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Abstract

The generalized Zakharov system couples a dispersive field E (scalar or vecto-

rial) and J nondispersive fields {nj}Jj=1 with a propagating speed of 1/εj . In this

paper, we extend our one-dimensional time-splitting spectral method (TSSP) for the

generalized Zakharov system into higher dimension. A main new idea is to refor-

mulate the multidimensional wave equations for the nondispersive fields into a first

order system using a change of variable defined in the Fourier space. The proposed

scheme TSSP is unconditionally stable, second order in time and spectrally accurate

in space. Moreover, in the subsonic regime, it allows numerical capturing of the sub-

sonic limit without resolving the small parameters εj . Numerical examples confirm

these properties of this method.
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1 Introduction

This work is aimed at extending the one-dimensional time-splitting spectral method (TSSP),

developed in our previous work [17], for a more general form of the Zakharov system (ZS)

in higher dimension:

iEt − α∇× (∇× E) +∇(∇ · E) + λ|E|2E +
J∑

j=1

njE = 0, (1)

ε2
jnj,tt −∆nj + µj∆|E|2 = 0,∀j = 1, · · · ,J . (2)

In the ZS system, the complex, dispersive field E, either scalar or vectorial, is the vary-

ing envelope of a highly oscillatory electric field, and the real, nondispersive field nj is

the fluctuation of the plasma ion density of j-th species from its equilibrium state. The

parameters α, λ, ε and µj are all real numbers. The generalized ZS is a rather universal

model to govern the interaction between dispersive and nondispersive waves, not only in

plasma physics, but in many other research areas also, such as hydrodynamics [10] and

molecular chains [9].

During the past two decades, many numerical methods have been proposed to solve

this kind of systems. For example, Payne et al [20] designed a spectral method for a

1d Zakharov system. Glassey [12] presented an energy-preserving finite difference scheme

for the ZS in one dimension, and later proved its convergence in [13]. Chang et al [7, 8]

presented a conservative difference scheme for the generalized Zakharov system and proved

the convergence of their method.

Motivated by the time-splitting spectral method for the linear and nonlinear Schrödinger

equation (see for example [18]), which was shown to be particularly effective in the semi-

classical regime [1, 2], Bao et al [4] proposed a time-splitting spectral method to solve the

generalized one-dimensional Zakharov system. Their method was later extended to the

Zakharov system for multi-component plasma [3]. In the subsonic regime, where some

εj << 1, these methods require mesh size and time step to be the order of εj. This con-

straint was removed, for the first time, in our previous work in [17], where a different

time-splitting spectral method was developed allowing the numerical capturing of the sub-
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sonic limit with numerical mesh size and time step independent of εj. A main ingredient

of our method was to first formulate the second order wave equation for the nondispersive

field into a first order system, which is then discretized in time by the Crank-Nicolson

method, which, amazingly, outperforms the exact time integration in the subsonic regime.

In this paper, this idea is extended into higher space dimension. While we follow the

same methodology as in [17], one needs a change of variable that transform the second order

wave equations for nj into a first order system. We introduce this change of variable using

the square root of the negative Laplacian, which is defined in the Fourier space. This multi-

dimensional extension inherits all the properties of the one-dimensional scheme, as will be

demonstrated by extensive numerical experiments. In particular, in the subsonic regime

0 < ε << 1, the asymptotic analysis and numerical examples indicate that the scheme

converges uniformly with respect to ε for all the dispersive and nondispersive fields, for

any initial data, upon a suitable initial layer fix by an L-stable time discretization.

The organization of this paper is as follows. In section 2, we present the vectorial

Zakharov systems for multi-component plasma and give a first order formulation of the

second order wave equations for nondispersive waves. In section 3, we present our multi-

dimensional TSSP method, and show asymptotically that it captures the correct subsonic

limit numerically without resolving the small parameter εj. In section 4, we present some

numerical examples to verify the various properties and resolution capacity of the method.

The paper concludes in section 5.

2 Equivalent Form of the Generalized ZS

Problem (1)-(2) must be supplemented with the initial conditions, say

E(x, 0) = E0(x), nj(x, 0) = nj,0(x), nj,t(x, 0) = nj,1(x),∀j = 1, · · · ,J . (3)

From equation (2), we have

∫

Rd
nj,t(x, t)dx =

∫

Rd
nj,t(x, 0)dx =

∫

Rd
nj,1(x)dx, ∀ t, ∀j. (4)
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Without loss of generality, we can assume
∫

Rd
nj,1(x)dx = 0. (5)

Since if ∫

Rd
nj,1(x)dx = cj, (6)

with c some fixed constant, the new unknown functions Ẽ = e−
it2

2

∑J
j=1

cjE and ñj = nj−cjt

satisfy the same equations (1)-(2) as E and nj, while
∫

Rd
ñj,t(x, 0)dx =

∫

Rd
nj,1(x)dx− cj = 0.

With the assumption (5), (4) implies
∫

Rd
nj,t(x, t)dx = 0. (7)

Equation (7) leads to the feasibility of introducing a new unknown function

vj(x, t)
def
= (−∆)−1/2nj,t(x, t). (8)

(8) is defined in the Fourier space by

v̂j(k, t) = |k|n̂j,t(k, t) . (9)

Hereafter, for any function a defined in Rd, we denote â as its Fourier transform, i.e.

