char-

acteristics of (1.1), one obtains that

(2.3.16)

∫ u(x̄,t̄)

u(ξ(0;x̄,t̄),0)

f ′(u) − f ′(0)

u(1 − u2)
du =

1

ε
(x̄− ξ(0, x̄, t̄)).

There are a function θ(u) and a number B > 0 such that

(2.3.17)

∫ u(x̄,t̄)

u(ξ(0;x̄,t̄),0)

f ′′(θ(u))

(1 − u2)
du = B

∫ u(x̄,t̄)

u(ξ(0;x̄,t̄),0)

1

(1 − u2)
du

=
B

2
ln

∣

∣

∣

∣

1 + u

1 − u

∣

∣

∣

∣

∣

∣

∣

∣

u(x̄,t̄)

u(ξ(0;x̄,t̄),0)

,
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where θ(u) is the function satisfying

(2.3.18)
f ′(u) − f ′(0)

u
= f ′′(θ(u)) > 0 ,

and the number B is between minu∈[−1,0)(f
′′(u)) and maxu∈[−1,0)(f

′′(u)) and depends

on u(x̄, t̄) and u(ξ(0; x̄, t̄), 0) only. Plugging (2.3.17) into (2.3.16) gives

(2.3.19) u(x̄, t̄) =
C0 exp(2(x̄− ξ(0; x̄, t̄))/B) − 1

C0 exp(2(x̄− ξ(0; x̄, t̄))/B) + 1
,

where

(2.3.20) C0 =
1 + u(ξ(0; x̄, t̄), 0)

1 − u(ξ(0; x̄, t̄), 0)
.

According to (2.3.14), there are two possibilities:

Case 1. ξ(0; x̄, t̄) < a2j(0).

The choice of the initial data u0(x) in (2.3.1) and the equation (2.3.20) yield that

(2.3.21) C0 = O(1)(1 + u(ξ(0; x̄, t̄), 0)) = O(1) exp

[

M

ε
(ξ(0; x̄, t̄) − a2j(0))

]

.

Combining (2.3.21) and (2.3.19) and (2.3.2), we obtain

(2.3.22) u(x̄, t̄) = −1 +O(1) exp(−M |x̄− a2j(0)|/ε)

as desired.

Case 2. ξ(0; x̄, t̄) = a2j(0).

In this case, estimates (2.3.19) is already the desired (2.3.22) if C0 is bounded.

Indeed, C0 is bounded due to (2.3.20), (2.3.2) and (2.3.1).

The proof of (iii) is the same of that of (ii).

Now we can determine the speed of both the shock and the rarefaction fronts.

Theorem 2.3.3. Let aj(t) be given in Lemma 2.3.1 and t < min1≤j≤2n Tj . Then,

the following holds:

(i)

(2.3.23)
da2j(t)

dt
= 0, j = 1, 2, ..., n.
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(ii) If (2.3.1) and (2.3.2) holds, then

(2.3.24)
da2j−1(t)

dt
= O(1) exp

(

−
M

ε
min(|a2j−1(t) − a2j(t)|, |a2j−1(t) − a2j−2(t)|)

)

,

j = 1, 2, ..., n.

Proof. Statement (i) follows immediately from (i) of Lemma 2.3.2.

To prove (ii), one only needs to see that x = a2j−1(t) is the location of a shock

jump discontinuity of (1.1). According to Lemma 2.3.2, the value of u at the two sides

of the shock are

u(a2j−1(t)−, t) = −1 +O(1) exp

(

−
M

ε
|a2j−1(t) − a2j |

)

,

and

u(a2j−1(t)+, t) = 1 +O(1) exp

(

−
M

ε
|a2j−1(t) − a2j−2|

)

,

respectively. Then the Rankine-Hugoniot condition, which must be satisfied by jump

discontinuities of (1.1), reads

da2j−1(t)

dt
=
f(u(a2j−1(t)+, t)) − f(u(a2j−1(t)−, t), t)

u(a2j−1(t)+, t) − u(a2j−1(t)−, t)

= O(1) exp

(

−
M

ε
min(|a2j−1(t) − a2j(t)|, |a2j−1(t) − a2j−2(t)|)

)

.

Remark 2.3.4: Theorem 2.3.3 states that when t < min1≤j≤2n Tj and aj(t),

j = 1, 2, ..., 2n, are well separated in the sense that |aj(t) − aj+1(t)| >> ε, then the

motion of the center of shock waves x = a2j−1(t) is exponentially slow.

