
Eulerian calculations of wave breaking and multi-valued

solutions in a traveling wave tube
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The traveling wave tube is an electron beam device that works on a similar principle to the beam-
plasma instability, where the background plasma is replaced by an electromagnetic waveguiding
structure. The nonlinear evolution of the instability includes wave breaking and the formation of
multi-valued solutions, and conventionally these solutions have been computed using Lagrangian
techniques. Recently, an Eulerian method for computing multi-valued solutions was developed in
the context of geometrical optics, and has been applied to the klystron, a relative of the traveling
wave tube. In this paper we apply the Eulerian technique to solve a traveling wave tube model
and compare the results to a Lagrangian technique. The results are found to be in good qualitative
agreement with small quantitative differences that are attributed to the numerical methods.

I. INTRODUCTION

It is well known that solutions to nonlinear hyper-
bolic wave equations can exhibit “steepening,” and can
“break” in a finite time. Most commonly the physical
situations being modeled dictate that shock formation
occurs at the breaking point. However, it has long been
acknowledged that another interpretation of the break-
ing event is the formation of “multi-valued solutions” [1],
although methods for computing multi-valued solutions
have not been pursued nearly to the extent that shock
formation and shock capturing techniques have. Re-
cently an Eulerian technique for computing multi-valued
solutions was developed in the context of geometrical
optics [2–4] and the semi-classical limit of the linear
Schrödinger equation [5]. In [6] this technique is applied
to the Euler-Poisson equations which may be used to
model, among other systems, nonlinear electron beam
evolution in klystron amplifiers. In this paper we apply
the technique to a relative of the klystron, the traveling
wave tube (TWT).

In plasma physics wave breaking in nonlinear plasma
waves was first discussed by Dawson [7]. There is a sub-
stantial body of literature discussing wave breaking in
nonlinear plasma waves as relevant to plasma heating,
plasma accelerators, laser fusion, general laser-plasma in-
teractions, and electron beams. Restricting our inter-
est to the cold plasma wave breaking literature since it
is most relevant to this paper, plasma wave breaking is
treated in, for example, [8–11], and electron beams are
treated in [12]. In [9, 10] no attempts are made to do cal-
culations beyond the point of wave breaking. Rather, the
wave amplitude for which wave breaking sets in is con-
sidered a limit for having a nonlinear plasma wave, since
they were considering cases where wave breaking lead
to a wave damping. Calculations beyond wave breaking
for cold plasmas are performed using Lagrangian coordi-
nates [8, 11].

Nordsieck’s seminal TWT work [13] addressed wave
breaking six years prior to Dawson [7], and pointed out
that “electrons overtake one another at or even consider-
ably before the point along the tube where the limiting
power level is obtained,” i.e., the solution breaks and
becomes multi-valued. To address this problem Nord-
sieck used a Lagrangian electron beam description where
the fluid element characteristics were allowed to cross
and the solutions were allowed to become “multi-valued.”
The use of a Lagrangian electron beam description has
become the standard in microwave vacuum electronics
so that multi-valued solutions that form after “electron
overtaking” are properly computed.

More generally the physics of a TWT is an example of
a convective instability in a non-neutral plasma. It has
been observed that “in the small cold beam limit, the
equations governing the evolution of the beam-plasma in-
stability are mathematically identical to those describing
the traveling wave tube” [14]. Therefore, while we con-
sider in this paper a TWT specifically, the model equa-
tions may be considered a prototype for more general
plasma physics problems since they are related to the
Vlasov-Poisson and Vlasov-Maxwell systems [15]. Eule-
rian techniques for computing such instabilities may be
desirable in 1d when rays diverge, or in multiple dimen-
sions, when Lagrangian meshes would be entangled due
to crossing characteristics. A TWT may be modeled in
3d by the Vlasov-Maxwell system, and may provide an-
other important prototype for Eulerian calculations of
multi-valued solutions relevant to plasmas [15] in multi-
ple dimensions [16].

In this paper we extend our work in [6] by consider-
ing a TWT model that has an additional wave equation
beyond the model used for the klystron. In Sec. II we
give a brief description of TWT physics and describe the
model equations. We give the moment system that al-
lows calculation of multi-valued solutions, and describe
how the calculations are done. In Sec. III we present com-
putational results for a TWT that is found in the litera-
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ture [17, 18] using the multi-phase (multi-value) Eulerian
method as well as a Lagrangian technique for comparison.
Section IV concludes the paper. There are two appen-
dices providing details regarding normalizations and the
Lagrangian formulation.

