SEMI-CLASSICAL MODELS FOR THE SCHRÖDINGER EQUATION WITH PERIODIC POTENTIALS AND BAND CROSSINGS

Lihui Chai

Department of Mathematical Science Tsinghua University Bejing 100084, China

Shi Jin

Department of Mathematics, Institute of Natural Sciences, and MOE Key Lab in Scientific and Engineering Computing Shanghai Jiao Tong University Shanghai 200240, China and Department of Mathematics University of Wisconsin-Madison Madison, WI 53706, USA

and Qin Li

Department of Mathematics University of Wisconsin-Madison Madison, WI 53706, USA

(Communicated by the associate editor name)

ABSTRACT. The Bloch decomposition plays a fundamental role in the study of quantum mechanics and wave propagation in periodic media. Most of the homogenization theory developed for the study of high frequency or semi-classical limit for these problems assumes no crossing of the Bloch bands, resulting in classical Liouville equations in the limit along each Bloch band.

In this article, we derive semi-classical models for the Schrödinger equation in periodic media that take into account band crossing, which is important to describe quantum transitions between Bloch bands. Our idea is still based on the Wigner transform (on the Bloch eigenfunctions), but in taking the semi-classical approximation, we retain the off-diagonal entries of the Wigner matrix, which cannot be ignored near the point of band crossing. This results in coupled inhomogeneous Liouville systems that can suitably describe quantum tunneling between bands that are not well-separated. We also develop a domain decomposition method that couples these semi-classical models with the classical Liouville equations (valid away from zones of band crossing) for a multiscale computation. Solutions of these models are numerically compared with those of the Schröding equation to justify the validity of these new models for band-crossings.

²⁰¹⁰ Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.

Key words and phrases. Schrödinger equation, Periodic, Semi-classical models, Inter-band transition.

This work was partially supported by NSF grants DMS-1114546 and NSF DMS RNMS grant DMS-1107291.

1. **Introduction.** The linear Schrödinger equation with a periodic potential is an important model in solid state physics. It describes the motion of electrons in a crystal with a lattice structure. We consider the following one dimensional Schrödinger equation

$$\mathrm{i}\varepsilon\phi_t^\varepsilon = -\frac{\varepsilon^2}{2}\phi_{xx}^\varepsilon + \left(V\left(\frac{x}{\varepsilon}\right) + U(x)\right)\phi^\varepsilon, \quad t > 0, \quad x \in \mathbb{R}. \tag{1}$$

Here, ϕ^{ε} is the complex-valued wave function, ε is the dimensionless rescaled Planck constant, V(x) is a periodic potential with the lattice $L = 2\pi\mathbb{Z}$, so $V(x+\nu) = V(x)$ for any $x \in \mathbb{R}$ and $\nu \in L$. U(x) is a smooth external potential function. We denote the dual lattice of L by L^* and $L^* = \mathbb{Z}$. The fundamental domain of L is $(0, 2\pi)$ and the first Brillouin zone is $\mathcal{B} = \left(-\frac{1}{2}, \frac{1}{2}\right)$.

In the semi-classical regime $\varepsilon \ll 1$, the Schrödinger equation without a periodic potential has a semi-classical limit governed by the Liouville equation [35]. For the Schrödinger equation with a periodic potential, the Liouville equation can also be obtained along each Bloch band [1], and it was justified rigorously in [13, 24, 25] for the case $U \equiv 0$. The result can be generalized to the case when a weak random potential [2] and nonlinear self-consistent potential [3, 4] are presented. It has been shown that in the crystal, the electrons remain in a certain quantum subsystem, "move along the m-th band" and the dynamics is given by $\dot{x} = \partial_k E_m(k)$, where E_m is the energy corresponding to the m-th Bloch band [5]. Higher order correction relevant to Berry phase can be included, see [28, 29, 11]. All of these results use the adiabatic assumption, namely, different Bloch bands are well-separated and there is no band-crossing.

The non-adiabatic or diabatic effect should be considered whenever the transitions between energy levels of the quantum system play an important role. This may happen when the gap between the energy levels becomes small enough in comparison to the scaled Planck constant ε . The well-known Landau-Zener formula [21, 37] describes the asymptotic effect of avoided crossings in various specific situations. The study of such "quantum tunnelings" is important in many applications, from quantum dynamics in chemical reaction [34], semiconductors to Bose-Einstein condensation [6]. While in the case of band separation there have been significant mathematical progress in understanding the semi-classical limit [2, 13, 25, 28, 29], as well as numerical methods that utilizes the Bloch decomposition [17], there has been little mathematical and computational works for the band-mixing case. In the context of "surface hopping method", associated with the Born-Oppenheimer approximation, the Landau-Zener phenomenon has been studied computationally by Tully etc. [34, 33, 30, 10] and mathematically [15, 12, 23, 22]. For a Liouville equation based computational approach, see [19], and a quantum-classical model for surface hopping, see [26, 16].

In this paper, we use the Wigner-Bloch theory to derive semi-classical models for the Schrödinger equation with periodic potentials (1) that account for band-crossing. Without band-crossing, the classical Liouville equation can be obtained along each Bloch band, as $\varepsilon \to 0$. This only includes the diagonal entries of the Wigner-Bloch matrix (the Wigner transform of the Bloch functions) which is valid away from the crossing zone. In our semi-classical models we include the leading order of the off-diagonal entries, resulting in system of complex, inhomogeneous Liouville equations. These systems contain terms that describe for transitions between bands, as well as Berry phase information which is related to the quantum Hall effect [32]. These systems are still hyperbolic, with oscillatory forcing terms

that converge (in the weak sense) to zero in the semi-classical limit away from band-crossing zones so the classical Liouville equation can be recovered. Several numerical experiments using these models produce numerical solutions that adequately describe the quantum transitions between bands, when compared with the solutions of the original Schrödinger equation (1).

The computational cost of these semi-classical models, while considerably lower than that of the original Schrödinger equation, is higher than the adiabatic Liouville equations without band-crossing. In order to further reduce the computational cost, a hybrid method that couples the classical Liouville equation away from the crossing zone to the new semi-classical models to be used in the crossing zones is introduced. A couple of other more efficient computational approaches for linear periodic potentials, are also introduced in section 5.

This paper is organized as follows. In Section 2, we introduce the Wigner transform and the Bloch eigenvalue problem that are the two tools to study the semi-classical limit of the Schrödinger equation with periodic potentials. We also review the classical limit without band-crossing which gives rise to the classical Liouville equation for each Bloch band. In Section 3 we derive the new semi-classical Liouville systems that account for quantum transitions between different bands. In Section 4 we introduce a domain-decomposition based hybrid model that couples the classical Liouville system away from the band crossing zone to the new semi-classical models used in the crossing zones. Some numerical examples are presented in Section 5 to validate these semi-classical models for quantum transitions between Bloch bands. More efficient numerical methods were introduced for simpler linear potentials. Section 6 concludes this paper.

2. The classical limit without band-crossing.

2.1. **The Wigner transform.** Define the asymmetric Wigner transformation as in [2],

$$W_{\varepsilon}(t,x,k) = \int_{\mathbb{R}} \frac{\mathrm{d}y}{2\pi} \mathrm{e}^{\mathrm{i}ky} \phi^{\varepsilon} (t,x-\varepsilon y) \,\bar{\phi}^{\varepsilon}(t,x). \tag{2}$$

where $\bar{\phi}^{\varepsilon}$ is the complex conjugate of ϕ^{ε} , and ϕ^{ε} is the solution to the Schrödinger equation (1), then one obtains the Wigner equation:

$$\frac{\partial W_{\varepsilon}}{\partial t} + k \frac{\partial W_{\varepsilon}}{\partial x} + \frac{i\varepsilon}{2} \frac{\partial^{2} W_{\varepsilon}}{\partial x^{2}} = \frac{1}{i\varepsilon} \sum_{\mu \in L^{*}} e^{i\mu x/\varepsilon} \hat{V}(\mu) \left[W_{\varepsilon}(x, k - \mu) - W_{\varepsilon}(x, k) \right]
+ \frac{1}{i\varepsilon} \int_{\mathbb{R}} \frac{d\omega}{2\pi} e^{i\omega x} \hat{U}(\omega) \left[W_{\varepsilon}(x, k - \varepsilon\omega) - W_{\varepsilon}(x, k) \right],$$
(3)

where $\hat{U}(\omega)$ is the Fourier transform of U(y):

$$\hat{U}(\omega) = \int_{\mathbb{R}} dy e^{-i\omega y} U(y), \quad \omega \in \mathbb{R},$$

and $\hat{V}(\mu)$ is the discrete Fourier coefficients of V(y):

$$\hat{V}(\mu) = \frac{1}{2\pi} \int_0^{2\pi} dy \, e^{-i\mu y} V(y), \quad \mu \in L^*.$$

Here $(0, 2\pi)$ is the fundamental domain of the lattice L.

Denote $z=\frac{x}{\varepsilon}$ as the fast variable. To separate the dependence on both the slow and the fast variables, one can write $W_{\varepsilon}(t,x,k)$ as $W_{\varepsilon}(t,x,z,k)$, and replace the spatial derivative $\frac{\partial}{\partial x}$ by $\frac{\partial}{\partial x}+\frac{1}{\varepsilon}\frac{\partial}{\partial z}$. Then (3) becomes:

$$\frac{\partial}{\partial t} W_{\varepsilon} + k \left(\frac{\partial}{\partial x} + \frac{1}{\varepsilon} \frac{\partial}{\partial z} \right) W_{\varepsilon} + \frac{i\varepsilon}{2} \left(\frac{\partial}{\partial x} + \frac{1}{\varepsilon} \frac{\partial}{\partial z} \right)^{2} W_{\varepsilon}$$

$$= \frac{1}{i\varepsilon} \sum_{\mu \in L^{*}} e^{i\mu x/\varepsilon} \hat{V}(\mu) \left[W_{\varepsilon}(x, k - \mu) - W_{\varepsilon}(x, k) \right]$$

$$+ \frac{1}{i\varepsilon} \int_{\mathbb{R}} \frac{d\omega}{2\pi} e^{i\omega x} \hat{U}(\omega) \left[W_{\varepsilon}(x, k - \varepsilon\omega) - W_{\varepsilon}(x, k) \right].$$
(4)

Assume U(x) is smooth enough, one throws away high order terms, and (4) becomes:

$$\frac{\partial W_{\varepsilon}}{\partial t} + k \frac{\partial W_{\varepsilon}}{\partial x} - \frac{\partial U}{\partial x} \frac{\partial W_{\varepsilon}}{\partial k} + i \frac{\partial^{2} W_{\varepsilon}}{\partial x \partial z} = -\frac{1}{\varepsilon} \mathcal{L} W_{\varepsilon}, \tag{5}$$

where the skew symmetric operator \mathcal{L} is given by

$$\mathcal{L}f(z,k) = k\frac{\partial f}{\partial z} + \frac{\mathrm{i}}{2}\frac{\partial^2 f}{\partial z^2} - \frac{1}{\mathrm{i}}\sum_{\mu \in L^*} \mathrm{e}^{\mathrm{i}\mu x/\varepsilon} \hat{V}(\mu) \left[f(x,k-\mu) - f(x,k) \right].$$

Asymptotically one expands W_{ε} by:

$$W_{\varepsilon}(t,x,k) = W_0\left(t,x,\frac{x}{\varepsilon},k\right) + \varepsilon W_1\left(t,x,\frac{x}{\varepsilon},k\right) + \cdots$$

and plugs this ansatz into (4). In the order of $\mathcal{O}(\frac{1}{\varepsilon})$ and $\mathcal{O}(1)$ respectively, one gets:

$$\mathcal{L}W_0 = 0, \tag{6a}$$

$$\frac{\partial W_0}{\partial t} + k \frac{\partial W_0}{\partial x} - \frac{\partial U}{\partial x} \frac{\partial W_0}{\partial k} + i \frac{\partial^2 W_0}{\partial x \partial z} = -\mathcal{L}W_1.$$
 (6b)

This implies that W_0 is in the kernel of \mathcal{L} . We seek a good basis of $\ker \mathcal{L}$ in section 2.2, and leave the exact formulation of W_0 to section 2.3.