â(k) =
∫

Rd
x

a(x)e−ik·xdx. (10)

It is well-known that a can be recovered from â by the inverse Fourier transform

a(x) =
1

(2π)d

∫

Rd
k

â(k)eix·kdk. (11)

Now system (1)-(2) is equivalent to

iEt − α∇× (∇× E) +∇(∇ · E) + λ|E|2E +
J∑

j=1

njE = 0, (12)

nj,t = (−∆)1/2vj, (13)

ε2
jvj,t + (−∆)1/2(nj − µj|E|2) = 0, j = 1, · · · ,J , (14)

with initial data

E(x, 0) = E0(x), nj(x, 0) = nj,0(x), vj(x, 0) = vj,0(x)
def
= (−∆)−1/2nj,1(x). (15)
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Remark 1 For the continuous problem (1)-(2), the wave energy N =
∫
Rd |E|2dx and the

Hamiltonian

H =
∫

Rd



α|∇ × E|2 + |∇ · E|2 − λ

2
|E|4 +

J∑

j=1

1

2µj

|nj|2 +
J∑

j=1

ε2
j

2µj

|vj|2 −
J∑

j=1

nj|E|2


 dx

are conserved.

Remark 2 Thus far, we take the dispersive field E as a vectorial unknown function. When

α = 1, equation (1) can be rewritten as

iEt + ∆E + λ|E|2E +
J∑

j=1

njE = 0. (16)

If E has only one component, for example in three dimensions, E = (E, 0, 0), equation (16)

is reduced to a scalar one

iEt + ∆E + λ|E|2E +
J∑

j=1

njE = 0.

Then the wave energy is N =
∫
R3 |E|2dx and the Hamiltonian is

H =
∫

R3



|∇E|2 − λ

2
|E|4 +

J∑

j=1

1

2µj

|nj|2 +
J∑

j=1

ε2
j

2µj

|vj|2 −
J∑

j=1

nj|E|2


 dx.

3 Numerical Methods

We consider the problem (1)-(2) in a most general form. All the following steps can be

followed without any difficulty for some special forms of the generalized ZS, for example,

the dispersive field is scalar, or the space dimension is only one.

3.1 A time-splitting spectral method

As usual for such problems, we use the time splitting technique. Suppose ∆t is the time

step and tm = m∆t. Em(x), nm(x) and vm(x) are the respective approximate functions of

E(x, t), n(x, t) and v(x, t) at time t = tm. We first solve Schrödinger-type equation

iEt − α∇× (∇× E) +∇(∇ · E) = 0 (17)
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with initial data E(x, tm) = Em(x) in [tm, tm+1] to get E∗(x) = E(x, tm+1). Then we solve

iEt + λ|E|2E +
J∑

j=1

njE = 0, (18)

nj,t = (−∆)1/2vj, (19)

ε2
jvj,t + (−∆)1/2(nj − µj|E|2) = 0 (20)

with initial data

E(x, tm) = E∗, nj(x, tm) = nm
j (x), vj(x, tm) = vm

j (x)

again in [tm, tm+1] to obtain

Em+1(x) = E(x, tm+1), nm+1
j (x) = nj(x, tm+1), vm+1

j (x) = vj(x, tm+1).

Now using Fourier transform with respect to spatial variable on (17), we obtain

iÊt − [α|k|2I + (1− α)k⊗ k]Ê = 0 (21)

Here, ⊗ is the tensor product operator. Thus we have

Ê∗ = e−i∆t[α|k|2I+(1−α)k⊗k]Êm. (22)

A simple computation shows that

e−i∆t[α|k|2I+(1−α)k⊗k] =

(
I− k⊗ k

|k|2
)

e−i∆tα|k|2 +
k⊗ k

|k|2 e−i∆t|k|2

= e−i∆tα|k|2I +
k⊗ k

|k|2
(
e−i∆t|k|2 − e−i∆tα|k|2) . (23)

From equation (18), it is easy to prove

d

dt
|E|2 = 0, |E(x, t)|2 = |E(x, tm)|2 = |E∗(x)|2.

Thus problem (18)-(20) is equivalent to

iEt + λ|E∗|2E +
J∑

j=1

njE = 0, (24)

nj,t = (−∆)1/2vj, (25)

ε2
jvj,t + (−∆)1/2(nj − µj|E∗|2) = 0. (26)

6



The most remarkable gain thus far is that with time splitting technique, we decouple the

dispersive field E and nondispersive field nj. Let w = |E∗|2. We use Crank-Nicolson

method to discretize the time derivatives in (25)-(26). In Fourier space, we have

n̂m+1
j − n̂m

j

∆t
=
|k|
2

(v̂m+1
j + v̂m

j ), (27)

ε2
j

v̂m+1
j − v̂m

j

∆t
+
|k|
2

(n̂m+1
j + n̂m

j − 2µjŵ) = 0. (28)

(24) can be solved as

E(x, t) = eiλ(t−tm)|E∗(x)|2ei
∫ t

tm

∑J
j=1

nj(x,τ)dτ
E∗(x). (29)

After nj is solved, we can obtain Em+1(x) = E(x, tm+1) by approximating the integral in

