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A HYBRID SCHRÖDINGER/GAUSSIAN BEAM SOLVER FOR

QUANTUM BARRIERS AND SURFACE HOPPING

Shi Jin and Peng Qi

Department of Mathematics, University of Wisconsin
480 Lincoln Drive, Madison, WI 53706, USA

Abstract. In this paper, we propose a hybrid method coupling a Schrödinger

solver and the Gaussian beam method for the numerical simulation of quan-
tum tunneling through potential barriers or surface hopping across electronic

potential energy surfaces. The idea is to use a Schrödinger solver near poten-

tial barriers or zones where potential energy surfaces cross, and the Gaussian
beam method–which is much more efficient than a direct Schrödinger solver–

elsewhere. Buffer zones are used to convert data between the Schrödinger
solver and the Gaussian beam solver. Numerical examples show that this

method indeed captures quantum tunneling and surface hopping accurately,

with a computational cost much lower than a direct quantum solver in the
entire domain.

1. Introduction. The fundamental equation in quantum mechanics is the
Schrödinger equation,

iεψ (x, t)t = −ε
2

2
4ψ (x, t) + V (x)ψ (x, t) , (1)

ψ (x, 0) = ψ0 (x) ,

where ψ (x, t) is the wave function, V (x) the potential, and ε a small parameter,
which is typically the reduced Planck constant.

It is well known that computation at the quantum level is prohibitively expen-
sive, even for the one-body Schrödinger equation, due to the existence of the small
parameter ε which characterizes the quantum scale. The solution to the Schrödinger
equation is oscillatory with wave lengths of order O (ε). One needs O(ε) mesh sizes
to represent the wave. The time step should also be O(ε) if the wave function is
to be computed accurately, even with the best spectral method. See [2]. When the
potential is discontinuous, one is subject to even more severe mesh size and time
constraints. See [13].

The Gaussian beam method (GB) [6, 9, 10, 28, 30] is an asymptotic method to
solve the Schrödinger equation, allowing a computational mesh of size O(

√
ε), which

is much less expensive than a direct Schrödinger solver. Although more expensive
than the geometric optics approach based on classical mechanics, GB offers accurate
solutions of density at caustics, as well as phase information. It has drawn many
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recent activities, see for examples [17, 23, 24, 25, 34]. GB can also be extended to
handle interface/barriers, see [40, 37, 41, 39]. For a recent comprehensive survey of
semi-classical methods for the Schrödinger equation, see [12].

In this paper, we are interested in computing two quantum tunneling phenomena:
1) tunneling through a potential barrier; and 2) surface hopping between electronic
potential energy surfaces. We are interested in a general method that can be applied
to different barriers or potential energy surfaces. For problem 1) there have been
semi-classical methods developed using quantum scattering information, see [4, 13,
14, 15]. In the latter case, the surface hopping method, pioneered by Tully, [32], has
seen flourishing development [33, 38, 31, 7, 20, 21, 22, 11, 16]. The Landau-Zener
formula [19, 43] that provides the transition probability between potential energy
surfaces is often used in a surface hopping method. The hybrid method proposed in
this paper, that hybridizes a Schrödinger solver near the barriers or hopping zones
with GB elsewhere, allows one to treat general barriers or hopping surfaces, and
capture the phase information accurately both inside and outside the barriers or
surface hopping areas.

In a relevant work, a hybrid method combining the finite difference method and
GB for high frequency wave propagations was developed in [36]. In this method,
the whole space is divided into areas according to whether the wave speed changes
fast or not. The wave equation is first written into a hyperbolic system. In the area
where the wave speed varies slowly, the system is diagonalized and GB is used for the
decoupled system. In the area where the wave speed changes fast, GB is not proper.
The Gaussian beams are then converted into a wave function on a local mesh and
evolved using a local finite difference method. When the wave finally leaves the fast
speed changing area, the wave function is turned back into Gaussian beams using
the method developed in [35]. This hybrid method reduces the computational cost
for this multi-scale problem.

We adopt the same framework here, with several distinct features and different
applications. First, we use a fixed mesh, rather than a local moving mesh as in [36],
to solve the Schrödinger equation (using the time-splitting spectral method [2]).
We then use two buffer zones around each of the barriers or surface hopping areas
to convert the data from Schrödinger to Gaussian beams, and vice versa. This is
important since the conversion goes only one way (namely once, say the Schrödinger
data is converted into Gaussian beams, it will not be converted back to Schrödinger
in the same buffer zone). It is to the best of our knowledge that this is the first
hybrid method for the surface hopping problems.

The paper is organized as follows. In Section 2, we present a system of Schrödinger
equations for surface hopping that arises in the Born-Oppenheimer approximation
[3]. In Section 3, we propose our hybrid algorithm for the Schrödinger equations
with discontinuous potentials in 1d and 2d. In Section 4, we propose the algorithm
for the Schrödinger systems describing the surface hopping phenomenon in 1d and
2d. The numerical experiments are given in Section 5. The paper is concluded in
Section 6.

2. A system of Schrödinger equations arising from the Born-Oppenheimer
approximation. When considering the transition of the wave functions between
different potential energy levels, a system of coupled Schrödinger equations arise
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in the Born-Oppenheimer approximation [3]. If we only consider the transition be-
tween two energy levels, the so-called diabatic representation of the system is of the
form [1]

iε

(
ϕ1 (x, t)
ϕ2 (x, t)

)
t

= −ε
2

2
4
(
ϕ1 (x, t)
ϕ2 (x, t)

)
+

(
V11 (x) V12 (x)
V21 (x) V22 (x)

)(
ϕ1 (x, t)
ϕ2 (x, t)

)
, (2)(

ϕ1 (x, 0)
ϕ2 (x, 0)

)
=

(
ϕ1,0 (x)
ϕ2,0 (x)

)
,

where ϕ1,2 (x, t) are the wave functions, V (x) = (Vij (x)), i, j = 1, 2, is the sym-
metric potential matrix, and ε, a dimensionless small parameter, is the square root
of the ratio of the mass of the electrons to that of the nuclei. To obtain the wave
functions corresponding to the energy levels, one needs to diagonalize the poten-
tial matrix. Suppose U (x) = (u1 (x) , u2 (x)), where u1 (x) and u2 (x) are the two
orthonormal eigenvectors of V (x), then V (x) can be diagonalized as(

E1 (x) 0
0 E2 (x)

)
= U−1 (x)

(
V11 (x) V12 (x)
V21 (x) V22 (x)

)
U (x) .