2.2. The Bloch eigenvalue problem. The eigenfunctions of \mathcal{L} are constructed by studying the following eigenvalue problem:

$$-\frac{1}{2}\frac{\partial^2}{\partial z^2}\Psi(z,p) + V(z)\Psi(z,p) = E(p)\Psi(z,p), \tag{7a}$$

$$\Psi(z+\nu,p) = e^{ip\nu}\Psi(z,p), \ \forall \nu \in L, \tag{7b}$$

$$\frac{\partial \Psi}{\partial z}(z+\nu,p) = e^{ip\nu} \frac{\partial \Psi}{\partial z}(z,p), \quad \forall \nu \in L.$$
 (7c)

With each specific p, one constructs a boundary condition (7b) and (7c) and solves the eigenvalue problem. Denote $E_m(p)$ as the m-th eigenvalue with multiplicity r_m , and Ψ_m^{α} , with $\alpha = 1, ..., r_m$, as the associated α -th eigenfunction. Ψ_m is usually called the m-th Bloch eigenfunction [5]. For this problem, one can easily check the following properties:

(a) The eigenvalues $E_m(p)$ are L^* -periodic in p and have constant finite multiplicity outside a closed zero-measure subset F of $p \in \mathbb{R}$. Outside F, one orders the eigenvalues as $E_1(p) < E_2(p) < ... < E_m(p) < ...$ with $E_m(p) \to \infty$ as $m \to \infty$, uniformly in p.

(b) For any $p \in \left(-\frac{1}{2}, \frac{1}{2}\right)$, $\{\Psi_m^{\alpha}(\cdot, p)\}$ forms a complete orthonormal basis in $L^2(0, 2\pi)$, i.e.

$$(\Psi_m^{\alpha}, \Psi_n^{\beta}) := \int_0^{2\pi} \frac{\mathrm{d}z}{2\pi} \Psi_m^{\alpha}(z, p) \bar{\Psi}_n^{\beta}(z, p) = \delta_{mn} \delta_{\alpha\beta}. \tag{8}$$

(c) For all $\phi \in L^2(\mathbb{R})$, one has the following Bloch decomposition:

$$\phi(x) = \sum_{m=1}^{\infty} \sum_{\alpha=1}^{r_m} \int_{\mathcal{B}} c_m^{\alpha}(p) \Psi_m^{\alpha}(x, p) \, \mathrm{d}p \tag{9}$$

where c_m^{α} is the Bloch coefficient: $c_m^{\alpha}(p) = \int_{\mathbb{R}} \phi(x) \bar{\Psi}_m^{\alpha}(x,p) dx$.

Define

$$\Phi_m^{\alpha}(z,p) = e^{-ipz} \Psi_m^{\alpha}(z,p),$$

then Φ_m^{α} is a z-periodic function with period 2π . For any $p \in \left(-\frac{1}{2}, \frac{1}{2}\right)$, $\{\Phi_m^{\alpha}(\cdot, p)\}$ forms a complete orthonormal basis in $L^2(0, 2\pi)$.

For simplicity, throughout this paper we make the following assumption:

Assumption 1. The multiplicity for each eigenvalue E_m is 1 outside F. We will drop the superscript α when there is no ambiguity.

2.3. The classical limit without band-crossing. In this section, we review the classical limit without band-crossing [2]. For that, we need the following assumption:

Assumption 2. The set F is a empty set, i.e. eigenvalues are strictly apart from each other everywhere in p, namely $E_1(p) < E_2(p) < ... < E_j(p) < ...$.

By taking the Wigner transformation on the Bloch eigenfunctions, one obtains a basis on the phase space. Define the z-periodic functions $Q_{mn}(z,k)$ by:

$$Q_{mn}(z,k) = Q_{mn}(z,\mu_k,p_k) = \int_0^{2\pi} \frac{\mathrm{d}y}{2\pi} e^{\mathrm{i}ky} \Psi_m(z-y,p_k) \bar{\Psi}_n(z,p_k), \tag{10}$$

where k is an arbitrary real number and is decomposed as:

$$k = p_k + \mu_k, \quad p_k \in \mathcal{B}, \ \mu_k \in L^*.$$

Lemma 2.1. Define the inner product $\langle \cdot, \cdot \rangle$:

$$\langle f, g \rangle := \sum_{\mu \in L^*} \int_0^{2\pi} \frac{\mathrm{d}z}{2\pi} f(z, \mu) \bar{g}(z, \mu), \quad f, g \in L^2((0, 2\pi), \ell^2(L^*)),$$

then for any $p \in (-1/2, 1/2)$, $\{Q_{mn}(\cdot, \cdot, p)\}$ forms a complete orthonormal basis in $L^2((0, 2\pi), \ell^2(L^*))$.

Proof. The orthonormal condition

$$\langle Q_{mn}, Q_{jl} \rangle = \delta_{mj} \, \delta_{nl}, \tag{11}$$

can be proved by simply using (8). To prove the completeness, it is sufficient to show that: if there exists an $f \in L^2((0,2\pi),\ell^2(L^*))$, such that $\langle f,Q_{mn}\rangle = 0$ for all $m,n \in \mathbb{N}$, then $f(z,\mu) \equiv 0$. Assume $\langle f,Q_{mn}\rangle = 0$ for all $m,n \in \mathbb{N}$. By the definition of Q_{mn} ,

$$\sum_{\mu} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\mathrm{d}y \mathrm{d}z}{(2\pi)^{2}} f(z,\mu) \mathrm{e}^{\mathrm{i}\mu y} \Phi_{m}(z-y,p) \bar{\Phi}_{n}(z,p) = 0, \quad \forall m,n \in \mathbb{N}.$$

Since $\{\Phi_n(\cdot, p)\}$ forms a complete orthonormal basis in $L^2(0, 2\pi)$, the above equality implies that

$$\sum_{\mu} \int_{0}^{2\pi} \frac{\mathrm{d}y}{2\pi} f(z,\mu) \mathrm{e}^{\mathrm{i}\mu y} \Phi_{m}(z-y,p) = 0, \quad \forall m \in \mathbb{N},$$

thus

$$\sum_{\mu} f(z,\mu) e^{i\mu y} \equiv 0,$$

which implies that $f(z, \mu) \equiv 0$.

A straightforward computation gives:

$$\mathcal{L}Q_{mn}(z,k) = \mathcal{L}Q_{mn}(z,\mu,p_k) = i(E_m(p) - E_n(p))Q_{mn}(z,\mu,p_k).$$
 (12)

Apparently, under Assumptions 1 and 2, (12) gives:

$$\ker \mathcal{L} = \operatorname{span}\{Q_{mm}, m = 1, 2, \cdots\}. \tag{13}$$

Therefore, from (6a) W_0 has the form

$$W_0(t, x, z, k) = \sum_{m} \sigma_{mm}(t, x, p_k) Q_{mm}(z, \mu_k, p_k),$$
(14)

with σ_{mm} representing the expansion coefficients. To derive the equation for them, one plugs it back into (6b), and takes the inner product with Q_{mm} on both sides, the right hand side vanishes due to the skew symmetry of \mathcal{L} and (12):

$$\langle -\mathcal{L}W_1, Q_{mm} \rangle = \langle -W_1, \mathcal{L}Q_{mm} \rangle = 0. \tag{15}$$

The left hand side, on the other hand, gives:

$$\langle \partial_{t}W_{0} + k\partial_{x}W_{0} - \partial_{x}U\partial_{k}W_{0} + i\partial_{xz}W_{0}, Q_{mm} \rangle$$

$$= \sum_{n} \left[\partial_{t}\sigma_{nn} \langle Q_{nn}, Q_{mm} \rangle + \partial_{x}\sigma_{nn} \langle kQ_{nn}, Q_{mm} \rangle \right]$$

$$- \sum_{n} \left[\partial_{x}U (\partial_{p}\sigma_{nn} \langle Q_{nn}, Q_{mm} \rangle + \sigma_{m} \langle \partial_{p}Q_{nn}, Q_{mm} \rangle) \right]$$

$$= \partial_{t}\sigma_{mm} + \partial_{p}E_{m}\partial_{x}\sigma_{mm} - \partial_{x}U\partial_{p}\sigma_{mm}.$$
(16)

Thus one can combine (15) and (16), and obtain:

$$\partial_t \sigma_{mm} + \partial_p E_m \partial_x \sigma_{mm} - \partial_x U \partial_p \sigma_{mm} = 0. \tag{17}$$

In the derivation of (16), the following equalities were used:

$$\langle kQ_{mn}, Q_{jl} \rangle = -\frac{\mathrm{i}}{2} \left(\delta_{nl} \left(\partial_z \Psi_m, \Psi_j \right) + \delta_{mj} \left(\partial_z \Psi_l, \Psi_n \right) \right), \tag{18a}$$

$$\langle \partial_p Q_{mn}, Q_{jl} \rangle = \delta_{nl} \left(\partial_p \Phi_m, \Phi_j \right) + \delta_{mj} \left(\Phi_l, \partial_p \Phi_n \right),$$
 (18b)

$$\langle \partial_z Q_{mn}, Q_{jl} \rangle = \delta_{nl} \left(\partial_z \Psi_m, \Psi_j \right) - \delta_{mj} \left(\partial_z \Psi_l, \Psi_n \right), \tag{18c}$$

$$\partial_p E_m \delta_{mj} + (\partial_p \Phi_m, \Phi_j) (E_m - E_j) = -\mathrm{i} (\partial_z \Psi_m, \Psi_j), \qquad (18d)$$

$$(\partial_n \Phi_m, \Phi_m) + (\Phi_m, \partial_n \Phi_m) = 0. \tag{18e}$$

The details can also be found in [2].

Notice that (17) is the classical Liouville equation for each Bloch band.

Remark 1. Similar results were rigorously proved in [25, 13].

- 3. Asymptotic models for the band-to-band transition. This section is for the case when Assumption 2 is not satisfied. Physically, ε is small but nonzero, and electrons can tunnel across bands for all p. But this tunneling is negligible when bands are far away from each other, the so-called adiabatic assumption. This is the basis for the asymptotically expansion (14), which throws away the dependence on the band-transition terms $Q_{mn}(m \neq n)$ of W_0 . However, if there exists $m_0 \neq n_0$ and a point p_c , such that $|E_{m_0}(p_c) E_{n_0}(p_c)| \sim \mathcal{O}(\varepsilon^{\gamma})$ with γ being a real number larger than zero, then $\mathcal{L}Q_{m_0n_0} \sim \mathcal{O}(\varepsilon^{\gamma})$, so the asymptotic expansion (6) does not hold any more. When this happens, physically one observes significant tunneling effect. We seek asymptotic models to handle the band-to-band transition in this section.
- 3.1. The derivation of a two-band semi-classical Liouville system using the asymmetric Wigner transform. In order to handle the band-to-band transition phenomena, we come back to the asymptotic model (5) and use the following expression (compare with (14)!):

$$W_{\varepsilon} = \sum_{m} \sigma_{mm} Q_{mm} + \sum_{m \neq n} \sigma_{mn} Q_{mn}. \tag{19}$$

Without loss of generality, we tackle a two-band problem. Define the crossing point as $p_c = \arg\min_p\{|E_1 - E_2|\}$ and assume and $p_c = 0$.

