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FAST ALGORITHMS FOR SIMULATION OF NEURONAL DYNAMICS
BASED ON THE BILINEAR DENDRITIC INTEGRATION RULE∗
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Abstract. We aim to develop fast algorithms for neuronal simulations to capture the dynamics of
a neuron with realistic dendritic morphology. To achieve this, we perform the asymptotic analysis
on a cable neuron model with branched dendrites. Using the second-order asymptotic solutions, we
derive a bilinear dendritic integration rule to characterize the voltage response at the soma when
receiving multiple spatiotemporal synaptic inputs from dendrites, with a dependency on the voltage
state of the neuron at input arrival times. Based on the derived bilinear rule, we finally propose
two fast algorithms and demonstrate numerically that, in comparison with solving the original cable
neuron model numerically, the algorithms can reduce the computational cost of simulation for neuronal
dynamics enormously while retaining relatively high accuracy in terms of both sub-threshold dynamics
and firing statistics.
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1. Introduction
Dendrites play an important role in the information processing of a neuron. A

neuron in the brain may receive thousands of excitatory (E ) and inhibitory (I ) synaptic
inputs from its dendrites to change the membrane potential at the soma correspondingly
under certain rules. This process is known as dendritic integration [20,21]. The dendritic
integration of synaptic inputs has been found in experiment to support rich functions of
the brain. For instance, the dendritic integration enhances motion detection [10], shapes
spiking activity [7,25], and promotes optimal information coding [5] in sensory systems.
In addition, the dendritic integration fine tunes brain rhythms, such as modulating the
frequency [1] and improving the robustness [31] of gamma oscillations. The dendritic
integration also contributes to cognitive computing in the brain [11]. Therefore, to
understand the principles of information processing in an individual neuron, as well as
in the brain, it is crucial to investigate the computational rules that govern the dendritic
integration of synaptic inputs.

In addition to myriads of experiments [26, 27], the rule of dendritic integration
is also under active theoretical investigations [14, 17–19, 23]. For instance, it has been
shown both in theory and in simulation that the nonlinear integration of synaptic inputs
mainly takes place within dendritic branches locally, yielding the computation of logical
operations [17]. In addition, a two-layer neuron model and its generalization have been
proposed that the synaptic inputs are first integrated nonlinearly within each branch,
followed by a linear integration of the branch outputs at the soma [14, 23, 24]. These
qualitative models are supported by experiments [2, 15]. However, it remains unclear
how to quantitatively capture the dynamics of the membrane potential response at the
soma when receiving multiple spatiotemporal synaptic inputs.
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An arithmetic rule has been observed in recent experiments that quantitatively
characterizes the integration of a pair of E and I inputs [12,18], which is later referred
to as the bilinear dendritic integration rule. The mechanism underlying the bilinear
rule has been revealed from the asymptotic analysis of an idealized cable neuron model
(a neuron without branched dendrites) in our previous works [18, 19]. Based on the
asymptotic analysis, the bilinear rule has been further extended to characterize the
integration of multiple synaptic inputs of mixed types, and the rule has been verified
in the numerical simulations of a biologically realistic neuron model [18] in the sub-
threshold dynamical regime (the voltage response is far below the firing threshold).
Here, we generalize the previous work by further considering the bilinear rule up to the
near-threshold regime of a biologically realistic neuron. By accounting for the fact that
the membrane potential of a neuron may strongly fluctuate [30] and even stay at a high
voltage level deviating from the resting state [9], we need to consider the dependency of
the dendritic integration rule on the state of neuron’s membrane potential, whereas the
bilinear rule established previously [18] is only derived near a neuron’s resting state.

With these generalizations, we then develop fast algorithms for simulation of neu-
ronal dynamics based on an analytically-derived dendritic integration rule from a
branched passive cable model with an arbitrary initial state. We evaluate the per-
formance of the algorithms using morphologically realistic neuron simulations. The
article is organized as follows. In Section 2, we introduce the mathematical description
of a passive neuron with an isotropic soma and branched dendrites. In Section 3, we
derive the dendritic integration rule from the asymptotic analysis of the cable neuron
model. In Section 4, we introduce two fast algorithms for simulation of neuronal dy-
namics based on the derived dendritic integration rule, and assess its computational
cost and numerical accuracy using a passive cable model of integrate-and-fire type with
realistic dendritic morphology. In Section 5, we discuss the source of numerical error
and the performance of the algorithms for a neuron with semi-active dendrites.

2. Cable neuron model
Here we consider a passive neuron with an isotropic soma and branched dendrites.

The geometry of the soma is modeled as a sphere and that of each dendritic branch
is modeled as a cylinder. The topological structure of an example neuron is shown in
Figure 2.1A. For the ease of mathematical description, we label dendritic branches with
numbers and use local spatial coordinates at each branch. To be specific, we define the
coordinate ~x= (i,x) to describe the spatial location x on the ith branch, where x∈ [0,li]
and li is the length of the ith branch. We then express the membrane potential of the
neuron at location ~x and time t as

v(~x,t) =
∑
i

vi(x,t)χi(~x),

where χi(~x) is the characteristic function that equals one if and only if ~x is on the ith
branch, and vi(x,t) describes the neuronal membrane potential at location x on the ith
branch. Note that we use the vector coordinate ~x to describe locations on the entire
neuron, and we use the scalar coordinate x to describe locations on a specific branch
when the branch number, i, is given.

We focus on a small segment [x,x+∆x] on the ith branch with diameter di. It
has been shown in experiments that the membrane of the neuron can be viewed as
a resistor-capacitor circuit with a constant capacitance and leak conductance density
[8, 28]. Therefore, based on the law of current conservation within the segment, the
capacitance current of the membrane shall balance with the leak ionic current, the
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synaptic current across the membrane, and the axial current along the dendrite, i.e.,

cπdi∆x
∂vi
∂t

=−gLπdi∆xvi+Isyn
i +Ia

i (x)−Ia
i (x+∆x), (2.1)

where vi is the membrane potential on the ith dendritic branch relative to the resting
potential, c is the membrane capacitance density, and gL is the leak conductance density.
Here, Isyn

i is the synaptic current on the ith branch

Isyn
i =−

∑
q=E,I

πdi

∫ x+∆x

x

Gq ·(vi−εq)dx, (2.2)

where GE and GI are the excitatory and inhibitory synaptic conductance densities and
εE and εI are their reversal potentials, respectively. When the neuron receives multiple
excitatory and inhibitory inputs, Gq is the summation of all individual conductance
transients, i.e., Gq =