(29) with second-order trapezoidal quadrature rule:

w1j =
4ε2

j − |k|2∆t2

4ε2
j + |k|2∆t2

, w2j =
4εj|k|∆t

4ε2
j + |k|2∆t2

, (30)

n̂m+1
j = w1jn̂

m
j + εjw2j v̂

m
j + (1−w1j)µjŵ, (31)

v̂m+1
j = w1j v̂

m
j −

w2j

εj

n̂m
j +

w2j

εj

µjŵ, ∀j = 1, · · · ,J , (32)

Em+1 = e
i∆t

[
λ|E∗|2+ 1

2

∑J
j=1

(nm
j +nm+1

j )

]
E∗. (33)

Remark 3 We have an alternative to solve problem (25)-(26), i.e. we solve it in Fourier

space analytically. That will lead to another numerical scheme, which can be used in many

situations. Since its performance in the subsonic regime is inferior to the Crank-Nicolson

method (27), (28) (see [17]), we do not elaborate on this scheme.

Up to now, we have only considered the approximation of time variable. To discretize

the spatial derivatives, typically we need to confine our problem on a bounded domain and

supplement some boundary conditions. Here we restrict to a cuboid domain with periodic

boundary conditions. For other kind boundary conditions, one can consider replacing the

Fourier method by a different approach such as the Chebeshev method [6].

Suppose Q = Πd
i=1[−Li, Li] is the cuboid. Let even number Mi be the number of grid

points in the i-th direction. Denote

X =
{(
· · · , 2Liji

Mi

, · · ·
) ∣∣∣∣1 ≤ i ≤ d,−Mi/2 ≤ ji < Mi/2

}
(34)
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as the set of all grid points, and

K =
{(
· · · , πji

Li

, · · ·
) ∣∣∣∣1 ≤ i ≤ d,−Mi/2 ≤ ji < Mi/2

}
(35)

as the set of all discrete wave numbers. We define the discrete Fourier transform as

â(k) =
∑

x∈X
a(x)e−ik·x, ∀k ∈ K. (36)

a(x) can be recovered by the inverse discrete Fourier transform

a(x) =
1

Πd
i=1Mi

∑

k∈K
â(k)eix·k, ∀x ∈ X . (37)

Notice that we have used symbolˆ to represent both the continuous and discrete Fourier

transforms. Now replacing the Fourier transforms with their discrete counterpart, and

using Strang splitting idea to have second order accuracy in time, we get the final version

of our time-splitting spectral method, which is referred to as TSSP:

w1j =
4ε2

j − |k|2∆t2

4ε2
j + |k|2∆t2

, w2j =
4εj|k|∆t

4ε2
j + |k|2∆t2

, (38)

Ê∗ = e−
i∆t
2

[α|k|2I+(1−α)k⊗k]Êm, w = |E∗|2, (39)

n̂m+1
j = w1jn̂

m
j + εjw2j v̂

m
j + (1−w1j)µjŵ, (40)

v̂m+1
j = w1j v̂

m
j −

w2j

εj

n̂m
j +

w2j

εj

µjŵ, ∀j = 1, · · · ,J , (41)

E∗∗ = e
i∆t

[
λ|E∗|2+ 1

2

∑J
j=1

(nm
j +nm+1

j )

]
E∗, (42)

Em+1 = e−
i∆t
2

[α|k|2I+(1−α)k⊗k]Ê∗∗, m = 0, 1, · · · (43)

TSSP is an unconditionally stable scheme and it conserves the discrete l2-norm of E. Be-

sides, it is easy to verify that this scheme is time reversible. Furthermore, if a constant is

added to the initial value of the nondispersive field nj, all approximations nm
j are shifted

by the same value. This leads to the occurrence of a phase factor in the approximations

Em of the dispersive field and leaves |Em|2 unchanged, which means that TSSP is time

transverse invariant.

Remark 4 Our numerical scheme can be easily generalized to some modified forms of Za-

kharov system, for example, one can add a damped term in the Schrödinger-type equation
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(see [4]) and a dissipative term in the wave equation (see [14])

iEt − α∇× (∇× E) +∇(∇ · E) + λ|E|2E +
J∑

j=1

njE + iγE = 0,

ε2
jnj,tt −∆nj + µj∆|E|2 = νj∆nj,t,∀j = 1, · · · ,J .

3.2 The subsonic regime

Formally, when εJ → 0+, the multi-component vectorial Zakharov system reduces to the

same-type but one-component-less system

iEt − α∇× (∇× E) +∇(∇ · E) + (λ + µJ )|E|2E +
J−1∑

j=1

njE + βJE = 0, (44)

ε2
jnj,tt −∆nj + µj∆|E|2 = 0,∀j = 1, · · · ,J − 1, (45)

nJ = µJ |E|2 + βJ , (46)

where

βJ =
1

mes(D)

∫

D
(nJ (x, t)− µJ |E(x, t)|2)dx =

1

mes(D)

∫

D
(nJ ,0(x)− µJ |E0(x)|2)dx. (47)

Here, D is the definition domain. The last equality comes from formula (7). Notice that

for the problem defined on the whole space, one has βJ = 0. This convergence is strong in

E and {nj}J−1
j=1 , but generally only weak in nJ . To obtain a strong convergence, one needs

to impose the compatibility condition

nJ ,0(x)− µJ |E0(x)|2 − βJ = O(εJ ) (48)

for the initial data [21]. If this compatibility condition is not met by the initial data, nJ

is oscillatory in time (but not in space). If this oscillation is not resolved, generally, only

weak convergence can be anticipated [19, 23].

