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Abstract. The Bloch decomposition plays a fundamental role in the study of

quantum mechanics and wave propagation in periodic media. Most of the ho-
mogenization theory developed for the study of high frequency or semi-classical

limit for these problems assumes no crossing of the Bloch bands, resulting in

classical Liouville equations in the limit along each Bloch band.
In this article, we derive semi-classical models for the Schrödinger equation

in periodic media that take into account band crossing, which is important

to describe quantum transitions between Bloch bands. Our idea is still based
on the Wigner transform (on the Bloch eigenfunctions), but in taking the

semi-classical approximation, we retain the off-diagonal entries of the Wigner

matrix, which cannot be ignored near the point of band crossing. This results
in coupled inhomogeneous Liouville systems that can suitably describe quan-

tum tunneling between bands that are not well-separated. We also develop a
domain decomposition method that couples these semi-classical models with
the classical Liouville equations (valid away from zones of band crossing) for a

multiscale computation. Solutions of these models are numerically compared
with those of the Schröding equation to justify the validity of these new models

for band-crossings.
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1. Introduction. The linear Schrödinger equation with a periodic potential is an
important model in solid state physics. It describes the motion of electrons in a crys-
tal with a lattice structure. We consider the following one dimensional Schrödinger
equation

iεφεt = −ε
2

2
φεxx +

(
V
(x
ε

)
+ U(x)

)
φε, t > 0, x ∈ R. (1)

Here, φε is the complex-valued wave function, ε is the dimensionless rescaled Planck
constant, V (x) is a periodic potential with the lattice L = 2πZ, so V (x+ν) = V (x)
for any x ∈ R and ν ∈ L. U(x) is a smooth external potential function. We denote
the dual lattice of L by L∗ and L∗ = Z. The fundamental domain of L is (0, 2π)
and the first Brillouin zone is B =

(
− 1

2 ,
1
2

)
.

In the semi-classical regime ε� 1, the Schrödinger equation without a periodic
potential has a semi-classical limit governed by the Liouville equation [35]. For the
Schrödinger equation with a periodic potential, the Liouville equation can also be
obtained along each Bloch band [1], and it was justified rigorously in [13, 24, 25]
for the case U ≡ 0. The result can be generalized to the case when a weak random
potential [2] and nonlinear self-consistent potential [3, 4] are presented. It has been
shown that in the crystal, the electrons remain in a certain quantum subsystem,
“move along the m-th band” and the dynamics is given by ẋ = ∂kEm(k), where
Em is the energy corresponding to the m-th Bloch band [5]. Higher order correction
relevant to Berry phase can be included, see [28, 29, 11]. All of these results use the
adiabatic assumption, namely, different Bloch bands are well-separated and there is
no band-crossing.

The non-adiabatic or diabatic effect should be considered whenever the transi-
tions between energy levels of the quantum system play an important role. This
may happen when the gap between the energy levels becomes small enough in com-
parison to the scaled Planck constant ε. The well-known Landau-Zener formula
[21, 37] describes the asymptotic effect of avoided crossings in various specific situa-
tions. The study of such “quantum tunnelings” is important in many applications,
from quantum dynamics in chemical reaction [34], semiconductors to Bose-Einstein
condensation [6]. While in the case of band separation there have been significant
mathematical progress in understanding the semi-classical limit [2, 13, 25, 28, 29],
as well as numerical methods that utilizes the Bloch decomposition [17], there has
been little mathematical and computational works for the band-mixing case. In
the context of “surface hopping method”, associated with the Born-Oppenheimer
approximation, the Landau-Zener phenomenon has been studied computationally
by Tully etc. [34, 33, 30, 10] and mathematically [15, 12, 23, 22]. For a Liouville
equation based computational approach, see [19], and a quantum-classical model
for surface hopping, see [26, 16].

In this paper, we use the Wigner-Bloch theory to derive semi-classical models
for the Schrödinger equation with periodic potentials (1) that account for band-
crossing. Without band-crossing, the classical Liouville equation can be obtained
along each Bloch band, as ε → 0. This only includes the diagonal entries of the
Wigner-Bloch matrix (the Wigner transform of the Bloch functions) which is valid
away from the crossing zone. In our semi-classical models we include the leading
order of the off-diagonal entries, resulting in system of complex, inhomogeneous
Liouville equations. These systems contain terms that describe for transitions be-
tween bands, as well as Berry phase information which is related to the quantum
Hall effect [32]. These systems are still hyperbolic, with oscillatory forcing terms
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that converge (in the weak sense) to zero in the semi-classical limit away from
band-crossing zones so the classical Liouville equation can be recovered. Several
numerical experiments using these models produce numerical solutions that ade-
quately describe the quantum transitions between bands, when compared with the
solutions of the original Schrödinger equation (1).

The computational cost of these semi-classical models, while considerably lower
than that of the original Schrödinger equation, is higher than the adiabatic Liouville
equations without band-crossing. In order to further reduce the computational
cost, a hybrid method that couples the classical Liouville equation away from the
crossing zone to the new semi-classical models to be used in the crossing zones is
introduced. A couple of other more efficient computational approaches for linear
periodic potentials, are also introduced in section 5.

This paper is organized as follows. In Section 2, we introduce the Wigner trans-
form and the Bloch eigenvalue problem that are the two tools to study the semi-
classical limit of the Schrödinger equation with periodic potentials. We also review
the classical limit without band-crossing which gives rise to the classical Liouville
equation for each Bloch band. In Section 3 we derive the new semi-classical Li-
ouville systems that account for quantum transitions between different bands. In
Section 4 we introduce a domain-decomposition based hybrid model that couples
the classical Liouville system away from the band crossing zone to the new semi-
classical models used in the crossing zones. Some numerical examples are presented
in Section 5 to validate these semi-classical models for quantum transitions between
Bloch bands. More efficient numerical methods were introduced for simpler linear
potentials. Section 6 concludes this paper.

2. The classical limit without band-crossing.

2.1. The Wigner transform. Define the asymmetric Wigner transformation as
in [2],

Wε(t, x, k) =

∫
R

dy

2π
eikyφε (t, x− εy) φ̄ε(t, x). (2)

where φ̄ε is the complex conjugate of φε, and φε is the solution to the Schrödinger
equation (1), then one obtains the Wigner equation:

∂Wε

∂t
+ k

∂Wε

∂x
+

iε

2

∂2Wε

∂x2
=

1

iε

∑
µ∈L∗

eiµx/εV̂ (µ) [Wε(x, k − µ)−Wε(x, k)]

+
1

iε

∫
R

dω

2π
eiωxÛ(ω) [Wε(x, k − εω)−Wε(x, k)] ,

(3)

where Û(ω) is the Fourier transform of U(y):

Û(ω) =

∫
R

dy e−iωyU(y), ω ∈ R,

and V̂ (µ) is the discrete Fourier coefficients of V (y):

V̂ (µ) =
1

2π

∫ 2π

0

dy e−iµyV (y), µ ∈ L∗.

