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a MIP, UMR 5640 (CNRS-UPS-INSA), Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse Cedex, France
b Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Received 4 January 2005; accepted 24 March 2005

Available online 1 June 2005
Abstract

This paper presents a model which provides a smooth transition between a kinetic and a hydrodynamic domain. The

idea is to use a buffer zone, in which both hydrodynamics and kinetic equations will be solved. The solution of the ori-

ginal kinetic equation will be recovered as the sum of the solutions of these two equations. We use an artificial connect-

ing function which makes the equation on each domain degenerate at the end of the buffer zone, thus no boundary

condition is needed at the transition point. Consequently, this model avoids the delicate issue of finding the interface

condition in a typical domain decomposition method that couples a kinetic equation with hydrodynamic equations. A

simple kinetic scheme is developed to discretize our model, and numerical examples are used to validate the method.
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1. Introduction

This work is devoted to a new method for the numerical simulation of kinetic models that involve dif-

ferent scales. These models allow for accurate descriptions of particles as in rarefied gases, neutron trans-

port, or radiative transfer. However even with modern super-computers, the numerical solution of such

models is still often impossible. Due to a very large number of degrees of freedom, they require too much

computational time and memory space.
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For some flow regimes, where the particles are in a near thermodynamical equilibrium state, there exist

some simpler models that account for a correct physical description. These models are in some sense asymp-

totic approximations of the kinetic models, as the diffusion or the hydrodynamic limits. They are often

called ‘‘fluid’’ or ‘‘macroscopic’’ models, in the sense that the microscopic behavior of the particles is

neglected.
In fact, in many situations, the flow can be considered in equilibrium in the major part of the compu-

tational domain, except in some small zones where microscopic effects are important (as in shocks and close

to the boundaries). In such cases, it is interesting to use the simpler macroscopic model wherever it is pos-

sible, and to restrict the use of the kinetic model where it is necessary. This motivates a coupling method

between kinetic and macroscopic models, already widely explored in neutron transport and radiative trans-

fer (see for instance [4] and the references therein), where the macroscopic model is a linear diffusion limit.

Here, we are instead interested in coupling kinetic equations with the hydrodynamic approximation. This

approximation is for instance more relevant in, for example, rarefied gas dynamics for aerodynamical appli-
cations, where it can be either the Euler or Navier–Stokes equations.

We briefly give below a review of previous strategies in coupling the kinetic and hydrodynamic equa-

tions. One of the first methods (proposed by Coron [2]) was to extend the validity of the hydrodynamic

model near the boundaries by using boundary layer analysis. This method works well in linear transport

with diffusion limit [20] but it becomes not efficient enough in the kinetic/hydrodynamic case.

During the past 15 years, several studies devoted to the coupling of Boltzmann model with Euler or

Navier–Stokes equations for reentry problems in aerodynamics have been published. A first method was

proposed by Bourgat et al. [1] who found new boundary conditions for the hydrodynamic equations by
numerically solving the kinetic equation in the boundary layer (‘‘coupling by friction’’). Then Bourgat,

Le Tallec, Malinger, and Qiu [15,17] developed a coupling by a domain decomposition approach. Sim-

ilar methods were proposed by Neunzert et al. [10] and Schneider [16]. The common feature of these

methods is that they are domain decomposition methods where the hydrodynamic and kinetic models

are solved in different subdomains. The coupling relations are defined through suitable boundary condi-

tions at the interface between the subdomains. These boundary conditions use continuity of moments or

fluxes through the interface [10,16], or a kinetic interpretation of the hydrodynamic fluxes [15,17], or also

boundary layer analyses [8,9]. Mathematical analyses of these methods have also been proposed in
[7,18].

Finally, a different and more recent method has been proposed by Tiwari [19] for which every cell of the

computational domain can be considered to be in kinetic or hydrodynamic state, by using some physical

criterion. This criterion determines whether the distribution function in the cell is evolved by some random

collisional process or whether it is projected into the hydrodynamic equilibrium. However, this particle

method is very expensive, since it uses as many degrees of freedom for the kinetic cells than for the hydro-

dynamic cells.

Recently, a new approach has been proposed by Degond and Jin [3] for the linear transport coupled with
the diffusion approximation. Their idea is still to use a domain decomposition method, but in which the

coupling is through the equations rather than the boundary conditions. This is done by using a buffer zone

around the interface, and an artificial transition function that smoothly passes from 1 in the kinetic domain

to 0 in the diffusion zone. The solution of the original transport equation is recovered as the sum of the

solutions of the two models. This is different from the usual domain decomposition methods in which each

of the models represents the full solution. The transition function makes the equation on each domain

degenerate at the end of the buffer zone, thus no boundary condition is needed at this interface. This idea

results in a very easy-to-use method that works very well in the linear case.
In this paper, we extend this approach to the nonlinear case, for coupling kinetic and hydrodynamic

models. In particular, this applies to the coupling between the Boltzmann and Euler or Navier–Stokes

equations. With this extension, we point out three new aspects of the method:
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� the equilibrium distribution must satisfy an homogeneity property such that the coupling method pre-

serves uniform flows. This property was of course necessarily satisfied in [3] due to the linearity of the

collision operator;

� we use a simple kinetic scheme to discretize our coupled model. Then we show that we recover the cou-

pling method of [15,17] when the buffer zone reduces to an interface;
� our method can be naturally adapted to the coupling with moving interface.

We now give the outline of the article. In Section 2, we present a very general kinetic model, with a few

important properties. Most of the usual kinetic models can be written in this form. Then we describe how to

obtain a coupling of two kinetic models in two different subdomains by using a buffer zone and a transition

function. From this model we deduce a coupling method between kinetic and hydrodynamic models and we

study some of its properties in Section 3. Two extensions of the method are proposed in Section 4. The

numerical method is given in Section 5. In Section 6, we present several numerical tests to illustrate the
potential of our approach. Finally, a short conclusion is given in Section 7.
2. The coupling method

2.1. Kinetic models and hydrodynamic limit

We present the method on a general kinetic equation in one space dimension. Let f(t,x,v) represent the
density of particles that at time t have position x 2 (0,1) and velocity v 2 R or any bounded or discrete sub-

set of R. The kinetic equation is
otf þ voxf ¼ Qðf Þ. ð1Þ
The left-hand side of (1) describes the motion of the particles along the x axis with velocity v, while the

operator Q takes into account the collisions between particles. This operator acts on f only through the

velocity locally at each (t,x).
The integral of any scalar or vector valued function f = f(v) over the velocity set is denoted by

Æfæ = �f(v) dv.
The collision operator Q is assumed to satisfy the local conservation property
hmQðf Þi ¼ 0 for every f ;
where mðvÞ ¼ ðmiðvÞÞdi¼1 are locally conserved quantities. Consequently, multiplying (1) by m and integrat-

ing over the velocity set gives the local conservation laws
othmf i þ oxhvmf i ¼ 0. ð2Þ

Finally, we assume that the local equilibria of Q (i.e., the solutions of Q(f) = 0) are equilibrium distribu-

tions E[q], implicitly defined by their moments q through the relation
q ¼ hmE½q�i.