Here E1 (x) and E2 (x) are the two potential energies corresponding to two energy
levels.

Using the transformation(
ϕ1 (x, t)
ϕ2 (x, t)

)
= U (x)

(
ψ1 (x, t)
ψ2 (x, t)

)
,

(2) can be turned into

iε

(
ψ1 (x, t)
ψ2 (x, t)

)
t

= −ε
2

2
4
(
ψ1 (x, t)
ψ2 (x, t)

)
+

(
E1 (x) 0

0 E2 (x)

)(
ψ1 (x, t)
ψ2 (x, t)

)
+D, (3)

where D is given by

D = −ε
2

2
U−1 (x)∇U (x) · ∇

(
ψ1 (x, t)
ψ2 (x, t)

)
−ε

2

2
U−1 (x)4U (x)

(
ψ1 (x, t)
ψ2 (x, t)

)
.

Note that ϕ1,2 (x, t) do not correspond to wave functions on each of the energy
levels E1,2 (x), but ψ1,2 (x, t) do. We generally assume U, U−1, ψ1,2 = O (1), and
∇ψ1,2 = O (1/ε) (due to the oscillatory nature of ψ1,2). So D is small (thus ignored)
compared to the other terms in (3) as long as ∇U (x) and 4U (x) are not large,
e.g., if their sizes are o (1/ε) and o

(
1/ε2

)
respectively for actually used value of

ε. This is considered to be true as long as E1,2 (x) are not close to each other.
One way to estimate ∇U (x) is to estimate the change of u1 (x) and u2 (x) with
respect to a small change of x [27]. An easy way to see that U−1 (x)∇U (x) is
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bounded for smooth V (x) and well separated potential surfaces Ej(x), is to notice

that U−1 (x) = (u1 (x) , u2 (x))
T

and ([5])

uTk (x)∇uj (x) =
uTk (x)∇V (x)uj (x)

Ej (x)− Ek (x)
, j, k = 1, 2, j 6= k.

In the case where D is negligible, one can obtain two decoupled Schrödinger equa-
tions and the semi-classical limits can be taken [8]. However, when the values of
E1,2 (x) are close, ∇U (x) may become large and so does D. In that case, there
can be transitions of significant size between ψ1 and ψ2. This is the so-called non-
adiabatic process. For special potential surfaces, the Landau-Zener formula [19, 43]
can be used to determine the transition probability, which is the basis of many sur-
face hopping methods. If Vij , i, j = 1, 2, is discontinuous, then ∇U (x) and 4U (x)
become infinite and again transition generally happens at the discontinuities of
Vij , i, j = 1, 2.

In (3), when D is negligible, one can use GB for the decoupled Schrödinger
equations. However, as we analyzed previously, D can be large in some situations.
Then one has to go back to (2). Notice that GB can not be used for (2), since the
non-diagonal terms in the potential matrix will prevent the Gaussian beams from
keeping their shapes. Therefore, it is natural to seek a hybrid method consisting of
a method solving (2) directly in the hopping zone and GB away from it.

3. The algorithm for the 1d/2d Schrödinger equation with discontinuous
potentials. In this section, we will propose our algorithm for the Schrödinger equa-
tion with discontinuous potentials in the 1d and 2d cases. Notice that our method
can be naturally generalized for higher dimensional problems. In Subsection 3.1, we
will first review the time-splitting spectral method (TSSP) and GB. In Subsection
3.2, we will propose our hybrid method.

3.1. The time-splitting spectral method and the Gaussian beam method.

3.1.1. The time-splitting spectral method. To solve the Schrödinger equation (1), we
use the time-splitting spectral method. The algorithm is as follows.

For (1), an operator splitting method is used to obtain two equations

iεψ (x, t)t = −ε
2

2
4ψ (x, t) , (4)

iεψ (x, t)t = V (x)ψ (x, t) , (5)

which will be solved alternatively at every time step. For (4), the spectral method
is used spatially and exact time integration is used; for (5), the ODE can be solved
exactly. More details are referred to [2]. If the Strang splitting is used, the error
caused by the splitting in time is O

(
∆t2TSSP

)
, where ∆tTSSP is the time step for TSSP.

TSSP has the spectral accuracy in space. In practice, one needs to set ∆tTSSP and
4x to be of order O (ε).

Notice that TSSP is just one of the numerical methods for the Schrödinger equa-
tion. Other numerical methods can also be used here as alternatives.

3.1.2. The Gaussian beam method. A more efficient asymptotic method to solve the
Schrödinger equation (1) is GB, which decomposes ψ (x, t) into Gaussian beams,
i.e.

ψ (x, t) =
∑

Gk (x, t) , (6)
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where

Gk (x, t) = Ake
i
ε (pk·(x−yk)+ 1

2 (x−yk)TMk(x−yk)). (7)

Here yk and pk are real vectors representing the center and the momentum of the
Gaussian beam. Ak is a complex number. Mk is a complex symmetric matrix
whose imaginary part is positive definite. The parameters of each Gk (x, t) evolve
according to the ODE system [6, 9, 10, 28, 30]

dyk
dt

= pk,

dpk
dt

= −∇xV (yk) ,

dMk

dt
= −M2

k −∇2
xV (yk) , (8)

dSk
dt

=
1

2
|pk|2 − V (yk) ,

dAk
dt

= −1

2
(Tr (Mk))Ak.