Here (0, 2π) is the fundamental domain of the lattice L.
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Denote z = x
ε as the fast variable. To separate the dependence on both the slow

and the fast variables, one can write Wε(t, x, k) as Wε(t, x, z, k), and replace the
spatial derivative ∂

∂x by ∂
∂x + 1

ε
∂
∂z . Then (3) becomes:

∂

∂t
Wε + k

(
∂

∂x
+

1

ε

∂

∂z

)
Wε +

iε

2

(
∂

∂x
+

1

ε

∂

∂z

)2

Wε

=
1

iε

∑
µ∈L∗

eiµx/εV̂ (µ) [Wε(x, k − µ)−Wε(x, k)]

+
1

iε

∫
R

dω

2π
eiωxÛ(ω) [Wε(x, k − εω)−Wε(x, k)] .

(4)

Assume U(x) is smooth enough, one throws away high order terms, and (4) becomes:

∂Wε

∂t
+ k

∂Wε

∂x
− ∂U

∂x

∂Wε

∂k
+ i

∂2Wε

∂x∂z
= −1

ε
LWε, (5)

where the skew symmetric operator L is given by

Lf(z, k) = k
∂f

∂z
+

i

2

∂2f

∂z2
− 1

i

∑
µ∈L∗

eiµx/εV̂ (µ) [f(x, k − µ)− f(x, k)] .

Asymptotically one expands Wε by:

Wε(t, x, k) = W0

(
t, x,

x

ε
, k
)

+ εW1

(
t, x,

x

ε
, k
)

+ · · ·

and plugs this ansatz into (4). In the order of O( 1
ε ) and O(1) respectively, one gets:

LW0 = 0 , (6a)

∂W0

∂t
+ k

∂W0

∂x
− ∂U

∂x

∂W0

∂k
+ i

∂2W0

∂x∂z
= −LW1 . (6b)

This implies that W0 is in the kernel of L. We seek a good basis of kerL in section
2.2, and leave the exact formulation of W0 to section 2.3.

2.2. The Bloch eigenvalue problem. The eigenfunctions of L are constructed
by studying the following eigenvalue problem:

−1

2

∂2

∂z2
Ψ(z, p) + V (z)Ψ(z, p) = E(p)Ψ(z, p), (7a)

Ψ(z + ν, p) = eipνΨ(z, p), ∀ ν ∈ L, (7b)

∂Ψ

∂z
(z + ν, p) = eipν ∂Ψ

∂z
(z, p), ∀ ν ∈ L. (7c)

With each specific p, one constructs a boundary condition (7b) and (7c) and
solves the eigenvalue problem. Denote Em(p) as the m-th eigenvalue with multi-
plicity rm, and Ψα

m, with α = 1, ..., rm, as the associated α-th eigenfunction. Ψm

is usually called the m-th Bloch eigenfunction [5]. For this problem, one can easily
check the following properties:

(a) The eigenvalues Em(p) are L∗−periodic in p and have constant finite multi-
plicity outside a closed zero-measure subset F of p ∈ R. Outside F , one orders
the eigenvalues as E1(p) < E2(p) < ... < Em(p) < ... with Em(p) → ∞ as
m→∞, uniformly in p.
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(b) For any p ∈
(
− 1

2 ,
1
2

)
, {Ψα

m(·, p)} forms a complete orthonormal basis in

L2(0, 2π), i.e.

(Ψα
m,Ψ

β
n) :=

∫ 2π

0

dz

2π
Ψα
m(z, p)Ψ̄β

n(z, p) = δmnδαβ . (8)

(c) For all φ ∈ L2(R), one has the following Bloch decomposition:

φ(x) =

∞∑
m

rm∑
α=1

∫
B
cαm(p)Ψα

m(x, p) dp (9)

where cαm is the Bloch coefficient: cαm(p) =
∫
R φ(x)Ψ̄α

m(x, p) dx.

Define

Φαm(z, p) = e−ipz Ψα
m(z, p),

then Φαm is a z−periodic function with period 2π. For any p ∈
(
− 1

2 ,
1
2

)
, {Φαm(·, p)}

forms a complete orthonormal basis in L2(0, 2π).
For simplicity, throughout this paper we make the following assumption:

Assumption 1. The multiplicity for each eigenvalue Em is 1 outside F . We will
drop the superscript α when there is no ambiguity.

2.3. The classical limit without band-crossing. In this section, we review the
classical limit without band-crossing [2]. For that, we need the following assumption:

Assumption 2. The set F is a empty set, i.e. eigenvalues are strictly apart from
each other everywhere in p, namely E1(p) < E2(p) < ... < Ej(p) < ... .

By taking the Wigner transformation on the Bloch eigenfunctions, one obtains
a basis on the phase space. Define the z−periodic functions Qmn(z, k) by:

Qmn(z, k) = Qmn(z, µk, pk) =

∫ 2π

0

dy

2π
eikyΨm(z − y, pk)Ψ̄n(z, pk), (10)

where k is an arbitrary real number and is decomposed as:

k = pk + µk, pk ∈ B, µk ∈ L∗.

Lemma 2.1. Define the inner product 〈·, ·〉:

〈f, g〉 :=
∑
µ∈L∗

∫ 2π

0

dz

2π
f(z, µ)ḡ(z, µ), f, g ∈ L2

(
(0, 2π), `2(L∗)

)
,

then for any p ∈ (−1/2, 1/2), {Qmn(·, ·, p)} forms a complete orthonormal basis in
L2
(
(0, 2π), `2(L∗)

)
.

Proof. The orthonormal condition

〈Qmn, Qjl〉 = δmj δnl, (11)

can be proved by simply using (8). To prove the completeness, it is sufficient to
show that: if there exists an f ∈ L2

(
(0, 2π), `2(L∗)

)
, such that 〈f,Qmn〉 = 0 for

all m,n ∈ N, then f(z, µ) ≡ 0. Assume 〈f,Qmn〉 = 0 for all m,n ∈ N. By the
definition of Qmn,∑

µ

∫ 2π

0

∫ 2π

0

dydz

(2π)2
f(z, µ)eiµyΦm(z − y, p)Φ̄n(z, p) = 0, ∀m,n ∈ N.
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Since {Φn(·, p)} forms a complete orthonormal basis in L2(0, 2π), the above equality
implies that ∑

µ

∫ 2π

0

dy

2π
f(z, µ)eiµyΦm(z − y, p) = 0, ∀m ∈ N,

thus ∑
µ

f(z, µ)eiµy ≡ 0,

which implies that f(z, µ) ≡ 0.

