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ABSTRACT

In this note, we review our recent results on the Eulerian

computation of high frequency waves in heterogeneous me-

dia. We cover three recent methods: the moment method,

the level set method, and the computational methods for in-

terface problems in high frequency waves. These approaches

are all based on high frequency asymptotic limits.

§1. Introduction

High frequency wave computation is a classical field of applied math-

ematics, with many important applications in acoustic waves, elastic

waves, optics, and electromagnatism, etc.. The main computational

challenge in these problems is that one cannot afford to numerically re-

solve the small wave length. Approximate models based on asymptotic

methods are often used.

One of the most important computational methods for high frequency

waves uses geometric optics. A classical way of solving geometric optics
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is the Lagrangian framework, which uses ray tracing that traces the

trajectory of particles. This method is easy to implement, since one

just needs to solve a system of ODEs–which is a Hamiltonian system.

The disadvantage of it is that the method loses accuracy when the rays

diverge, in which case a complicated regridding is needed.

The Eulerian methods, based on solving partial differential equations

(PDEs) on fixed grids, provide uniformly accurate numerical solutions

regardless of the ray behavior, thus have many attractive advantages

when compared with the traditional Lagrangian method by ray tracing.

In this note, we will review several of our recently introduced Eule-

rian computational methods for high frequency waves. Specifically, we

will review the moment methods, the level set methods and the compu-

tational methods for interface problems in high frequency waves.

For recent comprehensive reviews on high frequency wave computa-

tions, see [18, 52].

§2. The high frequency limit

As an example, consider the linear Schrödinger equation with the

high frequency initial data,

iε ψt +
ε2

2
∆ψ − V (x)ψ = 0, x ∈ <n, (2.1)

ψ(x, 0) = A0(x)ei
S0(x)

ε . (2.2)

In (2.1)(2.2) ψ(x, t) is the complex-valued wave function, ε is the rescaled

Planck constant, and V (x) denotes the potential. In the semiclassical

regime, where the Planck constant ε is small, the wave function ψ and

the related physical observables become oscillatory of wave length O(ε).

Mathematically, the rapid oscillations will forbid any strong convergence,

and the limits have to be defined in the weak sense.
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A related problem is the wave equation:

utt − c(x)2∆u = 0 (2.3)

where c(x) is the local wave speed of the medium (c0/c(x), with c0 a

reference sound speed, is the index of refraction). When the essential

frequencies of the wave field are relatively high, the wavelengths are small

compared to the overall size of the physical domain.

In a direct numerical simulation of these problems, one needs a few

grid points per wavelength in order to guarantee the numerical conver-

gence [4, 45]. For sufficiently high frequencies, such a direct simulation

in not feasible, especially in high space dimension, thus methods based

on approximations of these equations are needed. Geometrical optics

studies the high frequency limit, ε → 0, of solution to (2.3) in the form

u(x, t) ∼ A(x, t)eiφ(x,t)/ε, where A is the amplidude of the wave while S

is the phase. The similar limit for (2.1) is referred to as the semiclassical

limit of the Schrödinger equation.

A classical approach for an Eulerian computation is the WKB (Wentzel-

Kramers-Brillouin) method, which, by assuming the form of solution of

(2.1)(2.2) to be ψε(x, t) = A(x, t)eiS(x,t)/ε, yields, to the leading order,

an eikonal equation for the phase S and a linear transport equation for

the position density |A|2:

∂tS +
1

2
|∇S|2 + V (x) = 0, (2.4)

∂t(|A|2) + ∇ · (|A|2∇S) = 0. (2.5)

The eikonal equation is a nonlinear Hamilton-Jacobi equation. Even

for smooth initial data, its solution may become singular in finite time,

which corresponds to the formation of caustics (in the context of hy-

perbolic conservation law, which is the gradient of the Hamilton-Jacobi

equation (2.4), it corresponds to the formation of shocks). Beyond this

singularity, modern ‘shock-capturing’ numerical methods for the eikonal
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equation (2.4) will select the very stable viscosity solution [13, 16], which

is not the dispersive semiclassical limit of the Schrödinger equation, since

it violates the superposition principle, an essential property of the linear

Schrödinger equation. In fact, beyond the caustics, the solution becomes

multivalued or multiphased, as can be studied by the classical stationary

phase method [15].