We do not specify boundary conditions for the moment.

When the mean free path of the particles is very small compared with the size of the domain, i.e., when Q

is �large�, the numerical resolution of (1) can be very expensive, and it is worth using the asymptotic model

obtained when Q �tends to infinity�. We introduce a new set of �macroscopic variables� x 0 and t 0 according to
x0 ¼ ex; t0 ¼ et;
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where e denotes the ratio of the microscopic to the macroscopic scale. This parameter is often called the

Knudsen number in rarefied gas dynamics. After using this change of variables and dropping the primes

for simplicity, one gets
otf e þ voxf e ¼ 1

e
Qðf eÞ. ð3Þ
In the limit e ! 0, f e converges (at least formally) towards an equilibrium such that its moments are solu-

tions of a system of hydrodynamic equations. More precisely, we have the formal result:

Lemma 2.1. When e ! 0, f e converges to E[q], where q(t,x) is a solution of the system
otqþ oxF ðqÞ ¼ 0; ð4Þ
with initial condition q|t=0 = Æm f0(x, v)æ. The flux F(q) is the equilibrium kinetic flux
F ðqÞ ¼ hvmE½q�i. ð5Þ
Proof. Formally, we just multiply (3) by e, and let e go to 0. This gives Q(f (0)) = 0 and thus f (0) is an equi-

librium distribution E [q]. Since the conservation laws (2) are independent of e, they are also satisfied in the

limit e = 0 by f (0). Since this function only depends on its moments q, this system is closed and leads to
(4). h
2.2. The kinetic/kinetic coupling

The buffer interval is denoted by [a,b]. We introduce a smooth function h(x) such that
hðxÞ ¼ 1 for x 6 a;

hðxÞ ¼ 0 for x P b;

hðxÞ 2 ½0; 1� for a 6 x 6 b.
If we define the two distributions f e
L ¼ hf e and f e

R ¼ ð1� hÞf e, then it is easy to check that they satisfy the

following coupled system:
otf e
L þ hvoxf e

L þ hvoxf e
R ¼ 1

e
hQðf e

L þ f e
RÞ; ð6Þ

otf e
R þ ð1� hÞvoxf e

R þ ð1� hÞvoxf e
L ¼ 1

e
ð1� hÞQðf e

L þ f e
RÞ; ð7Þ
with initial data
f e
L jt¼0 ¼ hf 0; f e

Rjt¼0 ¼ ð1� hÞf0. ð8Þ

Indeed, we note the following:

Lemma 2.2. If ðf e
L ; f

e
RÞ is the solution of problem (6) and (7) with initial data (8), then f ¼ f e

L þ f e
R is the

solution of problem (1) with inital condition f0. Reciprocally, if f is the solution of (1), then ðf e
L ; f

e
RÞ ¼

ðhf ; ð1� hÞf Þ is the solution of (6) and (7) with the same initial condition.

Proof. Just add up Eqs. (6) and (7). For the converse statement, note that otf e
L ¼ hotf ¼

�hvoxf þ 1
ehQðf Þ ¼ �hvoxðf e

L þ f e
RÞ þ 1

ehQðf e
L þ f e

RÞ which gives (6). Eq. (7) is also obtained in this way. h
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Remark 2.1. It could be attractive to put h inside the x-derivative to obtain the following conservative

coupling:
otf e
L þ voxhf

e
L þ voxhf

e
R ¼ 1

e
hQðf e

L þ f e
RÞ; ð9Þ

otf e
R þ vox½ð1� hÞf e

R� þ vox½ð1� hÞf e
L � ¼

1

e
ð1� hÞQðf e

L þ f e
RÞ. ð10Þ
However, this coupling is not equivalent to the original kinetic equation (1), and moreover the correspond-

ing kinetic/hydrodynamic coupling does not have good properties, see Remark 3.1.
2.3. The kinetic/hydrodynamic coupling

Assume that Q is of order e in the interval (�1,a), and of order 1 in (a,+1). In other words, we con-

sider that the left region must be treated by a kinetic model while the right region can be approximated by
the hydrodynamic equations. Therefore, we shall only be allowed to perform the hydrodynamic approxi-

mation on (7) while (6) will have to stay untouched. To this end, the source term of (7) is rewritten as

Qðf e
L þ f e

RÞ ¼ Qðf e
RÞ þ ½Qðf e

L þ f e
RÞ � Qðf e

RÞ�, and we assume that Qðf e
RÞ is O(1) whereas

½Qðf e
L þ f e

RÞ � Qðf e
RÞ� is an O(e). Then (7) is rewritten as follows:
eotf e
R þ eð1� hÞvoxf e

R � ð1� hÞQðf e
RÞ ¼ �eð1� hÞvoxf e

L þ ð1� hÞ½Qðf e
L þ f e

RÞ � Qðf e
RÞ�; ð11Þ
where the right-hand side is considered to be O(e).
The following proposition states what the hydrodynamic approximation e ! 0 of this equation is.

Proposition 2.1. Consider Eq. (11) where the right-hand side is treated as an O(e) term. Then as e ! 0, f e
R �

equilibrium E½qeR�, where qeRðt; xÞ is a solution of the following hydrodynamic system:
otq
e
R þ ð1� hÞF ðqe

RÞ þ ð1� hÞhvmf e
Li ¼ 0; ð12Þ
with F ðqe
RÞ defined by (5).

As noted in [3], since e tends to 0 only in some terms and not in others, we cannot speak of convergence,

but rather, of asymptotic equivalence, hence the use of the symbol �.

Note that (12) is a hydrodynamic equation in (a,+1). However, no boundary condition is needed in

x = a, since the flux is cancelled by 1 � h.