We are going to use GB in the Lagrangian formulation, namely, solving (8) for
each k with yk−yk−1 = O (

√
ε) , ∀k, and then superimpose all the beams according

to (6). The time step ∆tGB is set to be O (1).

3.2. The hybrid method.

3.2.1. Main algorithm. We suppose that in (1) the potential V (x) only has isolated
singularities, i.e., discontinuities in the eigenvectors, in the domain. Without loss
of generality, assume there is one singularity at the origin in domain C0. For the
1d case, we assume C0 is [d1, d2] and for the 2d case [d1, d2]× [d1, d2]. Around C0,
we solve the Schrödinger equation by TSSP. When the wave goes out of that area,
we turn it into Gaussian beams.

DSch

DGB

Buffer I Buffer IBuffer II Buffer II

a1 d2b1 c2c1 d1 b2 a2

Figure 1. Illustration of the hybrid method in 1d.

Decompose the solution ψ (x, t) into two parts
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ψ (x, t) = F (x, t) +G (x, t) + tol, (9)

where ’tol’ is the numerical tolerance.

a2

c1

d1

d2

c2

b2

a1

b1

DSch

DGB

DGB

a2c1 d1 d2 c2 b2a1 b1

DGB

DSch

Buffer II

Buffer I

C0

Figure 2. Illustration of the hybrid method in 2d.

In (9), F (x, t) is the part of ψ (x, t) that will be computed by TSSP, and has
a compact support with the support set [a1, a2] in 1d or [a1, a2] × [a1, a2] in 2d,
which will be referred to as the domain of the Schrödinger solver (DSch).
G (x, t) =

∑
Gk (x, t) is the part of ψ (x, t) that will be computed by GB.

Gk (x, t) are Gaussian beams, which are of the form (7). The arguments of the
Gaussian beams are Arg (Gk (x, t)) = [yk, pk, Ak, Sk, Mk].
G (x, t) has the support set (−∞, d1)∪(d2, +∞) in 1d or Ω\ [d1, d2]× [d1, d2] in

2d, which will be referred to as the domain of the Gaussian beam method (DGB).
Rigorously speaking, every Gaussian beam has the support on the whole space. Here
we abuse the term and mean the set where 1−O (ε) of the total mass is in. For exam-
ple, for the 1d case, using the standard normal table one can calculate that 1− ε of

the L2-norm of the wave function is within
[
yk − α(ε)

√
ε/2Mk, yk + α(ε)

√
ε/2Mk

]
,

where α(ε) = 2 when ε = 0.05 and α(ε) = 3 when ε = 0.003. For the 2d case, one
needs to diagonalize the covariance matrix first and then uses the standard normal
table to find the support.

’tol’ is the difference between ψ (x, t) and F (x, t) +G (x, t), which is defined at
the beginning of the computation and does not depend on the small parameter ε.

We use a mesh to solve the Schrödinger equation on DSch, i.e., xj = j∆x (1d)
or xjk = (j, k) · ∆x (2d). For GB, we use the Lagrangian formulation so there is
no mesh on DGB for G (x, t). We illustrate the hybridization in Figure 1 (1d) and
Figure 2 (2d).

The Gaussian beams with centers in Buffer I will be turned into wave functions
with pointwise-values on the mesh and added to F (x, t). The part of F (x, t) that
enters Buffer II will be turned into Gaussian beams.

We discretize the time as tn = n∆t. Notice ∆t is the time step between two
steps of conversions in Buffer II (Sch2GB). It is different from ∆tTSSP and ∆tGB,
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the time step for TSSP and that for solving the ODEs in GB introduced previously.
∆t is larger than ∆tTSSP and ∆tGB. So as to reduce the number of conversion,
yet it should be small enough so that no wave from the inner part of DSch will
travel through Buffer II during ∆t without being converted to Gaussian beams. A
condition on ∆t is

∆t ≤ min
i=1,2,x∈Ω

|bi − ai|
|u (x)|

, (10)

where Ω is the computational domain and the velocity u (x) is defined as

u (x) =
ε Im (ψ∗∇ψ)

|ψ|2
, (11)

where ψ∗ is the complex conjugate of ψ.

The main algorithm:

1. Evolution. In each time period [tn, tn+1], we compute the evolutions of
F (x, t) on DSch by TSSP, and G (x, t) by GB on DGB, i.e., we obtain
F (xi, tn+1) and Arg (Gk (tn+1)).

2. Schrödinger to GB. In Buffer II, apply Alg. Sch2GB.
3. GB to Schrödinger. In Buffer I, apply Alg. GB2Sch.

The algorithms Alg. Sch2GB and Alg. GB2Sch standing for the conversions be-
tween F (x, t) and G (x, t), will be explained in the next subsections.

Remark 1. The separation of Buffer I and Buffer II is necessary. If we do not do
so and, instead, have only one buffer zone to convert the wave from one form to the
other, then at every time step, right after F (x, t) is partially turned to G (x, t) at
step 2, that part of G (x, t) will be added back into F (x, t) at step 3. At the next
time step, this wasteful process will repeat. However, by separating Buffer I from
Buffer II, after every conversion, the wave will not be immediately turned back into
its previous form.

The widths of the buffer zones are generally O (
√
ε), the order of the width of a

Gaussian beam, since we want to extract Gaussian beams from and put them back
into those buffer zones. The second step in Alg. GB2Sch, which will be explained
in the following, is to make sure the supports of the Gaussian beams being put into
the buffer zones thinner than the widths of the buffer zones. Also proposed in the
following, the localization step in Alg. Sch2GB and the restriction of |ImM | in Alg.
GBR, e.g. |ImM | ≤ 1/

√
ε, will help to make sure the extracted Gaussian beams

are not wider than the widths of the buffer zones.