As was first done in [17], we now analyze the behavior of TSSP in the subsonic regime.

Without loss of generality, assume εj(1 ≤ j ≤ J − 1) fixed, and εJ → 0. From formula

(38), one sees that

w1J =





1, if k = 0,

−1, otherwise.
w2J = 0.
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Thus,

nm+1
J + nm

J = 2µ|E∗|2 + 2β. (49)

Applying this to (42) in TTSP, one sees that TSSP collapses to the TSSP for the reduced

system (44), (45). Thus we obtained the numerical convergence for E, n1, · · · , nJ−1 for any

initial data. Namely, one can capture the correct solution of E, n1, · · · , nJ−1 with ∆x, ∆t

fixed, and εJ → 0!

However, the convergence of nJ behaves differently. It has to do with the compatibility

condition (48). If n0
J − µ|E0|2 − β = O(1), since in each step,

Em − E∗ = O(∆t), Em+1 − E∗ = O(∆t),

formula (49) implies

nm+1
J − µ|Em+1|2 − β = O(1) .

Thus, if the initial data does not satisfy the compatibility condition (48), such an incom-

patibility will be preserved at all later time, preventing n2 from converging to µ|E|2 + β.

Since the error of nJ is mainly caused by the initial incompatibility, as was pointed

out in [17], an L-stable ODE solver [11] can remove this error. Such phenomenon (initial

layer discrepancy) has been studied for hyperbolic systems with stiff relaxation terms,

see [5, 16], where L-stable ODE solvers were used to eliminate the error introduced by

under-resolution of the initial layer. For the ZS problem, one could either replace the

Crank-Nicolson (which is not L-stable) method by a second order L-stable ODE solver, or

more simply, use an L-stable scheme (such as the backward Euler method) for the first

time step. Here we take the second approach. Since we only use the first-order scheme for

one time step, the overall accuracy in time remains second order. Below for completeness

we list the full scheme (called TSSP-m)

w∗
1j =

ε2
j

ε2
j + |k|2∆t2

, w∗
2j =

εj|k|∆t

ε2
j + |k|2∆t2

,

Ê∗ = e−i∆t[α|k|2I+(1−α)k⊗k]Ê0, w = |E∗|2,
n̂1

j = w∗
1jn̂

0
j + εjw

∗
2j v̂

0
j + (1−w∗

1j)µjŵ,
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v̂1
j = w∗

1j v̂
0
j −

w∗
2j

εj

n̂0
j +

w∗
2j

εj

µjŵ, ∀j = 1, · · · ,J ,

E1 = ei∆t(λ|E∗|2+
∑J

j=1
n1

j )E∗,

w1j =
4ε2

j − |k|2∆t2

4ε2
j + |k|2∆t2

, w2j =
4εj|k|∆t

4ε2
j + |k|2∆t2

,

Ê∗ = e−
i∆t
2

[α|k|2I+(1−α)k⊗k]Êm, w = |E∗|2,
n̂m+1

j = w1jn̂
m
j + εjw2j v̂

m
j + (1−w1j)µjŵ,

v̂m+1
j = w1j v̂

m
j −

w2j

εj

n̂m
j +

w2j

εj

µjŵ, ∀j = 1, · · · ,J ,

E∗∗ = e
i∆t

[
λ|E∗|2+ 1

2

∑J
j=1

(nm
j +nm+1

j )

]
E∗,

Em+1 = e−
i∆t
2

[α|k|2I+(1−α)k⊗k]Ê∗∗, m = 1, · · ·

4 Numerical examples

In this section, we use numerical examples to verify various properties of TSSP.

Example 1: Accuracy of TSSP. We consider

iEt + ∆E + nE = 0, (50)

ntt −∆n + ∆|E|2 = 0, (51)

E0(x, y) = cos2 πx

8
cos2 πy

8
, n0(x, y) = 0, n1(x, y) = 0. (52)

We confine this problem on a periodical cell Q = [−4, 4] × [−4, 4]. Table 1 and 2 list the

relative errors. The “exact” solution is taken to be the numerical solution when sufficiently

small spatial step h = 1/32 and time step ∆t = 0.001 are used. From these two tables, we

observe that TSSP is really second order in time and spectrally accurate in space.

Example 2: Convergence rate to the subsonic limit of the vectorial Zakharov system.

The test problem is

iEt + Exx + λ|E|2E + (n1 + n2)E = 0, (53)

n1,tt − n1,xx + |E|2xx = 0, (54)

ε2n2,tt − n2,xx + µ|E|2xx = 0, (55)
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Time Step ∆t 1/10 1/20 1/40 1/80
||E−Eh,∆t||L2(Q)

||E||L2(Q)
3.957E−4 9.972E−5 2.491E−5 6.197E−6

||n−nh,∆t||L2(Q)

||n||L2(Q)
2.656E−3 6.644E−4 1.659E−4 4.129E−5

|||E|2−|Eh,∆t|2||L1(Q)

|||E|2||L1(Q)
5.227E−4 1.309E−4 3.269E−5 8.134E−6

Table 1: TSSP errors at time t = 1 with h = 1/32.