II. MODEL EQUATIONS

A TWT is a microwave amplifier commonly used in
telecommunications and electronic countermeasure sys-
tems. The source of energy for amplification of the mi-
crowaves is an electron beam that passes in close prox-
imity to the electromagnetic waveguiding structure. A
schematic showing the placement of the electron beam
relative to a helix waveguide in a TWT is given in Fig. 1.

FIG. 1: (Color online) Schematic of helix TWT.

Typically the electron beam enters the helix unmodu-
lated, i.e., with no density or velocity perturbations, into
the same end as the input microwave signal and traveling
approximately velocity synchronous with the microwave
signal (“wave”). The axially directed electric fields pro-
vide accelerating and decelerating fields on the electrons,
with a particular electron being accelerated or deceler-
ated depending on where it sits in the phase of the wave.
Slowing down and speeding up of the charges results in
convecting, growing density bunches. The bunches form
primarily in the decelerating phases of the wave, and
hence the electrons give their energy up to the wave as
they are decelerated. As a result of the energy exchange
process the wave grows exponentially along the length of
the amplifier. For sufficient levels of acceleration and de-
celeration electrons can pass by, or “overtake,” electrons
that were initially ahead of them. This is the point of
wave breaking, and beyond this point velocity and den-
sity solutions become multi-valued.

A normalized set of TWT equations (see Appendix A)
that reproduce the classic linear dispersion relation [19,

20] are

∂V

∂x
+

1

vph
∗ ∂V

∂t
= C3 ∗ ∂ρ

∂t
(1)

∂E

∂x
= ρ − 1 (2)

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (3)

∂

∂t
(ρu) +

∂

∂x
(ρu2) = ρ

(

−∂V

∂x
+ R ∗ E

)

(4)

where ∗ denotes convolution. In (1)–(4) V is the circuit
voltage (microwave field), E is the coulomb space charge
field, ρ is the beam charge density, u is the beam velocity,
1/vph is the inverse Fourier transform of the frequency
dependent function 1/ṽph(ω) where ṽph(ω) is the cold
circuit phase velocity, C3 is the inverse Fourier transform
of the frequency dependent Pierce gain parameter [19]

C̃3(ω), R is the inverse Fourier transform of the frequency

dependent space charge reduction factor R̃(ω), t is time,
and x is distance along the TWT.

For the TWT one equation is added to the Euler-
Poisson system as found in the klystron [6]. The ad-
ditional equation is for the circuit voltage wave evolution
as forced by the beam charge density, and the circuit
voltage also appears as a forcing term in the momentum
equation (4). Furthermore, the convolutions in (1) and
(4) account for the frequency dependence of the circuit
parameters. The frequency dependence acts as filter in
that only the frequencies of the input signal with the right
combinations of parameters grow exponentially. This fil-
tering is critical in that the density singularities which
form when the solution becomes multi-valued should not
be allowed to manifest in the circuit field.

Direct application of a finite difference scheme to
Eqs. (1)–(4) will not predict formation of multi-valued
solutions; if Eqs. (1)–(4) are converted to Lagrangian
coordinates (see Appendix B) they do predict forma-
tion of multi-valued solutions. To arrive at an Eule-
rian technique that predicts the multi-valued solutions
one starts with the Vlasov equation coupled to Poisson’s
equation (2) and the circuit equation (1), and derives mo-
ment equations from the Vlasov equation using an initial
distribution that is a delta function in velocity (see Ap-
pendix A). Since the solution to the distribution in the
“Vlasov-TWT” system remains a delta function in veloc-
ity, the moment hierarchy may be closed exactly [5, 6].

Here we will simply state the moment system and re-
fer the reader to [5, 6] for technical details such as the
moment closure and numerical methods. For a solution
with N values of velocity and density we need 2N mo-
ments. This will result in an invertible mapping between
the moments and the densities and velocities [5]. The
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moment system is

∂V

∂x
+

1

vph
∗ ∂V

∂t
= C3 ∗ ∂m0

∂t
(5)

∂E

∂x
= m0 − 1 (6)

∂

∂t
m0 +

∂

∂x
m1 = 0 (7)

∂

∂t
m1 +

∂

∂x
m2 =

(

−∂V

∂x
+ R ∗ E

)

m0 (8)

· · · + . . . = . . .
∂

∂t
mk +

∂

∂x
mk+1 =
(

−∂V

∂x
+ R ∗ E

)

kmk−1 (9)

· · · + . . . = . . .
∂

∂t
m2Nmax−1 +

∂

∂x
m2Nmax

=
(

−∂V

∂x
+ R ∗ E

)

(2Nmax − 1)m2Nmax−2 (10)

where m0 = m0(m1, . . . m2N ) and the form of the clo-
sure depends on how many phases are in the solution [6].
We have identified ρ in (1) and (2) with m0 of the mo-
ment formulation since we want the density to contain
contributions from all of the values in the multi-valued
solution, i.e.,

m0(x, t) =

N(x,t)
∑

k=1

ρk(x, t). (11)

At the outset of a calculation one assumes a maximum
number of phases in the solution Nmax, and solves 2Nmax

moment equations. When the number of phases in the
solution is less than Nmax the extra moment equations
are redundant. For example, when the number of phases
is N = 1, then the closure relation is m0 = m2

1/m2 and
Eqs. (1)–(4) are recovered.