A mathematically convenient tool to study the semiclassical limit,

beyond the caustics, is the Wigner transform [59]:

W [φ, ψ](x,p, t) =
1

(2π)n

∫

<n

eip·yφ
(

x −
εy

2

)

ψ
(

x +
εy

2

)

dy. (2.6)

The moments of the Wigner function W give the physical observables,

such as

position density |ψ|2 =

∫

W [ψ,ψ] dp (2.7)

current ε Im(ψ∇ψ) =

∫

pW [ψ,ψ] dp (2.8)

energy −
ε2

2
Re(ψ∆ψ) +

ε2

2
|∇ψ|2 =

∫

|p|2W [ψ,ψ] dp , (2.9)

where ψ is the complex conjugate of ψ. For ψε satisfying (2.1)(2.2), and a

smooth potential V (x), W ε = W [ψε, ψε] can be shown to converge weakly

towards a measure-valued solution of the Liouville or Vlasov equation in

classical mechanics [21, 42]:

∂tw + p · ∇xw −∇V · ∇pw = 0 , (2.10)

w(x,p, 0) = |A0(x)|δ(p −∇S0(x)) . (2.11)

The Liouville equation (2.10) naturally unfolds the caustics, and is the

correct semiclassical limit globally in time. If one uses the ansatz

w(x,p, t) = ρ(x, t)δ(p − u(x, t)) (2.12)
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in (2.10) and takes the first two moments, one obtains the pressureless

gas equations

ρt + ∇ · ρu = 0 , (2.13)

ut + u · ∇u + ∇V = 0 , (2.14)

which are equivalent to (2.4)(2.5) with u = ∇S for smooth solutions.

The ansatz (2.12) is no longer good after the formation of caustics. In

fact, the correct solution is multivalued, which is a superposition of the

(smooth) solution to (2.13)-(2.14), in the physical space (see [26, 53]).

The initial value problem (2.10)-(2.11) is the starting point of the nu-

merical methods to be described below. Most of recent computational

methods are derived from, or related to, this equation. The main ad-

vantage here is that (2.10)-(2.11) filters out the O(ε) oscillations, thus

allows a numerical mesh size independent of ε. However, there are several

major difficulties in its numerical approximation:

• High dimensionality. The Liouville equation is defined in the phase

space, thus the memory requirement exceeds the current compu-

tational capability.

• Singularity. The initial data (2.11) is a delta function. The solution

at later time remains a delta function (for single valued solution) or

a sum of delta functions (for multi-valued solutions beyond caustics

[26, 53], which is poorly resolved numerically.

• Potential barrier. If V (x) is discontinuous, corresponding to a

potential barrier, there are subtle analytical and numerical issues

with respect to (2.10) since it is a linear hyperbolic equation with

a measure-valued coefficient ∇V .

In the past few years, several new numerical methods have been intro-

duced to overcome these difficulties. Below we will review the moment
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methods, the level set methods and methods for discontinuous potentials.

§3. The moment method

A classical approach in kinetic theory to reduce the dimension of

the Boltzmann equation is to use moment closure. This can be done

using a local Maxwellian, which yields the compressible Euler equations

defined in the physical space, or some other ad-hoc density distributions

[25, 40, 48] which yield higher order moment equations. For multivalued

solution of (2.4)-(2.5) or (2.13)-(2.14), with N < ∞ phases, as shown

in [26, 53], the semiclassical limit of (2.1)-(2.2), away from the caustics,

takes the form

w(x,p, t) =

N
∑

k=1

ρk(x, t)δ(p − uk(x, t)) , (3.1)

where each (ρk,uk) satisfies the pressureless gas equations (2.13)-(2.14).

Using distribution (3.1) one can close the Liouville equation (2.10) in

the physical space, resulting a system of (d + 1)N weakly hyperbolic

equations for a d−dimensional problem [26].