Spatial Step h 1 1/2 1/4 1/8
||E−Eh,∆t||L2(Q)

||E||L2(Q)
1.104E−4 4.168E−9 1.113E−13 8.372E−14

||n−nh,∆t||L2(Q)

||n||L2(Q)
2.448E−4 3.307E−8 8.219E−14 4.914E−14

|||E|2−|Eh,∆t|2||L1(Q)

|||E|2||L1(Q)
8.759E−5 5.354E−9 1.317E−13 8.751E−14

Table 2: TSSP errors at time t = 1 with ∆t = 0.001.

E0(x) = cos2 πx

8
, n1,0 = n1,1 = n2,1 = 0, n2,0 = ν|E0|2. (56)

When ε → 0, this system converges to (in different sense for different component)

iEt + Exx + (λ + µ)|E|2E + n1E + βE = 0, (57)

n1,tt − n1,xx + |E|2xx = 0, (58)

E0(x) = cos2 πx

8
, n1,0 = n1,1 = 0, (59)

n2 = µ|E|2 + β. (60)

Here, β = 3(ν−µ)
8

is determined by (47). We let λ = −1 and µ = 1. Table 3 lists the errors

between the original problem (53)-(56) and its reduction (57)-(59). Since ν = µ, the initial

compatibility condition is fulfilled, all components of the solution converge in a strong sense

(more precisely, in C([0, 1], L2(Q)) for E, n1, n2 and in C([0, 1], L1(Q)) for |E|2). Besides,

our numerical results show that the convergences are second order, i.e. O(ε2), which has

also been observed through the numerical example 2 in [3].

The story is very different when the initial compatibility condition is violated. See

Table 4 when ν = 0 6= µ. At a first glance, one might imprudently draw a conclusion that

problem (53)-(56) still reduces to problem (57)-(59) in the same rate, except n2. But this
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is not true. Firstly, the statistical results are highly sensitive with ε. A small change of ε

results in a much different numerical results. See last column in Table 4 (Notice that n0

converges truly in a second order rate from our numerical experience). To make this point

more clear, we list the numerical results for a different set of ε in Table 5.

Why this happens is easy to explain. In fact, when the initial compatibility condition is

violated, n2 cannot be expected to converge in a strong sense, since it oscillates in time (see

Figure 1). It only converges in weak−∗ in L∞(R+, L2(Q)), i.e. for any ψ ∈ L1(R+, L2(Q))

< nε
2 − n0

2, ψ >L1(R+,L2(Q))→ 0, when ε → 0.

Besides, though E still strongly converges to its limitation, this holds in L2
loc(R

+, L2(Q)),

not in C([0, 1], L2(Q)).

Figure 6 shows the results for different statistics. We see that E and |E|2 converge with

first order respectively in L2
loc(R

+, L2(Q)) and L1
loc(R

+, L2(Q)), n2 converges with second

order in weak−∗L∞(R+, L2(Q)), but n1 converges with second order in a much stronger

sense, C([0, 1], L2(Q)).

ε 0.05 0.025 0.0125 0.00625
||E0−Eε||L2(Q)

||E0||L2(Q)
4.002E−4 9.973E−5 2.490E−5 6.223E−6

||n0
1−nε

1||L2(Q)

||n0
1||L2(Q)

1.865E−4 4.788E−5 1.205E−5 3.018E−6

||n0
2−nε

2||L2(Q)

||n0
2||L2(Q)

1.564E−3 1.699E−4 4.238E−5 1.059E−5

|||E0|2−|Eε|2||L1(Q)

|||E0|2||L1(Q)
1.843E−4 4.683E−5 1.166E−5 2.912E−6

Table 3: Errors at time t = 1 when compatibility condition ν = µ is satisfied. (E0, n0
1, n

0
2)

denotes the solution of the reduction problem (57)-(59), while (Eε, nε
1, n

ε
2) is denoted as

the solution of (53)-(56). All the exact solutions are obtained by TSSP with sufficiently

small spatial step h(= 1
8
) and sufficiently small time step ∆t(= 0.00001).

Example 3: Behavior of TSSP in the subsonic regime. The test problem is

iEt + ∆E + λ|E|2E + (n1 + n2)E = 0, (61)

n1,tt −∆n1 + ∆|E|2 = 0, (62)
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ε 0.05 0.025 0.0125 0.00625 0.006
||E0−Eε||L2(Q)

||E0||L2(Q)
2.239E−3 4.946E−4 1.234E−4 3.083E−5 2.731E−3

||n0
1−nε

1||L2(Q)

||n0
1||L2(Q)

5.618E−3 1.418E−3 3.528E−4 8.809E−5 8.117E−5

||n0
2−nε

2||L2(Q)

||n0
2||L2(Q)

1.163 1.162 1.162 1.162 5.823E−1

|||E0|2−|Eε|2||L1(Q)

|||E0|2||L1(Q)
1.425E−3 7.063E−4 1.760E−4 4.396E−5 1.989E−5

Table 4: Same setting as that in Table 3 except ν = 0.