Remark: 2.3.5. When t increases to near to t1 := min1≤j≤2n Tj , the motion of one

of x = a2j−1(t), j = 1, 2, ..., 2n accelerates and collide with one of its adjacent curves

among x = a2j(t), j = 1, 2, ..., 2n. After the collision, t > t1, the collided curves cease

to exist. The solution u(x, t) right after t1 satisfies the same condition (2.3.1) and

(2.3.2) again only with n decreased by two. Thus, slow motion of x = aj(t)’s resumes

until near the next moment of collision of two curves among x = aj(t), j = 1, 2, ..., 2n.

2.4. Asymptotic layer profiles
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In this subsection we use a mtached asymptotic analysis to determine the internal

layer profile near aj . This analysis allows us to determine all the constants unspecified

in the previous section. We assume that minj{aj+1−aj} >> ε. Namely, the distance

between two adjacent fronts are much bigger compared to ε.

First, the initial layer analysis shows that [FJT] the initial data will be driven to

the two linearly stable local equilibria ±1 exponentially fast, with the positive part of

the initial data goes to 1 and the negative part to −1. The structure of the solution

around the point which connects from 1 to −1 can be understood asymptotically using

the matched asymptotic analysis.

First we consider the profile around x = a2j. Introducing the stretched variable

(2.4.1) ξ =
x− a2j

ε
.

First consider the profile to the right of a2j , namely, for ξ > 0. Applying the ansatz

(2.4.2) u(x, t) = 1 + u0(ξ, t) + · · ·

where u0(x, t) is monotonely increasing and satisfies the boundary and exponentially

growing conditions

(2.4.3) u0(0, t) = −1 , u0(ξ, t) → 0 , as ξ → +∞

into (1.1), one gets

(2.4.4)
[1 + u0(ξ, t) + · · · ]t + f(1 + u0(ξ, t) + · · · )x

= 1
ε g(1 + u0(ξ, t) + · · · ) .

Here we define g(u) = u(1 − u2). By the Taylor expansion, and using g(1) = 0, one

gets

(2.4.5)
(u0(ξ, t) + · · · )t + f ′(1)( 1

ε
∂ξu0(ξ, t) + · · · )

=1
ε g

′(1)(u0(ξ, t) + · · · ) .

The leading order balance of (2.4.5) gives

f ′(1)∂ξu0 = g′(1)u0 .

This, combined with the conditions (2.4.3), give the desired solution

(2.4.6) u0 = −e
g′(1)

f′(1)
ξ
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since g′(1)
f ′(1) < 0. Thus the asymptotic ansatz for a2j < x < a2j+1 is

(2.4.7) u(x, t) = 1 − e
g′(1)

f′(1)
ξ
+ higher order terms .

Now we consider the profile to the left of x = a2j, namely, for ξ < 0. Applying

the ansatz

(2.4.8) u(x, t) = −1 + u0(ξ, t) + · · ·

where u0(x, t) is monotonely decreasing and satisfies the boundary and exponential

decaying conditions

(2.4.9) u0(0, t) = 1 , u0(ξ, t) → 0 as ξ → −∞

into (1.1), one gets

(2.4.10)
(−1 + u0(ξ, t) + · · · )t + f(−1 + u0(ξ, t) + · · · )x

= 1
ε g(−1 + u0(ξ, t) + · · · ) .

By the Taylor expansion, and using g(−1) = 0, one gets

(2.4.11)
(u0(ξ, t) + · · · )t + f ′(−1)( 1

ε∂ξu0(ξ, t) + · · · )

= 1
ε g

′(−1)(u0(ξ, t) + · · · ) .

The leading order balance of (2.4.11) gives

f ′(−1)∂ξu0 = g′(−1)u0

This, combined with the conditions (2.4.9), give the desired solution

(2.4.12) u0 = e
g′(−1)

f′(−1)
ξ

since g′(−1)
f ′(−1) > 0. Thus the asymptotic ansatz for a2j−1 < x < a2j is

(2.4.13) u(x, t) = −1 + e
g′(−1)

f′(−1)
ξ
+ higher order terms .