We solve the system as a boundary value problem with
boundary values

V (0, t) = Va cosωt

E(0, t) = 0

m0(0, t) = m1(0, t) = · · · = m2Nmax
(0, t) = 1

where Va is computed from input power as shown in Ap-
pendix A. In this paper we set Nmax = 3 and the indica-
tor functions ϕ1(x, t) and ϕ2(x, t) [6], which are special
combinations of the moments that are related to the clo-
sure relations, track the number of phases in the solution.

The moment equations are solved with a first order
kinetic scheme [6]; Eq. (6) is solved as in [6]; Eq. (5) is
decomposed spectrally in t with an FFT, and stepped in
x using a fourth order Runge-Kutta scheme. All convo-
lutions are calculated in the frequency domain using an
FFT, a multiplication by the frequency dependent func-
tion, and then an inverse FFT.

For parameters of interest we have shown that the lin-
earization of Eqs. (5), (7), and (8) [with R = 0], using
the single phase closure relation m0 = m2

1/m2, form a
hyperbolic system. In contrast to the klystron [6], how-
ever, the system is linearly unstable when R 6= 0 and
(6) is coupled in. Ideally a numerical method account-
ing for this hyperbolicity would be used, but in lieu of
such a new method we have found that solving Eq. (5)
as described above produces acceptable results.

III. RESULTS AND DISCUSSION

In this section we present results from solving the mo-
ment system (5)–(10) for the X-WING TWT [17, 18], and
compare the results to the Lagrangian method given in
Appendix B. We use X-WING parameters at f1 = 4 GHz
which may be found in [18], and set Pin = 4 dBm.

Since TWTs tend to be very wide bandwidth ampli-
fiers, harmonic generation in the beam current results
in harmonics in the circuit field, and these harmonics
are very important in practical applications. However,
accounting for harmonics in circuit voltage and space
charge field distorts phase space and destroys the clas-
sical “hook-like” structures and electron trapping widely
known in electron beam devices. Therefore, to main-
tain as “clean” a phase space as possible for compar-
ing the Eulerian and Lagrangian techniques, we arrange
for our models to account only for the fundamental in-
put frequency. In the Eulerian calculation this is ac-
complished by using the frequency dependent parameters
δ(ω − ω1)C̃

3(ω) and δ(ω − ω1)R̃(ω) in the filtering oper-
ations. Furthermore, ṽph(ω) is set to the constant value
of ṽph(ω1). For the Lagrangian calculation the Fourier
series representations (B3) and (B4) are restricted to the
fundamental frequency only.

In Figs. 2 and 3 we show the beam velocity and beam
density results from the Lagrangian calculation for the
entire length of the TWT at an instant of time, as well as
an expanded view of the multi-phase region. As one can
see, the density becomes delta-function like concentra-
tions at points where the velocity becomes multi-valued.
In subsequent figures we will focus on comparing the
methods in the multi-phase region.

In Fig. 4 we show the circuit voltage predicted by
the Eulerian and Lagrangian calculations. Generally the
circuit voltages are seen to be in good agreement even
though, as will be seen in following figures, the velocity
and density details predicted by the two techniques do
not agree precisely. This is due to the fact that we have
prevented density harmonics from producing voltage har-
monics, and hence prevented by filtering any detailed fine
structure of the beam evolution to manifest in the volt-
age.

For a better view of the detailed phase space and den-
sity structures in the multi-phase region predicted by the
two methods we plot expanded views of the velocity and
density in Figs. 5–7. The reader is referred to [5, 6] for
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FIG. 2: (Color online) Beam velocity versus axial distance
predicted by the Lagrangian method.
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FIG. 3: (Color online) Beam density versus axial distance
predicted by the Lagrangian method.
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FIG. 4: (Color online) Circuit voltage versus axial distance
for Eulerian and Lagrangian calculations.

details on how one computes the multi-phased velocity
from the moments. The multi-phase density, i.e., the
density accounting for the superposition of the individ-
ual densities, is given by m0 [see (11)], and the density
for the Lagrangian calculation is obtained from Eq. (B9).
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FIG. 5: (Color online) Expanded view of velocity comparing
predictions of Eulerian and Lagrangian calculations.
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FIG. 6: (Color online) Expanded view of velocity overlaying
predictions of Eulerian and Lagrangian calculations.