Proof. We first note that taking the moments of (7) gives
otq
e
R þ ð1� hÞoxhvmf e

Ri þ ð1� hÞoxhvmf e
Li ¼ 0. ð13Þ
Now as in Lemma 2.1, we let e go to 0 in (11) to find Qðf 0
R Þ ¼ 0, hence f 0

R ¼ E½q0
R�. Then (12) is obtained as

the limit e = 0 of (13). However, q0
R still depends on e through f e

L : this is why it is denoted by qe
R in the prop-

osition. h

Now, the coupled kinetic/hydrodynamic model is written as follows:
otf e
L þ hvoxf e

L þ hvoxE½qe
R� ¼

1

e
hQðfL þ E½qe

R�Þ; ð14Þ

otq
e
R þ ð1� hÞoxF ðqe

RÞ þ ð1� hÞoxhvmf e
Li ¼ 0; ð15Þ
with initial data
f e
L jt¼0 ¼ hf 0; qe

Rjt¼0 ¼ ð1� hÞq0. ð16Þ
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Therefore, this coupled model will be used to approximate by f e
L þ E½qe

R� the solution f e of model (3). More

precisely, f e is supposed to be approximated by f e
L in (0,a), by f e

L þ E½qe
R� in (a,b), and by E½qe

R� in (b, 1).

To simplify the notations in the remainder of the paper, the superscript e will be omitted when no con-

fusion is caused.
3. Properties of the kinetic/hydrodynamic coupling

3.1. Preservation of uniform flows

Uniform flows for model (1) are constant equilibrium distributions f = E[q]. Because of the function h, f

is approximated in the coupled model (14)–(16) by non-uniform distributions. Then it is not clear whether

the approximation fL + E[qR] given by the coupled model (14)–(16) is still a uniform distribution. However,
this preservation property is desirable to prevent oscillations in zones where the flow should be uniform (a

similar phenomenon is known in computational fluid dynamics when one wants to discretize conservation

laws written in curvilinear coordinates, see [22]). As it is shown in the following proposition, the preserva-

tion of uniform flows is related to a particular property of the equilibrium.

Proposition 3.1. Assume the mapping q ´ E[q] is homogeneous of degree 1, that is
E½kq� ¼ kE½q� ð17Þ

for every k P 0 and every q in the definition domain of E. If the initial condition f 0 is a constant equilibrium

E[q], then fL = hE[q] and qR = (1 � h)q are solutions of the coupled model (14)–(16), and fL + E[qR] = E[q].

Proof. First, note that the homogeneity property implies E[qR] = E[(1 � h)q] = (1 � h)E[q]. Therefore, it is
clear that fL + E[qR] = E[q]. Moreover, putting the collision operator in the left-hand side of (14) and using

again the homogeneity of E, we find that this left-hand side is
otfL þ hvoxfL þ hvoxE½qR� �
1

e
hQðfL þ E½qR�Þ ¼ othE½q� þ hvoxðhE½q�Þ þ hvoxE½ð1� hÞq� � 1

e
hQðE½q�Þ

¼ 0þ hvh0E½q� � hvh0E½q� � 0 ¼ 0;
thus (fL,qR) solves (14).
Then note that the equilibrium flux F defined by (5) inherits the homogeneity property of E, and

therefore the left-hand side of (15) reads
otqR þ ð1� hÞoxF ðqRÞ þ ð1� hÞoxhvmf Li ¼ otð1� hÞqþ ð1� hÞoxF ðð1� hÞqÞ þ ð1� hÞoxhvmhE½q�i
¼ 0� ð1� hÞh0oxF ðqÞ þ ð1� hÞh0hvmE½q�i ¼ 0;
thus (fL,qR) solves (15). h

As it is shown in the following examples, a large class of models satisfy assumption (17), even if some

other models do not.

Example 3.1. Classical models of kinetic theory for rarefied gases and plasmas (Boltzmann, BGK,

Fokker–Planck–Landau) satisfy property (17). These models use Maxwell–Boltzmann statistics for which

the equilibrium is the Maxwellian distribution defined by
E½q� ¼ n

ð2phÞ1=2
exp �ðv� uÞ2

2h

 !
.
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The moment vector of this equilibrium is q ¼ ðn; nu; 1
2
nu2 þ 1

2
nhÞ. This shows that the velocity u ¼ q2

q1
and

temperature h ¼ 2
q1
ðq3 �

q2
2

q1
Þ are homogeneous functions of degree 0 of q, whereas the density n = q1 is

homogeneous of degree 1. Consequently, E is clearly homogeneous of degree 1.

Example 3.2. Kinetic models derived with Fermi–Dirac or Bose–Einstein statistics do not satisfy con-

straint (17). In that case the equilibrium is given by
E½q� ¼ 1

expð��l
s Þ � 1

ðþ Fermi–Dirac; � Bose–EinsteinÞ.
In the Fermi–Dirac case, it is bounded by 1 and thus cannot be homogeneous of degree 1.

Example 3.3. A simpler model that does not satisfy this constraint (17) is the following discrete kinetic

equation
otuþ oxu ¼ 1

s
ðM1½q� � uÞ; otv� oxv ¼

1

s
ðM2½q� � vÞ; ð18Þ
where the equilibrium is ðM1½q�;M2½q�Þ ¼ 1
2
ðqþ f ðqÞ; q� f ðqÞÞ, with f ðqÞ ¼ 1

2
q2 and q = u + v.

This model has the same form as (1) with discrete velocities v = ±1 and collisional invariants m(v) = 1. It

is equivalent to the Jin–Xin relaxation model
otqþ oxj ¼ 0; otjþ oxq ¼ 1

s
ðf ðqÞ � jÞ;
with j = u � v. It can be shown to relax towards the conservation law otq + ox f(q) = 0 as s ! 0 [6].
Clearly, the equilibrium is not a homogeneous function of q. In that case, simple calculations show that

conclusions of proposition (3.1) are false. As a consequence, the coupled model derived from this system

behaves incorrectly in zones where the solution should be uniform. This will be shown in Section 6.