In summary, we get

(2.4.14)
u(x, t) =







1 − exp
(

− g′(1)
f ′(0)−f ′(1)

|x−a2j |
ε

)

, for a2j+1 > x > a2j ,

−1 + exp
(

g′(−1)
f ′(−1)−f ′(0)

|x−a2j |
ε

)

, for a2j−1 < x < a2j.

j = 1, 2, ...2n.
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One can apply similar ansatz (2.4.2) or (2.4.8) around the shock discontinuity x =

a2j+1. It is easy to check that the only solution that satisfies the matching conditions

(2.4.3) or (2.4.9) is the trivial solution u0 ≡ 0. Thus around the shock discontinuity

x = a2j+1 one can not construct an asymptotic solution like (2.4.7) or (2.4.13), namely,

there is no layer around the shock so the shock remains a discontinuity.

§3. Existence of Wave Profiles in the Viscous Case

Traveling waves of the viscous equation (1.2) are solutions of

(3.1) −cu′ + f(u)′ = Au′′ + g(u)

with boundary conditions

(3.2) u(−∞) = −1, u(∞) = 1

or

(3.3) u(−∞) = 1, u(∞) = −1,

where “′” is d
dξ and ξ = (x − ct)/ε. The condition (3.2) yields the rarefaction layer

and (3.3) is for the shock layer connecting equilibrium points −1 to 1. We shall see

that under the condition f ′(0) = f(1)− f(−1) = 0, the speeds of both types of waves

are 0.

§3.1. Existence of the viscous profiles for the rarefaction layer

In §2.1, we already proved that when A = 0, equation (3.1) with (3.2) has

continuous solutions. We rewrite (3.1) and (3.2) as

(3.1.1)
Ap

dp

du
= (−c+ f ′(u))p+ u(u2 − 1),

p(u = −1) = p(u = 1) = 0 ,

where

(3.1.2) p = u′.

We are interested in monotone solutions of (3.1), (3.2). It is clear that (3.1), (3.2)

has a monotone solution if and only if (3.1.1) has a solution p(u) ≥ 0. To prove the

existence of such solutions of (3.1) and (3.2), we consider the unstable manifold in

the upper (u, p)-plane.
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Lemma 3.1.1. Let p−(u;A) be the portion of the unstable manifold of (3.1.1) in

{p > 0} issued from (u, p) = (−1, 0) and entering {p > 0}. If 0 ≤ A1 < A2, then

p−(u,A1) > p−(u,A2) for u > −1.

Proof: We investigate dp
du

near u = ±1. Taking d
du

on (3.1.1) and u = −1, one

gets

(3.1.3) A

(

dp

du

∣

∣

u=−1

)2

= (−c+ f ′(−1))
dp

du

∣

∣

u=−1
+2.

Solving the above equation for dp
du yields

(3.1.4)
dp

du

∣

∣

u=−1
=

1

2A

[

−c+ f ′(−1) ±
√

(c− f ′(−1))2 + 8A
]

.

We are interested in the unstable manifold of (3.1.2) entering the region p > 0. The

slope of this unstable manifold at u = −1 is, from (3.1.4),

(3.1.6)

dp−
du

∣

∣

u=−1
=

1

2A

[

−c+ f ′(−1) +
√

(c− f ′(−1))2 + 8A
]

=
4

c− f ′(−1) +
√

(c− f ′(−1))2 + 8A
> 0.

It is clear that dp−

du

∣

∣

u=−1
decreases as A ≥ 0 increases. Thus, there is a point

u0 > −1 such that if 0 ≤ A1 < A2, then the inequality p−(u,A1) > p−(u,A2) holds for

u ∈ (−1, u0). To prove the Lemma, it suffices to prove that p−(u,A1) and p−(u,A2) do

not intersect. To this end, we assume its contrary, i.e. p−(u1, A1) = p−(u1, A2) > 0.

Define

(3.1.7) u2 := inf{u1 ≥ u0 : p−(u1, A1) = p−(u1, A2)}.

This means that p1 := p−(u,A1) > p2 := p−(u,A2) for u ∈ (−1, u2) and p−(u2, A1) =

p−(u2, A2), and hence

(3.1.8)
dp1

du

∣

∣

u=u2
≤
dp2

du

∣

∣

u=u2
.