∑
jGqj for q=E,I. For the jth synaptic input of type q received

at time t= tqj and at site x=xqj , we have Gqj =fqjgqjδ(x−xqj ), where fqj is the input
strength of synaptic conductances. The normalized conductance gqj is often modeled
as

gqj (t;tqj ) =Nq(e
−
t−tqj
σqd −e−

t−tqj
σqr )Θ(t− tqj ) (2.3)

with the peak value normalized to unity by the normalization factorNq = [(
σqr
σqd

)
σqr

σqd−σqr −

(
σqr
σqd

)
σqd

σqd−σqr ]−1 and with σqr and σqd as the rise and decay time constants [16]. Here

Θ(t) is a Heaviside function. The axial current Ia
i (x) can be derived based on the Ohm’s

law,

Ia
i (x) =−πd

2
i

4ri

∂vi
∂x

, (2.4)

where ri is the axial resistivity on the ith branch. Taking the limit ∆x→0, Equation
(2.1) becomes the cable equation describing the spatiotemporal dynamics of the voltage
on the ith dendritic branch in response to multiple synaptic inputs,

c
∂vi
∂t

=−gLvi−GE(vi−εE)−GI(vi−εI)+
di
4ri

∂2vi
∂x2

, (2.5)

with the conductance Gq(x,t;{xqj ,tqj}) =
nq∑
j=1

fqjgqj (t;tqj )δ(x−xqj ) and nq is the total

number of the synaptic inputs of type q.

We next introduce the boundary conditions of the cable model (Equation (2.5)).
For the dendritic branch directly connecting to the soma, e.g., the 1st branch in Figure
2.1A, by applying the law of current conservation at the soma, we have

cS
∂vs

∂t
=−gLSvs+Idend,

where S is the somatic membrane area, vs is the somatic membrane potential. The
dendritic current flowing to the soma, Idend, takes the form of Equation (2.4) at x= 0.
Because the voltage is continuous at the connection point, i.e., vs(t) =v1(0,t), we arrive
at the boundary condition on this branch at x= 0,

c
∂v1(0,t)

∂t
=−gLv1(0,t)+

πd2
1

4Sr1

∂v1

∂x

∣∣∣∣
x=0

. (2.6)
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Fig. 2.1. Example cable neuron models and the asymptotic solutions: (A) Diagram of the branched
cable model used in (B-D). (B-D) Asymptotic solutions to various orders to the cable model for (B)
EPSP, (C) IPSP and (D) SSP in comparison with numerical solutions to the cable model. The dashed
blue line is the first order approximation. The red circle is the second-order approximation. The black
solid line is the numerical solution to the PDE cable model in (A). Parameters in our simulation are
within the physiological regime [12, 16], c= 1µF ·cm−2, gL = 0.05 mS ·cm−2, εE = 70 mV, εI =−10
mV, S= 2.8×103 µm2,r= 100 Ω ·cm. σEr = 5 ms, σEd = 7.8 ms, σIr = 6 ms, σId = 18 ms. The E and
I inputs are given at locations ~xE = (9,50 µm) and ~xI = (6,50 µm), respectively. The initial voltage of
the entire neuron is 2 mV. All the voltages are relative to the resting potential.

For the dendritic branches at the end of the dendrites labeled by {im}, e.g., im∈
{3,5,8,10,12,14,16} in Figure 2.1A, by assuming the ends of these branches are sealed,
we arrive at the boundary condition on these branches at x= lim ,

∂vim
∂x

∣∣∣∣
x=lim

= 0. (2.7)

Additional boundary conditions are prescribed at the connection site of several
branches. Suppose that one end of downstream branches labeled by {in} with diame-
ter di1 ,di2 ,...,dik and length li1 ,li2 ,...,lik , respectively, are connected to the end of the
upstream branch i with diameter di and length li. By the law of current conservation,
we have the following boundary conditions,

−πd
2
i

4ri

∂vi
∂x

∣∣∣∣
x=li

=−
k∑

n=1

πd2
in

4rin

∂vin
∂x

∣∣∣∣
x=0

. (2.8)

The initial condition of the neuron is set as v(~x,0) =v0, which can deviate from its
resting state. This is consistent with experimental observations that the membrane
potential of a neuron in general fluctuates [30] and may stay at a high voltage level
deviating from the resting state [9] before receiving any future synaptic inputs.

3. Derivation of the dendritic integration rule
In this section, we first derive the dendritic integration rule for a pair of E and I

synaptic inputs, and then generalize the rule to characterize the dendritic integration
of multiple synaptic inputs of mixed types.

In the absence of synaptic inputs, the cable equation (Equation (2.5)) with the
boundary conditions (Equations (2.6-2.8)) is a linear system. Therefore, its Green’s
function in response to a delta-pulse input exists. However, because the synaptic cur-
rents (Equation (2.2)) include the unknown dynamical variable vi, the Green’s function
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method cannot be directly applied to obtain the analytical solution to Equation (2.5)
when the synaptic inputs are present. Note that, when the neuron receives a pair of
E and I inputs, within the physiological regime, i.e., the amplitude of an excitatory
postsynaptic potential (EPSP) being less than 5 mV and the amplitude of an inhibitory
postsynaptic potential (IPSP) being less than 2 mV, the corresponding input strengths
fE and fI are relatively small. Therefore, given an E input at ~xE = (iE ,xE) and an
I input at ~xI = (iI ,xI), we can represent the voltage response v(~x,t) as an asymptotic
series in the powers of fE and fI ,

v(~x,t;W) =
∞∑
k=0

∑
m+n=k

fmE f
n
I vmn(~x,t;W), (3.1)

where W⊆{~xE ,~xI ,tE ,tI} is parameter space, ~xE ,tE ∈W if m 6= 0; ~xI ,tI ∈W if n 6= 0.
In addition, for each branch i, we define

vimn(x,t;W) =vmn(~x,t;W)χi(~x). (3.2)

Combining Equations (3.1-3.2) and the cable equation (Equation (2.5)), order by
order, we can obtain a differential equation for each branch i. For the zeroth-order, we
have

c
∂vi00
∂t

=−gLvi00 +
di
4ri

∂2vi00
∂x2

.

Using the boundary conditions (Equations (2.6-2.8)) and the initial condition v(~x,t) =
v0, the solution is simply

v00(~x,t;∅) =v0e
− t
τm (3.3)

for ~x on any branch of the neuron. Here τm= c/gL is the membrane time constant. For
the first order of excitation O(fE),

c
∂vi10
∂t

=−gLvi10 +
di
4ri

∂2vi10
∂x2

−gE(t;tE)δ(~x−~xE)(v00−εE).