Remark 2. The time step ∆t here determines how often the program converts
between F (x, t) and G (x, t). It has little to do with the time steps used by TSSP
and GB, which are generally much smaller.

3.2.2. Algorithm GB2Sch. The algorithm GB2Sch is applied to Gk (x, t) for all k.

Algorithm GB2Sch

1. Find the Gaussian beams to be converted. For each of the Gaussian beams,
Gk (x, t), check its parameter yk and pk. Select the Gaussian beams whose
yk are in Buffer I and yk · pk < 0 (going towards the origin).

2. Check the support of the selected Gaussian beams in the first step. If the
support of Gk (x, t) is contained in [b1, b2] (1d) or [b1, b2]× [b1, b2] (2d), add
Gk (x, t) to F (x, t). If not, we need to decompose Gk (x, t) into smaller
Gaussian beams and only add those whose supports are in [b1, b2] (1d) or
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[b1, b2]× [b1, b2] (2d) to F (x, t). There are different ways for the decomposi-
tion, e.g. [10, 29, 34, 35, 36, 42].

Remark 3. In the first step, if we do not assume the center of C0 is the origin, but
any point xc, we should change the condition to (yk − xc) · pk < 0.

Remark 4. For the second step, we check the support of the Gaussian beams
Gk (x, t) the same way as we define the support of them in Subsection 3.2.1.

3.2.3. Algorithm Sch2GB. We apply Alg. Sch2GB in Buffer II, i.e., [a1, b1] and
[b2, a2] in 1d or rectangles, i.e., [b2, a2]× [a1, a2], [a1, b1]× [a1, a2], [a1, a2]× [b2, a2]
and [a1, a2] × [a1, b1] in 2d. For the sake of simplicity, in the following we will
describe the algorithm on [b2, a2] or [b2, a2]× [a1, a2].

The following constants are defined at the beginning. They will be used in the
algorithm.
xcheck: b2 < xcheck < a2.
Vthrhd: A threshold for the probability density defined at the beginning of the

program.
Ethrhd: A threshold for the probability density defined at the beginning of the

program, a small number.
η: A small percentage number.

Algorithm Sch2GB:

1. Determine whether to start the conversion.
• In the 1d case, on [b2, a2] check if |F (xcheck, t)|2 > Vthrhd. Or in the 2d

case, on [b2, a2]× [a1, a2] check if max
x2

{
|F ((xcheck, x2) , t)|2

}
> Vthrhd.

– If it is not true, then this algorithm ends and go back to the main
algorithm.

– If it is true, then continue to step 2.
2. Localize the function in Buffer II and obtain the function to be converted.

• FL (x, t) = F (x, t) · L (x), where L (x) is a smooth damping function
with a support set on [b2, a2] or [b2, a2]× [a1, a2].

• Frest (x, t) = F (x, t)− FL (x, t) ;
3. Extract Gaussian beams from FL (x, t).

• Tot =
∫
|FL (x, t)|2 dx;

• k = 0;
• While the probability density of

∫
|FL (x, t)|2 dx > Ethrhd and∫

|FL (x, t)|2 dx > η · Tot, repeat the following.
– k = k + 1;
– Invoke Alg. GBR to extract a Gaussian beamGk (x, t) from FL (x, t).
– Ftemp (x, t) = FL (x, t)−Gk (x, t) ;
– FL (x, t) = Ftemp (x, t) · L (x) ; (Localizing)
– Frest (x, t) = Frest (x, t) + Ftemp (x, t)− FL (x, t) ;

4. Add the remaining function back.
• F (x, t) = F (x, t) + Frest (x, t)

In the above, Alg. GBR is the algorithm to turn pointwise-valued wave functions
into Gaussian beams. It will be explained in the next subsection.

Remark 5. Step 1 is necessary for improving the performance, since Alg. GBR is
costly and we do not want to use it for every time step. We use it only when the
wave amplitude reaches the threshold Vthrhd at xcheck. In the numerical examples we
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used xcheck = a2+3b2
4 , a2+b2

2 and 5a2+3b2
8 . It shows that the algorithm is not sensitive

to the position of xcheck as long as it is not too close to a2. A too large Vthrhd may
lead to an error since waves with small amplitudes may not trigger the program.
However, too small Vthrhd will cause the program to be invoked for unnecessarily
too many times and too many Gaussian beams to be produced.

Remark 6. The use of the smooth damping function L (x) in steps 3 and 4 is impor-
tant. Because if one, instead, uses FL (x, t) = F (x, t)χBII

(x), where χBII
(x) = 1

in Buffer II and χBII
(x) = 0 elsewhere, the amplitude of FL (x, t) becomes discon-

tinuous at the inner boundary of Buffer II. (There is no discontinuity at the outer
boundary of Buffer II, since the wave is coming from C0 and it is always zero at the
outer boundary.) As a consequence, Alg. GBR, explained below, will produce many
Gaussian beams, thus become very inefficient. The 1d localizing function L (x) on
[a, b] is defined as

L (x) = L̂

(
x

b− a

)
, a ≤ x ≤ b,

where

L̂ (x) =

(
tanh (20 (x− q)) + 1

2

)(
tanh (−20 (x− (1− q))) + 1

2

)
,

0 ≤ x ≤ 1, (12)

with 0 < q < 0.5.
For the 2d case, we use a similar one on [a, b]× [c, d]

L (x1, x2) = L̂

(
x1

b− a
,
x2

d− c

)
,

(x1, x2) ∈ [a, b]× [c, d] ,

where

L̂ (x1, x2) =
∏
k=1,2

(
tanh (20 (xk − q)) + 1

2

)(
tanh (−20 (xk − (1− q))) + 1

2

)
,

0 ≤ x1,2 ≤ 1. (13)

Remark 7. At Step 3, we check
∫
|FL (x, t)|2 dx > Ethrhd and

∫
|FL (x, t)|2 dx >

η ·Tot so that the program stops if the part of wave that has not been turned into
Gaussian beams is relatively and absolutely small. Similar to Vthrhd, a too large
Ethrhd and η will cause an error larger than tolerance. A too small Ethrhd and η will
cause Alg. GBR to be invoked for too many times which will produce too many
Gaussian beams with small amplitudes.