Plugging (19) into (5) and taking the inner product with Q_{mn} as mentioned in Sec. 2.3, one gets a system for σ_{mn} 's:

$$\begin{split} &\frac{\partial \sigma_{11}}{\partial t} + \frac{\partial E_1}{\partial p} \frac{\partial \sigma_{11}}{\partial x} + \frac{1}{\mathrm{i}} \left(\frac{\partial \Psi_1}{\partial z} , \Psi_2 \right) \frac{\partial \sigma_{12}}{\partial x} - \frac{\partial U}{\partial x} \frac{\partial \sigma_{11}}{\partial p} \\ &= \frac{\partial U}{\partial x} \left[\left(\frac{\partial \Phi_2}{\partial p} , \Phi_1 \right) \sigma_{21} + \left(\Phi_1 , \frac{\partial \Phi_2}{\partial p} \right) \sigma_{12} \right], \\ &\frac{\partial \sigma_{22}}{\partial t} + \frac{\partial E_2}{\partial p} \frac{\partial \sigma_{22}}{\partial x} + \frac{1}{\mathrm{i}} \left(\frac{\partial \Psi_2}{\partial z} , \Psi_1 \right) \frac{\partial \sigma_{21}}{\partial x} - \frac{\partial U}{\partial x} \frac{\partial \sigma_{22}}{\partial p} \\ &= \frac{\partial U}{\partial x} \left[\left(\frac{\partial \Phi_1}{\partial p} , \Phi_2 \right) \sigma_{12} + \left(\Phi_2 , \frac{\partial \Phi_1}{\partial p} \right) \sigma_{21} \right], \\ &\frac{\partial \sigma_{12}}{\partial t} + \frac{\partial E_2}{\partial p} \frac{\partial \sigma_{12}}{\partial x} + \frac{1}{\mathrm{i}} \left(\frac{\partial \Psi_2}{\partial z} , \Psi_1 \right) \frac{\partial \sigma_{11}}{\partial x} - \frac{\partial U}{\partial x} \frac{\partial \sigma_{12}}{\partial p} + \mathrm{i} \frac{E_1 - E_2}{\varepsilon} \sigma_{12} \\ &= \frac{\partial U}{\partial x} \left[\left(\Phi_2 , \frac{\partial \Phi_1}{\partial p} \right) \sigma_{11} + \left(\frac{\partial \Phi_2}{\partial p} , \Phi_1 \right) \sigma_{22} + \left(\Phi_2 , \frac{\partial \Phi_2}{\partial p} \right) \sigma_{12} + \left(\frac{\partial \Phi_1}{\partial p} , \Phi_1 \right) \sigma_{12} \right], \\ &\frac{\partial \sigma_{21}}{\partial t} + \frac{\partial E_1}{\partial p} \frac{\partial \sigma_{21}}{\partial x} + \frac{1}{\mathrm{i}} \left(\frac{\partial \Psi_1}{\partial z} , \Psi_2 \right) \frac{\partial \sigma_{22}}{\partial x} - \frac{\partial U}{\partial x} \frac{\partial \sigma_{21}}{\partial p} + \mathrm{i} \frac{E_2 - E_1}{\varepsilon} \sigma_{21} \\ &= \frac{\partial U}{\partial x} \left[\left(\Phi_1 , \frac{\partial \Phi_2}{\partial p} \right) \sigma_{22} + \left(\frac{\partial \Phi_1}{\partial p} , \Phi_2 \right) \sigma_{11} + \left(\Phi_1 , \frac{\partial \Phi_1}{\partial p} \right) \sigma_{21} + \left(\frac{\partial \Phi_2}{\partial p} , \Phi_2 \right) \sigma_{21} \right]. \end{split}$$

This system can be written in vector form as:

$$\partial_t \boldsymbol{\sigma} + A \partial_x \boldsymbol{\sigma} + B \partial_p \boldsymbol{\sigma} = -BC \boldsymbol{\sigma} + \frac{\mathrm{i}D}{\varepsilon} \boldsymbol{\sigma}$$
 (20a)

where

$$\boldsymbol{\sigma} = (\begin{array}{cccc} \sigma_{11} & \sigma_{12} & \sigma_{21} & \sigma_{22} \end{array})^T \tag{20b}$$

$$B = -\partial_x U \mathbb{I}, D = \text{diag}(0, E_2 - E_1, E_1 - E_2, 0)$$
 (20c)

$$A = \begin{bmatrix} \partial_p E_1 & \psi_{12} & 0 & 0\\ \psi_{21} & \partial_p E_2 & 0 & 0\\ 0 & 0 & \partial_p E_1 & \psi_{12}\\ 0 & 0 & \psi_{21} & \partial_p E_2 \end{bmatrix} , \tag{20d}$$

$$C = \begin{bmatrix} 0 & -\phi_{12} & \phi_{21} & 0\\ -\phi_{21} & \phi_{11} - \phi_{22} & 0 & \phi_{21}\\ \phi_{12} & 0 & \phi_{22} - \phi_{11} & -\phi_{12}\\ 0 & \phi_{12} & -\phi_{21} & 0 \end{bmatrix} , \qquad (20e)$$

$$\psi_{mn} = -i \left(\partial_z \Psi_m, \Psi_n \right), \text{ and } \phi_{mn} = \left(\partial_p \Phi_m, \Phi_n \right),$$
 (20f)

Where the superscript T denotes the matrix transpose, \mathbb{I} is the identity matrix. Generally, $\psi_{12} = \bar{\psi}_{21}$, $\phi_{12} = -\bar{\phi}_{21}$ are complex-valued quantities, and ϕ_{11} , ϕ_{22} are purely imaginary, so $A = A^{\dagger}$ is Hermitian, and $C = -C^{\dagger}$ is anti-Hermitian (where the superscript \dagger denotes the matrix conjugate transpose). Note that $\partial_x U \phi_{mm}$ is the so-called Berry-connection [7, 29, 32].

Remark 2. According to the adiabatic theory [36, 27], the state initially in one eigenstate $\Phi_m(p(0))$ will remain in an instantaneous eigenstate $\Phi_m(p(t))$ when time t is sufficiently slow. One can write the state at time t as

$$\phi_m(t) = e^{i\gamma_m(t)} \exp\left(-\frac{i}{\varepsilon} \int_0^t dt' E_m(p(t'))\right) \Phi_m(p(t)), \quad m = 1, 2,$$
 (21)

where p(t) is the trajectory satisfying $\dot{p}(t) = \partial_x U$. The second exponential in (21) is known as the dynamical phase factor, and γ_m in the first exponential is the path integral of the Berry connection, i.e.

$$\gamma_m = i \int \phi_{mm}(p) \, \mathrm{d}p, \tag{22}$$

which is called the Berry phase. Obviously this term cancel out in the density function $\phi_m \bar{\phi}_m$, however if considering the inter-band density $\phi_m \bar{\phi}_n$ with $m \neq n$, then one obtains

$$\phi_m(p(t))\bar{\phi}_n(p(t)) = \exp\left\{i\left(\gamma_m(t) - \gamma_n(t) - \frac{1}{\varepsilon} \int_0^t dt' \left(E_m(p(t')) - E_n(p(t'))\right)\right)\right\} \times \Phi_m(p(t))\bar{\Phi}_n(p(t)),$$
(23)

and the phase in the above equation

$$i\frac{\mathrm{d}}{\mathrm{d}t}\left(\gamma_{m}(t) - \gamma_{n}(t) - \frac{1}{\varepsilon} \int_{0}^{t} \mathrm{d}t' \left(E_{m}(p(t')) - E_{n}(p(t'))\right)\right)$$

$$= -\frac{\mathrm{d}p}{\mathrm{d}t}\left(\phi_{mm}(p(t)) - \phi_{nn}(p(t))\right) - \frac{\mathrm{i}}{\varepsilon}\left(E_{m}(p(t)) - E_{n}(p(t))\right)$$

$$= U_{x}\left(\phi_{mm} - \phi_{nn}\right) - \frac{\mathrm{i}}{\varepsilon}\left(E_{m} - E_{n}\right) = \left(-BC + \frac{\mathrm{i}D}{\varepsilon}\right)_{mn}.$$
(24)

In comparison with (20), one can see that it is just the coefficient of the σ_{mn} term on the right hand side of (20a) for σ_{mn} . This shows that the Berry phase plays an important role in the inter-band transitions.

It can be shown the system (20) is a hyperbolic system (see the details in Appendix A. Since the source matrix $C = -C^{\dagger}$, all of its eigenvalues are purely imaginary. Thus this system has unique bounded solution if the initial data are bounded [9] uniformly in ε .

For later convenience, we call the semi-classical Liouville system (20) Liouville-A system, and this is the system that will be discussed and numerically solved in the paper.

One also needs to equip it with appropriate initial condition. Choose the initial data of the Schrödinger equation as two wave packets along the two Bloch bands in the following form [7, 17]:

$$\phi_I = a_1(x) \, \Phi_1\left(\frac{x}{\varepsilon}, \partial_x S_0(x)\right) \, e^{iS_0(x)/\varepsilon} + a_2(x) \, \Phi_2\left(\frac{x}{\varepsilon}, \partial_x S_0(x)\right) \, e^{iS_0(x)/\varepsilon}. \tag{25}$$

Then, the initial data of the Wigner function, for $\varepsilon \ll 1$, has the approximation:

$$W_I(x,z,k) \sim |a_1(x)|^2 W_{11}(z,k) + |a_2(x)|^2 W_{22}(z,k) + a_1(x)a_2(x) (W_{12}(z,k) + W_{21}(z,k)),$$
(26)

with

$$W_{mn}(z,k) = \int_{\mathbb{R}} \frac{\mathrm{d}y}{2\pi} e^{\mathrm{i}ky} \Phi_m(z-y, \partial_x S_0(x-\varepsilon y)) \bar{\Phi}_n(z, \partial_x S_0(x)) e^{\mathrm{i}(S_0(x-\varepsilon y)-S_0(x))/\varepsilon}.$$

Using Taylor expansion on $S_0(x-\varepsilon y)-S_0(x)$ and $\Phi_m(z-y,\partial_x S_0(x-\varepsilon y))$, one gets

$$W_{mn}(z,k) = \int_{\mathbb{R}} \frac{\mathrm{d}y}{2\pi} e^{\mathrm{i}(k-\partial_x S_0(x))y} \Phi_m(z-y,\partial_x S_0(x)) \bar{\Phi}_n(z,\partial_x S_0(x)) + \mathcal{O}(\varepsilon),$$

then by ignoring the $\mathcal{O}(\varepsilon)$ term, and using the periodicity of $\Phi_m(z, p)$ on z, one can change the integral into a summation of integrals from 0 to 2π :

$$W_{mn}(z,k) = \sum_{\nu \in L} \int_0^{2\pi} \frac{\mathrm{d}y}{2\pi} e^{\mathrm{i}(k - \partial_x S_0(x))(y + \nu)} \Phi_m(z - y, \partial_x S_0(x)) \bar{\Phi}_n(z, \partial_x S_0(x)).$$

Applying the equality

$$\sum_{\nu \in L} e^{ik\nu} = \sum_{\mu \in L^*} \delta(k + \mu),$$

one gets

$$W_{mn}(z,k) = \sum_{\mu \in L^*} \delta(k+\mu - \partial_x S_0) \int_0^{2\pi} \frac{\mathrm{d}y}{2\pi} \mathrm{e}^{\mathrm{i}(k-\partial_x S_0)y} \Phi_m(z-y,\partial_x S_0) \bar{\Phi}_n(z,\partial_x S_0)$$

$$= \sum_{\mu \in L^*} \delta(p_k + \mu - \partial_x S_0) \int_0^{2\pi} \frac{\mathrm{d}y}{2\pi} \mathrm{e}^{\mathrm{i}ky} \Psi_m(z-y,\partial_x S_0) \bar{\Psi}_n(z,\partial_x S_0)$$

$$= \sum_{\mu \in L^*} \delta(p_k + \mu - \partial_x S_0) \int_0^{2\pi} \frac{\mathrm{d}y}{2\pi} \mathrm{e}^{\mathrm{i}ky} \Psi_m(z-y,p_k + \mu) \bar{\Psi}_n(z,p_k + \mu)$$

$$= \sum_{\mu \in L^*} \delta(p_k + \mu - \partial_x S_0) \int_0^{2\pi} \frac{\mathrm{d}y}{2\pi} \mathrm{e}^{\mathrm{i}ky} \Psi_m(z-y,p_k) \bar{\Psi}_n(z,p_k)$$

$$= \sum_{\mu \in L^*} \delta(p_k + \mu - \partial_x S_0) Q_{mn}(z,\mu_k,p_k).$$
(27)

In the above derivation, from the second line to the third line, we use the fact that

$$\int \delta(p - p_0) f(p_0) g(p) dp = f(p_0) g(p_0) = \int \delta(p - p_0) f(p) g(p) dp$$

to replace the argument $\partial_x S_0$ to $p_k + \mu$.