A straightforward computation gives:

LQmn(z, k) = LQmn(z, µ, pk) = i(Em(p)− En(p))Qmn(z, µ, pk) . (12)

Apparently, under Assumptions 1 and 2, (12) gives:

kerL = span{Qmm,m = 1, 2, · · · }. (13)

Therefore, from (6a) W0 has the form

W0(t, x, z, k) =
∑
m

σmm(t, x, pk)Qmm(z, µk, pk), (14)

with σmm representing the expansion coefficients. To derive the equation for them,
one plugs it back into (6b), and takes the inner product with Qmm on both sides,
the right hand side vanishes due to the skew symmetry of L and (12):

〈−LW1, Qmm〉 = 〈−W1,LQmm〉 = 0. (15)

The left hand side, on the other hand, gives:

〈∂tW0 + k∂xW0 − ∂xU∂kW0 + i∂xzW0, Qmm〉

=
∑
n

[
∂tσnn 〈Qnn, Qmm〉+ ∂xσnn 〈kQnn, Qmm〉

]
−
∑
n

[
∂xU

(
∂pσnn 〈Qnn, Qmm〉+ σm 〈∂pQnn, Qmm〉

)]
= ∂tσmm + ∂pEm∂xσmm − ∂xU∂pσmm .

(16)

Thus one can combine (15) and (16), and obtain:

∂tσmm + ∂pEm∂xσmm − ∂xU∂pσmm = 0. (17)

In the derivation of (16), the following equalities were used :

〈kQmn, Qjl〉 = − i

2

(
δnl (∂zΨm,Ψj) + δmj (∂zΨl,Ψn)

)
, (18a)

〈∂pQmn, Qjl〉 = δnl (∂pΦm,Φj) + δmj (Φl, ∂pΦn) , (18b)

〈∂zQmn, Qjl〉 = δnl (∂zΨm,Ψj) − δmj (∂zΨl,Ψn) , (18c)

∂pEmδmj + (∂pΦm , Φj) (Em − Ej) = −i (∂zΨm , Ψj) , (18d)

(∂pΦm,Φm) + (Φm, ∂pΦm) = 0. (18e)

The details can also be found in [2].
Notice that (17) is the classical Liouville equation for each Bloch band.

Remark 1. Similar results were rigorously proved in [25, 13].
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3. Asymptotic models for the band-to-band transition. This section is for
the case when Assumption 2 is not satisfied. Physically, ε is small but nonzero, and
electrons can tunnel across bands for all p. But this tunneling is negligible when
bands are far away from each other, the so-called adiabatic assumption. This is the
basis for the asymptotically expansion (14), which throws away the dependence on
the band-transition terms Qmn(m 6= n) of W0. However, if there exists m0 6= n0

and a point pc, such that |Em0(pc)− En0(pc)| ∼ O(εγ) with γ being a real number
larger than zero, then LQm0n0 ∼ O(εγ), so the asymptotic expansion (6) does not
hold any more. When this happens, physically one observes significant tunneling
effect. We seek asymptotic models to handle the band-to-band transition in this
section.

3.1. The derivation of a two-band semi-classical Liouville system using
the asymmetric Wigner transform. In order to handle the band-to-band tran-
sition phenomena, we come back to the asymptotic model (5) and use the following
expression (compare with (14)!):

Wε =
∑
m

σmmQmm +
∑
m 6=n

σmnQmn. (19)

Without loss of generality, we tackle a two-band problem. Define the crossing point
as pc = arg minp{|E1 − E2|} and assume and pc = 0.

Plugging (19) into (5) and taking the inner product with Qmn as mentioned in
Sec. 2.3, one gets a system for σmn’s:

∂σ11

∂t
+
∂E1

∂p

∂σ11

∂x
+

1

i

(
∂Ψ1

∂z
, Ψ2

)
∂σ12

∂x
− ∂U

∂x

∂σ11

∂p

=
∂U

∂x

[(
∂Φ2

∂p
, Φ1

)
σ21 +

(
Φ1 ,

∂Φ2

∂p

)
σ12

]
,

∂σ22

∂t
+
∂E2

∂p

∂σ22

∂x
+

1

i

(
∂Ψ2

∂z
, Ψ1

)
∂σ21

∂x
− ∂U

∂x

∂σ22

∂p

=
∂U

∂x

[(
∂Φ1

∂p
, Φ2

)
σ12 +

(
Φ2 ,

∂Φ1

∂p

)
σ21

]
,

∂σ12

∂t
+
∂E2

∂p

∂σ12

∂x
+

1

i

(
∂Ψ2

∂z
, Ψ1

)
∂σ11

∂x
− ∂U

∂x

∂σ12

∂p
+ i

E1 − E2

ε
σ12

=
∂U

∂x

[(
Φ2 ,

∂Φ1

∂p

)
σ11 +

(
∂Φ2

∂p
, Φ1

)
σ22 +

(
Φ2 ,

∂Φ2

∂p

)
σ12 +

(
∂Φ1

∂p
, Φ1

)
σ12

]
,

∂σ21

∂t
+
∂E1

∂p

∂σ21

∂x
+

1

i

(
∂Ψ1

∂z
, Ψ2

)
∂σ22

∂x
− ∂U

∂x

∂σ21

∂p
+ i

E2 − E1

ε
σ21

=
∂U

∂x

[(
Φ1 ,

∂Φ2

∂p

)
σ22 +

(
∂Φ1

∂p
, Φ2

)
σ11 +

(
Φ1 ,

∂Φ1

∂p

)
σ21 +

(
∂Φ2

∂p
, Φ2

)
σ21

]
.
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This system can be written in vector form as:

∂tσ +A∂xσ +B∂pσ = −BCσ +
iD

ε
σ (20a)

where

σ = ( σ11 σ12 σ21 σ22 )T (20b)

B = −∂xU I , D = diag ( 0, E2 − E1, E1 − E2, 0 ) (20c)

A =


∂pE1 ψ12 0 0
ψ21 ∂pE2 0 0
0 0 ∂pE1 ψ12

0 0 ψ21 ∂pE2

 , (20d)

C =


0 −φ12 φ21 0
−φ21 φ11 − φ22 0 φ21

φ12 0 φ22 − φ11 −φ12

0 φ12 −φ21 0

 , (20e)

ψmn = −i (∂zΨm,Ψn) , and φmn = (∂pΦm,Φn) , (20f)

Where the superscript T denotes the matrix transpose, I is the identity matrix.
Generally, ψ12 = ψ̄21, φ12 = −φ̄21 are complex-valued quantities, and φ11, φ22 are
purely imaginary, so A = A† is Hermitian, and C = −C† is anti-Hermitian (where
the superscript † denotes the matrix conjugate transpose). Note that ∂xUφmm is
the so-called Berry-connection [7, 29, 32].

Remark 2. According to the adiabatic theory [36, 27], the state initially in one
eigenstate Φm(p(0)) will remain in an instantaneous eigenstate Φm(p(t)) when time
t is sufficiently slow. One can write the state at time t as

φm(t) = eiγm(t) exp

(
− i

ε

∫ t

0

dt′Em(p(t′))

)
Φm(p(t)), m = 1, 2, (21)

where p(t) is the trajectory satisfying ṗ(t) = ∂xU . The second exponential in (21)
is known as the dynamical phase factor, and γm in the first exponential is the path
integral of the Berry connection, i.e.