3.2.4. Algorithm GBR. Alg. GBR, standing for Gaussian beam recovering, extracts
the parameters of Gaussian beams from an oscillatory function, F (x), on a discrete
mesh. We use the one in [37] with minor modifications. We briefly review the
algorithm we use here. This is the version for both 1d and 2d problems.

Define the energy function and the energy norm as

E (u (x)) = (V (x)− Vmin) |u (x)|2 +
1

2
|∇u (x)|2 , (14)

and

‖u (x)‖2E =

∫
(V (x)− Vmin) |u (x)|2 +

1

2
|∇u (x)|2 dx, (15)
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correspondingly, where Vmin = min
x
{V (x)} . The related inner product is

〈F (x) , G (x)〉E =

∫
(V (x)− Vmin)F (x)G (x)

∗
+

1

2
∇F (x) · ∇G (x)

∗
dx.

Algorithm GBR:

1. Estimate Gaussian beam parameters
• Estimate the Gaussian beam center

– Let ỹ = arg max
y

{E (u (y))} .

• Estimate the propagation direction

– Let G (x) = e−
1
2k|x−y|

2

– Let p̃ = arg max
p

{|F [u (x)G (x)] (p)|} with the restriction
√
ε ≤

|p̃| ≤
√

1/ε, where F is the Fourier transform.
• Estimate ImM

– Let
[
ImM̃, ã

]
= arg max

ImM,a

∥∥∥ae− 1
2ε ImM |x−ỹ|2/2 − |u (x)|

∥∥∥
E

with ImM =

I, the identity matrix, and a = |u (x)| as the initial parameters and
with the restrictions:
∗ ImM̃ is symmetric and positive definite

∗
∣∣∣ImM̃ ∣∣∣ ≤ 1/

√
ε

• Estimate ReM

– ReM̃ = arg max
ReM

∥∥∥∥u− 〈u,G̃〉E‖G̃‖2
E

G̃

∥∥∥∥
E

with ReM = I as the initial param-

eter and with the restriction that ReM̃ is symmetric
2. Minimize the difference between the Gaussian beam and u (x) in the energy

norm using ỹ, p̃, and M̃ as the initial Gaussian beam parameters.

• Let G̃(x, t) = e
i
ε (p̃·(x−ỹ)+ 1

2 (x−ỹ)T M̃(x−ỹ))

• Let [y, p, M ] = arg max
y,p,M

∥∥∥∥u− 〈u,G̃〉E‖G̃‖2
E

G̃

∥∥∥∥
E

with restrictions:

– ImM̃ is symmetric and positive definite

–
∣∣∣ImM̃ ∣∣∣ ≤ 1/

√
ε

• Let G(x, t) = e
i
ε (p·(x−y)+ 1

2 (x−y)T M̃(x−y))

• Let A =
〈u,G〉E
‖G‖2E

Remark 8. Comparing to the original algorithm in [37], we have two more steps in
step 1, which are to estimate the imaginary and real parts of M . In [37], they use
ImM = Id and ReM = 0 as the initial guesses for the next nonlinear minimization
step.

Notice that ImM and |A| determine the profile of the Gaussian beam. The
additional step for ImM will give a better initial guess of ImM for the later nonlinear
minimization. In practice, we find the step to estimate ReM also helpful to reduce
the number of Gaussian beams. They are both nonlinear minimizations for fewer
parameters, so they converge faster. More details about the nonlinear minimization
with constraints are discussed in [37].

We only use the additional steps for the 2d case, since in the 1d case, the original
algorithm in [37] is already very good. A simple comparison of the numbers of the
Gaussian beams produced by the two versions of the algorithm is in Section 5.1.
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4. The algorithm for 1d/2d system of Schrödinger equations for surface
hopping. For the system of the Schrödinger equations (2), we can not directly use
GB, since the coupling terms will prevent the Gaussian beams from maintaining
their Gaussian shapes.

In (3), when D is small, one can ignore it, then the remaining part of (3) is a
decoupled system of equations, which can be used to approximate (2). (This is the
essence of the Born-Oppenheimer approximation [3].) We then apply the Gaussian
beam method for ψ1,2, respectively.

We will assume that D is large only around the origin, namely in C0. Then one
can use the algorithm in the previous section with some modifications.

We write the solutions to the systems (2) and (3) into

ϕ1 (x, t) = F1 (x, t) + G̃1 (x, t) + tol1,

ϕ2 (x, t) = F2 (x, t) + G̃2 (x, t) + tol2,

and

ψ1 (x, t) = F̃1 (x, t) +G1 (x, t) + tol3,

ψ2 (x, t) = F̃2 (x, t) +G2 (x, t) + tol4,

where

(
F1 (x, t)
F2 (x, t)

)
= U

(
F̃1 (x, t)

F̃2 (x, t)

)
,

and (
G̃1 (x, t)

G̃2 (x, t)

)
= U

(
G1 (x, t)
G2 (x, t)

)
.

We will calculate F1,2 using TSSP on DSch, and G1,2 using GB on DGB. In Buffer

I, we need to add one step, i.e., turn {G1,k, G2,k} into
{
G̃1,k, G̃2,k

}
and then add

the latter ones to F1,2 using an algorithm similar to Alg. GB2Sch. Correspondingly,
in Buffer II, we do the checking (Alg. Sch2GB step 1) for {F1, F2}. If one of them

triggers the process, then we turn them into
{
F̃1, F̃2

}
and extract Gaussian beams

from
{
F̃1, F̃2

}
.