For example, in one space dimension, define the moment variables

ml(x, t) =

∫

plw(x, p, t) dp , l = 0, 1, · · · , 2N (3.2)

Multiplying the Liouville equation (2.10) by pl (for l = 0, 1, · · · , 2N −1),

and integrating over p, one gets the following moment system

∂tm0 + ∂xm1 = 0 (3.3)

∂tm1 + ∂xm2 = −m0∂xV (3.4)

· · · · · · · · · (3.5)

∂tm2N−1 + ∂xm2N = −(2N − 1)m2N−2∂xV (3.6)
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With the special distribution function (3.1), one can express the last

moment m2N as a function of the first 2N moments:

m2N = g(m0,m1, · · · ,m2N−1) (3.7)

Thus the above moment system is closed. Moreover, it was shown in

[26] that this 2N × 2N -system is weakly hyperbolic, in the sense that

the Jacobian matrix of the flux is a Jordan Block, with only N -distinct

eigenvalues u1, u2, · · · , uN .

By solving the moment system numerically, one produces the multi-

valued solution to (2.13)-(2.14). In [26] explicit flux function g in (3.7)

was given for N ≤ 5. For larger N a numerical procedure was proposed

in [26] for evaluating g.

The moment method for multivalued solution of Burger’s equation

was first introduced by Brenier and Corrias [6, 7], and used computa-

tionally by Engquist and Ronborg [17] and Gosse [22] for multivalued

solutions in geometrical optics, which is the high frequency limit of the

wave equation (2.3).

Since the moment system is weakly hyperbolic, with phase jumps

which are undercompressive shocks [23], standard shock capturing schemes

such as the Lax-Friedrichs scheme and the Godunov scheme face severe

numerical difficulties as in pressureless gas equations [8, 17]. Following

our work for pressureless gas system [8], a kinetic scheme derived from

the Liouville equation (2.10), with the closure (3.1), was used in [26]

for this moment system, which outperforms both the Lax-Friedrichs and

Godunov schemes.

The multivalued solution also arises in the high frequency approxima-

tion of nonlinear waves, for example, in the modeling of electron trans-

port in vacuum electronic devices [24]. There the underlying equations

are the Euler-Poisson equations, which is a coupled nonlinear hyperbolic-

eliptic system. A similar moment method was introduced in [41] which
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uses the moment closure ansatz (3.7) for the Vlasov-Poisson system. See

also [57]. The validity of the semiclassical limit from the Schrödinger-

Poisson system to the Vlasov-Poisson system remains a theoretical chal-

lenge, although it was studied numerically [29].

The moment systems lead to an Eulerian method defined in the phys-

ical space, thus offers greater efficiency compared with the computation

in the phase space. However, when the number of phases becomes very

large, or in high space dimensions, the moment systems become very

complex. It is also hard to estimate, a priori, the total number of phases

in high space dimension, which is needed to construct the moment equa-

tions. Moreover, the caustics for the moment system are undercom-

pressive shocks [23], which are difficult to analyze and hard to compute

accurately. These provide very interesting yet challenging numerical

problems for the future.

§4. The level set methods

One of the recently introduced numerical methods for multivalued

solution in the high frequency limit is the level set method. This method

is rather general, applicable to the computation of multivalued solutions

of any (scalar) multi-dimensional quasilinear hyperbolic equations and

Hamilton-Jacobi equations.

We now review the level set method, following the derivation of [34].

See also [10]. The original mathematical formulation is classical, see for

example [12].

Let u(x, t) ∈ < be a scalar satisfying an initial value problem of an

n-dimensional first order hyperbolic PDE with source term:

∂tu + F(u) · ∇xu + q(x, u) = 0 , (4.1)
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u(x, 0) = u0(x) . (4.2)

Here F(u) : < → <n is a vector, and q : <n+1 → <, B is the source

term. Introduce a level set function φ(x, p, t) in n + 1 dimension, whose

zero level set is the solution u:

φ(x, p, t) = 0 at p = u(x, t) . (4.3)

Therefore one evolves the entire solution u as the zero level set of φ.

Simple calculation gives

∂tφ + F(p) · ∇xφ − q(x, p) ∂pφ = 0 . (4.4)

This is the level set equation. It resembles a Liouville equation, which

is linear hyperbolic with variable coefficients, with the solution governed

by the characteristics, even beyond the singularity of u. By solving this

linear transport equation, and then finding the zero level set of φ, we

generate the multivalued solution to u.