With the help of Green’s function, the solution can be expressed as

v10(~x,t;~xE ,tE) =G(~x,~xE ,t)∗ [gE(t;tE)(εE−v00(~xE ,t;∅))]. (3.4)

Here ‘∗’ denotes convolution in time, G(~x,~y,t) is the Green’s function of the system.
For the second-order of excitation O(f2

E),

c
∂vi20
∂t

=−gLvi20 +
di
4ri

∂2vi20
∂x2

−gE(t;tE)δ(~x−~xE)v10. (3.5)

Because v10 is given by Equation (3.4), the solution of Equation (3.5) is

v20(~x,t;~xE ,tE) =G(~x,~xE ,t)∗ [−gE(t;tE)v10(~xE ,t;~xE ,tE)].

The above procedure can be generalized to higher orders. Similarly, we can have the
first and second-order solutions to the inhibitory inputs.

v01(~x,t;~xI ,tI) =G(~x,~xI ,t)∗ [gI(t;tI)(εI−v00(~xI ,t;∅))], (3.6)
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v02(~x,t;~xI ,tI) =G(~x,~xI ,t)∗ [−gI(t;tI)v01(~xI ,t;~xI ,tI)].

For the order of O(fEfI), we have

c
∂vi11
∂t

=−gLvi11 +
di
4ri

∂2vi11
∂x2

−gE(t)δ(~x−~xE)v01−gI(t)δ(~x−~xI)v10,

whose solution is obtained as follows,

v11(~x,t;~xE ,~xI ,tE ,tI) =G(~x,~xE ,t)∗ [−gE(t;tE)v01(~xE ,t;~xI ,tI)]

+G(~x,~xI ,t)∗ [−gI(t;tI)v10(~xI ,t;~xE ,tE)].
(3.7)

All these asymptotic solutions involve the Green’s function of the system. Although
the Green’s function of cable models in general is difficult to obtain analytically, it can
be measured numerically using white-noise input as a property of linear systems. The
numerically measured Green’s function enables one to directly evaluate the performance
of the asymptotic solutions in approximating the numerical solutions to the cable model.
When the cable neuron model (Figure 2.1A) receives a pair of E and I synaptic inputs,
our numerical simulation of the model using the Crank-Nicolson method (time step 0.01
ms and space step 1 µm) shows that the second-order asymptotics is sufficiently accurate
to capture the solution of physiological membrane potentials, as demonstrated in Figure
2.1B-D. Therefore, the EPSP denoted by VE induced by an individual E input alone
can be approximated by VE≈v00 +fEv10 +f2

Ev20, the IPSP denoted by VI induced by
an individual I input alone can be approximated by VI ≈v00 +fIv01 +f2

I v02, and the
summed somatic potential (SSP) denoted by VS induced by both E and I inputs can
be approximated by VS≈v00 +fEv10 +f2

Ev20 +fIv01 +f2
I v02 +fEfIv11.

If we normalize these voltages by subtracting the zeroth order, we can identify a
bilinear dendritic integration rule to capture the membrane potential response when the
neuron receives a pair of E and I inputs, i.e.,

V̂S = V̂E+ V̂I +kEI V̂E V̂I , (3.8)

where V̂p=Vp−v00 for p∈{E,I,S}, and the coefficient k is defined as

kEI(t;~xE ,~xI ,tE ,tI)≡
V̂S− V̂E− V̂I

V̂E · V̂I
=

v11(t;~xE ,~xI ,tE ,tI)

v10(t;~xE ,tE) ·v01(t;~xI ,tI)
+O(fE)+O(fI).

(3.9)

Equation (3.9) shows that, for a fixed initial condition v(~x,t) =v0, the leading order of
kEI as a function of time is independent of the input strength. Note that the variable
~x is omitted in the expression of kEI and vmn because we are only concerned with
the voltage response at the soma. In addition, Equations (3.4, 3.6, 3.7) indicate that
kEI is determined by the input locations and input arrival times. Therefore, kEI
parameterizes the spatiotemporal information of the synaptic inputs. Note that the
bilinear integration rule (Equation (3.8)) holds at any location on the neuron, including
its soma in particular.

Based on a similar analysis, it is straightforward to generalize Equation (3.8) to
describe the dendritic integration of multiple synaptic inputs of mixed types,

V̂S =
∑
i

V̂ iE+
∑
j

V̂ jI +
∑
m,n

kmnEI V̂
m
E V̂ nI +

∑
u,w

kuwEE V̂
u
E V̂

w
E +

∑
r,s

krsII V̂
r
I V̂

s
I , (3.10)
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where V̂ iE and V̂ jI are the normalized individual EPSP and IPSP, respectively, kmnEI ,
kuwEE , and krsII are the coefficients encoding the spatiotemporal information of the
synaptic inputs, which are nearly independent of synaptic input strengths.

The derived bilinear integration rule provides an alternative approach to simulate
the dynamics of a spatial neuron rather than numerically solving the PDE cable models.
By taking advantage of its simple form, next we will develop fast simulation algorithms
and evaluate their performance including computational speed and numerical accuracy
in contrast to the full simulation of a morphologically realistic passive neuron and the
simulation based on the linear integration rule below (without taking into account the
bilinear interaction),

V̂S =
∑
i

V̂ iE+
∑
j

V̂ jI . (3.11)

4. Fast algorithms based on the dendritic integration rule
Here we develop two fast algorithms based on the derived bilinear dendritic integration
rule and assess its performance using a passive cable neuron model with full dendrites.
The neuron is passive in a sense that there is no active ion channel on the soma or any
dendrites. The morphology of the example neuron is reconstructed from a hippocampal
CA1 pyramidal neuron (data acquired from the Duke Southampton Archive of neuronal
morphology [4]), and is shown in Figure 4.1A. The time of the onset of an action poten-
tial (spike time) in the passive neuron is determined by the time when the membrane
potential of the soma crosses a threshold VT =−55 mV. When the neuron spikes, we
reset v(~x,t) across the neuron uniformly to its resting potential Vr =−70 mV. A case
for a semi-active neuron that is capable of generating a full-spike shape (with the same
algorithms) is shown in Section 5.

We develop fast algorithms by employing the bilinear dendritic integration rule
together with a library approach to obtain the voltage trace at the soma in response
to multiple synaptic inputs. The voltage dependence of the bilinear integrations is the
initial voltage of the second input of each pair. To evaluate the fast algorithms, we then
evolve the PDE cable model numerically by using the NEURON software [13] as the
numerical solver to obtain the neuronal voltage trace under the same input condition as
the benchmark for comparing the computational speed of the two approaches, as well
as their numerical accuracy in terms of voltage trace, spike timing, and other statistics
such as the gain curve and the distribution of inter-spike intervals. The NEURON
software is also used for the setup of the library. The source code of the fast algorithms
is available on https://github.com/g13/bNEURON.