ε 1
10
√

5
1
50

1
50
√

5
1

250

||E0−Eε||L2(Q)

||E0||L2(Q)
2.262E−2 9.697E−3 7.862E−4 1.961E−3

||n0
1−nε

1||L2(Q)

||n0
1||L2(Q)

4.559E−3 9.030E−4 1.805E−4 3.607E−5

||n0
2−nε

2||L2(Q)

||n0
2||L2(Q)

4.027E−1 2.821E−1 1.147 2.819E−1

|||E0|2−|Eε|2||L1(Q)

|||E0|2||L1(Q)
7.869E−4 9.832E−5 8.888E−5 4.028E−6

Table 5: Same setting as that in Table 3 except ν = 0.

ε 0.05 0.025 0.0125 0.00625
||E0−Eε||L2([0,1]×Q)

||E0||L2([0,1]×Q)
1.742E−2 8.704E−3 4.341E−3 2.169E−3

||n0
1−nε

1||L2(Q)

||n0
1||L2(Q)

∣∣∣∣
t=1

5.618E−3 1.418E−3 3.528E−4 8.809E−5

< n0
2 − nε

2, ψ >L1([0,1],L2(Q)) −4.127E−4 −1.020E−4 −2.548E−5 −6.337E−6

|||E0|2−|Eε|2||L2([0,1]×Q)

|||E0|2||L2([0,1]×Q)
4.399E−2 2.197E−2 1.097E−2 5.482E−3

Table 6: Same setting as that in Table 3 except ν = 0. We let ψ(x, t) = esin πx
4 .
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ε2n2,tt −∆n2 + µ∆|E|2 = 0, (63)

E0(x, y) = cos2 πx

8
cos2 πy

8
, n1,0 = n1,1 = n2,1 = 0, n2,0 = ν|E0|2. (64)

When ε → 0, the solution converges to the solution of

iEt + ∆E + (λ + µ)|E|2E + n1E + βE = 0, (65)

n1,tt −∆n1 + ∆|E|2 = 0, (66)

E0(x, y) = cos2 πx

8
cos2 πy

8
, n1,0 = n1,1 = 0, (67)

n2 = µ|E|2 + β. (68)

where β = 9(ν−µ)
64

is determined by (47). We use this problem to test the numerical

performance of TSSP in the whole regime 0 < ε < 1. Typically, we choose three values in

different scales, ε1 = 1, ε2 = 10−2 and ε2 = 10−4. The “exact” solutions (Eε1 , nε1
1 , nε1

2 ) and

(Eε2 , nε2
1 , nε2

2 ) are approximated by TSSP with sufficiently small spatial step and sufficiently

small time step. Since ε3 is too small and difficult to resolve numerically in our computing

capacity, we replace (Eε3 , nε3
1 , nε3

2 ) by (E0, n0
1, n

0
2) when ν = µ, and nε3

1 = n0
1 when ν = 0,

due to their strong second order convergence when ε → 0.

Table 7, Table 8 and Table 9 list the errors for different ε when ν = µ. The results

show that the solution converges, as the time step goes to zero, uniformly in ε, for all

components.

Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||Eε−Eε

∆t||L2(Q)

||Eε||L2(Q)
6.202E−5 1.551E−5 3.877E−6 9.688E−7 2.419E−7

||nε
1−nε

1∆t||L2(Q)

||nε
1||L2(Q)

4.286E−4 1.072E−4 2.679E−5 6.696E−6 1.672E−6

||nε
2−nε

2∆t||L2(Q)

||nε
2||L2(Q)

2.085E−5 5.202E−6 1.300E−6 3.248E−7 8.110E−8

|||Eε|2−|Eε
∆t|2||L1(Q)

|||Eε|2||L1(Q)
9.481E−5 2.370E−5 5.926E−6 1.481E−6 3.698E−7

Table 7: ε = 1. ν = µ.

Tables 10-13 list the errors for ε1 and ε2 when ν = 0 6= µ. We see that generally,

we cannot get a convergence for n2 if the time scale is not small enough compared to ε.

However, we still get good approximation of E and n1.

15



Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||Eε−Eε

∆t||L2(Q)

||Eε||L2(Q)
6.389E−5 1.599E−5 4.022E−6 1.015E−6 2.535E−7

||nε
1−nε

1∆t||L2(Q)

||nε
1||L2(Q)

4.254E−4 1.063E−4 2.659E−5 6.646E−6 1.660E−6

||nε
2−nε

2∆t||L2(Q)

||nε
2||L2(Q)

2.029E−4 3.559E−5 9.186E−5 2.458E−5 1.292E−5

|||Eε|2−|Eε
∆t|2||L1(Q)

|||Eε|2||L1(Q)
8.382E−5 2.096E−5 5.245E−6 1.311E−6 3.261E−7

Table 8: ε = 10−2. ν = µ.

Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||Eε−Eε

∆t||L2(Q)

||Eε||L2(Q)
6.385E−5 1.597E−5 3.991E−6 9.971E−7 2.487E−7

||nε
1−nε

1∆t||L2(Q)

||nε
1||L2(Q)

4.252E−4 1.064E−4 2.660E−5 6.649E−6 1.662E−6

||nε
2−nε

2∆t||L2(Q)

||nε
2||L2(Q)

1.604E−4 3.789E−5 8.749E−6 2.065E−6 5.724E−7

|||Eε|2−|Eε
∆t|2||L1(Q)

|||Eε|2||L1(Q)
8.380E−5 2.095E−5 5.238E−6 1.308E−6 3.259E−7

Table 9: ε = 10−4. ν = µ.

Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||Eε−Eε

∆t||L2(Q)

||Eε||L2(Q)
6.476E−5 1.618E−5 4.045E−6 1.011E−6 2.524E−7

||nε
1−nε

1∆t||L2(Q)

||nε
1||L2(Q)

3.355E−4 8.388E−5 2.097E−5 5.241E−6 1.309E−6

||nε
2−nε

2∆t||L2(Q)

||nε
2||L2(Q)

3.355E−4 8.388E−5 2.097E−5 5.241E−6 1.309E−6

|||Eε|2−|Eε
∆t|2||L1(Q)

|||Eε|2||L1(Q)
8.171E−5 2.041E−5 5.102E−6 1.275E−6 3.184E−7

Table 10: ε = 1. ν = 0.

Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||Eε−Eε

∆t||L2(Q)

||Eε||L2(Q)
2.172E−3 1.060E−3 1.215E−3 4.728E−3 1.241E−3

||nε
1−nε

1∆t||L2(Q)

||nε
1||L2(Q)

4.258E−4 1.064E−4 2.670E−5 6.667E−6 1.647E−6

||nε
2−nε

2∆t||L2(Q)

||nε
2||L2(Q)

1.073 1.273E−1 9.988E−1 3.207E−1 3.206E−1

|||Eε|2−|Eε
∆t|2||L1(Q)

|||Eε|2||L1(Q)
1.760E−4 1.973E−5 9.752E−5 1.848E−5 3.822E−5

Table 11: ε = 10−2. ν = 0.

16



Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||E0−Eε

∆t||L2(Q)

||E0||L2(Q)
6.345E−5 4.535E−5 3.089E−5 4.085E−5 8.023E−6

||n0
1−nε

1∆t||L2(Q)

||n0
1||L2(Q)

4.255E−4 1.064E−4 2.661E−5 6.662E−6 1.675E−6

||n0
2−nε

2∆t||L2(Q)

||n0
2||L2(Q)

1.161 5.604E−1 5.905E−1 3.129E−1 9.178E−1

|||E0|2−|Eε
∆t|2||L1(Q)

|||E0|2||L1(Q)
8.379E−5 2.096E−5 5.236E−6 1.307E−6 3.305E−7

Table 12: ε = 10−4. ν = 0.

Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||E0−Eε

∆t||L2(Q)

||E0||L2(Q)
6.385E−5 1.596E−5 3.990E−6 9.963E−7 2.478E−7

||n0
1−nε

1∆t||L2(Q)

||n0
1||L2(Q)

4.254E−4 1.064E−4 2.660E−5 6.649E−6 1.663E−6

||n0
2−nε

2∆t||L2(Q)

||n0
2||L2(Q)

1.209 1.209 1.209 1.209 1.209

|||E0|2−|Eε
∆t|2||L1(Q)

|||E0|2||L1(Q)
8.380E−5 2.095E−5 5.237E−6 1.308E−6 3.252E−7

Table 13: ε = 10−8. ν = 0.

Table 14 and 15 list the errors when TSSP-m is used. We can see a second order con-

vergence in the subsonic regime 0 < ε << 1 for all quantities, even the initial compatibility

condition is not met.

These numerical experiments confirm our asymptotic analysis in the subsonic regime

carried out in section 3.2.

Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||E0−Eε||L2(Q)

||E0||L2(Q)
3.637E−4 9.088E−5 2.272E−5 5.716E−6 2.752E−6

||n0
1−nε

1||L2(Q)

||n0
1||L2(Q)

6.180E−4 1.570E−4 3.957E−5 9.931E−6 2.485E−6

||n0
2−nε

2||L2(Q)

||n0
2||L2(Q)

8.030E−4 6.253E−3 1.113E−2 2.623E−2 2.516E−2

|||E0|2−|Eε|2||L1(Q)

|||E0|2||L1(Q)
3.662E−4 9.148E−5 2.286E−5 5.712E−6 1.427E−6

Table 14: ε = 10−4. TSSP-m is used.

Example 4: Blow-up problem and Conservation of Hamiltonian. The test problem is
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Time Step ∆t 1/25 1/50 1/100 1/200 1/400
||E0−Eε||L2(Q)

||E0||L2(Q)
3.638E−4 9.080E−5 2.268E−5 5.666E−6 1.414E−6

||n0
1−nε

1||L2(Q)

||n0
1||L2(Q)

6.180E−4 1.570E−4 3.957E−5 9.931E−6 2.485E−6

||n0
2−nε

2||L2(Q)

||n0
2||L2(Q)

2.174E−4 1.074E−4 2.683E−5 6.706E−6 1.707E−6

|||E0|2−|Eε|2||L1(Q)

|||E0|2||L1(Q)
3.662E−4 9.148E−5 2.286E−5 5.711E−6 1.426E−6

Table 15: ε = 10−8. TSSP-m is used.

a two-dimensional scalar problem with one ion species

iEt + ∆E + nE = 0, (69)

ntt −∆n + µ∆|E|2 = 0. (70)

The initial conditions are set to be

E0(x, y) =
1√
π

e−
x2+y2

2 , n0(x, y) = ν|E0(x, y)|2, n1(x, y) = 0. (71)

Theoretically, if H = 1 + ν2/µ−2ν
4π

< 0, i.e. 2ν − ν2/µ > 4π, the solution of this system will

blow up at some time. When µ = 20 and ν = 20, H ≈ −0.5915 < 0. Figure 2 shows the

numerical solutions at different time points. One can see that a singularity indeed starts to

form as time evolves. Table 4 lists the numerical Hamiltonians for different ν at different

time points when µ = 20. One can observe that TSSP conserves the Hamiltonian very

well (One might notice that at t = 1.0 when ν = 20, the result differs a little much. This

can be taken as a numerical artifact since the solution becomes much singular at this time,

see Figure 2). We note that this example has been utilized in [3] to demonstrate their

numerical behaviour.