There are four multi-phased regions, labeled A–D in
Figs. 5 and 6. The multi-phase technique properly pre-
dicts three phases for a majority of the multi-phase re-
gions, although the quantitative values differ somewhat
between the methods. Reasons for the discrepancies are
due to the numerical difficulties associated with solving
the moment equations (rather than the validity of the
moment equations). The moment equations are a weakly
hyperbolic system with discontinuous fluxes and density
concentrations at phase boundaries. Currently the shock
capturing methods often used for solving hyperbolic sys-
tems have not produced high quality results for the mo-
ment systems [21].
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FIG. 7: (Color online) Expanded view of density comparing
predictions of Eulerian and Lagrangian calculations.

The fact that density singularities coincide with the
multi-phase boundaries can be verified for the respec-
tive methods. For regions A and B the location of these
singularities matches between the methods. In regions
C and D the agreement on the location of the left side
singularity is not as good. Differences can again be at-
tributed to the numerical methods used for the moment
equations. Lastly, note that the Eulerian calculation pre-
dicts additional density singularities not present in the
Lagrangian calculation. These “artificial” density sin-
gularities appear when the velocity changes from single
valued to multi-valued, where the flux becomes discon-
tinuous and singular. Due to the hyperbolic nature of
the equations this discrepancy will not disappear, rather
it will be carried along with the wave. This is one of
the main numerical difficulties associated with the ap-
proach of the moment equations, as already pointed out
in [5, 21].

In region D the Lagrangian calculation shows that
there is a very small sub-region where there are five val-
ues in the velocity solution. We have set Nmax = 3 so the
Eulerian calculation can compute at most three phases
in this region. To run the calculation with Nmax = 5 one
needs either to derive closure relations for m0 for N = 4
and N = 5, or to implement numerical methods for solv-
ing the closures. Analytic closure relations have been
derived up to N = 5 for initial value problems [22], but
they have not been derived for boundary value problems.

In general to get reasonable agreement between the
methods we have found that for the Eulerian calculation
the space and time steps need a high degree of resolution.
In the Eulerian calculations we used a step size of h =
10−5 for a normalized length of 1.0, and λ = k/h =
2.2. With larger h multi-phase behavior is still predicted,
but the exponential growth rate of the circuit voltage
is under predicted and the density singularities are, of
course, not as well resolved. The threshold values for
the indicator functions [6] ϕ1 and ϕ2, i.e., values above

which the indicator functions are considered nonzero, are
δ1 = 10−4 and δ2 = 5 × 10−9. These values were arrived
at by trial and error using results from the Lagrangian
calculation to predict how many phases were expected
in the Eulerian solution. In particular, since we knew
not to expect any regions with two phases we set δ1 to a
relatively large number.

For the Lagrangian calculations we used h = 6.67 ×
10−5 and 50, 000 rays (“disks”) in one period of (nor-
malized) 4 GHz, compared to 2355 time steps for one
period in the Eulerian calculation. The large number of
rays is used to obtain good resolution on the phase space
and density plots. With these parameters both methods
take roughly one hour of computation time on a modern
Gnu/Linux PC.

IV. CONCLUSIONS

The TWT has been used as a means to study the beam-
plasma instability [14], and hence it provides a useful
prototype wherein to study the potential application of
a new Eulerian method for computing multi-valued solu-
tions to general plasma instabilities. We apply the new
method to the TWT, and compare the results to La-
grangian calculations.

We compare the methods for a case that develops sig-
nificant multi-phase content in the solution. The two
methods show good qualitative agreement regarding the
number of phases in the solution and the location of den-
sity singularities, while they differ somewhat in quanti-
tative predictions of the solutions. These differences are
due to the fact that we still do not have a good numerical
method for the moment system which is weakly hyper-
bolic with discontinuous fluxes at phase boundaries.