The difference of equations (3.1.1) for p1 and p2 at u = u2 reads

(3.1.9) 0 = p1

(

A1
dp1

du
− A2

dp2

du

)

.
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When

(3.1.10)
dp1

du

∣

∣

∣

∣

u=u2

6= 0 or
dp2

du

∣

∣

∣

∣

u=u2

6= 0,

the estimate (3.1.8) and 0 ≤ A1 < A2 applied to (3.1.9) leads to a contradiction. If

(3.1.11)
dp1

du

∣

∣

∣

∣

u=u2

=
dp2

du

∣

∣

∣

∣

u=u2

= 0,

then

(3.1.12)
d2p1

du2

∣

∣

∣

∣

u=u2

=
d2p2

du2

∣

∣

∣

∣

u=u2

and

(3.1.13)
d3p1

du3

∣

∣

∣

∣

u=u2

≤
d3p2

du3

∣

∣

∣

∣

u=u2

hold. Eqautions (3.1.11) and (3.1.12) at u = u2 are

(3.1.14)
(−c+ f ′(u))p+ u(1 − u2) = 0,

f ′′(u)p+ 1 − 3u2 = 0.

Plugging c = 0, f ′′ > 0 and f ′(0) = 0 into (3.1.14), one sees that there is no solution

for (3.1.14) and hence (3.1.11) is impossible. These contradictions complete the proof.

Similarly, the following lemma can be established for the stable manifold of (3.1)

entering (u, p) = (1, 0) from the upper (u, p)−plane:

Lemma 3.1.2. Let p+(u;A) be the portion of the stable manifold of (3.1.1) in {p > 0}

entering (u, p) = (1, 0). If 0 ≤ A1 < A2, then p+(u,A1) > p+(u,A2) for u < 1.

Proof. The proof is almost the same as that of Lemma 3.1.1.

The next theorem establishes the existence of the traveling wave solution for the

rarefaction layer.

Theorem 3.1.3. For any A > 0, the system (3.1), (3.2) has a monotone solution

when c = f ′(0).

Proof. When A = 0 and f ′(0) = 0, there is a monotone solution of (3.1) and

(3.2), as stated in Theorem 2.1.1. Thus, there is a solution p(u) of (3.1.1) with



19

p(u) ≥ 0 when A = 0 and c = f ′(0). It is clear that (3.1.1) has a solution if and only

if an unstable manifold p = p−(u;A) of (3.1.1) leaving (u, p) = (−1, 0) intersects a

stable manifold p = p+(u;A) of (3.1.1) entering (u, p) = (1, 0). When p−(u;A) and

p+(u;A) intersect, they coincide. Thus, p−(1;A = 0) = 0 and p+(−1;A = 0) = 0.

From Lemma 3.1.2, p−(u,A) < p−(u, 0) = p+(u, 0) > p+(u,A) for A > 0. When

A > 0 is small, dp−

du (u = −1;A) at u = −1 changes little from dp−

du (u = −1; 0),

and hence p−(u;A) changes little from p−(u; 0). This implies that p = p−(u,A) hits

the u-axis at some point (u, p) = (u0, 0) with u0 ≤ 1 and close to 1. Similarly, the

stable manifold p+(u;A) intersects the u-axis at some point u1 > −1 and close to −1.

Therefore, the manifolds p−(u;A) and p+(u,A) must intersect for small A > 0. The

same argument shows that there is no upper bound for A > 0 for which p−(u;A) and

p+(u;A) intersect. Thus, there are monotone solutions of (3.1), (3.2) for all A > 0.

§3.2. Existence of the viscous profiles of shocks

In this section, we prove that the solution of (1.2) with some special initial data

converges as t→ ∞ to a stationary wave.

For convenience, we can do transformation (x, t) 7→ (x/ε, t/ε) on (1.2) to eliminate

ε. Thus, in the rest of this section, we omit ε from (1.2).

Lemma 3.2.1. Let u(x, t) solves (1.2) with initial data u(x, 0). If ux(x, 0) < 0 (> 0),

then ux(x, t) < 0 (> 0).

Proof. Let φ = ux, then φ satisfies

(3.2.1)
φt + f ′(u)φx + f ′′(u)φ2 = φxx + g′(u)φ,

φ(x, 0) = ux(x, 0) > 0 (< 0).

The maximum principle on (3.2.1) yields that φ(x, t) > 0 (< 0) if φ(x, 0) > 0 (< 0).

In the rest of this section, we assume the initial data satisfy

(3.2.2) ux(x, 0) < 0, and − 1 ≤ u(x, 0) ≤ 1.