Remark 9. One might extend the method in [36] to surface hopping problems.
One can see that there is no essential difference in transforming the systems of
equations from one to the other and dividing the whole space according to whether
the diagonalized system is a good approximation to the original one. The main
difference between our method and theirs is that we use a fixed mesh around the
hopping area of the system instead of local meshes moving with the wave. The
advantage of their method using a moving mesh is that, when the wave is away
from the hopping area, it evolves as Gaussian beams and the computational cost is
cheap.

However, there are two obvious situations when their method does not perform
well. First, when many Gaussian beams are entering the hopping area, one needs
to make local meshes for each of the Gaussian beams and evolve each of them
separately. Usually, for an initial wave of width O (1), one needs to decompose it
into O (1/

√
ε) (1d) or O (1/ε) (2d) Gaussian beams. Then one may need to solve



1108 SHI JIN AND PENG QI

O (1/
√
ε) or O (1/ε) systems of equations later. Even if at the beginning there is

only one Gaussian beam, it may split into many after passing through the hopping
area. Second, it is relatively hard to estimate the time when the wave in the hopping
area will go out, especially when the potential in the hopping area is complicated.
Third, because one converts all the wave from the local mesh to Gaussian beams
simultaneously, one needs to wait until all the waves go out of the hopping area. In
some situations, the domain of the local mesh can be very large, e.g., part of the
wave stays in the hopping area for a long time while other parts go away very soon
at a fast speed.

Our method with a fixed mesh does not have the previous drawbacks. For the
first issue, when the wave in the form of the Gaussian beams enters the hopping
area, they automatically merge and we only need to use TSSP on one mesh. One
does not worry about the second and the third issues either, since the wave will
turn from one form to the other automatically at the boundary of the hopping area.

Unlike the method in [36], our method uses TSSP in the hopping area all the
time even when there is no wave in that area. Nevertheless, the computational
cost of our method is fixed. For example, for the surface hopping problems where
the eigenvalues of the potential matrix are close to each other at one point, we use
a rectangle with width of O (

√
ε) to enclose it. This will result in O

(
ε−d/2

)
grid

points, which is of the same order of the number of the Gaussian beams obtained
after the initial value decomposition for waves with width O (1). The time step for
TSSP is O (ε) and it is O (1) for GB. Finally, our method is cheaper than solely
using TSSP on the whole domain, yet able to capture the hopping phenomena while
the original GB can not.

The error of the hybrid method, in terms of ε, are from four places: the
Schrödinger solver for continuous potential (O ((∆x/ε)

m
/∆t+ ∆t/ε) for TSSP with

first order time splitting, m-order smoothness of the wave function and ∆x = ∆t =
O (ε), refer to [2]), the Gaussian beam method (O (

√
ε)), ignoring D in (3) and

Alg. Sch2GB. The term D in (3) is considered as O (ε/d), where d is the size of the
energy gap. In our numerical experiments, we only ignore D where d is larger than
O (
√
ε) for fixed ε, i.e., away from the hopping area. Thus, the error by ignoring

D is O (
√
ε). For Alg. Sch2GB, the error is due to that some of the wave will leak

through the buffer zone without triggering Alg. GBR. It can be made smaller by
reducing Vthrhd, Ethrhd and η in Alg. Sch3GB, which, however, may increase the
computational cost as discussed in Remarks 5 and 7.

5. Numerical experiments.

5.1. Comparison of the two versions of Algorithm GBR. In Section 3.2.3 we
proposed our modified Alg. GBR. In a 2d example for comparison with the original
Alg. GBR by [37] (denoted by TET), we set the domain to be [−2, 2] × [−2, 2],
and ∆x1 = ∆x2 = 1/75.

We test the algorithms for three different functions to be turned into Gaussian
beams. We denote the Gaussian beams with [yk, pk, Ak, Sk, Mk] as parameters
by Gk, and set y1 = [−0.6, 0.1], y2 = [−0.4, 0.1], y3 = [−0.8, 0.1], pk = [1.5, 1],

Ak = i, Sk = 0, and Mk =

(
1 + 2i 0

0 i

)
, k = 1, 2, 3.

In case 1, u (x) = G1 (x); in case 2, u (x) = G1 (x) + G2 (x); in case 3, u (x) =
G1 (x) +G2 (x) +G3 (x).
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We use “fminsearch()” in Matlab for the nonlinear minimization where we set
the maximum number of iteration as 100. In the enery function and the energy
norm defined in (14) and (15), we take V (x) = 0. The program stops when 99% of
the energy norm of u (x) is turned into Gaussian beams.

The comparison of the two algorithms in terms of the time cost and the number of
Gaussian beams produced is in Table 1. From the table one can see that our modified
algorithm generates less Gaussian beams while the time costs are comparable to
TET in those cases. However, since it is hard to analyze any nonlinear minimization
process and there are many other factors involved, we can not conclude which
algorithm is definitely better than the other in general.

time cost number of GBs
TET modified TET modified

case 1 37s 23s 4 1
case 2 113s 103s 11 5
case 3 109s 130s 12 7

Table 1. Comparison of the original and modified algorithms.