Remark 3.1. The kinetic/hydrodynamic coupling for the conservative coupling (9) and (10) is
otf e
L þ voxhf

e
L þ voxhE½qe

R� ¼
1

e
hQðfL þ E½qe

R�Þ;

otq
e
R þ ox½ð1� hÞF ðqe

RÞ� þ ox½ð1� hÞhvmf e
Li� ¼ 0.
Although this conservative form seems better for numerics, it can be seen (with the same analysis as in the

proof of Proposition 3.1) that this system does not preserve uniform flows.
3.2. Full hydrodynamic limit

Here we prove that if both regions are hydrodynamic, we recover the global hydrodynamic equation (4)

for q = qL + qR.

Proposition 3.2. As e! 0, the moments ðqeL; qeRÞ of the solution of the coupled model (14) and (15) converge to

(qL,qR), a solution of the hydrodynamic system
otqL þ hoxF ðqL þ qRÞ ¼ 0; ð19Þ

otqR þ ð1� hÞoxF ðqL þ qRÞ ¼ 0; ð20Þ

with initial data
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qLjt¼0 ¼ hq0; qRjt¼0 ¼ ð1� hÞq0. ð21Þ

In particular, q = qL + qR is a solution of (4).

Proof. The proof is similar to that of Proposition 2.1. First, we take the moments of (14) to obtain
otq
e
L þ hoxhvmf e

Li þ hoxF ðqe
RÞ ¼ 0. ð22Þ
Then multiplying (14) by e and taking the limit e = 0 gives Qðf 0
L þ E½q0

R�Þ ¼ 0. Therefore, f 0
L þ E½q0

R� ¼ E½q�,
where we necessarily have q ¼ q0

L þ q0
R. Consequently,
f 0
L ¼ E½q0

L þ q0
R� � E½q0

R�. ð23Þ

Now we take the limit e = 0 in (22), and use (23) to find
otq
0
L þ hoxF ðq0

L þ q0
RÞ ¼ 0;
which is nothing but (19) where the superscript 0 is dropped. Then by taking the limit e = 0 of (15) and

using again (23) yields
otq
0
R þ ð1� hÞoxF ðq0

L þ q0
RÞ ¼ 0;
which is (20) after the superscript 0 is dropped.

Finally, if one adds up (19) and (20), it is clear that q = qL + qR satisfies (4). h
3.3. Limit b � a = 0 of the coupling method

As recalled in Section 1, some previous coupling methodologies use a coupling by an interface. There-

fore, it is interesting to know if we can recover some of these models by taking the limit b � a = 0 in our

coupling model (14) and (15).

However, in this limit, h tends to the Heaviside function, and it looks difficult to know what the limit of
fluxes as h(x)oxfL is.

See Section 5.2 for such a study at the discrete level.
4. Extensions of the coupling method

4.1. Second order coupling method: kinetic/Navier–Stokes

First, in the kinetic/kinetic coupling (6) and (7), we take the moments of the second equation to obtain

the following (non-closed) system
otf e
L þ hvoxf e

L þ hvoxf e
R ¼ 1

e
hQðf e

L þ f e
RÞ; ð24Þ

otq
e
R þ ð1� hÞoxhvmf e

Ri þ ð1� hÞoxhvmf e
Li ¼ 0. ð25Þ
By expanding f e
R as f e

R ¼ E½qe
R� þ ef 1

R , one defines f 1
R and implies that its moments are zero, namely

hmf 1
Ri ¼ 0. Write the flux of f e

R as
hvmf e
Ri ¼ F ðqe

RÞ þ q;
where q is defined by
q ¼ ehvmf 1
Ri. ð26Þ
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Therefore, the non-closed system (24) and (25) can now be written as
otf e
L þ hvoxf e

L þ hvoxf e
R ¼ 1

e
hQðf e

L þ f e
RÞ; ð27Þ

otq
e
R þ ð1� hÞoxF ðqe

RÞ þ ð1� hÞoxhvmf e
Li ¼ �ð1� hÞoxq. ð28Þ
Since from (26) q is O(e), it is clear that this system reduces to the first order kinetic/hydrodynamic system

(14) and (15) as e = 0. Now, to obtain a second order closure, one has to approximate q up to the first order.

This is done by determining the perturbation f 1
R up to O(e). To do so, insert the expansion of f e

R in (7) and

make the same assumptions as in Proposition 2.1 about the size of Q. Then, at first order in e, one finds that
f 1
R satisfies
ð1� hÞDQðE½qe
R�Þf 1

R ¼ otE½qe
R� þ ð1� hÞvoxE½qe

R� þ ð1� hÞvoxf e
L � ð1� hÞD; ð29Þ
where D ¼ 1
e½Qðf e

L þ f e
RÞ � Qðf e

RÞ� is supposed to be O(1), and DQ(f) is the derivative of Q with respect to f.

In order to have simpler calculations, we assume that Q is the following BGK operator
Qðf Þ ¼ 1

sðqÞ ðE½q� � f Þ; ð30Þ
where q ¼ hmf i ¼ ðn; nu; 1
2
nu2 þ 1

2
nhÞ, with collisional invariants defined by mðvÞ ¼ ð1; v; 1

2
jvj2Þ. The variables

u and h are called the velocity and temperature associated to f.

Since the moments of f 1
R are zero, it can easily be proved that DQðE½qe

R�Þf 1
R ¼ � 1

sðqeRÞ
f 1
R . Consequently, f

1
R

can be explicitly computed:
f 1
R ¼ �sðqe

RÞ
1

1� h
otE½qe

R� þ oxE½qe
R� þ oxf e

L þ D

� �
. ð31Þ
Moreover, since the collisional invariants are mðvÞ ¼ ð1; v; 1
2
jvj2Þ for BGK, one has
q ¼
0

0

e 1
2
ðv� uRÞ3f 1

R

D E
0
B@

1
CA; ð32Þ
where uR is the velocity associated to f e
R. Note that since our problem is in one dimension in space, there is

no shear-stress in q (its second component is zero). Consequently, if f 1
R is inserted in the third component q3

of q, one obtains
q3 ¼ �esðqe
RÞ

1

1� h
1

2
ðv� uRÞ3otE½qe

R�
� �

þ 1

2
ðv� uRÞ3voxE½qe

R�
� �

þ 1

2
ðv� uRÞ3voxf e

L

� ��
þ 1

2
ðv� uRÞ3D

� ��
.