4.1. Library setup. For the purpose of illustration, and without losing general-
ity, we randomly choose six excitatory synapses that are located far away from the soma,
and three inhibitory synapses located relatively near the soma. The spatial distribution
of excitatory and inhibitory synapses in our setup is consistent with that observed in
experiment for CA1 pyramidal neurons [22]. At each synaptic input location, we use
four different magnitudes of input strength f ∈{0.2,0.4,0.8,1.6} nS for the synaptic con-
ductance. The largest input strength will induce a voltage change at the soma as high
as 4 mV when v0 =−62 mV, as shown in Figure 4.1B and C. For better understanding,
the various time-related variables used in the library (and later in the fast algorithms)
are schematically explained in Figure 4.2A.

4.1.1. Library of single-input voltage trace. We first build a library of
a series of somatic voltage responses V̂p(t;f,v0,∆t) induced by individual inputs at
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Fig. 4.1. Library setup: (A) The dendritic morphology of the passive neuron for evaluating the
fast algorithms we developed. The six red dots are the excitatory synapses and the three blue dots are
the inhibitory synapses. (B) The responses of membrane potential Vp(t) at the soma to each single
synaptic input at the dendritic positions marked in (A). The black line marks Vbase when no input
is presented. Each synapse is associated with four different input strengths, all plotted with v0 =−62
mV. (C) Voltage traces of V̂p(t) =Vp(t)−Vbase, which are the single-input response at the soma to
be stored in the library. Only the case of ∆t= 0 ms is shown here (see text for the definition of ∆t).
(D) One example plot of the contributions from single-input response to a two-input case (∆t= 0).

The response V̂E to one excitatory input is plotted in red, and the response V̂I to one inhibitory input
is plotted in blue. The full response of the soma V̂S when receiving the two inputs simultaneously is
plotted in cyan, and the linear sum of the two single-input response V̂E + V̂I is plotted in dotted green.
The residual term V̂S− V̂E− V̂I for the calculation of the second-order coefficient k (Equation (3.9))
is plotted in black. (E) Linear relation between the residual term versus the product of the two single-

input response V̂E V̂I . For each combination (a total of 16) of such pairs of synaptic inputs in (D), we

acquire a data point, and we fit a line through these data points when |V̂E V̂I | reaches its maximum at
t= 39.9 ms with v0 =−66 mV. In this example, the slope k= 0.05 mV−1.

various synaptic sites, which we later refer to as the “single-input responses”. The
subscript p here denotes the numbering index of the synapses and t∈ [0,Dp], where

Dp is the duration when V̂p decays back to sufficiently close to zero. A typical value
of D for excitatory synaptic inputs is 240 ms, and 300 ms for inhibitory ones. The
input strength is denoted by f , and the initial voltage at the soma is denoted by v0.
We further evaluate the single-input responses for different values of ∆t, which denotes
the duration of a voltage clamp at v0, starting from t= 0 when the input arrives. The
meaning of ∆t differs when the single-input responses are used in different situations.
For the generation of the library of the second-order coefficient k in the next subsection,
where the single-input responses are also needed; then, for the second synaptic input
of the pair, ∆t means the time interval between the two inputs since the initial voltage
dependence is defined by the initial voltage at the arrival time of the second synaptic
input. When a spike is generated before t=Dp, linear contributions from the single-
input responses need to be re-evaluated after the spike since the voltage is reset to the
resting potential; then, in this case, ∆t means the time difference between the synaptic
input and the time of spike, illustrated as ∆t′ in Figure 4.2A. When used for linear
contributions to the voltage trace before a spike, ∆t simply equals zero.

To obtain V̂p(t) with an initial voltage of v0, we first perform the simulation without
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the library setup of single-input voltage trace and second-order coefficient are illustrated in (A) and
interpolation procedure in (B). (A) t0,t1,t2, and t3 are the arrival time of the four synaptic inputs.
Assuming the input received at t1 is from the pth synapse, Dp denotes its duration of contribution

and ∆t′ marks the time difference between the spike time of linear integration (dotted grey) t
(l)
sp , and

synaptic input time t1. The time difference between the two synaptic inputs t2 and t3 is denoted by ∆t;

the time difference between the spike time of the bilinear integration (grey) t
(b)
sp and t2 is denoted by

∆T . The initial voltage for the single-input responses (V̂p(t)), excitatory in red and inhibitory in blue,
are based on the voltage trace of the bilinear integration. Note that the action potential is generated

much earlier without taking into account the bilinear integration terms. After the neuron spikes at t
(l)
sp

(t
(b)
sp ), the linear (bilinear) integration procedures are to be repeated for all inputs (input pairs) that

come before the spike with new variables of interpolation, e.g, ∆t′ for the single-input responses arrived
at t1, and ∆T for second-order coefficients of the pair of inputs arrived at t2 and t3, respectively. (B)
The top figure illustrates the situation of a direct interpolation on ∆t= τ for second-order coefficient
k (see Section 4.1.3) while the bottom figure shows the correct way: align the two nearest library data
τi and τi+1 to τ to avoid undefined nonzero values for t∈ [τi,τ ] shown in the top figure. The solid line
in both figures are the supposedly interpolated k with the two methods, respectively. Note that, (B) can
also be viewed as the alignment of ∆t for single-input responses.

any input to record Vbase(t) (corresponding to the term v00(t) in Equation (3.3)), which
is the zeroth-order response. Then, the simulation is performed when the neuron receives
individual inputs from various synaptic sites, with all the combinations of input strength
f and discretized values of ∆t to obtain a series of Vp(t). The resultant Vp(t) are
either EPSP traces above Vbase(t), or IPSP traces that go below it, where Vp(0) =v0

and Vbase(0) =v0. An example with v0 =−62 mV and ∆t= 0 ms is shown in Figure
4.1B, where Vbase(t) is the black line, excitatory traces of Vp(t) are in red dotted lines
and inhibitory ones are in blue dotted lines. Note that, all the combinations of input
strengths and synaptic locations are plotted. Then, by subtracting Vbase(t) from Vp(t),

we obtain V̂p(t) in Figure 4.1C for each combination of the discretized values of f and
∆t at the pth synaptic location for the given initial voltage v0. Finally, we iterate the
process over the discretized values of v0 to obtain the full library of V̂p(t;f,v0,∆t).