Without loss of generality, we assume that $\partial_x S_0 \in (-1/2, 1/2)$, then (27) becomes

$$W_{mn}(z,k) = \delta(p_k - \partial_x S_0) Q_{mn}(z,\mu_k, p_k). \tag{28}$$

Compare (28) with (26), one has the initial data for σ :

$$\sigma(0, x, p) = \delta(p - \partial_x S_0(x)) \begin{pmatrix} a_1^2 & a_1 a_2 & a_1 a_2 & a_2^2 \end{pmatrix}^T.$$
 (29)

3.2. The semi-classical Liouville system using the symmetric Wigner transform. All the analysis above is done in the framework of the asymmetric Wigner transform (2). One could also use the symmetric Wigner transform:

$$W^s_\varepsilon(t,x,k) = \int_{\mathbb{R}} \frac{\mathrm{d}y}{2\pi} \mathrm{e}^{\mathrm{i}ky} \phi^\varepsilon \left(t,x - \frac{\varepsilon y}{2}\right) \bar{\phi}^\varepsilon \left(t,x + \frac{\varepsilon y}{2}\right).$$

The derivation is similar, thus we skip the details, and give a list of the results:

1. The Wigner equation corresponding (3) is

$$\begin{split} \frac{\partial W_{\varepsilon}^{s}}{\partial t} + k \frac{\partial W_{\varepsilon}^{s}}{\partial x} &= \frac{1}{\mathrm{i}\varepsilon} \sum_{\mu \in L^{*}} \mathrm{e}^{\mathrm{i}\mu x/\varepsilon} \hat{V}(\mu) \left[W_{\varepsilon}^{s} \left(x, k - \frac{\mu}{2} \right) - W_{\varepsilon}^{s} \left(x, k + \frac{\mu}{2} \right) \right] \\ &+ \frac{1}{\mathrm{i}\varepsilon} \int_{\mathbb{R}} \frac{\mathrm{d}\omega}{2\pi} \mathrm{e}^{\mathrm{i}\omega x} \hat{U}(\omega) \left[W_{\varepsilon}^{s} \left(x, k - \frac{\varepsilon\omega}{2} \right) - W_{\varepsilon}^{s} \left(x, k + \frac{\varepsilon\omega}{2} \right) \right]. \end{split}$$

2. Corresponding to the asymptotic Wigner equation for asymmetrical transformation (5), one has:

$$\frac{\partial W_{\varepsilon}^{s}}{\partial t} + k \frac{\partial W_{\varepsilon}^{s}}{\partial x} - \frac{\partial U}{\partial x} \frac{\partial W_{\varepsilon}^{s}}{\partial k} = -\frac{1}{\varepsilon} \mathcal{L}^{s} W_{\varepsilon}^{s}, \tag{30}$$

where the skew symmetric operator \mathcal{L}^s is given by

$$\mathcal{L}^{s} f(z,k) = k \frac{\partial f}{\partial z} - \frac{1}{\mathrm{i}} \sum_{\mu \in L^{*}} \mathrm{e}^{\mathrm{i}\mu x/\varepsilon} \hat{V}(\mu) \left[f(x,k-\mu/2) - f(x,k+\mu/2) \right].$$

3. Corresponding to (6), one has the $\mathcal{O}(\frac{1}{\varepsilon})$ and $\mathcal{O}(1)$ expansions:

$$\mathcal{L}^s W_0^s = 0, \tag{31a}$$

$$\frac{\partial W_0^s}{\partial t} + k \frac{\partial W_0^s}{\partial x} - \frac{\partial U}{\partial x} \frac{\partial W_0^s}{\partial k} = -\mathcal{L}^s W_1^s.$$
 (31b)

4. Same as in (10), one has the following symmetrical definition for Q_{mm}

$$\begin{split} Q_{mn}^s(z,k) &= Q_{mn}^s(z,\mu,p) \\ &= \int_0^{2\pi} \frac{\mathrm{d}y}{2\pi} \mathrm{e}^{\mathrm{i}(p+\mu)y} \Psi_m \left(z - \frac{y}{2},p\right) \bar{\Psi}_n \left(z + \frac{y}{2},p\right). \end{split}$$

They are eigenfunctions of \mathcal{L}^s

$$\mathcal{L}^s Q_{mn}^s = \mathrm{i}(E_m - E_n) Q_{mn}^s \,.$$

5. If the eigenvalues $\{E_n\}$ are well separated, i.e. $E_m \neq E_n$, for $m \neq n$, the solution to (31a) is:

$$W_0^s = \sum_m \sigma_{mm}^s Q_{mm}^s.$$

By taking the inner product with Q_{mm}^s on both sides of (31b), one obtains the same classical Liouville equations for σ_{mm}^s as in (17)

$$\partial_t \sigma_{mm}^s + \partial_p E_m \partial_x \sigma_{mm}^s - \partial_x U \partial_p \sigma_{mm}^s = 0.$$

6. If some bands touch at point p_c , the solution to (30) is given by:

$$W_{\varepsilon}^{s} = \sum_{m} \sigma_{mm} Q_{mm}^{s} + \sum_{m \neq n} \sigma_{mn} Q_{mn}^{s}.$$

In the two-band case, m, n = 1, 2, then σ_{mn}^s is governed by,

$$\partial_t \boldsymbol{\sigma}^s + A^s \partial_x \boldsymbol{\sigma}^s + B^s \partial_p \boldsymbol{\sigma}^s = -B^s C^s \boldsymbol{\sigma}^s + \frac{iD^s}{\varepsilon} \boldsymbol{\sigma}^s, \tag{32}$$

where $\sigma^s = (\sigma_{11}^s \ \sigma_{12}^s \ \sigma_{21}^s \ \sigma_{22}^s)^T$, then $B^s = B$, $C^s = C$ and $D^s = D$ are the same as the asymmetric case, while A^s is given by

$$A^{s} = \begin{bmatrix} \partial_{p} E_{1} & \frac{1}{2}\psi_{12} & \frac{1}{2}\psi_{21} & 0\\ \frac{1}{2}\psi_{21} & \partial_{p} \frac{E_{1}+E_{2}}{2} & 0 & \frac{1}{2}\psi_{21}\\ \frac{1}{2}\psi_{12} & 0 & \partial_{p} \frac{E_{1}+E_{2}}{2} & \frac{1}{2}\psi_{12}\\ 0 & \frac{1}{2}\psi_{12} & \frac{1}{2}\psi_{21} & \partial_{p} E_{2} \end{bmatrix}$$

and ψ_{mn} , ϕ_{mn} are given by (20f). Noted that $A^s = (A^s)^{\dagger}$.

We call this new system obtained by the symmetric Wigner transform (32) the Liouville-S system. Apparently the only difference from Liouville-A lies in the transport matrices $A \neq A^s$. But they share the same weak limit as $\varepsilon \to 0$ (see Appendix B for detail). This formally suggests the similar behavior of σ_{11} , σ_{22} and σ_{11}^s , σ_{22}^s , which is confirmed by numerical results in Section 5.1.

4. A multiscale domain decomposition method.

4.1. Asymptotic behavior of the two-band semi-classical Liouville systems. Away from p_c , E_1 and E_2 are well-separated, and the $\frac{1}{5}$ terms for the transition coefficients σ_{12} and σ_{21} in Liouville-A/S lead to high oscillations, thus as $\varepsilon \to 0$, the system formally goes to its weak limit: the classical one (17).

For $\varepsilon > 0$, around p_c , however, both σ_{12} and σ_{21} become significant, and the band-to-band transition is no longer negligible.

In fact, based on the distance to the crossing point p_c , one could obtain some asymptotic properties of the transition coefficients $\sigma_{mn}(m \neq n)$.

Assume that the initial data for the transition coefficients are all zero, and that U_x does not change sign in time for all x, take $-U_x > 0$ for example, then:

Case 1: If $p \ll -C_0\sqrt{\varepsilon}$ for $C_0 = \mathcal{O}(1)$, then σ_{12} and σ_{21} are of $o(\sqrt{\varepsilon})$;

Case 2: If $-C_0\sqrt{\varepsilon} , then <math>\sigma_{12}$ and σ_{21} are of $\mathcal{O}(\sqrt{\varepsilon})$, and σ_{12} and σ_{21} are slowly varying, i.e. $\partial_t \sigma_{12} \ll \mathcal{O}\left(\frac{1}{\varepsilon}\right)$, and $\partial_t \sigma_{21} \ll \mathcal{O}\left(\frac{1}{\varepsilon}\right)$; **Case 3:** If $p \gg C_0 \sqrt{\varepsilon}$, σ_{12} and σ_{21} are highly oscillatory with mean 0.

We leave the justification for a simpler model problem to Appendix B.

Remark 3. The assumption $\sigma_{mn}(t=0)=0 \ (m\neq n)$ is a reasonable assumption. In fact, given arbitrary initial condition, one could check that away from p_c , the weak limit of σ_{mn} is always zero, as $\varepsilon \to 0$, as can be seen in Appendix B. So numerically we treat the initial data for both σ_{12} and σ_{21} zero, given the initial velocity $\partial_x S_0(x)$ away from the crossing point, i.e.

$$\sigma(0, x, p) \approx \delta(p - \partial_x S_0(x)) \begin{pmatrix} a_1^2 & 0 & 0 & a_2^2 \end{pmatrix}^T, \quad \text{if } \partial_x S_0(x) \neq p_c.$$
 (33)

This assumption is intuitive and empirical, but it does give us some convenience in solving the Liouville-A/S numerically. In fact, the numerical examples provided in Section 5 indeed show that the band-to-band transition is captured very well with initial data (33).

- 4.2. A domain decomposition method. Clearly, one has several observations in hand:
 - the classical Liouville is an approximation (in weak limit) to Liouville-A away from the crossing point;
 - σ_{12} and σ_{21} are slowly varying in a neighborhood of $p_c = 0$, with a small amplitude before the characteristic hitting p_c , and a rapid oscillation after that.