γm = i

∫
φmm(p) dp, (22)

which is called the Berry phase. Obviously this term cancel out in the density
function φmφ̄m, however if considering the inter-band density φmφ̄n with m 6= n,
then one obtains

φm(p(t))φ̄n(p(t)) = exp

{
i

(
γm(t)− γn(t)− 1

ε

∫ t

0

dt′
(
Em(p(t′))− En(p(t′))

))}
× Φm(p(t))Φ̄n(p(t)) ,

(23)
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and the phase in the above equation

i
d

dt

(
γm(t)− γn(t)− 1

ε

∫ t

0

dt′
(
Em(p(t′))− En(p(t′))

))
=− dp

dt

(
φmm(p(t))− φnn(p(t))

)
− i

ε

(
Em(p(t))− En(p(t))

)
=Ux (φmm − φnn)− i

ε
(Em − En) =

(
−BC +

iD

ε

)
mn

.

(24)

In comparison with (20), one can see that it is just the coefficient of the σmn term
on the right hand side of (20a) for σmn. This shows that the Berry phase plays an
important role in the inter-band transitions.

It can be shown the system (20) is a hyperbolic system (see the details in Appen-
dix A. Since the source matrix C = −C†, all of its eigenvalues are purely imaginary.
Thus this system has unique bounded solution if the initial data are bounded [9]
uniformly in ε.

For later convenience, we call the semi-classical Liouville system (20) Liouville-A
system, and this is the system that will be discussed and numerically solved in the
paper.

One also needs to equip it with appropriate initial condition. Choose the initial
data of the Schrödinger equation as two wave packets along the two Bloch bands in
the following form [7, 17]:

φI = a1(x) Φ1

(x
ε
, ∂xS0(x)

)
eiS0(x)/ε + a2(x) Φ2

(x
ε
, ∂xS0(x)

)
eiS0(x)/ε. (25)

Then, the initial data of the Wigner function, for ε� 1, has the approximation:

WI(x, z, k) ∼ |a1(x)|2W11(z, k) + |a2(x)|2W22(z, k)

+ a1(x)a2(x)
(
W12(z, k) +W21(z, k)

)
,

(26)

with

Wmn(z, k) =

∫
R

dy

2π
eikyΦm(z − y, ∂xS0(x− εy))Φ̄n(z, ∂xS0(x))ei(S0(x−εy)−S0(x))/ε.

Using Taylor expansion on S0(x−εy)−S0(x) and Φm(z−y, ∂xS0(x−εy)), one gets

Wmn(z, k) =

∫
R

dy

2π
ei(k−∂xS0(x))yΦm(z − y, ∂xS0(x))Φ̄n(z, ∂xS0(x)) +O(ε),

then by ignoring the O(ε) term, and using the periodicity of Φm(z, p) on z, one can
change the integral into a summation of integrals from 0 to 2π:

Wmn(z, k) =
∑
ν∈L

∫ 2π

0

dy

2π
ei(k−∂xS0(x))(y+ν)Φm(z − y, ∂xS0(x))Φ̄n(z, ∂xS0(x)).

Applying the equality ∑
ν∈L

eikν =
∑
µ∈L∗

δ(k + µ),
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one gets

Wmn(z, k) =
∑
µ∈L∗

δ(k + µ− ∂xS0)

∫ 2π

0

dy

2π
ei(k−∂xS0)yΦm(z − y, ∂xS0)Φ̄n(z, ∂xS0)

=
∑
µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, ∂xS0)Ψ̄n(z, ∂xS0)

=
∑
µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, pk + µ)Ψ̄n(z, pk + µ)

=
∑
µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, pk)Ψ̄n(z, pk)

=
∑
µ∈L∗

δ
(
pk + µ− ∂xS0

)
Qmn(z, µk, pk).

(27)

In the above derivation, from the second line to the third line, we use the fact that∫
δ(p− p0)f(p0)g(p) dp = f(p0)g(p0) =

∫
δ(p− p0)f(p)g(p) dp

to replace the argument ∂xS0 to pk + µ.
Without loss of generality, we assume that ∂xS0 ∈ (−1/2, 1/2), then (27) be-

comes

Wmn(z, k) = δ
(
pk − ∂xS0

)
Qmn(z, µk, pk). (28)

Compare (28) with (26), one has the initial data for σ:

σ(0, x, p) = δ (p− ∂xS0(x))
(
a2

1 a1a2 a1a2 a2
2

)T
. (29)

3.2. The semi-classical Liouville system using the symmetric Wigner trans-
form. All the analysis above is done in the framework of the asymmetric Wigner
transform (2). One could also use the symmetric Wigner transform:

W s
ε (t, x, k) =

∫
R

dy

2π
eikyφε

(
t, x− εy

2

)
φ̄ε
(
t, x+

εy

2

)
.

The derivation is similar, thus we skip the details, and give a list of the results:

1. The Wigner equation corresponding (3) is

∂W s
ε

∂t
+ k

∂W s
ε

∂x
=

1

iε

∑
µ∈L∗

eiµx/εV̂ (µ)
[
W s
ε

(
x, k − µ

2

)
−W s

ε

(
x, k +

µ

2

)]
+

1

iε

∫
R

dω

2π
eiωxÛ(ω)

[
W s
ε

(
x, k − εω

2

)
−W s

ε

(
x, k +

εω

2

)]
.

2. Corresponding to the asymptotic Wigner equation for asymmetrical transfor-
mation (5), one has:

∂W s
ε

∂t
+ k

∂W s
ε

∂x
− ∂U

∂x

∂W s
ε

∂k
= −1

ε
LsW s

ε , (30)

where the skew symmetric operator Ls is given by

Lsf(z, k) = k
∂f

∂z
− 1

i

∑
µ∈L∗

eiµx/εV̂ (µ) [f(x, k − µ/2)− f(x, k + µ/2)] .
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3. Corresponding to (6), one has the O
(

1
ε

)
and O(1) expansions:

LsW s
0 = 0, (31a)

∂W s
0

∂t
+ k

∂W s
0

∂x
− ∂U

∂x

∂W s
0

∂k
= −LsW s

1 . (31b)

4. Same as in (10), one has the following symmetrical definition for Qmm

Qsmn(z, k) = Qsmn(z, µ, p)

=

∫ 2π

0

dy

2π
ei(p+µ)yΨm

(
z − y

2
, p
)

Ψ̄n

(
z +

y

2
, p
)
.

They are eigenfunctions of Ls

LsQsmn = i(Em − En)Qsmn .

5. If the eigenvalues {En} are well separated, i.e. Em 6= En, for m 6= n, the
solution to (31a) is:

W s
0 =

∑
m

σsmmQ
s
mm.

By taking the inner product with Qsmm on both sides of (31b), one obtains
the same classical Liouville equations for σsmm as in (17)

∂tσ
s
mm + ∂pEm∂xσ

s
mm − ∂xU∂pσsmm = 0.

6. If some bands touch at point pc, the solution to (30) is given by:

W s
ε =

∑
m

σmmQ
s
mm +

∑
m 6=n

σmnQ
s
mn.