For the calculations in this paper we restrict the har-
monic content of the circuit voltage and space charge
electric field so that the phase space is “clean” and com-
parisons between the methods are easily made. We have
performed calculations for the case of this paper account-
ing for ten voltage and space charge field harmonics. The
results show that, similar to the results shown in this
paper, the circuit voltages agree while the multi-valued
velocity and density solutions agree qualitatively in struc-
ture, but have quantitative differences that are due to the
immaturity of the numerical methods.
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APPENDIX A: NORMALIZATION AND VLASOV
EQUATION

The unnormalized TWT equations are

∂V

∂x
+

1

vph
∗ ∂V

∂t
=

KA

2
∗ ∂ρ

∂t
(A1)

∂E

∂x
=

ρ − ρ0

ε0
(A2)

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (A3)

∂

∂t
(ρu) +

∂

∂x
(ρu2) =

e

me
ρ

(

−∂V

∂x
+ R ∗ E

)

. (A4)

In addition to the parameters given in Sec. II, A is the
electron beam area, K is the inverse Fourier transform
of the frequency dependent interaction impedance K̃(ω),
ρ0 is the dc beam charge density, and ε0, e, me are free
space permittivity, electron charge, and electron mass
respectively.

To normalize (A1)–(A4) we first introduce the charac-
teristic time

T =
L

u0
(A5)

where L is the TWT length and u0 is the dc beam veloc-
ity, and then define independent coordinates

x̂ =
x

L
t̂ =

t

T
. (A6)

Define the normalized dependent variables

V̂ =
e

meu2
0

V, Ê =
ε0

Lρ0
E, û =

u

u0
, ρ̂ =

ρ

ρ0
,

where

u0 =

√

2eV0

me
, ρ0 =

I0

u0A
,

and parameters

v̂ph =
vph

u0
, R̂ = R

eL2ρ0

meu2
0ε0

, C3 =
KI0

4V0
,

where V0, I0 are beam voltage and current, respectively.
These definitions lead to the normalized TWT equa-
tions (1)–(4).

Given input power Pin the voltage amplitude is given
by

Va =

√
8PinK

V0
, (A7)

where a factor of 2/V0 takes care of the normalization.
For the Vlasov equation

∂f

∂t
+ v

∂f

∂x
+

e

me

(

−∂V

∂x
+ R ∗ E

)

∂f

∂v
= 0

(A8)

use the normalizations above, plus

v̂ =
v

u0
, f̂ = f

eu0

ρ0
,

and take the kth velocity moment of the Vlasov equation
(in normalized variables)

∂

∂t

∫

fvkdv +
∂

∂x

∫

fvk+1dv

= −
(

−∂V

∂x
+ R ∗ E

)
∫

∂f

∂v
vkdv. (A9)

Integrate the last term by parts and define

mk ≡
∫

fvkdv (A10)

to get

∂

∂t
mk +

∂

∂x
mk+1

=

(

−∂V

∂x
+ R ∗ E

)

kmk−1. (A11)

APPENDIX B: LAGRANGIAN FORMULATION

For solving in Lagrangian coordinates we need the
Fourier coefficients of the charge density ρ

ρ̂`(x) =
ω0

2π

∫ 2π/ω0

0

ρ(x, t) e−i`ω0t dt (B1)

=
ω0

2π

∫ 2π/ω0

0

I0(t0)

û(x, t0)
e−i`ω0 t̂(x,t0) dt0. (B2)

Equation (B2) is the Fourier coefficient of ρ written in
Lagrangian coordinates. Using a Fourier representation
of V (x, t), E(x, t), i.e.,

V (x, t) =
∞
∑

`=−∞

V̂`(x)ei`ω0t, (B3)

E(x, t) =

∞
∑

`=−∞

Ê`(x)ei`ω0t, (B4)

and a Fourier representation of ρ(x, t) we get from (1)
and (2)

dṼ`

dx
= i`ω0

(

− Ṽ`

ṽph`
+ Ĉ3

` ρ̃`

)

, ` 6= 0 (B5)

dẼ`

dx
= ρ̃`, ` 6= 0. (B6)

The characteristics t̂(x, t0), û(x, t0) are solved from

∂t̂

∂x
=

1

û
(B7)

∂û

∂x
=

1

û

∞
∑

`=−∞

[

i`ω0

(

V̂`

v̂ph`
− Ĉ3

` ρ̂`

)

+ R̂`Ê`

]

ei`ω0 t̂.

(B8)
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We solve Eqs. (B5)–(B8) with a fourth order Runge-
Kutta scheme, and approximate the Fourier series with
a finite number of frequencies.

The beam charge density shown in Figs. 3 and Fig. 7
is solved from the Lagrangian continuity equation

ρ(x, t) =
∑

{t0:t=t̂(x,t0)}

1

û
∣

∣

∣

∂t̂
∂t0

∣

∣

∣

(B9)

where the sum accounts for all fluid elements t0 arriv-
ing at (x, t). Equation (B9) was also used in deriving
Eq. (B2).
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