For smooth initial data u0(x), the initial condition for φ can be chosen

simply as

φ(x, p, 0) = p − u0(x) . (4.5)

However, if the initial data are discontinuous, such as in the Riemann

problem, such a choice of the initial level set will miss the line that

connects the two constant states, thus forming a vacuum. In this case, a

good choice for the initial level set function is the signed distance function

[54].

Similar idea can also be applied to Hamilton-Jacobi equations. Con-

sider the time dependent, n-dimensional Hamilton-Jacobi equation

∂tS + H(x,∇xS) = 0 , (4.6)

S(0,x) = S0(x) . (4.7)
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Introduce u = (u1, · · · , un) = ∇xS. Taking the gradient on (4.6), one

gets an equivalent (at least for smooth solutions) form of the Hamilton-

Jacobi equation

∂tu + ∇xH(x,u) = 0 , (4.8)

u(x, 0) ≡ u0(x) = ∇xS0(x) . (4.9)

We use n level set functions φi = φi(x,p, t), i = 1, · · · , d, where p =

(p1, · · · , pd) ∈ <d, such that the intersection of their zero level sets yields

u, namely,

φi(x,p, t) = 0 at p = u(x, t) , i = 1, · · · , n . (4.10)

Then φi solves the following initial value problem of the Liouville equa-

tion for Hamiltonian H(x,p):

∂tφi + ∇pH · ∇xφi −∇xH · ∇pφi = 0 , i = 1, · · · , n .(4.11)

φi(x,p, 0) = pi − ui(x, 0) (4.12)

It is the Liouville equation. When H = 1
2 |p|

2 + V (x), it corresponds

to the semiclassical limit (2.10) of the linear Schrödinger equation (2.1),

while for geometrical optics limit of the wave equation (2.3) H = c(x)|p|.

The intersection of the zero level sets of all φi give the multivalued

solution of u.

While the eiconal (Hamilton-Jacobi) equation gives the multivalued

velocity u, it is desirable to also compute multivalued density, energy,

etc. A simple idea was introduced in [30, 31]. This method is equivalent

to a decomposition of the measure-valued initial data (2.11), namely, we

solve φ(x,p, t) satisfying the Liouville equation (2.10) with initial data

φ(x,p, 0) = ρ0(x) (4.13)

and ψi(x,p, t) ∈ <n (i = 1, · · · , n) satisfying the same Liouville equa-

tion, with initial data (4.12). A simple mathematical argument shows
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that the solution to (2.10)-(2.11) is simply

w(x,p, t) = φ(x,p, t)Πn
i=1δ(ψi(x,p, t)) , (4.14)

while the moments can be recovered through

ρ(x, t) =

∫

φ(x,p, t)Πn
i=1δ(ψi(x,p, t))dp, (4.15)

u(x, t) =
1

ρ(x, t)

∫

pφ(x,p, t)Πd
i=1δ(ψi(x,p, t))dp. (4.16)

Thus the only time we have to deal with the delta-function is at the out-

put, while during the evolution we solve φ and ψi which are l∞ functions!

This avoids the singularity problem mentioned earlier, and gives numer-

ical methods with much better resolution than the one based directly

on (2.10)-(2.11) by approximating the initial delta-function numerically

and then marching on time. This idea has been successfully applied to

the semiclassical limit of Schrödinger equation [30], and to general linear

symmetric hyperbolic systems (including the geometrical optics) in [31].

Another advantage of this level set approach is that we only need

to care about the zero level sets, thus the technique of local level set

methods [1, 11, 50], which restricts the computation to a narrow band

around the zero level set, can be used to reduce the computational cost

to O(N lnN) for N computational points in the physical space. This is

an nice alternative for dimension reduction of the Liouville equation.

The Liouville-based methods were also proposed earlier but for the

computation of only the wave fronts, see [19, 20, 49]. Here it was shown

that it can actually be used to construct the entire solution. When

solution with many initial data need to be computed, fast algorithms

can be used, see [20, 60].