5.2. Example 1: The Schrödinger equation with a potential barrier. The
first example to test our hybrid method is to solve (1) with a quantum barrier

V (x) =

{
x2, x < −0.005 or x > 0.005,

x2 + 1, −0.005 < x < 0.005,

with the initial value ψ0 (x) = A0e
i
ε (S0+p0(x−y0)+ 1

2M0x
2), where [y0, p0, A0, S0, M0]

= [−0.2, 1, 1, 0, 10i].
We set ε = 1/200. For the hybrid method, DSch is set to be [−0.8, 0.8], ∆t =

0.01, ∆tTSSP = 1/20000, and ∆x = 1/5120. ∆tGB is chosen by “ode45()” in Matlab.
We use the result by TSSP with ∆tTSSP = 1/20000 and ∆x = 1/5120 for the whole
domain [−1.6, 1.6] as the reference. The small time and space steps are due to the
discontinuity in the potential. We set

[a1, b1, c1, d1, d2, c2, b2, a2] = [−0.8, −0.4, −0.3, −0.1, 0.1, 0.3, 0.4, 0.8]

and xcheck = 0.5. q in (12) is set to be 0.2.
The results using the hybrid method and TSSP are shown in Fig. 3. The first

picture is the initial wave which will move to the right. The second picture shows
that when the wave reaches the potential barrier, part of it transmits and the other
part is reflected. The third picture is drawn at t = 0.8, when the transmitted
and reflected waves are at the boundary of DSch and they are being turned into
Gaussian beams. However, the summation of F (x, t) and G (x, t) is always a good
approximation of ψ (x, t). In the fourth picture, the two waves return because they
can not go over the quadratic potential. In the fifth picture, the two waves go back
toward the potential barrier at the same time and they are turned back to pointwise
valued functions. In the last picture, after the two waves hit the potential barrier,
they separate and move outward again.
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Figure 3. Example 1: The results using the hybrid method and
TSSP. For each function, we only draw its real part. The imaginary
part looks similar. In each picture, the upper most one is the result
by TSSP on DSch, i.e. F (x, t). The second one is G (x, t). The
next is F (x, t) + G (x, t). The fourth is the solution by TSSP.
We consider it as the reference solution, ψ (x, t). The fifth is the
difference between ψ (x, t) and (F (x, t) +G (x, t)). The curve on
the bottom shows the shape of the potential.

Define the relative error as

error(t) =
‖ψ (x, t)− (F (x, t) +G (x, t))‖2

‖ψ (x, 0)‖2
.

To demonstrate how the factors, Vthrhd, Ethrhd, and η, in Alg. Sch2GB affect the
performance of the computation, we choose three different sets of numbers (Table
2) and compare the relative errors and the numbers of Gaussian beams generated.
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Vthrhd Ethrhd η

case 1 0.1 0.01 0.01
case 2 0.075 0.0075 0.0075
case 3 0.05 0.005 0.005

Table 2. Different control parameters, Vthrhd, Ethrhd, and η for comparison.

Fig. 4 is the relative error of the results and the total number of Gaussian beams
for the hybrid method with different Vthrhd, Ethrhd, and η as given in Table 2. Notice
that around t = 2.6, when almost all the Gaussian beams have entered Buffer I,
the total number of Gaussian beams is very small. We can see the trend from Fig.
4 that smaller values of Vthrhd, Ethrhd, and η generally result in smaller errors but
larger numbers of Gaussian beams. In practice, we need to find a good balance of
them.
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Figure 4. Example 1: The relative errors (left) and the numbers
of Gaussian Beams (right) of the hybrid method for different control
parameters in Table 2.

We can also test the stability of the algorithm with respect to the initial value.
We use

ψδ0 (x) = A0e
i
ε (S0+p0(x−y0)+ 1

2M0x
2) + δ sin (x) e−

i
2εM0(x−0.01)2

with parameters [y0, p0, A0, S0, M0] = [−0.2, 1, 1, 0, 10i] and let δ = 1, 1/2,
1/4 · · · 1/32. The error, defined as

errorδl2 (t) =

∥∥ψδ (x, t)− ψ0 (x, t)
∥∥

2

‖ψ0 (x, 0)‖2
is in Table 3. We can see the errors decay with decaying δ. Other numerical
experiments also suggest the stability of the algorithm with respect to the initial
value.

δ 1 1/2 1/4
errorδl2 (2) 1.9× 10−1 9.7× 10−2 5.3× 10−2

δ 1/8 1/16 1/32
errorδl2 (2) 4.9× 10−2 2.3× 10−2 1.4× 10−2

Table 3. errorδl2 (2) for different δ.
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5.3. Example 2: The Schrödinger system - 1d surface hopping problem
1. We now solve the system (2) with

V (x) =

(
|x| δ
δ − |x|

)
,

where δ = 0.05. The initial value is(
ϕ1,0 (x)
ϕ2,0 (x)

)
= U (x)

(
ψ1,0 (x)
ψ2,0 (x)

)
with ψ1,0 (x) = A0e

i
ε (S0+p0(x−y0)+ 1

2M0x
2), where

[y0, p0, A0, S0, M0] = [−1, 0.8, 0.3, 0, 4i] ,

and ψ2,0 (x) = 0.
We set ε = 1/100. For the hybrid method, DSch is set to be [−1.4, 1.4], ∆t =

0.01, ∆tTSSP = 0.001, and ∆x = 1/2048. ∆tGB is chosen by “ode45()” in Matlab.
We use the result by TSSP with ∆tTSSP = 0.001 and ∆x = 1/2048 for the whole
domain [−2, 2] as the reference, and set

[a1, b1, c1, d1, d2, c2, b2, a2] = [−1.4, −1, −0.8, −0.6, 0.6, 0.8, 1, 1.4] ,

xcheck = 1.2 and Vthrhd = Ethrhd = η = 0.01. q in (12) is set to be 0.2.
The results are shown in Fig.5. Now there are two sets of curves for ϕ1,2, re-

spectively. The first picture is the initial wave which will move to the right. The
second picture in the first row shows that after the wave passes the hopping area,
where the energy gap is smallest, part of it hops to the other energy level. The
third and fourth pictures show that the waves on the two energy levels are turned
into Gaussian beams and after that the upper one is turned back into the pointwise-
valued function since it is reflected. The second hopping phenomenon can be seen
in the last two pictures and our hybrid method obtains a good approximation to
the reference solution.

The relative errors defined by

error1,2(t) =

∥∥∥ψ1,2 (x, t)−
(
F̃1,2 (x, t) +G1,2 (x, t)

)∥∥∥
2

‖ψ1 (x, 0)‖2 + ‖ψ2 (x, 0)‖2
(16)

are shown in Fig. 6.
Since the potential has no discontinuity and the solutions on the two levels are

very close to Gaussian beams, one can see in Fig.6 that the numbers of Gaussian
beams produced are small.