In this case the solution u(x, t) is decreasing. Then the transformation from (x, t) to

(3.2.3)
w = u(x, t),

s = t
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is one-to-one. Then, for any smooth function v(x, t), the chain rule reads

(3.2.4) vt = vwut + vs, vx = vwux.

Let φ := ux. After changing variables according to (3.2.3) and (3.2.4), the equation

(3.2.1) and (3.2.2) become

(3.2.5)
φs = φ2

[

φww +

(

g(w)

φ

)

w

− f ′′(w)

]

, w ∈ (−1, 1),

φ(w, 0) < 0, φ(w = ±1, 0) = 0.

¿From Lemma 3.2.1, we know that the solution of (3.2.5) satisfies φ(w, s) < 0 for

s > 0.

Lemma 3.2.2. If φs(w, 0) > 0 (< 0), then φs(w, s) > 0 (< 0) for all s > 0.

Proof. Taking ∂
∂s on (3.2.5) and leting ψ = φs give

(3.2.6) ψs = φ2ψww + 2φ[φww − f ′′(w)]ψ − g(w)ψw + g′(w)ψ.

Again, the maximum principle on (3.2.6) yields that if φs(w, 0) > 0 (< 0), then

φs(w, s) > 0 (< 0) for all s > 0.

Lemma 3.2.3. Let

(3.2.7) u(x, 0) = − tanh(x/δ)

where δ > 0 is a constant and φ(w, 0) be the function ux(x, 0) with variables (w, s)

given in (3.2.3). Then

(i) when δ > 0 is small enough, the solution φ of (3.2.5) satisfies φs(w, s) > 0 for all

s > 0;

(ii) when δ > 0 is large enough, the solution φ of (3.2.5) satisfies φs(w, s) < 0 for all

s > 0.

Proof. ¿From Lemma 3.2.2, it suffices to prove that the initial data given by

(3.2.7) satisfy (3.2.5)2 and φs(w, 0) > 0 for w ∈ (−1, 1). It is easy to see that

φ(w, 0) = ux(x, 0) < 0 for u(x, 0) = − tanh(x/δ). Also, the limiting process w → ±1
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corresponds to x → ∓∞ and hence φ(w → ±1, 0) = 0. Straightforward computation

gives

(3.2.8)

φs(w, 0) = φt + φx
∂x

∂s
= φt − φx

ut

ux

= uxxx − u2
xx/ux − f ′′(u)u2

x − g′(u)ux − g(u)uxx/ux

= sech4
(x

δ

)

[

2

δ3
−
f ′′(u)

δ2
−

1

δ

]

.

In the above calculation, we used g(u) = u(1 − u2). ¿From (3.2.8), it is clear that

for δ > 0 small enough, φ(w, 0) > 0 holds, while for large enough δ > 0, φ(w, 0) < 0

holds. The desired statements then follow immediately from Lemma 3.2.2.

Corollary 3.2.4. Let φ(w, s) be the solution of (3.2.5) given in Lemma 3.2.3 with δ >

0 small enough. Then φ(w, s) → θ(w) < 0 as s → ∞, for w ∈ (−1, 1). Furthermore,

the function θ(w)satisfies

(3.2.9) −∞ =

∫ 1

0

1

θ(w)
dw <

∫ w

0

1

φ(w, 0)
dw <

∫ −1

0

1

φ(w, 0)
dw <

∫ −1

0

1

θ(w)
= ∞.

Proof. Lemma 3.2.3 states that this solution of (3.2.5) with intial data (3.2.7)

with δ > 0 sufficiently small satisfies φs(w, s) > 0 and hence φ(w, s) is increasing

as s increases. On the other hand, φ is also bounded from above by 0. Therefore,

the limit lims→∞ φ(w, s) =: θ(w) exists for all w ∈ [−1, 1]. To prove that θ(w) < 0

for w ∈ (−1, 1), we consider the solution φ1 of (3.2.5) with initial data (3.2.7) with

δ1 > 0 large enough. ¿From Lemma 3.2.3, 0 > φ1(w, 0) > φ1(w, s) for all s > 0

and w ∈ (−1, 1). Since the comparison principle holds for equation (3.2.5) and 0 >

φ1(w, 0) > φ(w, 0), thus,

(3.2.10) 0 > φ1(w, 0) > φ1(w, s) > φ(w, s) > φ(w, 0)

and hence 0 > φ1(w, 0) ≥ θ(w). Furthermore, the equality

∂x

∂w
=

1

ux

and inequalities (3.2.10), together with the property of (3.2.7) and hence that of

φ(w, 0) imply that
∫ 1

0

1

θ(w)
dw <

∫ w

0

1

φ(w, 0)
dw = −∞.