In the two-band case, m,n = 1, 2, then σsmn is governed by,

∂tσ
s +As∂xσ

s +Bs∂pσ
s = −BsCsσs +

iDs

ε
σs, (32)

where σs = (σs11 σ
s
12 σ

s
21 σ

s
22 )T , then Bs = B, Cs = C and Ds = D are the

same as the asymmetric case, while As is given by

As =


∂pE1

1
2ψ12

1
2ψ21 0

1
2ψ21 ∂p

E1+E2

2 0 1
2ψ21

1
2ψ12 0 ∂p

E1+E2

2
1
2ψ12

0 1
2ψ12

1
2ψ21 ∂pE2


and ψmn, φmn are given by (20f). Noted that As = (As)†.

We call this new system obtained by the symmetric Wigner transform (32) the
Liouville-S system. Apparently the only difference from Liouville-A lies in the
transport matrices A 6= As. But they share the same weak limit as ε → 0 (see
Appendix B for detail). This formally suggests the similar behavior of σ11, σ22 and
σs11, σ

s
22, which is confirmed by numerical results in Section 5.1.

4. A multiscale domain decomposition method.
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4.1. Asymptotic behavior of the two-band semi-classical Liouville sys-
tems. Away from pc, E1 and E2 are well-separated, and the i

ε terms for the tran-
sition coefficients σ12 and σ21 in Liouville-A/S lead to high oscillations, thus as
ε→ 0, the system formally goes to its weak limit: the classical one (17).

For ε > 0, around pc, however, both σ12 and σ21 become significant, and the
band-to-band transition is no longer negligible.

In fact, based on the distance to the crossing point pc, one could obtain some
asymptotic properties of the transition coefficients σmn(m 6= n).

Assume that the initial data for the transition coefficients are all zero, and that
Ux does not change sign in time for all x, take −Ux > 0 for example, then:

Case 1: If p � −C0
√
ε for C0 = O(1), then σ12 and σ21 are of o(

√
ε);

Case 2: If −C0
√
ε < p < C0

√
ε, then σ12 and σ21 are of O(

√
ε), and σ12 and

σ21 are slowly varying, i.e. ∂tσ12 � O
(

1
ε

)
, and ∂tσ21 � O

(
1
ε

)
;

Case 3: If p � C0
√
ε, σ12 and σ21 are highly oscillatory with mean 0.

We leave the justification for a simpler model problem to Appendix B.

Remark 3. The assumption σmn(t = 0) = 0 (m 6= n) is a reasonable assumption.
In fact, given arbitrary initial condition, one could check that away from pc, the
weak limit of σmn is always zero, as ε → 0, as can be seen in Appendix B. So
numerically we treat the initial data for both σ12 and σ21 zero, given the initial
velocity ∂xS0(x) away from the crossing point, i.e.

σ(0, x, p) ≈ δ (p− ∂xS0(x))
(
a2

1 0 0 a2
2

)T
, if ∂xS0(x) 6= pc. (33)

This assumption is intuitive and empirical, but it does give us some convenience in
solving the Liouville-A/S numerically. In fact, the numerical examples provided in
Section 5 indeed show that the band-to-band transition is captured very well with
initial data (33).

4.2. A domain decomposition method. Clearly, one has several observations
in hand:

• the classical Liouville is an approximation (in weak limit) to Liouville-A away
from the crossing point;

• σ12 and σ21 are slowly varying in a neighborhood of pc = 0, with a small
amplitude before the characteristic hitting pc, and a rapid oscillation after
that.

These observations motivate a domain decomposition method in p-space. The idea
is, away from pc, when the classical Liouville equation (17) is a good approxima-
tion, we solve this set of equations, and then switch back to Liouville-A when the
approximation breaks down around pc (in the O(ε) neighborhood of pc). The gain
is obvious: numerically it is much easier and more efficient to solve the classical
one, thus this approach saves a great amount of computational cost than solving
Liouville-A everywhere. Based on the asymptotic properties of the transition coef-
ficients, we propose the following:

Given a fixed spatial point x, the sign of −Ux determines the traveling direction
of wave in p. Assume −Ux > 0, i.e. the wave we study is right-going:

Classical regions: p < −C0
√
ε and p > C0

√
ε: In this region, coarse mesh

independent on ε is used to solve the classical Liouville system (17), and σ12

and σ21 are set to be zero.
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Semi-classical region: p ∈ B \ {Classical region}: Solve Liouville-A. The in-
coming boundary conditions for σ12 and σ21 are set to be zero, and the incom-
ing boundary condition for σ11 and σ22 are the inflow boundary condition. A
fine mesh is used with ∆x and ∆t much less than

√
ε.

In case of −Ux < 0, and the wave if left-going, boundary condition can be set up
in the same way.

Remark 4. Our analysis is based on the regularity of the coefficient matrix C
in Liouville-A. But usually, the value of C’s element can be of O(1/δ) where δ =
minp |E1(p) − E2(p)| is the minimal band gap. So C will be large if the minimal
band gap δ is small, and the numerical discretization in the semi-classical region
should resolve this small parameter δ. In the interested regime ε ∼ δ2, where the
transition cannot be ignored for avoided crossing when |E1(pc)−E2(pc)| ∼ O(

√
ε),

o(
√
ε) mesh is enough.

5. Numerical examples. In this section we solve the Liouville-A and Liouville-S
numerically. Firstly in Section 5.1, we present a numerical method for the equation
with a linear external potential U(x). In this special case, we provide an efficient
solver without using the domain decomposition method. In Section 5.2, the domain
decomposition method is applied for general U(x).

For both examples, we use the Mathieu model, i.e. the periodic potential is
V (z) = cos z. The first eight Bloch eigenvalues are shown in Figure 1. Apparently,

−0.5 0 0.5

0

2

4

6

8

p

E

(a)

−0.5 0 0.5

1.5

2

2.5

3

p

E

 

 

4th band

5th band

(b)

Figure 1. The eigenvalues of the Mathieu Model, V (x) = cosx.

some eigenvalues get very close to each other around p = 0, ±0.5.
We will focus on the 4th and 5th bands1. Denote Ψ1 and Ψ2 as the Bloch

functions corresponding to the 4th and 5th bands respectively.
For comparison, we will compare the numerical results to the ones given by the

original Schrödinger equation, computed through the methods given in [17] with
mesh size and time step much smaller than ε.

1The minimum gap between the 4th and 5th bands is 0.0247, located at p = 0. The gap is
considered small enough so that the quantum effect can be seen for the ε being used.
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5.1. Linear U(x). We deal with the linear external potential in this section:

U(x) = U0 − βx.
Then the Schrödinger equation is:

iεφεt = −ε
2

2
φεxx +

[
cos
(x
ε

)
+ (U0 − βx)

]
φε, (34)

with the initial data given as a wave packet along the 4th band:

φI = a0(x) Φ1

(x
ε
, ∂xS0(x)

)
eiS0(x)/ε, with S0(x) = p∗x. (35)

Correspondingly, the Liouville-A becomes:

∂tσ + β∂pσ = Rσ, (36a)

σ(0, x, p) = σI(x, p)

= |a0(x)|2δ (p− ∂xS0(x))
(
1 0 0 0

)T
, (36b)

with R given by:

R = −βC +
iD

ε
−A∂x. (37)

One encounters two computational challenges here. Firstly, one needs to numerically
resolve the rapid oscillation. We will present an efficient way to overcome this
difficulty by following the characteristics in Section 5.1.1. Secondly, the initial data
contains a delta function. Usually one uses a Gaussian function with small variance
to approximate it, and the error is related to this variance. As will be discussed
in Section 5.1.2, in some special cases, this can be avoided by using the singularity
decomposition idea of [18].