So far the level set methods have not formulated for nonlinear hyper-

bolic systems (not the type of (4.8) which is the gradient of the Hamilton-

Jacobi equations), except for 1-d Euler-Poisson equations [44] where a
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three dimensional Liouville equation has to be used for a 1-d calculation

of multivalued solutions.

For a recent review on these level set methods see also [43].

§5. Computation of high frequency waves through potential

barriers or interfaces

When the medium is heterogeneous, the potential V or the local

wave speed c could be discontinuous, creating a sharp potential barrier

or interface where waves can be partially reflected and partially trans-

mitted as in Snell-Descartes’ Law of Refraction. This gives rise to new

numerical challenges not faced in the smooth potential case. Clearly,

the semiclassical limit (2.10)-(2.11) does not hold at the barrier. An-

alytical study of the semiclassical limit with interface was carried out

in [3, 47]. When V or c is discontinuous, the Liouville equation (4.11)

contains characteristics that are discontinuous and even measure-valued.

Its bicharacteristics, given by the Hamiltonian system:

∂tx = ∇pH , (5.1)

∂tp = −∇xH (5.2)

is a system of ODEs with the right hand side that are not Lipschitz (for

which the classical well-posedness theory was established). It does not

even have a bounded variation, for which the renormalized solution was

introduced by DiPerna and Lions [14] (see also [2]).

5.1. Notion of the solution

One first needs to introduce a notion of solution to such singular

Liouville equation (2.10) and the underlying singular Hamiltonian sys-

tem (5.1)-(5.2). One can then design robust numerical methods for such
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problems that capture such solutions. The solution so constructed will

be physically relevant, namely, it should give the correct transmission

and reflection of waves through the barrier, obeying Snell’s Law of Re-

fraction.

In [37], we provide an interface condition to connect the Liouville

equations at both sides of the interface. Let us concentrate in one space

dimension. Consider a particle moving with velocity p > 0 to the barrier.

The interface condition is

w(x+, p+) = αT w(x−, p−) + αRw(x+,−p+) (5.3)

Here the superscripts “±” represent the right and left limits of the quan-

tities, αT ∈ [0, 1] and αR ∈ [0, 1] are the transmission and reflection

coefficients respectively, satisfying αR + αT = 1. x+ = x− (for a sharp

interface), while p+ and p− are connected by the Hamiltonian preserving

condition:

H(x+, p+) = H(x−, p−) (5.4)

We remark that in classical mechanics, the Hamiltonian H = 1
2p2 +

V (x) is conserved along the particle trajectory, even across the barrier.

In this case, αT , αR = 0 or 1, namely, a particle can be either transmitted

or reflected.

In geometric optics, condition (5.4) is equivalent to Snell’s Law of

Refraction for a flat interface [36]. The coefficients αT and αR are be-

tween 0 and 1, namely, waves can be partially transmitted or reflected.

They can be determined from the original wave equation (2.3) before the

geometric optics limit is taken. Thus (5.3) is a multiscale coupling be-

tween the (more macroscopic) Liouville equation and the (microscopic)

wave equation.

The well-posedness of the initial value problem to the singular Liou-

ville equation with the interface condition (5.3) was established in [37],

using the method of characteristics. To determine a solution at (x, p, t)
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one traces back along the characteristics determined by the Hamiltonian

system (5.1)-(5.2) until hitting the interface. At the interface, the solu-

tion bifurcates with the interface condition (5.3), one corresponds to the

transmission and the other reflection, and this process continues until

one arrives the line of t = 0. The interface condition (5.3) thus provides

a generalized characteristic method.

We will also introduce a notion of the solution to the Hamiltonian sys-

tem (5.1)-(5.2), using a probability interpretation. Basically, one solves

the system using a standard ODE or Hamiltonian solver, but at the in-

terface, we introduce the following Monte-Carlo solution (we give the

solution in the case of p− > 0; the other case is similar):

• with probability αR, the particle (wave) is reflected with

x → x, p− → −p− . (5.5)

• with probability αT , the particle (wave) is transmitted, with

x → x, p+ is obtained from p− using (5.4) (5.6)

Although the original problem is deterministic, this probability so-

lution allows us to go beyond the interface with the new value of (x, p)

defined in (5.5)-(5.6). This is clearly the Lagrangian picture of the Eu-

lerian solution determined by using the interface condition (5.3). This

solution also motivates a (Monte-Carlo) particle method for thin quan-

tum barriers, see [33].