After classical but tedious computations (in which the first order approximation of (28) is used to remove

the time derivative), one finds
q3 ¼ �e
3

2
sðqe

RÞnRhRoxhR � esðqe
RÞ � 3

2
hR þ

1

2
ðv� uRÞ2

� �
ðv� uRÞvoxf e

L

� �
þ esðqe

RÞ
1

2
ðv� uRÞ3D

� �
;

where nR, uR, hR are, respectively, the density, velocity and temperature associated to f e
R.

The first term is the heat-flux joxhR of the Fourier law, where the thermal conductivity is

j ¼ 3
2
esðqe

RÞnRhR. This term is only due to f e
R. In the second term, the coupling between the f e

R and f e
L has

no obvious interpretation.

Note that in the third term of the last expression, D ¼ 1
e½Qðf e

L þ f e
RÞ � Qðf e

RÞ� has not yet been expanded.
To do so, we have to make a new assumption on f e

L : we shall assume that f e
L is O(e). This is a reasonable
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choice near x = b of the buffer zone, but is yet difficult to justify near x = a. For the moment, we will neglect

this problem to derive the model; the numerical tests of the model will a posteriori justify (or not) this

assumption. Therefore, D can be expanded as
D ¼ 1

e
DQðE½qe

R�Þðf e
LÞ
with an O(e) error.
Finally, we resume below the final second order kinetic/Navier–Stokes coupling, obtained with the BGK

collision operator (30):
otf e
L þ hvoxf e

L þ hvoxf e
R ¼ 1

e
hQðf e

L þ f e
RÞ; ð33Þ

otq
e
R þ ð1� hÞoxF ðqe

RÞ þ ð1� hÞoxhvmf e
Li ¼ �ð1� hÞoxq; ð34Þ
where f e
R can be approximated by E½qe

R� or by E½qe
R� þ ef 1

R . Moreover, we have q = (0,0,q3)
T with
q3 ¼ �e
3

2
sðqe

RÞnRhRoxhR � esðqe
RÞ � 3

2
hR þ

1

2
ðv� uRÞ2

� �
ðv� uRÞvoxf e

L

� �
þ esðqe

RÞ
1

2
ðv� uRÞ3D

� �
;

ð35Þ

and
D ¼ 1

e
DQðE½qe

R�Þðf e
LÞ. ð36Þ
Finally, nR, uR and hR are defined by qe
R through the relation qe

R ¼ ðnR; nRuR; 12nRu2R þ 1
2
nRhRÞ.

The numerical study of this model will not be done in this paper and is deferred to a future work.
4.2. Moving buffer zone

In this section, we show that our models can be extended to the case where h is time dependent. In that

case, the method can be extended to moving interface regions: h can actually be defined as a level set func-

tion, and can evolve according to its own dynamics, such as a Hamilton–Jacobi equation for front prop-

agation, or other kinds of dynamics.

If we simply let h depend on time in the coupled model (14) and (15), it turns out that it is no longer
uniform-flow preserving. The correct way to proceed is to derive a kinetic/kinetic model as we did in the

beginning of Section 2.2. First, if fe is the solution of the kinetic equation (1), we set f e
L ¼ hf e and

f e
R ¼ ð1� hÞf e. Then one can easily derive the following equations satisfied by f e

L and f e
R

otf e
L þ hvoxf e

L þ hvoxf e
R ¼ 1

e
hQðf e

L þ f e
RÞ þ ðf e

L þ f e
RÞoth;

otf e
R þ ð1� hÞvoxf e

R þ ð1� hÞvoxf e
L ¼ 1

e
ð1� hÞQðf e

L þ f e
RÞ � ðf e

L þ f e
RÞoth.
This system is equivalent to the kinetic equation (1), and the corresponding kinetic/hydrodynamic model is

found to be
otf e
L þ hvoxf e

L þ hvoxE½qe
R� ¼

1

e
hQðfL þ E½qe

R�Þ þ ðf e
L þ E½qe

R�Þoth;

otq
e
R þ ð1� hÞoxF ðqe

RÞ þ ð1� hÞoxhvmf e
Li ¼ �ðqe

L þ qe
RÞoth.
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Owing to the new forcing term involving oth, a simple extension of the proof of Proposition 3.1 shows

that this system now preserves uniform flows.

The numerical investigation of this model is deferred to a future work.
5. Numerical schemes

5.1. A simple kinetic scheme

First, we present a simple spatial discretization for which the time and velocity variables are kept con-

tinuous. The space variable x is discretized with mesh points xi = iDx for i = 1, . . . c,imax and we define ia
and ib such that xia = a and xib = b. We set hi = h(xi), fL,i = fL(xi), and qR,i = qR(xi). Note that for more clar-

ity, the e is dropped in this section.
This discretization uses the kinetic scheme (see for instance [14]). It consists of two main steps: (1) dis-

cretization of the kinetic/kinetic coupling (6) and (7), (2) projection of fR to the equilibrium E[qR] in the

discretized system. These steps are detailed below.

5.1.1. Discretization of the kinetic/kinetic coupling (6) and (7)

The system (6) and (7) can be written as
otU þ AoxU ¼ S; ð37Þ

where U ¼ fL

fR

� �
; A ¼ v h h

1�h 1�h

	 

and S ¼ hQðfLþfRÞ

ð1�hÞQðfLþfRÞ

� �
. The eigenvalues of A are 0 and v, therefore for each

v this system is a linear hyperbolic system with source term. This system is discretized below by following

the classical procedure: (a) diagonalization, (b) upwind discretization, (c) back to the original variables (see

for instance [11]).

(a) Diagonalization

The matrix of eigenvectors of A is P ¼ 1 1

�1
1�h
h

� �
. Multiplying (37) by P�1 and defining the character-

istic variables V ¼ a
b

� �
¼ P�1U , we get the following diagonalized system
otV þ DoxV ¼ T ;
where D ¼ 0 0
0 v

	 

¼ P�1AP and T = P�1S. The two components of this system are
ota ¼ T 1;

otbþ voxb ¼ T 2.
(b) Upwind discretization

The system can be discretized by upwinding the space derivative oxb following the sign of v:
otai ¼ ðT 1Þi;

otbi þ vþ
bi � bi�1

Dx
þ v�

biþ1 � bi

Dx
¼ ðT 2Þi;

ð38Þ
where bi stands for b(xi) and v� ¼ 1
2
ðv� jvjÞ is the positive/negative part of v.