These observations motivate a domain decomposition method in p-space. The idea is, away from p_c , when the classical Liouville equation (17) is a good approximation, we solve this set of equations, and then switch back to Liouville-A when the approximation breaks down around p_c (in the $\mathcal{O}(\varepsilon)$ neighborhood of p_c). The gain is obvious: numerically it is much easier and more efficient to solve the classical one, thus this approach saves a great amount of computational cost than solving Liouville-A everywhere. Based on the asymptotic properties of the transition coefficients, we propose the following:

Given a fixed spatial point x, the sign of $-U_x$ determines the traveling direction of wave in p. Assume $-U_x > 0$, i.e. the wave we study is right-going:

Classical regions: $p < -C_0\sqrt{\varepsilon}$ and $p > C_0\sqrt{\varepsilon}$: In this region, coarse mesh independent on ε is used to solve the classical Liouville system (17), and σ_{12} and σ_{21} are set to be zero.

Semi-classical region: $p \in B \setminus \{\text{Classical region}\}$: Solve Liouville-A. The incoming boundary conditions for σ_{12} and σ_{21} are set to be zero, and the incoming boundary condition for σ_{11} and σ_{22} are the inflow boundary condition. A fine mesh is used with Δx and Δt much less than $\sqrt{\varepsilon}$.

In case of $-U_x < 0$, and the wave if left-going, boundary condition can be set up in the same way.

Remark 4. Our analysis is based on the regularity of the coefficient matrix C in Liouville-A. But usually, the value of C's element can be of $\mathcal{O}(1/\delta)$ where $\delta = \min_p |E_1(p) - E_2(p)|$ is the minimal band gap. So C will be large if the minimal band gap δ is small, and the numerical discretization in the semi-classical region should resolve this small parameter δ . In the interested regime $\varepsilon \sim \delta^2$, where the transition cannot be ignored for avoided crossing when $|E_1(p_c) - E_2(p_c)| \sim \mathcal{O}(\sqrt{\varepsilon})$, $o(\sqrt{\varepsilon})$ mesh is enough.

5. Numerical examples. In this section we solve the Liouville-A and Liouville-S numerically. Firstly in Section 5.1, we present a numerical method for the equation with a linear external potential U(x). In this special case, we provide an efficient solver without using the domain decomposition method. In Section 5.2, the domain decomposition method is applied for general U(x).

For both examples, we use the Mathieu model, i.e. the periodic potential is $V(z) = \cos z$. The first eight Bloch eigenvalues are shown in Figure 1. Apparently,

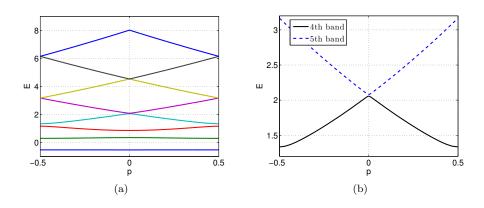


FIGURE 1. The eigenvalues of the Mathieu Model, $V(x) = \cos x$.

some eigenvalues get very close to each other around $p = 0, \pm 0.5$.

We will focus on the 4th and 5th bands¹. Denote Ψ_1 and Ψ_2 as the Bloch functions corresponding to the 4th and 5th bands respectively.

For comparison, we will compare the numerical results to the ones given by the original Schrödinger equation, computed through the methods given in [17] with mesh size and time step much smaller than ε .

¹The minimum gap between the 4th and 5th bands is 0.0247, located at p=0. The gap is considered small enough so that the quantum effect can be seen for the ε being used.

5.1. Linear U(x). We deal with the linear external potential in this section:

$$U(x) = U_0 - \beta x.$$

Then the Schrödinger equation is:

$$i\varepsilon\phi_t^{\varepsilon} = -\frac{\varepsilon^2}{2}\phi_{xx}^{\varepsilon} + \left[\cos\left(\frac{x}{\varepsilon}\right) + (U_0 - \beta x)\right]\phi^{\varepsilon},$$
 (34)

with the initial data given as a wave packet along the 4th band:

$$\phi_I = a_0(x) \Phi_1\left(\frac{x}{\varepsilon}, \partial_x S_0(x)\right) e^{iS_0(x)/\varepsilon}, \text{ with } S_0(x) = p^*x.$$
 (35)

Correspondingly, the Liouville-A becomes:

$$\partial_t \boldsymbol{\sigma} + \beta \partial_p \boldsymbol{\sigma} = \mathcal{R} \boldsymbol{\sigma},\tag{36a}$$

$$\sigma(0, x, p) = \sigma_I(x, p)$$

$$= |a_0(x)|^2 \delta(p - \partial_x S_0(x)) \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}^T, \tag{36b}$$

with \mathcal{R} given by:

$$\mathcal{R} = -\beta C + \frac{\mathrm{i}D}{\varepsilon} - A\partial_x. \tag{37}$$

One encounters two computational challenges here. Firstly, one needs to numerically resolve the rapid oscillation. We will present an efficient way to overcome this difficulty by following the characteristics in Section 5.1.1. Secondly, the initial data contains a delta function. Usually one uses a Gaussian function with small variance to approximate it, and the error is related to this variance. As will be discussed in Section 5.1.2, in some special cases, this can be avoided by using the singularity decomposition idea of [18].

Remark 5. Here we only discuss Liouville-A. Liouville-S can be computed similarly.

5.1.1. A Fourier transform based integration method. Let the Fourier transform of f(t, x, p) with respect to x be

$$\hat{f}(t,\eta,p) = \int_{\mathbb{R}} e^{-i\eta x} f(t,x,p) dx.$$

Taking this transform on Liouville-A (36a), one gets:

$$\partial_t \hat{\boldsymbol{\sigma}} + \beta \, \partial_p \hat{\boldsymbol{\sigma}} = \left(-\beta C + \frac{\mathrm{i}D}{\varepsilon} - \mathrm{i}\eta A \right) \hat{\boldsymbol{\sigma}} =: \hat{\mathcal{R}} \hat{\boldsymbol{\sigma}}$$

In this special case, β is a constant so the characteristic line can be obtained analytically. and consequently one can avoid using the mesh thus removes the difficulty due to the high oscillation introduced by the term $\frac{\mathrm{i}D}{\varepsilon}$, as will be clear in the following. We take the first time step $t \in [0, \Delta t]$ for example. Along the characteristic line $p(t) = p_0 + \beta t$, one evaluate $\hat{\boldsymbol{\sigma}}$ and $\hat{\mathcal{R}}$ at $(t, p(t), \eta)$ and has:

$$\frac{\mathrm{d}\hat{\boldsymbol{\sigma}}}{\mathrm{d}t} = \hat{\mathcal{R}}\,\hat{\boldsymbol{\sigma}}.$$

Solution to this ODE system satisfies

$$\hat{\sigma}_{11}(t) = \hat{\sigma}_{11}(0) - \int_{0}^{t} i\eta \,\partial_{p} E_{1} \,\hat{\sigma}_{11}(t) dt + \int_{0}^{t} \left(\beta(\phi_{12} \hat{\sigma}_{12} - \phi_{21} \hat{\sigma}_{21}) - i\eta \,\psi_{12} \hat{\sigma}_{12} \right) dt ,$$
(38a)

and

$$\hat{\sigma}_{12}(t) = e^{\int_0^t K^{\varepsilon}(\tau) d\tau} \hat{\sigma}_{12}(0)$$

$$+ \int_0^t e^{\int_s^t K^{\varepsilon}(\tau) d\tau} \left(G(s) \hat{\sigma}_{11}(s) - H(s) \hat{\sigma}_{22}(s) \right) ds,$$
(38b)

where:

$$K^{\varepsilon} = \frac{\mathrm{i}}{\varepsilon} (E_2 - E_1) - \mathrm{i} \eta \, \partial_p E_2 - \beta (\phi_{11} - \phi_{22}),$$

and

$$G = -\beta \bar{\phi}_{12} - i\eta \psi_{21}, \quad H = \beta \bar{\phi}_{12}.$$

For t small, an approximation to (38) is

$$\hat{\sigma}_{11}(t) \approx \hat{\sigma}_{11}(0) - i\eta t \partial_{p} E_{1}(p(t)) \hat{\sigma}_{11}(t)
+ (\beta \phi_{12}(0) - i\eta \psi_{12}(0)) \int_{0}^{t} \hat{\sigma}_{12} dt - \beta \phi_{21}(0) \int_{0}^{t} \hat{\sigma}_{21} dt, \qquad (39a)
\hat{\sigma}_{12}(t) \approx \hat{\sigma}_{12}(0) e^{\int_{0}^{t} K^{\varepsilon}(\tau) d\tau}
+ (G(0)\hat{\sigma}_{11}(0) - H(0)\hat{\sigma}_{22}(0)) \int_{0}^{t} e^{\int_{s}^{t} K^{\varepsilon}(\tau) d\tau} ds. \qquad (39b)$$

Plug (39b) into (39a), to evaluate $\hat{\sigma}_{11}(\Delta t)$ and $\hat{\sigma}_{12}(\Delta t)$, one needs to compute:

$$F_{0} := e^{\int_{0}^{t} K^{\varepsilon}(\tau) d\tau},$$

$$F_{1} := \int_{0}^{\Delta t} e^{\int_{0}^{t} K^{\varepsilon}(\tau) d\tau} dt,$$

$$F_{2} := \int_{0}^{\Delta t} \int_{0}^{t} e^{\int_{s}^{t} K^{\varepsilon}(\tau) d\tau} ds dt.$$

However, to compute F_0 , F_1 and F_2 is not easy since their integrands are highly oscillatory. But if one chooses $|\beta|\Delta t = \Delta p$, then at each time step one follows exactly the characteristics, so p(t) always lie on the grid points, thus F_0 , F_1 and F_2 are time independent, and one only needs to compute them once (with a highly resolved calculation). Similar analysis can be carried out for $\hat{\sigma}_{21}$ and $\hat{\sigma}_{22}$.

We prove the stability of this method by using it on a simpler model problem, and it will be justified in Appendix C.

5.1.2. A singularity decomposition idea. To handle the delta function in the initial condition (36b), one usually approximates it with a Gaussian function with small variance, and numerical error was determined by the width of the Gaussian. As stated before, in some special cases, this error could be avoided, and the example we are discussing here is for when $\partial_x S_0(x) \equiv p^* = const$, for which, we apply the singularity decomposition method introduced in [18] to reduce the error. Write the ansatz of $\hat{\sigma}_{mn}(t,x,p)$ as:

$$\sigma(t, x, p) = \omega(t, x, p) \,\delta(\theta(t, p)) \tag{40}$$

in which:

• $\theta(t,p) = p - (p^* + \beta t)$, which solves the Liouville equation

$$\partial_t \theta + \beta \, \partial_p \theta = 0 \,,$$

• ω satisfies the same equation as σ :

$$\partial_t \omega + \beta \, \partial_v \omega = \mathcal{R} \omega \,. \tag{41}$$

These can be proved by simple derivations. Formally, one has

$$\begin{split} \frac{\partial \boldsymbol{\sigma}}{\partial t} &= \frac{\partial}{\partial t} \left(\boldsymbol{\omega} \, \delta(\boldsymbol{\theta}) \right) = \frac{\partial \boldsymbol{\omega}}{\partial t} \, \delta(\boldsymbol{\theta}) + \boldsymbol{\omega} \, \delta'(\boldsymbol{\theta}) \frac{\partial \boldsymbol{\theta}}{\partial t} \\ &= \mathcal{R} \boldsymbol{\omega} \, \delta(\boldsymbol{\theta}) - \beta \frac{\partial \boldsymbol{\omega}}{\partial p} \, \delta(\boldsymbol{\theta}) - \beta \boldsymbol{\omega} \, \delta'(\boldsymbol{\theta}) \\ &= \mathcal{R} \boldsymbol{\omega} \, \delta(\boldsymbol{\theta}) - \beta \frac{\partial \boldsymbol{\omega}}{\partial p} \, \delta(\boldsymbol{\theta}) - \beta \boldsymbol{\omega} \, \delta'(\boldsymbol{\theta}) \frac{\partial \boldsymbol{\theta}}{\partial p} \\ &= \mathcal{R} \boldsymbol{\omega} \, \delta(\boldsymbol{\theta}) - \beta \frac{\partial}{\partial p} \left(\boldsymbol{\omega} \, \delta(\boldsymbol{\theta}) \right) \\ &= \mathcal{R} \boldsymbol{\sigma} - \beta \frac{\partial \boldsymbol{\sigma}}{\partial p}. \end{split}$$

The equalities above should be understood in the distributional sense. The decomposition (40) enables one to solve for ω and θ separately with good (bounded) initial data $|a_0(x)|^2$ and $\partial_x S_0(x)$ respectively. The equation ω satisfies is the same as the one for σ , thus the numerical method introduced in Section 5.1.1 can be used. In the final output, one needs to get back to σ using (40), so a discrete delta approximation is only needed at the output time, not during time evolution.