5.2. Numerical flux at the interface

While the Liouville equation (4.11) can be solved by a standard finite

difference or finite volume shock capturing methods, such schemes face

difficulties when the Hamiltonian is discontinuous, since ignoring the

discontinuity of the Hamiltonian during the computation will result in
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solutions inconsistent with the notion of the (physically relevant) solution

defined in the preceding subsection. Even with a smoothed Hamiltonian,

it is usually impossible–at least in the case of partial transmission and

reflection–to obtain transmission and reflection with the correct trans-

mission and reflection coefficients. A smoothed Hamiltonian will also

give a severe time step constraint like ∆t ∼ O(∆x∆p), where ∆t,∆x

and δp are time step, mesh sizes in the x- and p-directions respectively.

This is a parabolic type CFL condition, despite that we are solving a

hyperbolic problem!

Our idea of approximating the Liouville equation (4.11) at the inter-

face in [35, 37] is to build the interface condition (5.3) into the numerical

flux. This is in the spirit of the Immersed interface method [46, 39]. It

was also motived by an idea of Perthame and Simeoni for a well-balanced

kinetic scheme for shallow water equations with bottom topography [51].

Our new numerical schemes overcome the aforementioned analytic and

numerical difficulties. In particular, they have the following important

properties:

• they produce the solution crossing the interface defined by the

mathematical solution introduced in the previous subsection, thus

obtain physically relevant solution of particle/wave transmission

and reflection at the interfaces. In particular, in the case of ge-

ometric optics, this solution is consistent to Snell-Descartes’ Law

of Refraction at the interface. The Snell’s Law was built into the

numerical flux!

• It allows a hyperbolic CFL condition ∆t = O(∆x,∆p).

This idea has been applied successfully to compute the semiclassical

limit of the linear Schrödinger equation with potential barriers [35] and

the geometrical optics with complete transmission/reflection [36] or par-

tial transmission/reflection [37]. Positivity, and both l1 and l∞ stabilities
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were also established, under the “good” (hyperbolic) CFL condition. For

piecewise constant Hamiltonians, an l1-error estimate of the first order

finite difference of the type introduced in [35] was established in [56],

following [55].

This is the first Eulerian numerical methods for high frequency waves

that are able to capture correctly the transmission and reflection of waves

through the barriers or interfaces. It has also been extended to high

frequency elastic waves [27], and high frequency waves in random media

[28] with diffusive interfaces.

5.3 Thin quantum barriers

A correct modeling of electron transport in nanostructures, such as reso-

nant tunneling diodes, superlattices or quantum dots, require the treat-

ment of quantum phenomena in localized regions of the devices, while

the rest of the device is governed by classical mechanics. The quantum

barrier that separates the quantum and classical regions differ from a

classical barrier, in that a quantum wave can transmit through any bar-

rier, a phenomenon known as tunneling. While solving the Schrödinger

equation in the entire physical domain is too expensive, it is rather at-

tractive to use a multiscale approach, namely, solve the quantum me-

chanics in the quantum well, and classical mechanics outside the well

[5]. It is highly desirable to have a semiclassical computational model

for quantum barriers, with a cost slightly higher than a classical ap-

proach, but much less than a quantum approach. In [32], we introduced

the following semiclassical model:

• solve the time-independent Schrödinger equation–either analyti-

cally if possible, or numerically– for the local barrier/well to deter-

mine the scattering data (transmission and reflection coefficients)

• solve the classical Liouville equation elsewhere, using the scatter-
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ing data at the barrier for the interface condition (5.3) and the

numerical method of [35] for a classical barrier.

Our 1d [32] and 2d [33] results indicate the success of this approach

when the well is very thin (a few ε’s) and well-separated. It can correctly

capture both transmitted and reflected waves that a classical Liouville

equation cannot, and the results agree (in the sense of weak convergence)

with the solution obtained by solving directly the Schrödinger equation

with small ε with a much less cost.

Currently, more study is underway, in particular, for highly resonant

wells, time delay, phase information, and higher dimensional problems.
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