Remark 5. Here we only discuss Liouville-A. Liouville-S can be computed similarly.

5.1.1. A Fourier transform based integration method. Let the Fourier transform of
f(t, x, p) with respect to x be

f̂(t, η, p) =

∫
R
e−iηxf(t, x, p)dx.

Taking this transform on Liouville-A (36a), one gets:

∂tσ̂ + β ∂pσ̂ =

(
−βC +

iD

ε
− iηA

)
σ̂ =: R̂σ̂

In this special case, β is a constant so the characteristic line can be obtained ana-
lytically. and consequently one can avoid using the mesh thus removes the difficulty
due to the high oscillation introduced by the term iD

ε , as will be clear in the follow-
ing. We take the first time step t ∈ [0,∆t] for example. Along the characteristic

line p(t) = p0 + βt, one evaluate σ̂ and R̂ at (t, p(t), η) and has:

dσ̂

dt
= R̂ σ̂.

Solution to this ODE system satisfies

σ̂11(t) =σ̂11(0)−
∫ t

0

iη ∂pE1 σ̂11(t)dt

+

∫ t

0

(
β(φ12σ̂12 − φ21σ̂21)− iη ψ12σ̂12

)
dt ,

(38a)
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and

σ̂12(t) =e
∫ t
0
Kε(τ)dτ σ̂12(0)

+

∫ t

0

e
∫ t
s
Kε(τ)dτ

(
G(s)σ̂11(s)−H(s)σ̂22(s)

)
ds ,

(38b)

where:

Kε =
i

ε
(E2 − E1)− iη ∂pE2 − β(φ11 − φ22),

and
G = −βφ̄12 − iηψ21, H = βφ̄12.

For t small, an approximation to(38) is

σ̂11(t) ≈ σ̂11(0)− iηt∂pE1

(
p(t)

)
σ̂11(t)

+
(
βφ12(0)− iηψ12(0)

) ∫ t

0

σ̂12dt− βφ21(0)

∫ t

0

σ̂21dt , (39a)

σ̂12(t) ≈ σ̂12(0)e
∫ t
0
Kε(τ)dτ

+
(
G(0)σ̂11(0)−H(0)σ̂22(0)

) ∫ t

0

e
∫ t
s
Kε(τ)dτds . (39b)

Plug (39b) into (39a), to evaluate σ̂11(∆t) and σ̂12(∆t), one needs to compute:

F0 := e
∫ t
0
Kε(τ)dτ ,

F1 :=

∫ ∆t

0

e
∫ t
0
Kε(τ)dτ dt,

F2 :=

∫ ∆t

0

∫ t

0

e
∫ t
s
Kε(τ)dτ dsdt.

However, to compute F0, F1 and F2 is not easy since their integrands are highly
oscillatory. But if one chooses |β|∆t = ∆p, then at each time step one follows
exactly the characteristics, so p(t) always lie on the grid points, thus F0, F1 and
F2 are time independent, and one only needs to compute them once (with a highly
resolved calculation). Similar analysis can be carried out for σ̂21 and σ̂22.

We prove the stability of this method by using it on a simpler model problem,
and it will be justified in Appendix C.

5.1.2. A singularity decomposition idea. To handle the delta function in the initial
condition (36b), one usually approximates it with a Gaussian function with small
variance, and numerical error was determined by the width of the Gaussian. As
stated before, in some special cases, this error could be avoided, and the example
we are discussing here is for when ∂xS0(x) ≡ p∗ = const, for which, we apply the
singularity decomposition method introduced in [18] to reduce the error. Write the
ansatz of σ̂mn(t, x, p) as:

σ(t, x, p) = ω(t, x, p) δ
(
θ(t, p)

)
(40)

in which:

• θ(t, p) = p− (p∗ + βt), which solves the Liouville equation

∂tθ + β ∂pθ = 0 ,

• ω satisfies the same equation as σ:

∂tω + β ∂pω = Rω . (41)
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These can be proved by simple derivations. Formally, one has

∂σ

∂t
=

∂

∂t

(
ω δ(θ)

)
=
∂ω

∂t
δ(θ) + ω δ′(θ)

∂θ

∂t

= Rω δ(θ)− β ∂ω
∂p

δ(θ)− βω δ′(θ)

= Rω δ(θ)− β ∂ω
∂p

δ(θ)− βω δ′(θ)∂θ
∂p

= Rω δ(θ)− β ∂

∂p

(
ω δ(θ)

)
= Rσ − β ∂σ

∂p
.

The equalities above should be understood in the distributional sense. The de-
composition (40) enables one to solve for ω and θ separately with good (bounded)
initial data |a0(x)|2 and ∂xS0(x) respectively. The equation ω satisfies is the same
as the one for σ, thus the numerical method introduced in Section 5.1.1 can be
used. In the final output, one needs to get back to σ using (40), so a discrete delta
approximation is only needed at the output time, not during time evolution.

5.1.3. Numerical experiments. We show the numerical results of the Liouville-A/S
with the following data

β = 1, p∗ = −0.25, a0(x) = exp

(
−25(x− π)2

2

)
. (42)

We compute the density, the cumulative density function (c.d.f.) and mass in
the 1st band, defined respectively by:

ρε = |φε|2, γε =

∫ x

−∞
ρε(y)dy, m1(t) =

∫
|P1φ

ε(t, x)|2dx , (43)

where Pn is the projection onto the nth band:

Pnφ(x) =

∫
B

dp

∫
R

dyφ(y)Ψ̄n(y, p)Ψn(x, p), φ ∈ L2(R), m ∈ N .

The two integrals in (43) are calculated by the midpoint quadrature rule numerically.

Figure 2 shows the density and c.d.f. computed for the Schrödinger equation,
the Liouville-A and the Liouville-S respectively at t = 0.5. The results match quite
well.

Figure 3 shows the evolution of m1 as a function of time t. One can see the
total mass on the first band jumps down at around t = 0.25, when the momentum
p reaches pc = 0, reflecting the 4th-to-5th band transition. The experiment also
shows that smaller ε gives smaller transition rate. Note that some small oscillations
occur around the crossing region. They are related to the interference phenomena,
and are usually called the Stueckelberg oscillation [8, 31, 33].