4.1.2. Library of the second-order coefficient k. Next we build the library
for the second-order coefficient k(t;v0,~xp,~xq,∆t), where ∆t= tq− tp marks the interval
between the time of input of the pth synapse and that of the qth synapse. Because the
locations of synaptic inputs are now fixed, we change ~xp and ~xq to be the subscripts
of k, and rewrite the coefficient as kpq(t;v0,∆t) for the sake of simplicity. Without
losing generality, we assume that the input from the pth synapse comes before the
input from the qth synapse. To measure the second-order coefficient k, in addition
to the single-input response measured previously, we need to obtain the two-input full
response VS at the soma based on Equation (3.9). The first input from the pth synapse
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Fig. 4.3. Validation of the two-input integration rule: (A) Plots of the second-order coefficient k
for all pairs of synaptic inputs as a function of v0, where the pairs are categorized into combinations of
EE, EI, IE, and II. The errorbars give the standard deviations for different combinations of synaptic
locations. The coefficient is evaluated for each pair of synapses at the maximum of the product of their
responses |V̂pV̂q | when receiving the two synaptic inputs simultaneously, ∆t= 0. (B) Plots of the
percentage of change in k, with respect to the k at v0 =Vr, across different v0 for data in (A). The
errorbars are too small to be visible. (C) Plots of the goodness of fit R2 at different v0. The errorbars
show the mean and averaged standard deviation of ∆t∈{0,4,8,12} ms, t∈{4,8,12,20,30,50,70,130}
ms and all combinations of pairs of synapses. The inset figure shows the intercept of the fitted lines.

arrives at tp= 0 and the second input from the qth synapse arrives at tq = ∆t. Just
as the generation of single-input response Vp(t) for ∆t>0 in the previous section, we
need to clamp the voltage at v0 for a duration of ∆t. Note that although the voltage
is clamped at v0, the evolution of conductance from the first input is not disrupted.
Also note that ∆t only needs to be discretized over [0,Dp], the contribution of bilinear
integration terminates as the first input contribution ends, which is originated from the
pth synapse. After subtracting Vbase(t) from the summed response VS , we obtain a

series of V̂S corresponding to the pair of inputs from the pth and qth synapses for all
combinations of input strengths f , respectively, with different values of discretized v0

and ∆t. Finally, for t∈ (∆t,Dp] and initial voltage v0, we can identify a linear relation

between the dataset of V̂S− V̂p− V̂q and V̂pV̂q, where the slope of the linear fitting is a
sound approximation of the second-order coefficient k at time t if the intercept is zero.
The fitting process for one of the pairs is shown in Figure 4.1D and E as an example.
Note that before the arrival of the second input, i.e., t∈ [0,∆t], we set kpq to be zero
because the bilinear interaction between the two inputs has not happened yet.

Figure 4.3A shows the typical values of second-order coefficient k for different initial
voltages v0 and synaptic input pairs from different locations and with different input
strengths. From the negligible errorbars for kEI or kIE , we confirm that with the
setup of inhibitory synapses being closer to the soma than the excitatory synapses, the
coefficients kEI and kIE are nearly independent of the location of the excitatory synapse,
as studied in [12, 18]. However, the coefficient experiences a ∼60% change across the
range of v0, as shown in Figure 4.3B. It is easily recognized that as v0 increases, kEI , kIE ,
and kII are monotonically decreasing for pairs of synaptic inputs at different locations.
However kEE only changes a little for different v0, which can be explained by the fact
that the change of the membrane potential by the initial voltage v0 within the dynamic
range of sub-threshold membrane potential is small compared to the reversal potential
of excitatory inputs. Figure 4.3C shows that the goodness of fit R2 across v0 only
deviates slightly from unity, and the errorbars representing the standard deviation of
all combinations of parameters are negligible. The inset figure shows that the intercept
of the line from linear fitting is always close to zero independent of v0, t, ∆t, or synaptic
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location. Thus, the result confirms the bilinear integration rule (Equation (3.8)) and
that the second-order coefficient is indeed independent of input strength within the
whole parameter space for the passive neuron; yet, it is dependent on the initial state
of the neuron’s voltage distribution and the spatiotemporal information of the synaptic
inputs.

An extended library for second-order coefficient that involves spiking events can
be built by taking care of the discontinuity arising from the spike-reset dynamics in
the passive neuron. The voltage across the neuron is reset to the resting potential
once reaching the spiking threshold, this rapid change in the voltage distribution erases
the dependence of bilinear integration on the initial voltage, while the evolution of
conductance is unaffected. Then, the interpolation has to be redone after the neuron
reset for the pairs of inputs that are received before the spike. Thus, a new dimension
must be created when building the library, just for the second-order coefficient k. To
be specific, we add to k another dependence on ∆T (Figure 4.2A) that denotes the
interval between the spike-reset time and the arrival time of the first input, which is
always greater or equal to the time interval between the two inputs ∆t.

4.1.3. Interpolation of the library. Finally, to apply the library approach in
the fast algorithms, one needs to first define the interpolation procedure for the library.
The interpolation shall avoid having nonzero single-input voltage responses V̂p(t), and
nonzero second-order coefficient kpq(t) before the second input, from the qth synapse,
arrives (t<tq). To achieve this, one needs to first align and interpolate the library data
in the dimension of time intervals, e.g. ∆t and ∆T , before interpolating along other
dimensions. For the sake of illustration, we take the interpolation of kpq(t;v0,∆t) along
the dimension of v0 as an example. To interpolate along the dimension of v0, one needs
to first align and interpolate along the dimension of ∆t. Let τi and τi+1 (τi+1>τi)
denote the two nearest discretized values to ∆t= τ , and ṽm (m= j,j+1), denotes the
two nearest discretized values to v0 = ṽ in the library. We align the library data of
kpq(t; ṽm,τi), t>τi with the library data of kpq(t; ṽm,τi+1), t>τi+1 for m= j,j+1 to
avoid nonzero values caused by t∈ [τi,τ ] in the library data of kpq(t; ṽm,τi) if interpolated
directly, as illustrated in Figure 4.2B. Now one can interpolate over τ to get kpq(t; ṽj ,∆t)
and kpq(t; ṽj+1,∆t), and finally perform the interpolation for ṽ∈ [ṽm, ṽm+1].

4.2. The fast algorithms. Once we have built the library, we can speed
up enormously the simulation of a passive neuron with full dendritic morphology by
implementing the arithmetic dendritic integration scheme that follows Equation (3.10).