5.1.3. Numerical experiments. We show the numerical results of the Liouville-A/S with the following data

$$\beta = 1,$$
 $p^* = -0.25,$ $a_0(x) = \exp\left(-\frac{25(x-\pi)^2}{2}\right).$ (42)

We compute the density, the cumulative density function (c.d.f.) and mass in the 1st band, defined respectively by:

$$\rho^{\varepsilon} = |\phi^{\varepsilon}|^{2}, \qquad \gamma^{\varepsilon} = \int_{-\infty}^{x} \rho^{\varepsilon}(y) dy, \qquad m_{1}(t) = \int |\mathbb{P}_{1} \phi^{\varepsilon}(t, x)|^{2} dx, \qquad (43)$$

where \mathbb{P}_n is the projection onto the *n*th band:

$$\mathbb{P}_n \phi(x) = \int_{\mathbb{R}} \mathrm{d}p \int_{\mathbb{R}} \mathrm{d}y \phi(y) \bar{\Psi}_n(y, p) \Psi_n(x, p), \quad \phi \in L^2(\mathbb{R}), \ m \in \mathbb{N}.$$

The two integrals in (43) are calculated by the midpoint quadrature rule numerically.

Figure 2 shows the density and c.d.f. computed for the Schrödinger equation, the Liouville-A and the Liouville-S respectively at t=0.5. The results match quite well.

Figure 3 shows the evolution of m_1 as a function of time t. One can see the total mass on the first band jumps down at around t = 0.25, when the momentum p reaches $p_c = 0$, reflecting the 4th-to-5th band transition. The experiment also shows that smaller ε gives smaller transition rate. Note that some small oscillations occur around the crossing region. They are related to the interference phenomena, and are usually called the Stueckelberg oscillation [8, 31, 33].

Define L^1 error in the cumulative distribution function (c.d.f.) [14, 20]:

$$\operatorname{Err}^{\varepsilon}(t) = \int_{\mathbb{R}} \left| \int_{-\infty}^{x} \left(\rho_{S}^{\varepsilon}(t, z) - \rho_{L}^{\varepsilon}(t, z) \right) \mathrm{d}z \right| \mathrm{d}x, \tag{44}$$

where ρ_S^{ε} and ρ_L^{ε} denote the density calculated by the Schrödinger equation and the Liouville system respectively. Numerically we compute (44) using the midpoint

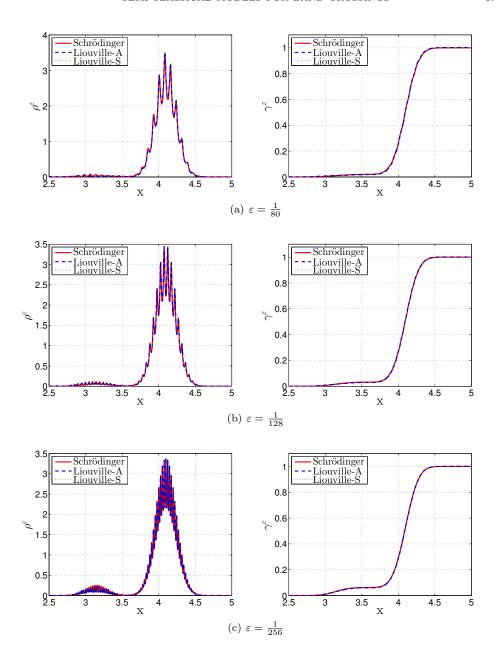


FIGURE 2. The example in Sec. 5.1.3, t=0.5. The left and right column are for the position density ρ^{ε} , and c.d.f. γ^{ε} respectively. The solid line, the dash line and the dotted line are the numerical solutions to the Schrödinger, the Liouville-A and the Liouville-S respectively.

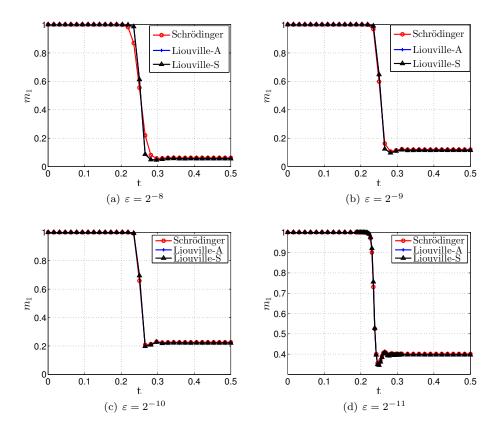


FIGURE 3. The example in Sec. 5.1.3: time evolution of $m_1(t)$ defined in (43).

quadrature rule. Figure 4 shows this at time t = 0.5. As $\varepsilon \to 0$, the Liouville system gets more accurate, and the error decreases with the speed of $\mathcal{O}(\varepsilon)$.

5.2. A domain decomposition computation. This section shows examples with varying U_x . For this general case, the p-characteristic is no longer a straight line, and the fast solver in the previous section is no longer valid. To numerically solve Liouville-A, we use the domain decomposition method. The classical finite volume method is used for the convection terms.

We compute the Liouville-A system with both a pure and a mixed state initial data with:

$$U(x) = -\frac{x - \sin x}{2} \,.$$

5.2.1. A pure state initial data. In this example, we use the same pure state initial data as in the previous example (35),(42). Correspondingly, the initial data for the Liouville-A system is given by (36b). Numerically a Gaussian function centered at p^* with variance of $\varepsilon/16$ is used to approximate the δ -function.

Figures 5 and 6 show the density, the c.d.f at t = 0.5 and evolution of m_1 (43) computed for both the Schrödinger equation and the Liouville-A system. The numerical results for the two systems agree well. Figure 7 gives decay of Err^{ε} (44).

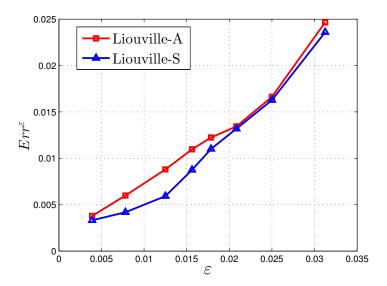


FIGURE 4. The example in Sec. 5.1.3: Err^{ε} as function of ε at t=0.5.

The numerical results show that the hybrid model can capture the band-to-band transition phenomena, and the error decays like $\mathcal{O}(\varepsilon)$.

Remark 6. As U_x varies with x, the wave packet becomes decoherent. This weakens the interference phenomenon [8, 31, 33]. As one can see in Figure 6, the Stuckelberg oscillations around the crossing region is much weaker than those in the previous example.

5.2.2. A mixed state initial data. This example is for the case when the initial data is a mixed state:

$$\phi_I = a_0(x) \left[\Phi_1 \left(\frac{x}{\varepsilon}, p^* \right) e^{\mathrm{i} p^* x / \varepsilon} + \Phi_2 \left(\frac{x}{\varepsilon}, p^* \right) e^{\mathrm{i} p^* x / \varepsilon} \right], \quad p^* = -0.25.$$

Correspondingly, the initial data for the semi-classical Liouville system should be:

$$\boldsymbol{\sigma} = a_0^2(x) \, \delta(p-p^*) \, \left[1,1,1,1\right]^T \, . \label{eq:sigma}$$

Since p^* is away from the crossing point and σ_{12} and σ_{21} weakly converge to zero as $\varepsilon \to 0$, numerically, we regard them as zero and use

$$\sigma \approx a_0^2(x) \, \delta_G(p - p^*) \, [1, 0, 0, 1]^T$$

as the initial condition, where $\delta_G(p)$ is a Gaussian function centered at zero.

The density and the c.d.f. are computed for the Liouville-A and the Schrödinger, compared in Figure 8. $\operatorname{Err}^{\varepsilon}$ as a function of ε is shown in Figure 9.

6. **Conclusion.** In this paper we derive semi-classical models for the linear Schrödinger equation with periodic potentials. These models take into account the band crossing, which is important to describe quantum transitions between different Bloch bands. Away from the band-crossing zones these models reduce (in the sense of weak limit) to the classical Liouville system for each Bloch band. We also couple these semi-classical models (to be used near the crossing zones) and the classical

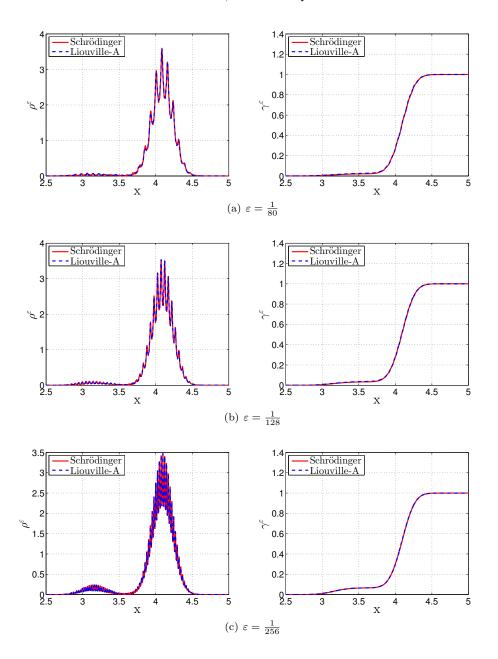


FIGURE 5. The example in Sec. 5.2.1. t = 0.5. The left and right columns show the position density ρ^{ε} , and the c.d.f. γ^{ε} respectively.

Liouville equation (used away from the crossing zones) for an efficient multiscale computation. Our numerical experiments show that these semi-classical models provide correct quantum transitions near the crossing zones when compared with the direct simulation of the original Schrödinger equation.

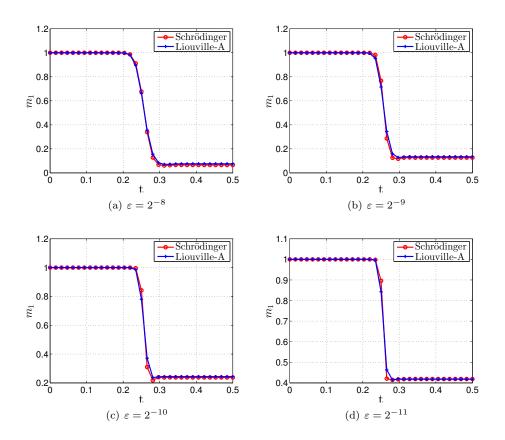


FIGURE 6. The example in Sec. 5.2.1: time evolution of $m_1(t)$ defined in (43).