Define L1 error in the cumulative distribution function (c.d.f.) [14, 20]:

Errε(t) =

∫
R

∣∣∣∣∫ x

−∞

(
ρεS(t, z)− ρεL(t, z)

)
dz

∣∣∣∣ dx, (44)

where ρεS and ρεL denote the density calculated by the Schrödinger equation and
the Liouville system respectively. Numerically we compute (44) using the midpoint
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128
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Figure 2. The example in Sec. 5.1.3, t = 0.5. The left and right
column are for the position density ρε, and c.d.f. γε respectively.
The solid line, the dash line and the dotted line are the numerical
solutions to the Schrödinger, the Liouville-A and the Liouville-S
respectively.
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(c) ε = 2−10
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(d) ε = 2−11

Figure 3. The example in Sec. 5.1.3 : time evolution of m1(t)
defined in (43).

quadrature rule. Figure 4 shows this at time t = 0.5. As ε→ 0, the Liouville system
gets more accurate, and the error decreases with the speed of O(ε).

5.2. A domain decomposition computation. This section shows examples with
varying Ux. For this general case, the p-characteristic is no longer a straight line,
and the fast solver in the previous section is no longer valid. To numerically solve
Liouville-A, we use the domain decomposition method. The classical finite volume
method is used for the convection terms.

We compute the Liouville-A system with both a pure and a mixed state initial
data with:

U(x) = −x− sinx

2
.

5.2.1. A pure state initial data. In this example, we use the same pure state initial
data as in the previous example (35),(42). Correspondingly, the initial data for the
Liouville-A system is given by (36b). Numerically a Gaussian function centered at
p∗ with variance of ε/16 is used to approximate the δ−function.

Figures 5 and 6 show the density, the c.d.f at t = 0.5 and evolution of m1

(43) computed for both the Schrödinger equation and the Liouville-A system. The
numerical results for the two systems agree well. Figure 7 gives decay of Errε (44).
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Figure 4. The example in Sec. 5.1.3 : Errε as function of ε at t = 0.5.

The numerical results show that the hybrid model can capture the band-to-band
transition phenomena, and the error decays like O(ε).

Remark 6. As Ux varies with x, the wave packet becomes decoherent. This weak-
ens the interference phenomenon [8, 31, 33]. As one can see in Figure 6, the Stueck-
elberg oscillations around the crossing region is much weaker than those in the
previous example.

5.2.2. A mixed state initial data. This example is for the case when the initial data
is a mixed state:

φI = a0(x)
[
Φ1

(x
ε
, p∗
)

eip∗x/ε + Φ2

(x
ε
, p∗
)

eip∗x/ε
]
, p∗ = −0.25.

Correspondingly, the initial data for the semi-classical Liouville system should be:

σ = a2
0(x) δ(p− p∗) [1, 1, 1, 1]

T
.

Since p∗ is away from the crossing point and σ12 and σ21 weakly converge to zero
as ε→ 0, numerically, we regard them as zero and use

σ ≈ a2
0(x) δG(p− p∗) [1, 0, 0, 1]

T

as the initial condition, where δG(p) is a Gaussian function centered at zero.
The density and the c.d.f. are computed for the Liouville-A and the Schrödinger,

compared in Figure 8. Errε as a function of ε is shown in Figure 9.

6. Conclusion. In this paper we derive semi-classical models for the linear Schrödinger
equation with periodic potentials. These models take into account the band cross-
ing, which is important to describe quantum transitions between different Bloch
bands. Away from the band-crossing zones these models reduce (in the sense of
weak limit) to the classical Liouville system for each Bloch band. We also couple
these semi-classical models (to be used near the crossing zones) and the classical
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Figure 5. The example in Sec. 5.2.1. t = 0.5. The left and right
columns show the position density ρε, and the c.d.f. γε respectively.

Liouville equation (used away from the crossing zones) for an efficient multiscale
computation. Our numerical experiments show that these semi-classical models
provide correct quantum transitions near the crossing zones when compared with
the direct simulation of the original Schrödinger equation.
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(a) ε = 2−8
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(b) ε = 2−9
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(c) ε = 2−10
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(d) ε = 2−11

Figure 6. The example in Sec. 5.2.1: time evolution of m1(t)
defined in (43).

Appendices

A. Hyperbolicity of the two-band semi-classical Liouville systems. The
semi-classical Liouville system (Liouville-A) is

∂tσ +A∂xσ − Ux∂pσ = Sσ (45)

where

S = C +
iD

ε
,

and σ, A, C, D are defined in (20). Noted that A = A† and S = −S†. To check
the hyperbolicity, we separate the real and imaginary parts.

σ = Reσ + i Imσ,

A = ReA+ i ImA,

S = ReS + i ImS,

with ReF and ImF denoting the real part and imaginary part of F respectively.
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Figure 7. The numerical example in Sec. 5.2.1: the L1 error Errε

between Liouville-A and the Schrödinger solution at t = 0.5.

Define σRI = ( Reσ , Imσ )T , and

ARI =

[
ReA −ImA
ImA ReA

]
, and SRI =

[
ReS −ImS
ImS ReS

]
,

then one can get

∂tσRI +ARI∂xσRI − Ux∂pσRI = SRIσRI . (46)

Since A = A†, then ReA = ReAT , ImA = −ImAT . Thus have that the matrix
ARI = ATRI is a symmetric matrix, which implies the hyperbolicity of the system.

In addition, since S = −S†, then ReS = −ReST , ImS = ImST . Therefore the
matrix SRI = −STRI is a skew-symmetric matrix.

Similarly, one can obtain the hyperbolicity of system Liouvill-S (32).

B. Some basic analysis of the semi-classical Liouville systems. To under-
stand the asymptotic behavior of the solution to the Liouville-A system (20), as
mentioned in Section 4.1, we look at a simpler model system:

∂tg + ∂xf + b(x)∂pg = 0 ,

∂tf + a(p)∂xf + ∂xg + b(x)∂pf = i
εc(p)f ,

g(0, x, p) = gI(x, p), f(0, x, p) = fI(x, p).

(47)

The initial conditions gI and fI are bounded smooth functions independent on ε,
b > 0 and the set of zeros for c(p): Sc = {p : c(p) = 0} is measured zero. It is
easy to check that (47) is a linear hyperbolic system, and the solutions g and f are
bounded uniformly in ε [9].
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Figure 8. The example in Sec. 5.2.2: at time t = 0.5. The left
and the right columns show the position density ρε, and the c.d.f.
γε respectively.

B.1. Weak convergence. We consider the weak limit of the solution of (47) in
this subsection. To do this, we introduce the inner product 〈 ·, · 〉 as

〈u, v 〉 =

∫ ∞
0

∫
R2

u(t, x, p)v̄(t, x, p) dxdp dt.
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Figure 9. The numerical example in Sec. 5.2.2: the L1 error Errε

as a function of ε at t = 0.5.

Choose an arbitrary test function h ∈ C∞0 (R+ × R2), take the inner product on
both side of (47) w.r.t h, one gets{

〈 ∂tg, h 〉 − 〈 f, ∂xh 〉+ 〈 b∂pg, h 〉 = 0 ,

〈 f, ∂th 〉+ 〈 af, ∂xh 〉+ 〈 g, ∂xh 〉+ 〈 bf, ∂ph 〉 = − i
ε 〈 cf, h 〉 .

(48)

The derivatives in the equation of (48) are acted on the smooth function h, and the
left side is bounded. One gets

〈 cf, h 〉 → 0 as ε→ 0 for all h ∈ C∞0 (R+ × R2).