(c) Back to the original variables

The semi-discrete system (38) can be written as
otV i þ Dþ V i � V i�1

Dx
þ D� V iþ1 � V i

Dx
¼ T i;
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where we set D� ¼ 0 0
0 v�

	 

. By going back to the original variables U = PV after multiplying this system

by P, one gets
otU i þ Aþ
i

U i � Ui�1

Dx
þ A�

i

U iþ1 � Ui

Dx
¼ Si;
where A�
i ¼ P iD�P�1

i ¼ v� hi hi
1�hi 1�hi

� �
. We can write this system componentwise: this gives the follow-

ing discretization of the kinetic/kinetic coupling (6) and (7)
otfL;i þ hi
/iþ1

2
ðfLÞ � /i�1

2
ðfLÞ

Dx
þ hi

/iþ1
2
ðfRÞ � /i�1

2
ðfRÞ

Dx
¼ hiQðfL;i þ fR;iÞ; ð39Þ

otfR;i þ ð1� hiÞ
/iþ1

2
ðfRÞ � /i�1

2
ðfRÞ

Dx
þ ð1� hiÞ

/iþ1
2
ðfLÞ � /i�1

2
ðfLÞ

Dx
¼ ð1� hiÞQðfL;i þ fR;iÞ; ð40Þ
where the numerical flux
/iþ1
2
ðgÞ ¼ v�giþ1 þ vþgi ð41Þ
for every i.

Note that this semi-discrete scheme could in fact be directly derived from system (6) and (7) without

using the diagonalization step. This is a general property of 2 · 2 linear hyperbolic systems otU + AoxU = 0

with matrix A ¼ a a
b b

	 

such that ab > 0. Indeed, a direct upwind discretization of this system following the

sign of the elements of A gives the semi-discrete scheme otU i þ AþUi�Ui�1

Dx þ A�Uiþ1�Ui

Dx ¼ 0, while it can easily

be proved that the previous procedure (diagonalization, discretization, back to original variables) always
leads to the same scheme.

5.1.2. Projection of fR to the equilibrium E[qR]
Now fR is replaced by the equilibrium E[qR] in (39) and (40) and we take the moments of (40) to obtain

the following scheme for the coupling (14) and (15)
otfL;i þ hi
/iþ1

2
ðfLÞ � /i�1

2
ðfLÞ

Dx
þ hi

/iþ1
2
ðE½qR�Þ � /i�1

2
ðE½qR�Þ

Dx
¼ hiQðfL;i þ E½qR;i�Þ; ð42Þ

otqR;i þ ð1� hiÞ
F iþ1

2
ðqRÞ � F i�1

2
ðqRÞ

Dx
þ ð1� hiÞ

m /iþ1
2
ðfLÞ � /i�1

2
ðfLÞ

� �D E
Dx

¼ 0; ð43Þ
where
F iþ1
2
ðqRÞ ¼ m/iþ1

2
ðE½qR�Þ

D E

is a consistent approximation of F(qR).

Note that fL,i = 0 for i P ib and qR,i = 0 for i 6 ia, since the fluxes are cancelled by h and 1 � h in these

zones.

Moreover, it is clear that this scheme preserves uniform flows (the same proof as that of Proposition 3.1

can be made).

In our numerical tests, the time variable is discretized by using a simple explicit Euler method. However,

very small time step restrictions can occur due to the kinetic part of the model. Then a time stepping algo-
rithm is used to advance differently the hyperbolic and kinetic parts when necessary. If the time step DtK
imposed by the kinetic part is much lower than the time step DtH due to the hydrodynamic part, we solve

the kinetic equation (42) during N = [DtH/DtK] time steps DtK with a constant hydrodynamic contribution.

Then the hydrodynamic equation (43) is solved with time step DtH.
Finally, integrals in the velocity variable are discretized by the rectangle formula.
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5.2. Limit b � a = 0

In this section, we prove that when b � a ! 0, the scheme given in Section 5.1 gives a scheme close to

that proposed in [15] for coupling Boltzmann/Euler by an interface half-flux condition.

The limit b � a = 0 can be considered by replacing h in scheme (42) and (43) by hdðxÞ: ¼
hðb�a

d ðx� aÞ þ aÞ. Indeed as d ! 0, hd tends to the Heaviside function H(x � a), and the buffer zone

[a,a + d] tends to the interface x = a.

When d < Dx then hdi ¼ 1 for i 6 ia and 0 for iP ia + 1. Consequently, the coupling terms in (42) and

(43) vanish, except v�E[qR,ia+1] in (42) for i = ia and Æmv+fL,iaæ in (43) for i = ia + 1. Then a simple calcula-

tion shows that (42) and (43) gives in the limit d = 0 the following scheme
otfL;i þ
/iþ1

2
ðfLÞ � /i�1

2
ðfLÞ

Dx
¼ hiQðfL;iÞ; i 6 ia;

otqR;i þ
m /iþ1

2
ðE½qR�Þ � /i�1

2
ðE½qR�Þ

� �D E
Dx

¼ 0; i P ia þ 1;
with ‘‘interface half-flux condition’’
v�fL;iaþ1 ¼ v�E½qR;iaþ1�;

hvþmE½qR;ia �i ¼ hvþmf L;iai.
This scheme is close to the coupling method proposed in [15], and developed in [17]. Indeed, this can be

viewed as an upwind scheme with kinetic flux vector splitting for the coupled model
otf þ voxf ¼ Qðf Þ; 0 6 x 6 a;

otqþ oxF ðqÞ ¼ 0; a 6 x 6 1;
with interface half-flux condition
v�f jx¼a ¼ v�E½q�jx¼a;

hvþmE½q�ijx¼a ¼ hvþmf ijx¼a.
In that sense, our method can be viewed as a justification (as well as an extension) of this method.

Moreover, in higher dimension, when the interface is complicated, the method of [15,17] needs the imple-

mentation of the interface flux condition in a complicated way, while our method based on the introduction

of a smoothing function h transfers the geometry to the PDE. This is an advantage, since it is then possible

to solve the PDE in a regular geometry while completely ignoring the real interface geometry. One just has

to choose h first according to the interface geometry initially, then forget about the geometry and solves the

PDE on regular grids.
6. Numerical results

In this section, we first present several numerical solutions of the coupling model (14) and (15) corre-

sponding to two kinetic models that can be written in form (1). These models are considered in the domain

[0,1] with Neumann boundary conditions
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oxf ðt; 0; vþÞ ¼ 0 and oxf ðt; 1; v�Þ ¼ 0;
and an initial data in equilibrium state f(0,x,v) = E[q(x)].
For 1D problems, there are not too many different tests that can be made. Here, we mainly study the

propagation of shocks, which is typical of aerodynamical flows. In this case, it can be assumed that the flow

is close to equilibrium far from the shock, and in a non-equilibrium regime near the shock. Then it seems
natural to use our coupling model with kinetic and hydrodynamic zones located near and far from the

shock, respectively. Traditionally in these classical shock problems, the shock is considered to move from

left to right: this makes it necessary to reverse the order used in model (14) and (15) for our different zones.