5 Conclusion

A time-splitting spectral scheme TSSP has been proposed for generalized Zakharov system

in multi-dimensions. This scheme is unconditionally stable, second order in time and

spectral order in space. Asymptotic analysis shows that the method is capable of capturing
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t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

ν = 5 4.1831 4.1831 4.1831 4.1831 4.1831

ν = 10 1.0000 1.0000 1.0000 1.0000 1.0000

ν = 20 −0.5915 −0.5916 −0.5916 −0.5917 −0.5986

Table 16: Hamiltonians at different time points under µ = 20.

the correct solutions in the subsonic regimes without numerically resolving the subsonic

parameters. A spread of numerical examples demonstrate the stated properties of TSSP.

References

[1] W. Bao, Shi Jin and P.A. Markowich, On time-splitting spectral approximations for

the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175, 487:524,

2002.

[2] W. Bao, Shi Jin and P.A. Markowich, Numerical Study of Time-Splitting Spectral Dis-

cretizations of Nonlinear Schrödinger Equations in the Semi-classical Regimes, SIAM

J. Sci. Comp. 25, 27:64, 2003 (electronic).

[3] W. Bao, F.F. Sun, Numerical simulation of the vector Zakharov system for multi-

component plasma, SIAM J. Sci. Comp., to appear.

[4] W. Bao, F.F. Sun, G.W. Wei, Numerical methods for the generalized Zakharov system,

J. Comp. Phys. 190, 201-228, 2003.

[5] R. Caflisch, S. Jin and G. Russo, Uniformly accurate schemes for hyperbolic systems

with relaxations, SIAM J. Num. Anal. 34, 246-281, 1997.

[6] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid

Dynamics, Springer-Verlag, New York, 1988.

[7] Q. Chang, H. Jiang, A conservative difference scheme for the Zakharov equations, J.

Comput. Phys., 113(2),309-319, 1994.

19



[8] Q. Chang, B. Guo and H. Jiang, Finite difference method for generalized Zakharov

equations, Math. Comp., 64, 537-553,1995.

[9] A.S. Davydov, Solitons in molecular systems, Physica Scripta, 20, 387-394, 1979.

[10] L.M. Degtyarev, V.G. Nakhan’kov and L.I. Rudakov, Dynamics of the formation and

interaction of Langmuir solitons and strong turbulence, Sov. Phys. JETP 40, 264,

1974.

[11] C.W. Gear, Numerical Initial value problems in ordinary differential equations,

Prentice-Hall, 1971.

[12] R. Glassey, Approximate solutions to the Zakharov equations via finite differences, J.

Comput. Phys., 100, 377,1992.

[13] R. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations

in one space dimension, Math. Comp., 58, 83, 1992.

[14] H. Hadouaj, B.A. Malomed, G.A. Maugin, Dynamics of a soliton in a generalized

Zakharov system with dissipation, Phys. Review A, 44(6), 3925-3931, 1991.

[15] H. Hadouaj, B.A. Malomed, G.A. Maugin, Soliton-soliton collisions in a generalized

Zakharov system, Phys. Review A, 44(6), 3932-3940, 1991.

[16] S. Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation

terms , J. Comp. Phys., 122, 51-67, 1995.

[17] S. Jin, P.A. Markowich, C.X. Zheng, Numerical simulation of a generalized Zakharov

system, to appear in J. Comput. Physics.

[18] D. Pathria and J.L. Morris, Pseudo-spectral solution of nonlinear Schrödinger equa-

tion, J. Comput. Phys., 87, 108-125, 1980.

[19] T. Ozawa and Y. Tsutsumi, The nonlinear Schrödinger limit and the initial layer of

the Zakharov equations, Diff. Int. Eqn. 5, 721-745, 1992.

20



[20] G.L. Payne, D.R. Nicholson, R.M. Downie, Numerical solution of the Zakharov system,

J. Comput. Phys., 50, 482-498, 1983.

[21] S. Schochet and M. Weinstein, The nonlinear Schrödinger limit of the Zakharov equa-

tions governing Langmuir turbulence, Comm. Math. Phys. 106, 569-580, 1986.

[22] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer.

Anal., 5(3), 506-517,1968.

[23] C. Sulem, P.L. Sulem, The nonlinear schrödinger equation, Springer-Verlag, New York,

1999.

Figure 1: Solution oscillatory in time. ε = 0.0125.
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Figure 2: Plots of energy density |E|2 and ion density fluctuation |u|2 in Example 4.

µ = ν = 20. 22