Given that c is almost surely nonzero, and f is bounded, one gets

f ⇀ 0 weakly.

Combined with the first equation in (48), one gets

∂tg + b(x)∂pg ⇀ 0 weakly.

B.2. Strong convergence: for constant b. In these two subsections, we formally
prove that before getting close to the crossing region, c(p) is assumed to be bigger
than a constant c0 that is unrelated to ε. In this region, f is constantly small and
controlled by O(ε). This subsection is for the case when the speed on p direction
is a constant: b(x) = β. Along the p-characteristic line p(t) = p0 + βt, one applies
the Fourier transform to the x-variable, and gets:

d

dt
f = iR(t)f , (49)

where f(t, η) = ( ĝ(t, η, p(t)), f̂(t, η, p(t)) )T and

R(t) =

(
0 −η
−η c(p(t))/ε− ηa(p(t))

)
.
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The two eigenvalues of R(t) are both real, and thus the system above has a bounded
solution satisfying

|ĝ(t, η)|2 + |f̂(t, η)|2 = |ĝI(η)|2 + |f̂I(η)|2.
The equivalence between norms gives:

|ĝ(t, η)|+ |f̂(t, η)| < C(|ĝI(η)|+ |f̂I(η)|).
Adopt it into the solution to (49), one gets

|∂tg(t, x)| = 1

2π

∣∣∣∣∫
R
ηf̂(t, η)eiηxdη

∣∣∣∣ ≤ 1

2π

∫
R
|η| |f̂(t, η)|dη

≤ C
∫
R
|η|
(
|ĝI(η)|+ |f̂I(η)|

)
dη

∣∣∂2
txg(t, x)

∣∣ =
1

2π

∣∣∣∣∫
R
η2f̂(t, η)eiηxdη

∣∣∣∣ ≤ 1

2π

∫
R
|η|2 |f̂(t, η)|dη

≤ C
∫
R
|η|2

(
|ĝI(η)|+ |f̂I(η)|

)
dη

If the initial conditions ĝI and f̂I are smooth enough, and decay fast as η →∞, one
could easily get that ∂tg(t, x) and ∂2

txg(t, x) are both bounded in time independent
of ε, and thus g and ∂xg are slowly varying in time.

Remark 7. In the derivation above, we dropped the p(t)-dependence in the func-
tions for simplicity. The partial derivative in the t-variable ∂t should be under-
stood as taking along the p-characteristic line p(t), i.e. ∂tg(t, x) = ∂tg(t, x, p) +
β∂pg(t, x, p).

Assume that fI(x) ≡ 0, one follows the characteristics of x(t) by solving ẋ(t) =
a(t, x) and gets:

f
(
t, x(t), p(t)

)
= −

∫ t

0

exp

(
i

ε

∫ t

t−s
c (p(τ)) dτ

)
∂g

∂x

(
t− s, x(t− s), p(t− s)

)
ds .

By the assumption, before hitting the crossing region, c(p(τ)) > c0 > 0, then
the stationary phase argument suggests that, given slowly varying ∂xg(t, x, p(t)),
f = O(ε).

The observations from the above two subsections suggest that f ⇀ 0, and before
getting close to the crossing region, f is as small as of O(ε). Based on these
arguments, for the Liouville-A system (20), and propose the following conjecture:
if σ12 and σ21 are initially zero, then:

Case 1: If p � −
√
ε, then σ12 and σ21 are of o(

√
ε);

Case 2: If p ∈ [−
√
ε,
√
ε], then σ12 and σ21 are of O(

√
ε), and slowly varying;

Case 3: If p �
√
ε, σ12 and σ21 are highly oscillatory, and converge to 0 weakly.

C. The integration method of a simple model system. In this section, we
apply the method in (39) onto a simple model to show stability.

d

dt
f(t, p0 + t) = R(p0 + t) f(t, p0 + t),

where f(t, p) = (g(t, p), f(t, p))T , p = p0 + t, and

R(p) =

(
r11(p) r12(p)
−r̄12(p) rε22(p)

)
.
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with rε22(p) = r22(p) + i
εc(p), while r11 and r22 are purely imaginary, and c(p) real

and positive. r11, r22 and r12 are independent on ε.
Set up mesh as tj = j∆t, and pi = − 1

2 + (i − 1)∆p, with ∆p and ∆t being the

mesh size. Denote gji and f ji as the numerical result at (tj , pi), then (39) gives

f(t, p(t)) = f ji e
∫ t
0
rε22(pi+τ)dτ − gji r̄12(pi)

∫ t

0

e
∫ t
s
rε22(pi+τ)dτds, (50a)

g(t, p(t)) = gji + g(t, p(t)) r11(p(t)) + r12(pi)

∫ t

0

f̃(tj + s, pi + s) ds (50b)

Plug (50a) into (50b), and evaluate them at (tj+1, pi+1), one obtains:

(
1− r11(pi+1)∆t

)
gj+1
i+1 = gji

(
1− |r12(pi)|2

∫ ∆t

0

∫ t

0

e
∫ t
s
rε22(pi+τ)dτdsdt

)

+f ji r12(pi)

∫ ∆t

0

e
∫ t
0
rε22(pi+τ)dτdt .

Written in vector form gives

f j+1
i+1 = Mi f

j
i , (51)

with

Mi =

(
1−|r12(pi)|2

∫ ∆t
0

∫ t
0

e
∫ t
s r
ε
22(pi+τ)dτds dt

1−r11(pi+1)∆t

r12(pi)
∫ ∆t
0

e
∫ t
0 r
ε
22(pi+τ)dτdt

1−r11(pi+1)∆t

−r̄12(pi)
∫∆t

0
e
∫ ∆t
s

rε22(pi+τ)dτds e
∫ ∆t
0

rε22(pi+τ)dτ

)
.

The following quantities in the matrix Mi should be evaluated very accurately:

F0 = e
∫ ∆t
0

rε22(pi+τ)dτ ,

F1 =

∫ ∆t

0

e
∫ t
0
rε22(pi+τ)dτdt,

F2 =

∫ ∆t

0

∫ t

0

e
∫ t
s
rε22(pi+τ)dτdsdt.

Remark 8. These three quantities only depend on the mesh grid point index i
but not the time steps index j, thus they only need to be computed once at the
beginning of the computation.

Given ε � ∆t, the integrands of F1 and F2 are highly oscillatory, and one can
see that |F1| ∼ O(ε) and |F2| ∼ O(ε2). Simple calculation shows that Mi can be
written as

Mi = Ω M̃i,

with

Ω = diag

(
1

1− r11(pj+1)∆t
, 1

)
, M̃i =

(
1− |r12(pi)|2 F2 r12 F1

−r̄12 F̄1 F0

)
.

With purely imaginary r11 and rε22, it is easy to prove that ‖Ω‖∞ ≤ 1, and ‖M̃i‖∞ ≤
(1 +O(ε∆t)), and thus ‖Mi‖∞ ≤ (1 +O(ε∆t)). This implies asymptotic stability
of the scheme (51) independent of ε→ 0.
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