Because each single-input response V̂p will decay to zero after the decay time scaleDp, we
only need to sum over the input pairs that have input time difference ∆t smaller than the
decay time scale Dp for a bilinear integration scheme. Two bilinear integration schemes
are introduced in the following section, the full voltage trace scheme and the partial
voltage trace scheme, with the latter one focusing more on computational efficiency. The
linear integration scheme is simply the full voltage trace scheme without the bilinear
contributions. The subscripts i, j, l from here on denote the sequence of synaptic inputs
in time, and are independent of p, q that denote both the synaptic type and location.

4.2.1. Full voltage trace scheme. To efficiently generate the entire voltage
trace in response to multiple inputs, we develop a full voltage trace scheme, where
for each synaptic input received at ti we calculate its linear contribution and all the
bilinear contribution originated from the interactions with previous inputs to v(t) for
t>ti forward in time. We provide the pseudo code for the scheme in Alg. 1, and an
overview of the scheme as the following.
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Algorithm 1: Full voltage trace scheme

build and load library
n← the total number of inputs
add Vbase(t) to v(t)
for i←1 to n do

/* p denotes the synaptic index of the ith input */

interpolate to find V̂p at f =fi, v0 =v(ti) and ∆t= 0

add V̂p to v(t),t∈ [ti,ti+Dp]
j← i−1 // q denotes the synaptic index of the lth input

while j >0 and tj+Dq>ti do
interpolate to find kqp at v0 =v(ti) and ∆t= ti− tj
add kqpV̂qV̂p to v(t),t∈ [ti,tj+Dq]
j← j−1

end
/* the following deals with spike-reset */

while v(t)>VT ,t∈ [ti,ti+Dp] do
v(t)←Vr,t∈ [ti,ti+Dp]
tsp← time of v(t) cross VT
j← i // p denotes the synaptic index of the ith input

while j >0 and tj+Dp>tsp do

interpolate to find V̂p at f =fp, v0 =Vr and ∆t= tsp− tj
add V̂p to v(t),t∈ [tsp,tj+Dp]
l← j+1 // q denotes the synaptic index of the lth input

while l< i do
interpolate to find kpq at v0 =Vr, ∆t= tl− tj and ∆T = tsp− tj
add kpqV̂pV̂q to v(t),t∈ [tsp,tj+Dp]
l← l+1

end
j← j−1

end

end

end

For the ith input received from the pth synapse at ti, we obtain its single-input
response V̂p(t

′;v0 =v(ti),∆t= 0) by interpolation from the library for t′∈ [0,Dp] and
add it to the membrane potential v(t) at the soma for t∈ [ti,ti+Dp]. Then for the
jth input received from the qth synapse at tj before the ith input arrival time ti and
satisfies tj+Dq>ti, we interpolate the jth single-input response and add to v(t) (for
t∈ [ti,tj+Dq]) the bilinear contribution from the input pair (j,i), which can be written
into

kqp(t
′;v(ti),ti− tj)V̂q(t′;v(ti),ti− tj)V̂p(t′−(ti− tj);v(ti),0), (4.1)

where t′∈ [ti− tj ,Dq] is relative to the arrival time of the jth synaptic input, tj . We
repeat the process for all the inputs satisfying the above condition. When v(t) crosses
the threshold VT at t= tsp, an action potential is considered to be generated and we
reset the v(t) across the neuron back to Vr. Before continuing with the (i+1)th input
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Algorithm 2: Partial voltage trace scheme

build and load library
n← the total number of inputs
for i←1 to n do

update the following variables for interpolation (VI) of the ith input:
v0 =v(ti), ∆t= 0, f =fi

1 add Vbase(ti) to v(ti)
j← i−1 // p denotes the synaptic index of the jth input

2 while j >0 and tj+Dp>ti do

interpolate to find V̂p for the jth input

add V̂p(ti− tj) to v(ti)
l← j+1
update the VI of input pair (j,i):
v0 =v(tj), ∆t= ti− tj
while l< i do

/* q denotes the synaptic index of the lth input */

interpolate to find kpq with the VI for the input pair (j,l)

add kpqV̂pV̂q to v(ti)
l← l+1

end
j← j−1

end
/* The following deals with spike-reset */

if v(ti)>VT then
use linear interpolation over v(t) to find the time of spike tsp
/* repeat line 1 to line 2 (skip updating VI) when evaluate

v(t), t∈ [ti−1,ti] for interpolation of tsp */

for each input j: j <i and tj+Dp≥ ti do
/* p denotes the synaptic index of the jth input */

update the VI of the jth input:
v0 =Vr, ∆t= tsp− tj // f is unchanged

for each input l: l>j and l< i do
update the VI for the input pair (j,l):
v0 =Vr // ∆t is unchanged

additional dependence of ∆T = tsp− tj
end

end
i← i−1 // rerun the current iteration with the new VIs

end

end

through the same process above, we need to first update v(t) for t∈ [tsp,ti+Dp], which
means to reapply the single-input responses and bilinear contributions to v(t) but with
a new set of parameters due to the spike-reset of the voltage. Specifically, for each input
received at time tj we need to interpolate the jth single-input response from the qth
synapse with v0 =Vr and ∆t= tsp− tj (e.g., ∆t′ in Figure 4.2A). For each input pair
(j,l), tl>tj , we need to interpolate the second-order coefficient k with ∆t= tl− tj and
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an additional dependence on ∆T = tsp− tj from the extended library of k, e.g, see the
inputs arrived t2 and t3 in Figure 4.2A. When the second-order term is dropped in this
algorithm, we call the scheme a linear integration scheme.

4.2.2. Partial voltage trace scheme. If the detailed voltage trace is not of
interest, then we only need to update the membrane potential at the arriving time of
each input to evolve the voltage. To achieve this, we can introduce a partial voltage trace
scheme. The pseudo code for the scheme is provided in Alg. 2. We summarize here
the most important step in this scheme: At the arriving time t= ti of the ith input, we
look backwards in time to find inputs that arrive at t= tj<ti from the pth synapse that
satisfies ti− tj<Dp for all j and p; and find the input pairs (j,l) that satisfy tj<tl<ti.
We then add their linear and bilinear contributions, respectively, to the somatic voltage
only at this time instant v(t= ti), as opposed to the full voltage trace scheme introduced
previously.
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Fig. 4.4. The performance of the fast algorithms for a passive neuron with full dendrites shown
in Figure 4.1A: Statistics are plotted from four trials of 124 seconds for six different Poisson input
rates, the synaptic inputs are generated from independent Poisson processes for each synapse. (A)
Computational costs, in terms of CPU time spent, against input rate for the four schemes, i.e., the
simulation (NEURON software) in black, full voltage trace (full v.t.) scheme in blue asterisks, partial
voltage trace (partial v.t.) scheme in blue circles, and linear integration scheme in red asterisks. Notice
that the ordinate is in log scale. (B) The mean and standard deviations of the difference between the
voltage traces of the simulation and those of the two schemes (errorbars), i.e., linear integration scheme
in red, and full voltage trace scheme in blue, per time step before the first spike. The accumulated errors
at the last time step before the first spike (asterisks). Note that the partial voltage trace scheme is
not included since it does not have a complete voltage trace. (C) Gain curves for the four different
schemes. (D) The distribution of inter-spike intervals for each scheme, collected from four trials with
Poisson input rates of 135 Hz. (E) An excerpt of raster plot of the spike timings, with the same
Poisson input rate of 95 Hz for each scheme.