Appendices

A. Hyperbolicity of the two-band semi-classical Liouville systems. The semi-classical Liouville system (Liouville-A) is

$$\partial_t \boldsymbol{\sigma} + A \partial_x \boldsymbol{\sigma} - U_x \partial_p \boldsymbol{\sigma} = S \boldsymbol{\sigma} \tag{45}$$

where

$$S = C + \frac{\mathrm{i}D}{\varepsilon} \ ,$$

and σ , A, C, D are defined in (20). Noted that $A = A^{\dagger}$ and $S = -S^{\dagger}$. To check the hyperbolicity, we separate the real and imaginary parts.

$$\sigma = \operatorname{Re} \sigma + i \operatorname{Im} \sigma,$$

$$A = \operatorname{Re} A + i \operatorname{Im} A$$
,

$$S = \operatorname{Re} S + i \operatorname{Im} S$$
,

with $\operatorname{Re} F$ and $\operatorname{Im} F$ denoting the real part and imaginary part of F respectively.

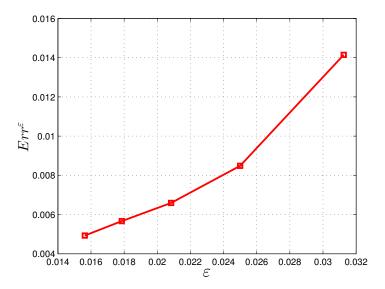


FIGURE 7. The numerical example in Sec. 5.2.1: the L^1 error Err^{ε} between Liouville-A and the Schrödinger solution at t = 0.5.

Define $\sigma_{RI} = (\operatorname{Re} \sigma, \operatorname{Im} \sigma)^T$, and

$$A_{RI} = \left[\begin{array}{ccc} \operatorname{Re} A & -\operatorname{Im} A \\ \operatorname{Im} A & \operatorname{Re} A \end{array} \right], \quad \text{and} \quad S_{RI} = \left[\begin{array}{ccc} \operatorname{Re} S & -\operatorname{Im} S \\ \operatorname{Im} S & \operatorname{Re} S \end{array} \right],$$

then one can get

$$\partial_t \boldsymbol{\sigma}_{RI} + A_{RI} \partial_x \boldsymbol{\sigma}_{RI} - U_x \partial_p \boldsymbol{\sigma}_{RI} = S_{RI} \boldsymbol{\sigma}_{RI}. \tag{46}$$

Since $A=A^{\dagger}$, then $\operatorname{Re} A=\operatorname{Re} A^{T}$, $\operatorname{Im} A=-\operatorname{Im} A^{T}$. Thus have that the matrix $A_{RI}=A_{RI}^{T}$ is a symmetric matrix, which implies the hyperbolicity of the system. In addition, since $S=-S^{\dagger}$, then $\operatorname{Re} S=-\operatorname{Re} S^{T}$, $\operatorname{Im} S=\operatorname{Im} S^{T}$. Therefore the

matrix $S_{RI} = -S_{RI}^T$ is a skew-symmetric matrix.

Similarly, one can obtain the hyperbolicity of system Liouvill-S (32).

B. Some basic analysis of the semi-classical Liouville systems. To understand the asymptotic behavior of the solution to the Liouville-A system (20), as mentioned in Section 4.1, we look at a simpler model system:

$$\begin{cases} \partial_t g + \partial_x f + b(x)\partial_p g = 0, \\ \partial_t f + a(p)\partial_x f + \partial_x g + b(x)\partial_p f = \frac{i}{\varepsilon}c(p)f, \\ g(0, x, p) = g_I(x, p), \quad f(0, x, p) = f_I(x, p). \end{cases}$$

$$(47)$$

The initial conditions g_I and f_I are bounded smooth functions independent on ε , b>0 and the set of zeros for c(p): $S_c=\{p:c(p)=0\}$ is measured zero. It is easy to check that (47) is a linear hyperbolic system, and the solutions g and f are bounded uniformly in ε [9].

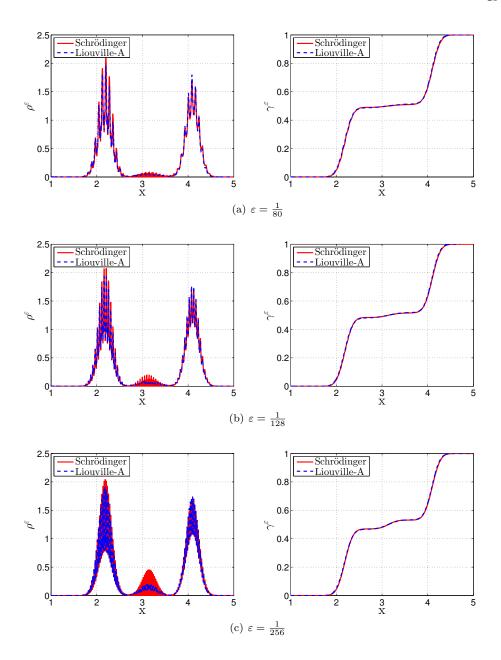


FIGURE 8. The example in Sec. 5.2.2: at time t=0.5. The left and the right columns show the position density ρ^{ε} , and the c.d.f. γ^{ε} respectively.

B.1. Weak convergence. We consider the weak limit of the solution of (47) in this subsection. To do this, we introduce the inner product $\langle \cdot, \cdot \rangle$ as

$$\langle\, u,v\,\rangle = \int_0^\infty \int_{\mathbb{R}^2} u(t,x,p) \bar{v}(t,x,p)\,\mathrm{d}x\,\mathrm{d}p\,\mathrm{d}t.$$

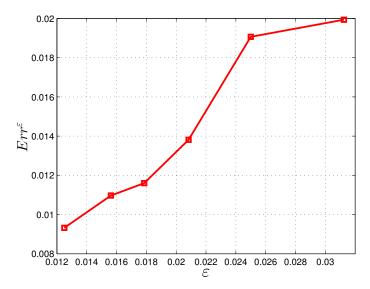


FIGURE 9. The numerical example in Sec. 5.2.2: the L^1 error Err^{ε} as a function of ε at t=0.5.

Choose an arbitrary test function $h \in C_0^{\infty}(\mathbb{R}^+ \times \mathbb{R}^2)$, take the inner product on both side of (47) w.r.t h, one gets

$$\begin{cases}
\langle \partial_t g, h \rangle - \langle f, \partial_x h \rangle + \langle b \partial_p g, h \rangle = 0, \\
\langle f, \partial_t h \rangle + \langle af, \partial_x h \rangle + \langle g, \partial_x h \rangle + \langle bf, \partial_p h \rangle = -\frac{i}{\varepsilon} \langle cf, h \rangle.
\end{cases}$$
(48)

The derivatives in the equation of (48) are acted on the smooth function h, and the left side is bounded. One gets

$$\langle cf, h \rangle \to 0$$
 as $\varepsilon \to 0$ for all $h \in C_0^{\infty}(\mathbb{R}^+ \times \mathbb{R}^2)$.

Given that c is almost surely nonzero, and f is bounded, one gets

$$f \rightharpoonup 0$$
 weakly.

Combined with the first equation in (48), one gets

$$\partial_t g + b(x)\partial_p g \rightharpoonup 0$$
 weakly.

B.2. Strong convergence: for constant b. In these two subsections, we formally prove that before getting close to the crossing region, c(p) is assumed to be bigger than a constant c_0 that is unrelated to ε . In this region, f is constantly small and controlled by $\mathcal{O}(\varepsilon)$. This subsection is for the case when the speed on p direction is a constant: $b(x) = \beta$. Along the p-characteristic line $p(t) = p_0 + \beta t$, one applies the Fourier transform to the x-variable, and gets:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{f} = \mathrm{i}R(t)\mathbf{f},\tag{49}$$

where $\boldsymbol{f}(t,\eta) = (\hat{g}(t,\eta,p(t)),\,\hat{f}(t,\eta,p(t))\,)^T$ and

$$R(t) = \left(\begin{array}{cc} 0 & -\eta \\ -\eta & c(p(t))/\varepsilon - \eta a(p(t)) \end{array} \right).$$

The two eigenvalues of R(t) are both real, and thus the system above has a bounded solution satisfying

$$|\hat{g}(t,\eta)|^2 + |\hat{f}(t,\eta)|^2 = |\hat{g}_I(\eta)|^2 + |\hat{f}_I(\eta)|^2.$$

The equivalence between norms gives:

$$|\hat{g}(t,\eta)| + |\hat{f}(t,\eta)| < C(|\hat{g}_I(\eta)| + |\hat{f}_I(\eta)|).$$

Adopt it into the solution to (49), one gets

$$\begin{aligned} |\partial_t g(t,x)| &= \frac{1}{2\pi} \left| \int_{\mathbb{R}} \eta \hat{f}(t,\eta) e^{i\eta x} d\eta \right| \leq \frac{1}{2\pi} \int_{\mathbb{R}} |\eta| \, |\hat{f}(t,\eta)| d\eta \\ &\leq C \int_{\mathbb{R}} |\eta| \, \left(|\hat{g}_I(\eta)| + |\hat{f}_I(\eta)| \right) d\eta \\ \left| \partial_{tx}^2 g(t,x) \right| &= \frac{1}{2\pi} \left| \int_{\mathbb{R}} \eta^2 \hat{f}(t,\eta) e^{i\eta x} d\eta \right| \leq \frac{1}{2\pi} \int_{\mathbb{R}} |\eta|^2 \, |\hat{f}(t,\eta)| d\eta \\ &\leq C \int_{\mathbb{R}} |\eta|^2 \, \left(|\hat{g}_I(\eta)| + |\hat{f}_I(\eta)| \right) d\eta \end{aligned}$$

If the initial conditions \hat{g}_I and \hat{f}_I are smooth enough, and decay fast as $\eta \to \infty$, one could easily get that $\partial_t g(t,x)$ and $\partial_{tx}^2 g(t,x)$ are both bounded in time independent of ε , and thus g and $\partial_x g$ are slowly varying in time.

Remark 7. In the derivation above, we dropped the p(t)-dependence in the functions for simplicity. The partial derivative in the t-variable ∂_t should be understood as taking along the p-characteristic line p(t), i.e. $\partial_t g(t,x) = \partial_t g(t,x,p) + \beta \partial_p g(t,x,p)$.

Assume that $f_I(x) \equiv 0$, one follows the characteristics of x(t) by solving $\dot{x}(t) = a(t,x)$ and gets:

$$f(t, x(t), p(t)) = -\int_0^t \exp\left(\frac{\mathrm{i}}{\varepsilon} \int_{t-s}^t c(p(\tau)) d\tau\right) \frac{\partial g}{\partial x} (t-s, x(t-s), p(t-s)) ds.$$

By the assumption, before hitting the crossing region, $c(p(\tau)) > c_0 > 0$, then the stationary phase argument suggests that, given slowly varying $\partial_x g(t, x, p(t))$, $f = \mathcal{O}(\varepsilon)$.