In other words, we shall consider that the left region is in equilibrium and can be treated by a hydrody-

namic model, while the right region must be treated by a kinetic equation. For simplicity, we shall take

a hydrodynamic zone on the left side, a buffer zone around the initial position of the shock, and a kinetic

zone on the right side.

We shall successively consider the Jin–Xin relaxation approximation (18) of the Burgers equation and a
BGK model similar to (30) that is 1D in space but 3D in velocity. In the first case, we shall experimentally

demonstrate that the coupling method does not preserve uniform flows, as was noticed in Example 3.3. In

the second case, we shall see that the coupling method behaves satisfactorily.

We shall also present a test for the BGKmodel in two space dimensions. As explained in Section 5.2, this

test shows our method also applies to 2D flows and behaves well.

Example 6.1. Numerical solution of the coupling method for the Jin–Xin relaxation approximation (18) of

the Burgers equation.

Here, we take e = 0.01. We use 100 points to solve the kinetic model (18) in the entire domain, and 100

points for the numerical approximation of the coupling model. The function h is defined to be piecewise

linear and continuous: 0 for x 6 a, 1 for x P b, and linear between a and b. We use two choices of buffer

zones: a = �0.1, b = 0.1; a = �0.05, b = 0.05, respectively.

On the different figures, the kinetic solution q = u + v is plotted with a solid line, while the density of the
coupling model q = qL + qR is shown by the symbol �o�. We also plot the exact solution for the full

hydrodynamic limit – that is Burgers equation in this case – with dash-dotted line. The buffer zone is made

clearly visible by two vertical dotted lines at x = a and x = b.

We consider two tests corresponding to two different initial conditions for q:

(a) uniform: q = 1;

(b) shock wave: q = 1 in [0,0.5] and q = 0.5 in [0.5,1].

We compute both transient and steady state solutions.

We explained in Example 3.3 that this coupling model cannot preserve uniform flows: this is

observed with data (a) in Figs. 1 and 2. At time t = 0.0225 (Fig. 1), there is an oscillation in the

buffer zone. Then this oscillation is propagated outside the domain, but at the steady state, there

remains an oscillation at x = b (Fig. 2). This oscillation becomes larger as the length b � a becomes

smaller.

For the shock wave, the numerical solution seems to be not very accurate for t 6 0.0450 (Fig. 3), and

when the wave leaves the buffer zone (t = 0.3150, Fig. 4), we again observe an oscillation inside, whereas the
solution should be constant there. Again, this oscillation is as large as the length b � a is small. Its influence

outside the buffer zone is clearly visible for the narrow buffer zone. We have observed the same

phenomenon for a rarefaction wave.

As expected, these tests show that a coupling model that does not preserve uniform flows cannot

accurately approximate the original kinetic model.
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Fig. 1. The numerical solution of q for the Jin–Xin relaxation model (18) at t = 0.025 for the uniform initial condition, with narrow

(top) and large (bottom) buffer zone. The solid line is the (constant) solution of model (18), while ��� is the numerical solution of the

coupling model with 100 grid points.
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Fig. 2. The numerical solution of q for the Jin–Xin relaxation model (18) at steady state for the uniform initial condition, with narrow

(top) and large (bottom) buffer zone. The solid line is the (constant) solution of model (18), while ��� is the numerical solution of the

coupling model with 100 grid points.
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Fig. 3. The numerical solution of q for the Jin–Xin relaxation model (18) at t = 0.0450 for the shock initial condition, with narrow

(top) and large (bottom) buffer zone. The solid line is the numerical solution of model (18), while ��� is the numerical solution of the

coupling model (100 grid points), and �Æ-� is the exact solution for the Burgers equation (full hydrodynamic limit).
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Fig. 4. The numerical solution of q for the Jin–Xin relaxation model (18) at t = 0.3150 for the shock initial condition, with narrow

(top) and large (bottom) buffer zone. The solid line is the numerical solution of model (18), while ��� is the numerical solution of the

coupling model (100 grid points), and �Æ-� is the exact solution for the Burgers equation (full hydrodynamic limit).
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Example 6.2. Numerical solution of the coupling for the 1D BGK model.

Here, we test the coupling model for the following BGK model of rarefied gas dynamics, written in the

dimensionless form:
ot
F

G

� �
þ vox

F

G

� �
¼ mðqÞ

e

M ½q� � F

hM ½q� � G

� �
;

where M ½q� ¼ nffiffiffiffiffi
2ph

p expð�ðv�uÞ2
2h Þ and
q ¼ n; nu; n
u2

2
þ 3

2
nh

� �
¼ 1; v;

1

2
v2

� �
F þ ð0; 0; 1ÞG

� �
.

The collision frequency is mðqÞ ¼ l
p, where p = nh is the pressure and l = h0.81 is the viscosity.

This model is 1D in space and 2D in velocity, but it accounts for 3D velocity effects. It is obtained with

standard reduction technique of the full three-dimensional BGK model of rarefied gas dynamics (see [5]). It

is of the form (1), and its hydrodynamic limit is the Euler system of gas dynamics. A coupling model of

form (14) and (15) can be derived, and it can be shown that it preserves uniform flows.

First, we use the classical Sod problem, with the following initial data for density n, velocity u, and

pressure p:
ðn; u; pÞ ¼
ð1; 0; 1Þ; �1 6 x 6 0;

ð0.125; 0; 0.1Þ; 0 6 x 6 1.

�

The function h is defined piecewise linear: 0 for x 6 a, 1 for x P b, and linear between a and b. We use two
choices of buffer zone: a = 0, b = 0.125; a = �0.125, b = 0.125, respectively. We also use a Heaviside func-

tion h that makes the buffer zone reduce to the interface x = 0. The Knudsen number e is 2 · 10�4.