4.2.3. Performance of the fast algorithms. The arithmetic schemes demon-
strate a massive (hundred-fold) reduction of computational cost compared with a direct
numerical computation of the PDE cable neuron model solved by the NEURON soft-
ware, as shown in Figure 4.4A. In practice, the library can be stored in the memory
contiguously and a modern CPU can parallelize the extra additions and multiplications
to a certain extent. Thus, the efficiency gained from replacing full voltage trace scheme
with the partial voltage trace scheme is less significant, compared to the computational
time saved by dropping the numerical simulation of the PDE cable neuron model per-
formed by the NEURON software.
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Meanwhile, the relative accuracy of the bilinear integration schemes, compared
with the linear integration scheme, are retained in terms of voltage trace, and firing
statistics such as the gain curve and the distribution of inter-spike intervals. Figure
4.4B shows a ten-fold reduction in error for the full voltage trace scheme versus the
linear integration scheme both in terms of error per time step and the accumulated
error carried to the time of first spike. From Figure 4.4C, we can see that both the full
voltage trace and partial voltage trace schemes closely follow the gain curve from the
NEURON simulation, while without the second-order correction, the linear integration
scheme doubles the firing rate. The distribution of inter-spike intervals in Figure 4.4D
shows a significantly higher peak for the linear integration scheme while the other two
bilinear integration schemes are comparable with the NEURON simulation, especially
at the tail. We show an excerpt of raster plot with Poisson input rate of 95 Hz in Figure
4.4E, where both of the bilinear integration schemes match most of the spikes with the
NEURON simulation, while the linear integration scheme fires excessively.

5. Discussion
Through asymptotic analysis, we derive the bilinear dendritic integration rule for a
neuron that receives multiple synaptic inputs on its dendrites. We then develop fast
algorithms based on the rule to simulate the voltage dynamics of a passive neuron
with realistic dendritic morphology. The performance of the two bilinear integration
schemes in the algorithms show a massive reduction in terms of computational cost,
while retaining a relatively high accuracy, compared with the linear integration scheme.
Although the algorithms are evaluated only with few synaptic locations with large input
strengths here, the algorithms are expected to be applicable to simulate real neurons
in the brain. In fact, it is quite common for a cortical neuron to have a log-normal
distribution of the amplitudes of its presynaptic EPSPs [3]. Therefore, there are only
a handful of bilinear interactions that are large enough to warrant attention [6] since
the size of the bilinear correction is proportional to the product of the two single-input
voltage responses at soma.

5.1. Sources of numerical error. Higher orders (≥3) may come into play
when the synaptic input rate is very high. For example, suppose there are n excitatory
synaptic inputs with the same amplitude of A that arrive within an interval of ∼10
ms, with a typical second-order coefficient kEE∼0.1 mV−1 for each pair. This interval
of ∼10 ms is chosen so that for a given time during this interval all the single-input
responses are at a relatively high voltage level, ∼0.9A. Then the bilinear contribution
(for a total of n(n−1) input pairs) increases withO(n2). Thus, the ratio γ of the bilinear
contributions to the linear contribution can be approximately obtained as follows,

γ∼ −0.1(n(n−1)/2)(0.9A)2

0.9An
=
−9A(n−1)

200
. (5.1)

In this case, the total response could actually be reduced to zero or below because we
can have stronger inhibitory effect from the bilinear interaction than the total sum of
linear responses when γ <−1.0, e.g., when n≥24 and A= 1 mV. This is unrealistic as
such nonlinearity is not observed experimentally in pyramidal neurons. The combined
synaptic input rate in this case is 2400 Hz. For a total of six strong excitatory synapses
as we implemented here, this would correspond to an instantaneous input rate of ∼400
Hz for each synapse, which is a quite extreme case. However, if we increase the number
of synapses to ∼100, then it corresponds to a 24 Hz instantaneous input rate, well within
the physiological value. Thus, the higher order contributions are quite important when
considering more synaptic inputs with strong input strength or higher input rates. In
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addition to the error from dropping the higher-order terms, the numerical error of the
arithmetic schemes, i.e., full and partial voltage trace schemes, largely comes from the
linear interpolation of data in the library, instead of the time step since the library is
built from the simulation that uses the same time step.
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Fig. 5.1. The performance of the fast algorithms for a semi-active neuron: (A), (B), and (C)
show the statistics for the two-input dendritic integration rule on a semi-active neuron. (A) Plots of
the second-order coefficient k for all pairs of synaptic inputs as a function of v0, where the pairs are
categorized into combinations of EE, EI, IE, and II. The errorbars give the standard deviations for
different combinations of synaptic locations. The coefficient is evaluated for each pair of synapses at
the maximum of the product of their responses |V̂pV̂q | when receiving the two synaptic inputs simulta-
neously, ∆t= 0. Because ∆t= 0 ms, kEI overlaps with kIE . (B) Plots of the percentage of change in
k, with respect to the k at v0 =Vr, across different v0 for data in (A). The errorbars are too small to
be visible. (C) Plots of the goodness of fit R2 at different v0. The errorbars show the mean and aver-
aged standard deviation of ∆t∈{0,4,8,12} ms, t∈{4,8,12,20,30,50,70,130} ms and all combinations
of pairs of synapses. The inset figure shows the intercept of the fitted lines. (D), (E), (F), and (G)
plot the statistics of data from four trials of 124 seconds, synaptic inputs are generated from the inde-
pendent Poisson processes for each synapse. (D) Gain curves for each scheme with the Poisson input
rate to the synapses as the abscissa. (E) The mean and standard deviations of the difference between
the voltage traces of the simulation (NEURON software) and those of the two schemes (errorbars),
i.e., linear integration scheme in red, and full voltage trace (full v.t.) scheme in blue, per time step
before the first spike. The accumulated errors at the last time step before the first spike (asterisks).
(F) An excerpt of raster plot of the spike timings, with the same Poisson input rate of 20 Hz for each
scheme. (G) Computational costs, in terms of CPU time spent, against the Poisson input rate for the
four different schemes, the legend follows the one in (D).