The observations from the above two subsections suggest that $f \to 0$, and before getting close to the crossing region, f is as small as of $\mathcal{O}(\varepsilon)$. Based on these arguments, for the Liouville-A system (20), and propose the following conjecture: if σ_{12} and σ_{21} are initially zero, then:

Case 1: If $p \ll -\sqrt{\varepsilon}$, then σ_{12} and σ_{21} are of $o(\sqrt{\varepsilon})$;

Case 2: If $p \in [-\sqrt{\varepsilon}, \sqrt{\varepsilon}]$, then σ_{12} and σ_{21} are of $\mathcal{O}(\sqrt{\varepsilon})$, and slowly varying;

Case 3: If $p \gg \sqrt{\varepsilon}$, σ_{12} and σ_{21} are highly oscillatory, and converge to 0 weakly.

C. The integration method of a simple model system. In this section, we apply the method in (39) onto a simple model to show stability.

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{f}(t,p_0+t) = R(p_0+t)\,\mathbf{f}(t,p_0+t),$$

where $\mathbf{f}(t, p) = (g(t, p), f(t, p))^T$, $p = p_0 + t$, and

$$R(p) = \begin{pmatrix} r_{11}(p) & r_{12}(p) \\ -\bar{r}_{12}(p) & r_{22}^{\varepsilon}(p) \end{pmatrix}.$$

with $r_{22}^{\varepsilon}(p) = r_{22}(p) + \frac{\mathrm{i}}{\varepsilon}c(p)$, while r_{11} and r_{22} are purely imaginary, and c(p) real and positive. r_{11} , r_{22} and r_{12} are independent on ε .

Set up mesh as $t^j = j\Delta t$, and $p^i = -\frac{1}{2} + (i-1)\Delta p$, with Δp and Δt being the mesh size. Denote g_i^j and f_i^j as the numerical result at (t^j, p^i) , then (39) gives

$$f(t, p(t)) = f_i^j e^{\int_0^t r_{22}^{\varepsilon}(p^i + \tau)d\tau} - g_i^j \bar{r}_{12}(p^i) \int_0^t e^{\int_s^t r_{22}^{\varepsilon}(p^i + \tau)d\tau} ds,$$
 (50a)

$$g(t, p(t)) = g_i^j + g(t, p(t)) r_{11}(p(t)) + r_{12}(p^i) \int_0^t \tilde{f}(t^j + s, p^i + s) ds$$
 (50b)

Plug (50a) into (50b), and evaluate them at (t^{j+1}, p^{i+1}) , one obtains:

$$(1 - r_{11}(p^{i+1})\Delta t) g_{i+1}^{j+1} = g_i^j \left(1 - |r_{12}(p^i)|^2 \int_0^{\Delta t} \int_0^t e^{\int_s^t r_{22}^{\varepsilon}(p^i + \tau) d\tau} ds dt \right)$$

$$+ f_i^j r_{12}(p^i) \int_0^{\Delta t} e^{\int_0^t r_{22}^{\varepsilon}(p^i + \tau) d\tau} dt .$$

Written in vector form gives

$$\mathbf{f}_{i+1}^{j+1} = M_i \, \mathbf{f}_i^j, \tag{51}$$

with

$$M_{i} = \begin{pmatrix} \frac{1 - |r_{12}(p^{i})|^{2} \int_{0}^{\Delta t} \int_{0}^{t} e^{\int_{s}^{t} r_{22}^{\varepsilon}(p^{i} + \tau) d\tau} ds dt}{1 - r_{11}(p^{i+1}) \Delta t} & \frac{r_{12}(p^{i}) \int_{0}^{\Delta t} e^{\int_{0}^{t} r_{22}^{\varepsilon}(p^{i} + \tau) d\tau} dt}{1 - r_{11}(p^{i+1}) \Delta t} \\ -\bar{r}_{12}(p^{i}) \int_{0}^{\Delta t} e^{\int_{s}^{\Delta t} r_{22}^{\varepsilon}(p^{i} + \tau) d\tau} ds & e^{\int_{0}^{\Delta t} r_{22}^{\varepsilon}(p^{i} + \tau) d\tau} \end{pmatrix}.$$

The following quantities in the matrix M_i should be evaluated very accurately:

$$\begin{split} F_0 &=& \mathrm{e}^{\int_0^{\Delta t} r_{22}^\varepsilon (p^i + \tau) \mathrm{d}\tau}, \\ F_1 &=& \int_0^{\Delta t} \mathrm{e}^{\int_0^t r_{22}^\varepsilon (p^i + \tau) \mathrm{d}\tau} \mathrm{d}t, \\ F_2 &=& \int_0^{\Delta t} \int_0^t \mathrm{e}^{\int_s^t r_{22}^\varepsilon (p^i + \tau) \mathrm{d}\tau} \mathrm{d}s \, \mathrm{d}t. \end{split}$$

Remark 8. These three quantities only depend on the mesh grid point index i but not the time steps index j, thus they only need to be computed once at the beginning of the computation.

Given $\varepsilon \ll \Delta t$, the integrands of F_1 and F_2 are highly oscillatory, and one can see that $|F_1| \sim \mathcal{O}(\varepsilon)$ and $|F_2| \sim \mathcal{O}(\varepsilon^2)$. Simple calculation shows that M_i can be written as

$$M_i = \Omega \, \tilde{M}_i,$$

with

$$\Omega = \operatorname{diag} \left(\frac{1}{1 - r_{11}(p^{j+1})\Delta t}, 1 \right), \qquad \tilde{M}_i = \left(\begin{array}{cc} 1 - |r_{12}(p^i)|^2 F_2 & r_{12} F_1 \\ -\bar{r}_{12} \bar{F}_1 & F_0 \end{array} \right).$$

With purely imaginary r_{11} and r_{22}^{ε} , it is easy to prove that $\|\Omega\|_{\infty} \leq 1$, and $\|\tilde{M}_i\|_{\infty} \leq (1 + \mathcal{O}(\varepsilon \Delta t))$, and thus $\|M_i\|_{\infty} \leq (1 + \mathcal{O}(\varepsilon \Delta t))$. This implies asymptotic stability of the scheme (51) independent of $\varepsilon \to 0$.

REFERENCES

- [1] N.W. Ashcroft and N.D. Mermin. "Solid State Physics," Saunders College, 1976.
- [2] G. Bal, A. Fannjiang, G. Papanicolaou and L. Ryzhik, Radiative transport in a periodic structure, Journal of Statistical Physics, 95 (1999), 479–494.
- [3] P. Bechouche. Semi-classical limits in a crystal with a coulombian self-consistent potential: Effective mass theorems, Asymptotic Analysis, 19 (1999), 95–116.
- [4] P. Bechouche, N.J. Mauser and F. Poupaud. Semiclassical limit for the Schrödinger-poisson equation in a crystal, Communications on Pure and Applied Mathematics, 54 (2001), 851– 890
- [5] F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Zeitschrift für Physik A Hadrons and Nuclei, 52 (1929), 555–600.
- [6] A. Bohm, P.A. Mostafazadeh, H. Koizumi, Q. Niu and J. Zwanziger, "The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts and Applications in Molecular and Condensed Matter Physics," Springer, 2012.
- [7] R. Carles, P.A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves, Journal of Statistical Physics, 117 (2004), 343–375.
- [8] M.S. Child, "Atom-Molecule Collision Theory," Plenum, New York, 1979.
- [9] Richard Courant and David Hilbert, "Methods of Mathematical Physics, Differential Equations," Wiley-VCH, 2008.
- [10] K. Drukker, Basics of surface hopping in mixed quantum/classical simulations, Journal of Computational Physics, 153 (1999), 225–272.
- [11] W. E, J. Lu and X. Yang, Asymptotic analysis of quantum dynamics in crystals: The Bloch-Wigner transform, Bloch dynamics and berry phase, Acta Mathematicae Applicatae Sinica, English Series, (2011), 1–12.
- [12] Clotilde Fermanian Kammerer and Caroline Lasser, Wigner measures and codimension two crossings, J. Math. Phys., 44 (2003), 507–527, 2003.
- [13] P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Communications on Pure and Applied Mathematics, 50 (1997), 323–379.
- [14] L. Gosse and N.J. Mauser. Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice-III. From ab initio models to WKB for Schrödinger-Poisson, Journal of Computational Physics, 211 (2006), 326–346.
- [15] George A. Hagedorn, "Molecular Propagation through Electron Energy Level Crossings," Mem. Amer. Math. Soc., 1994.
- [16] I. Horenko, C. Salzmann, B. Schmidt and C. Schütte, Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets, The Journal of Chemical Physics, 117 (2002), 11075–11088.
- [17] Z. Huang, S. Jin, P.A. Markowich and C. Sparber, A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials, SIAM Journal on Scientific Computing, 29 (2008), 515–538.
- [18] S. Jin, H. Liu, S. Osher and Y.H.R. Tsai, Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation, Journal of Computational Physics, 205 (2005), 222–241.
- [19] S. Jin, P. Qi and Z. Zhang, An Eulerian surface hopping method for the Schrödinger equation with conical crossings, SIAM Multiscale Modeling and Simulation, 9 (2011), 258–281.
- [20] S. Jin and D. Yin, Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction, Journal of Computational Physics, 227 (2008), 6106-6139, 2008.
- [21] L. Landau. Zur Theorie der Energieubertragung II. Physik, Physics of the Soviet Union, 2 (1932), 46–51.
- [22] C. Lasser, T. Swart and S. Teufel, Construction and validation of a rigorous surface hopping algorithm for conical crossings. Communications in Mathematical Sciences, 5 (2007), 789– 814
- [23] C. Lasser and S. Teufel, Propagation through conical crossings: an asymptotic semigroup, Comm. Pure Appl. Math., 58 (2005), 1188–1230.
- [24] P.L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553–618.

- [25] P.A. Markowich, N.J. Mauser and F. Poupaud, A Wigner-function approach to (semi) classical limits: Electrons in a periodic potential, Journal of Mathematical Physics, 35 (1994), 1066–1094.
- [26] C.C. Martens and J.Y. Fang, Semiclassical-limit molecular dynamics on multiple electronic surfaces, Journal of Chemical Physics, 106 (1997), 4918–4930.
- [27] O. Morandi and F. Schürrer. Wigner model for quantum transport in graphene, Journal of Physics A: Mathematical and Theoretical, (44) 2011, 5301–5301.
- [28] G. Panati, H. Spohn and S. Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond, Communications in Mathematical Physics, 242 (2003), 547–578.
- [29] G. Panati, H. Spohn and S. Teufel, Motion of electrons in adiabatically perturbed periodic structures, in "Analysis, Modeling and Simulation of Multiscale Problems" (eds. A. Mielke), Springer Berlin Heidelberg, (2006), 595–617.
- [30] D.S. Sholl and J.C. Tully. A generalized surface hopping method, The Journal of Chemical Physics, 109 (1998), :7702-7710, 1998.
- [31] M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin and P.J. Hakonen, Landau-Zener interferometry in a Cooper-pair box, Journal of Low Temperature Physics, 146 (2007), 253–262.
- [32] G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B, (1999) 14915–14925.
- [33] J.C. Tully, Molecular dynamics with electronic transitions, The Journal of Chemical Physics, 93 (1990), 1061–1071.
- [34] J.C. Tully and R.K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H with D, The Journal of Chemical Physics, 55 (1971), 562–572.
- [35] E. Wigner, On the quantum correction for thermodynamic equilibrium, Physical Review, 40 (1932), 749–759.
- [36] D. Xiao, M.C. Chang, and Q. Niu. Berry phase effects on electronic properties, Reviews of Modern Physics, 82 (2010), 1959–2007.
- [37] C. Zener, Non-adiabatic crossing of energy levels, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 137(833):696–702, 1932.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: chailh08@mails.tsinghua.edu.cn

E-mail address: jin@math.wisc.edu E-mail address: qinli@math.wisc.edu