The other half of (3.2.9) can be proved similarly. .
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Theorem 3.2.5. If f(u) = f(−u), then the solution u(x, t) of (1.2) with initial data

(3.2.11) u(x, 0) = − tanh(x/δ),

with constant δ > 0 small enough, converges to a stationary solution of (1.2).

Proof. ¿From the definition (3.2.3) of the transformation (x, t) 7→ (u, s), one gets

(3.2.12)
∂x

∂u
=

1

ux
.

For the solution given in Corollary 3.2.4, one has

(3.2.13)
∂x

∂u
=

1

θ(u)

or equivalently

(3.2.14) lim
s→∞

(x(u, s)− x(0, s)) =

∫ u

0

1

θ(u)
du.

The integral in (3.2.14) is regular for all w ∈ (−1, 1) in view of Corollary 3.2.4. When

f(u) = f(−u), the solution of (1.2) with initial data (3.2.11) is antisymmetric about

the point x = 0 and hence x(0, s) ≡ 0. Then (3.2.14) yields

(3.2.15) x = lim
s→∞

x(u, s) = G(u).

Estimate (3.2.9) and θ(u) < 0 garrantee that for each x ∈ R, there is a u(x) ∈ (−1, 1)

satisfies (3.2.15). By definition (3.2.3), we have

u(x) = u(x(u(x), s), s) = u(x, s) + ux(η, s)(x(u(x), s)− x)

for some η between x and x(u(x), s). Since ux is bounded as indicated by (3.2.10),

taking s→ ∞ gives

lim
s→∞

u(x, s) = u(x)

for all x ∈ R.

§3.3. Asymptotic layer structures

In this subsection we use a mtached asymptotic analysis to determine the shock

and rarefaction layer profiles near aj .
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First we consider the profile around x = a2j. Introducing the stretched variable

(3.3.1) ξ =
x− a2j

ε
.

Applying the ansatz

(3.3.2) u(x, t) = ±1 + u0(ξ, t) + · · ·

subject to boundary conditions for u0(ξ, t) into (1.2), one gets

(3.3.3)
(±1 + u0(ξ, t) + · · · )t + f(±1 + u0(ξ, t) + · · · )x

= 1
ε g(±1 + u0(ξ, t) + · · · ) + ε(±1 + u0(ξ, t) + · · · )xx ,

where g(u) = u(1 − u2). By the Taylor expansion, and using g(±1) = 0, one gets

(3.3.4)
(u0(ξ, t) + · · · )t + f ′(±1)( 1

ε
∂ξu0(ξ, t) + · · · )

= 1
ε g

′(±1)(u0(ξ, t) + · · · ) +
1

ε
(u0(ξ, t) + · · · )ξξ .

The leading order balance of (3.3.4) gives

(3.3.5) ∂ξξu0 − f ′(±1)∂ξu0 + g′(±1)u0 = 0 .

This equation has two eigenvalues

(3.3.6)
λ

(1)
± = 1

2

[

f ′(±1) +
√

f ′(±1)2 − 4g′(±1)
]

,

λ
(2)
± = 1

2

[

f ′(±1) −
√

f ′(±1)2 − 4g′(±1)
]

.

First we construct the solution at x = a2j+1. If x > a2j+1, then ξ =
x−a2j+1

ε > 0.

Then u0 is monotonely decreasing and satisfies the boundary conditions

(3.3.7) u0(0, t) = 1 , u0 → 0 as ξ → ∞ .

The only possible solution of u0 subject to these conditions is

(3.3.8) u0 = e−λ
(2)
−

x−a2j+1
ε .

Similarly, for x < a2j+1, one can obtain that

(3.3.9) u0 = −eλ
(1)
−

x−a2j+1
ε .
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The profile around x = a2j can be similarly constructed and we list them here:

u0 = −e−λ
(2)
+

x−a2j
ε if x > a2j ,

u0 = −eλ
(1)
+

x−a2j
ε if x < a2j .
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