5.2. Performance of the algorithms on a semi-active neuron. The fast
algorithms can also be applied to neurons with semi-active dendrites and an active
soma capable of generating full-shape spikes. We set a soft threshold for the voltage
at the soma. When its membrane potential crosses the threshold, instead of resetting
the membrane potential across the neuron, we hand over the simulation from the fast
algorithms to the NEURON software, which either continues to produce a spike shape
and hyperpolarizes or signals a false alarm without spiking and crosses back from the
threshold. For both cases, we then hand back the control to the fast algorithms. The
dendrites are semi-active in a sense that they preserve many commonly observed active
ion channels (including the delayed rectifier potassium channel, two variants of the A-
type potassium channel, and the hyperpolarization activated channel), except for the
voltage-gated sodium channels on the apical dendrites. The sodium channels result
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in complex nonlinear effects, to which the dendritic integration rule derived from the
passive cable equation (Equation (2.5)) is not directly applicable. The specific non-
linear factors that could substantially affect the numerical accuracy of the algorithms
include dendritic spikes and spiking threshold that sensitively depends on the voltage
distribution of the neuron.

Figure 5.1A, B and C show that the two-input dendritic integration rule is still
valid for the case of the semi-active neuron. Figure 5.1A gives the values of second-
order coefficient k across different initial voltage, which are generally larger than the
passive neuron in absolute values under the influence of the active channels. This implies
that the error from omitting the higher-order terms may have a larger role than that in
the passive case. In Figure 5.1B, we can see a smaller change of k in percentage (with
respect to k at v0 =Vr) compared with the result of the passive neuron. In addition,
different from the passive case, we can observe a significant decrease in the absolute
value of second-order coefficient kEE as v0 increases. This can be explained by the
activation of the sodium channel at the soma, which facilitates the depolarization of the
membrane potential. Thus, the extra depolarization from the sodium channel activation
cancels out some of the hyperpolarizing effect from the bilinear integration, effectively
reducing the amplitude of kEE . Figure 5.1C and its inset show the consistently good
fit of the second-order coefficient as R2 is close to 1.0 and the intercept stays zero.

In Figure 5.1D and the bottom panel of Figure 5.1, we show the performance of
the full voltage trace, partial voltage trace and linear integration schemes applied on
the semi-active neuron, compared with direct numerical computation of the semi-active
cable neuron model by the NEURON software. Figure 5.1E shows that the full volt-
age trace scheme still achieves higher accuracy than the linear integration scheme, in
terms of both the error per time step in the sub-threshold voltage range and accumu-
lated error before spiking. A series of hierarchical linear-nonlinear (hLN) models has
been introduced by Ujfalussy et al., 2018 [29]. The performances of the hLN models
show that a single-layer (linear integration) hLN model’s explanatory power of the sub-
threshold voltage does not degenerate much (∼ 4%) when active channels are involved.
Consistently, in our model, comparing Figure 5.1E and Figure 4.4B from semi-active
and passive neuron, respectively, we find that the sub-threshold voltage error of the
linear scheme is about the same in both cases. In our scenario, this indicates that the
nonlinearities within the ion channels (as long as there’s no dendritic spikes) are not as
influential as the nonlinearities resulting from bilinear integrations.

In Figure 5.1F, we can see that the spike timings obtained from both the full voltage
trace and the partial voltage trace schemes match well with those simulated using the
NEURON software. From the gain curves plotted in Figure 5.1D, the linear integration
scheme fires a substantially larger number of spikes than the others, while the firing
rates obtained from the two bilinear integration schemes only lag a little behind the
NEURON simulation result, although they cannot achieve equally good performance
as in the case with passive neuron. A small tendency of separation can be observed
between the firing rate of result from the NEURON software and that of the bilinear
integration schemes as the Poisson input rate increases. Finally, in Figure 5.1G, the
computational cost is plotted against the Poisson input rate. Since the spike shapes
are all simulated by the NEURON software, it is conceivable to observe a much smaller
decrease in terms of CPU time saved compared to the spike-reset dynamics. Indeed,
as the input rate increases, following the increasing number of spikes, especially for the
linear integration scheme (Figure 5.1F and G), the computational cost rises quickly.

In summary, we have developed fast algorithms based on the bilinear dendritic
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integration rule derived from the passive cable model, with a dependency on the voltage
of the soma when inputs arrive. Our algorithms can also achieve reasonably good
performance when applied to a neuron with an active soma and semi-active dendrites.
For future studies on the subject, it is important to investigate the dependency of the
dynamic spiking threshold on the voltage distribution of an active neuron in order to
build a spike shape library to further improve the computational efficiency. For a more
general application, it is also crucial to explore integration rules for an active neuron
with dendritic sodium channels.

Acknowledgment. The authors dedicate this work to Professor David Cai. This
work is funded by National Natural Science Foundation of China Grants 11901388,
Shanghai Sailing Program 19YF1421400, Shanghai Chengguang program (S.L.), and
Shanghai Rising-Star Program 15QA1402600, Natural Science Foundation of China
Grants 11671259, 11722107, 91630208 (D.Z.), and by Student Innovation Center at
Shanghai Jiao Tong University.

REFERENCES

[1] B.V. Atallah and M. Scanziani, Instantaneous modulation of gamma oscillation frequency by
balancing excitation with inhibition, Neuron, 62(4):566–577, 2009. 1
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[3] G. Buzsáki and K. Mizuseki, The log-dynamic brain: how skewed distributions affect network
operations, Nat. Rev. Neurosci., 15(4):264–278, 2014. 5

[4] R.C. Cannon, D.A. Turner, G.K. Pyapali, and H.V. Wheal, An on-line archive of reconstructed
hippocampal neurons, J. Neuro. Meth., 84(1):49–54, 1998. 4

[5] M.J. Chacron, Nonlinear information processing in a model sensory system, J Neurophysiol.,
95(5):2933–2946, 2006. 1

[6] L. Cossell, M.F. Iacaruso, D.R. Muir, R. Houlton, E.N. Sader, H. Ko, S.B. Hofer, and T.D.
Mrsic-Flogel, Functional organization of excitatory synaptic strength in primary visual cor-
tex, Nature, 518(7539):399–403, 2015. 5

[7] F. David, C. Linster, and T.A. Cleland, Lateral dendritic shunt inhibition can regularize mitral
cell spike patterning, J. Comput. Neurosci., 25(1):25–38, 2008. 1

[8] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling
of Neural Systems, Cambridge: MIT Press, 2001. 2
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