5.4. Example 3: Schrödinger equation system - 1d surface hopping prob-
lem 2. We now solve the system (2) with

V (x) =

(
x2 δ
δ −x2

)
,

where δ = 0.01.
The initial value is (

ϕ1,0 (x)
ϕ2,0 (x)

)
= U (x)

(
ψ1,0 (x)
ψ2,0 (x)

)
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Figure 5. Example 2: The results using the hybrid method and
TSSP. For each function, we only draw its real part. The imaginary
part looks similar. In every picture, there are two solutions ψ1,2

represented by two sets of curves with ψ1 on the upper half and
ψ2 on the lower half. In each set of curves, the upper most one is
by TSSP on DSch, i.e. F1,2 (x, t). The next is G̃1,2 (x, t). Then

F1,2 (x, t) + G̃1,2 (x, t). The fourth one is the solution by TSSP.
We consider it as the reference solution, ψ1,2 (x, t). The fifth is the

difference between ψ1,2 (x, t) and
(
F1,2 (x, t) + G̃1,2 (x, t)

)
. The

dashed curves on the background demonstrate the the shape of the
potential energies.

with ψ1,0 (x) = A0e
i
ε (S0+p0(x−y0)+ 1

2M0x
2), where

[y0, p0, A0, S0, M0] = [−1, 0.8, 0.3, 0, 4i] ,
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Figure 6. Example 2: The relative error, error1(t) + error2(t)
(left) and the numbers of Gaussian Beams (right) of the hybrid
method.

and ψ2,0 (x) = 0. We set ε = 1/100. For the hybrid method, DSch is set to
be [−1.4, 1.4], ∆t = 0.01, ∆tTSSP = 0.001, and ∆x = 1/1024. ∆tGB is chosen
by “ode45()” in Matlab. We use the result by TSSP with ∆tTSSP = 0.001 and
∆x = 1/1024 for the whole domain [−2, 2] as the reference, and set

[a1, b1, c1, d1, d2, c2, b2, a2] = [−1.4, −1, −0.8, −0.6, 0.6, 0.8, 1, 1.4] ,

xcheck = 1.2 and Vthrhd = Ethrhd = η = 0.01. q in (12) is set to be 0.2.
The results are shown in Fig. 7. The scenario is very similar to the last numerical

example. One can see two hoppings in the pictures.
The relative errors, defined the same way as in (16), and the numbers of Gaussian

beams produced, are shown in Fig. 8.

5.5. Example 4: Schrödinger equation system - 2d surface hopping prob-
lem. We now solve system (2) in 2d with

V(x) =

(
x2 + y2 δ

δ −
(
x2 + y2

) ) , x = (x, y) ∈ R2, (17)

where δ = 0.05.
The initial value is (

ϕ1,0 (x)
ϕ2,0 (x)

)
= U (x, t)

(
ψ1,0 (x)
ψ2,0 (x)

)
with ψ1,0 (x) = A0e

i
ε (S0+p0·(x−y0)+ 1

2 (x−y0)TM(x−y0)), where y0 = [−0.5, 0.08],

p0 = [1.5, 0], A0 = i, S0 = 0, and M0 =

(
i 0
0 i

)
, ε = 1/50, DSch [−1.4, 1.4] ×

[−1.4, 1.4], ∆t = 0.01 and ∆x = [1/75, 1/75]. We use the result by TSSP with
∆tTSSP = 0.001 and ∆x = [1/75, 1/75] for the whole domain [−2, 2] as the refer-
ence. We set

[a1, b1, c1, d1, d2, c2, b2, a2] = [−1.4, −1, −0.8, −0.6, 0.6, 0.8, 1, 1.4] ,

xcheck = 1.25, Vthrhd = 0.005, Ethrhd = 0.02, and η = 0.02. q in (13) is set to be 0.2.
The initial value and numerical results are shown in Fig. 9 to Fig. 11. The

scenario is similar to the 1d numerical examples. There are two hoppings.
The relative errors, defined the same way as in (16), and the numbers of Gaussian

beams produced, are shown in Fig. 12.
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Figure 7. Example 3: The results using the hybrid method and
TSSP. For each function, we only draw its real part. The imaginary
part looks similar. In every picture, there are two solutions ψ1,2

represented by two sets of curves with ψ1 on the upper half and
ψ2 on the lower half. In each set of curves, the upper most one is
by TSSP on DSch, i.e. F1,2 (x, t). The next is G̃1,2 (x, t). Then

F1,2 (x, t) + G̃1,2 (x, t). The fourth one is the solution by TSSP.
We consider it as the reference solution, ψ1,2 (x, t). The fifth is the

difference between ψ1,2 (x, t) and
(
F1,2 (x, t) + G̃1,2 (x, t)

)
. The

dashed curves on the background demonstrate the the shape of the
potential energies.

6. Conclusion. In this paper, we developed a hybrid method that couples a
Schrödinger solver with the Gaussian beam method for quantum tunnelings through
potential barriers or electronic potential energy surfaces. The idea is to use GB as
much as possible and then solve the Schrödinger equation or the system of the
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Figure 8. Example 3: The relative error, error1(t) + error2(t)
(left) and the numbers of Gaussian Beams (right) of the hybrid
method.

Figure 9. Example 4: The initial data at t = 0. The upper one
is |ψ1 (x, t)| and the lower one |ψ2 (x, t)|.

Schrödinger equations near potential barriers or the surface hopping areas. Buffer
zones are used to convert the data between the Schrödinger and the Gaussian beam
solutions. Several numerical examples in both one and two space dimensions are
given to show that the hybrid method captures the quantum tunneling with quan-
tum simulation only locally around the barriers or hopping zones, thus is much
more efficient than a direct quantum solver in the entire domain.
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