To avoid numerical artifacts in the following comparison, we use a velocity grid of 100 points with

bounds [�4,5.4], and a space grid of 10,000 points. Such a fine space grid is necessary to make a fair

comparison between the models. Indeed, with 300 points only, the numerical dissipation makes the full

BGK and the coupling models artificially close.

On the following figures, we plot the numerical solutions for the density and the velocity for the coupling

model (solid line), full BGK model (dotted line), and full Euler system (dash-dotted line). The buffer zone is
made clearly visible by two vertical dotted lines at x = a and x = b (only one at x = a for the case with

Heaviside h). The BGK model is solved with a scheme similar to that developed in [12,13], and the Euler

system is solved with a kinetic scheme using the same flux splitting as in the hyperbolic part of the coupling

model.

In Fig. 5, we plot the results obtained with the first buffer zone, at t = 0.04. The coupling model is closer

to the BGK model than to the Euler solution in the buffer. For x 6 a, there is an oscillation in the coupling

model which changes from the BGK to the Euler curve. This suggests that the buffer zone is too narrow. At

time t = 0.2 (Fig. 6), there is still this oscillation, but the coupling model now is very close to the BGK
model in the buffer and in the right part. Note that, as expected, when the BGK model is uniform away

from the shock, this property is well preserved by the coupling model.

With the second (wider) buffer zone, at t = 0.04 (Fig. 7), the solution lies inside the buffer, and the

coupling and BGK models are in almost perfect agreement. At t = 0.2 (Fig. 8), this is also true, even outside

the buffer zone and in particular in the left part. Note that there is no oscillation with this buffer.

In Figs. 9 and 10, the results obtained with the Heaviside function h are plotted at the same times.

Surprisingly, there is no oscillation at the interface, as opposed to the case with the narrow buffer zone (Fig.

5). This suggests that the oscillation is induced by the transition from the Euler to the coupled model, rather
than by the transition from Euler to BGK. Apart from this fact, we observe that the results are very close to

each model in their respective zones.
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Consequently, it seems that the most accurate results (that is the results that are the closest to the full

kinetic model) are obtained with the wide buffer zone.

Example 6.3. Numerical solution of the coupling for the 2D BGK model.

With this test, we compute the unsteady shock wave produced by the diffraction of a plane moving shock

wave that impinges upon a circular cylinder in a rarefied gas.
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We point out that our goal here is not to make an accurate comparison between the coupling and

the full BGK model. Actually, the mesh we use is too coarse to make a fair comparison: the numerical

diffusion makes the results artificially close. In addition, our buffer zone is not well suited to capture the

non-equilibrium effects, since the shock rapidly leaves the kinetic zone. However, we believe this test

can illustrate the ability of our method to easily treat 2D flows with arbitrary buffer zones.

The data of this computation are taken from [21]. The initial position of the shock is located at

x = �1. The initial conditions of the undisturbed right state are (in non-dimensionalized form) n = 1,
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ux = 0, uy = 0, h = 1. The conditions ahead of the moving shock (left state) are given by the Rankine-

Hugoniot conditions. The Knudsen number is 0.005 based on the radius of the cylinder equal to 1. The

shock Mach number is 2.81 (based on the shock speed and the temperature of the left state), and the

wall temperature of the cylinder is h = 1. A diffuse reflection is used on this wall. Due to the symmetry,

only the half plane is computed and symmetry boundary conditions were enforced. The space mesh is a

curvilinear grid of 90 · 90 cells. The velocity grid is 10 · 10 points. Finally, the buffer zone is defined by

three rectangles given by the following points: (�0.6,0), (�1.3,0), (�1.3,2.3), (3.3,2.3), (3.3,0), (2.6,0),
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(2.6,1.6), (�0.6,2.6). The kinetic zone lies between the buffer and the cylinder, the hydrodynamic zone

lies between the buffer and the exterior of the domain.

In Figs. 11–13, we plot the density contours for the coupling model (continuous lines) and the full BGK

model (dotted lines) at six different times. The buffer zone is plotted with dashed lines. Although the mesh is

quite coarse, several shocks can be identified on this figures (primary incident shock, reflected bow shock,
Mach shock behind the cylinder, etc.). Moreover, the results of the coupling and the full BGK model are

very close.
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Note that since the buffer zone is defined by straight lines, it is not aligned with the mesh. Such an

interface would be difficult to treat with coupling techniques by interface half-flux conditions (see [15,17]),

while with our method, it does not require any particular treatment. As explained in Section 5.2, the

geometry of the buffer zone is taken into account by the function h itself in the model.
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7. Conclusion

In this work, we have proposed a new method to couple kinetic and hydrodynamic equations. This

method is an extension of a previous method proposed in [3] for coupling kinetic and diffusion equations.

Its main feature is that the two models are coupled in a small buffer zone in which the true solution is
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approximated by adding up the solutions of each model. The advantage of this coupling is that no bound-

ary condition is needed, as is for a typical domain decomposition method. This makes our method easy to

use, since the geometry of the interface is taken into account by the transition function itself in the equa-

tions. To implement our method, there is no need to define logically different subdomains: we only need to

define the computational grid and a transition function which will be evaluated on the grid. For instance,

although it is not done in this paper, several kinetic subdomains with non-connex buffer zones could easily

be used without modifying the implementation.
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This work is just a first step towards a complete coupling strategy, and an intensive series of numer-

ical tests should be done to measure the performances of our method. But already, we have presented

several tests in 1 and 2 space dimensions that show our method behaves quite satisfactorily. We also

mention that the kinetic and hydrodynamic zones were fixed a priori in our tests, but it is also possible

to use a physical criterion to determine the ‘‘optimal’’ zones, as it has already be done for instance in

[17,19].

An important feature of our approach is that it preserves uniform flows for kinetic models which have

equilibrium states that are homogeneous functions of degree one with respect to their moments. This prop-
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erty is satisfied by important models as Boltzmann like equations. We have shown that if this property is

not satisfied, then the method gives an incorrect approximation of the original kinetic solution.

We also think our method could be extended to a coupling method with moving interfaces. In this paper,

we have derived the corresponding coupling model, but the numerical tests are still to be done. In this case,

the main problem will be to define how the transition function should evolve in time. There exist a few cases
in neutron transport or radiative transfer where the evolution of the interface is known a priori. But in some

others, as in aerodynamics, other investigations are probably necessary. This will be the subject of an ongo-

ing project by the authors.
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