
Neurocomputing 624 (2025) 129392 

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

A generalized Spiking Locally Competitive Algorithm for multiple
optimization problems
Xuexing Du, Zhong-qi K. Tian, Songting Li1, Douglas Zhou ∗

School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China

A R T I C L E I N F O

Communicated by F. Perez-Pena

Dataset link: https://github.com/XuexingDu/S
piking-LCA

Keywords:
Generalized Spiking LCA
Optimization problems
Signal recovery

A B S T R A C T

We introduce a generalized Spiking Locally Competitive Algorithm (LCA) that is biologically plausible and
exhibits adaptability to a large variety of neuron models and network connectivity structures. In addition,
we provide theoretical evidence demonstrating the algorithm’s convergence in optimization problems of
signal recovery. Furthermore, our algorithm demonstrates superior performance over traditional optimization
methods, such as FISTA, particularly by achieving faster early convergence in practical scenarios including
signal denoising, seismic wave detection, and computed tomography reconstruction. Notably, our algorithm
is compatible with neuromorphic chips, such as Loihi, facilitating efficient multitasking within the same
chip architecture—a capability not present in existing algorithms. These advancements make our generalized
Spiking LCA a promising solution for real-world applications, offering significant improvements in execution
speed and flexibility for neuromorphic computing systems.
1. Introduction

In diverse areas such as compressed sensing, Bayesian inference, and
dictionary learning, the pursuit of sparse representation of signals is
critical for enhancing information transfer, reducing complexity, and
optimizing resource use [1–6]. These disciplines are often confronted
with challenging optimization problems, propelling the advancement
of efficient solutions. Traditional methods like gradient descent and
greedy algorithms have been effective across a variety of optimization
challenges [7–9]. However, their efficiency diminishes in the context of
large-scale problems, leading to significant computational demands and
resource consumption. This limitation has prompted researchers to ex-
plore alternative strategies that can more effectively manage large-scale
issues.

An intriguing approach draws inspiration from the human brain,
recognized for its exceptional energy efficiency and adaptability. Stud-
ies on the primary visual cortex indicate that sensory neurons can
encode natural stimuli, such as visual images, with impressive effi-
ciency through sparse coding [10–16]. This has led to the development
of neural network models aimed at solving optimization problems in a
more energy-efficient manner [17–21]. The Spiking Locally Competi-
tive Algorithm (Spiking LCA), a prominent algorithm in unsupervised
learning, stands out in this regard [18]. Yet, Spiking LCA’s effectiveness
is constrained by its rigidity. Firstly, its reliance on fully inhibitory

∗ Corresponding author.
E-mail addresses: songting@sjtu.edu.cn (S. Li), zdz@sjtu.edu.cn (D. Zhou).

1 To whom correspondence may be addressed.

connections between neurons restricts the scope of optimization prob-
lems it can effectively tackle, e.g., the measurement matrix is subject to
stringent restrictions. Secondly, distinct neuron network architectures
are required for different optimization problems, implying that when
we implement the Spiking LCA on neuromorphic chips, network ar-
chitecture modifications become essential when dealing with varying
problems. Therefore, there is an urgent need for an algorithm that
can seamlessly adapt to various optimization challenges within a single
network framework.

This paper addresses the abovementioned challenges by presenting
a new algorithm designed for constructing spiking neural networks,
which supports both excitatory and inhibitory neuronal connections.
Notably, our approach facilitates the handling of diverse optimization
problems within a single network framework by modulating the ex-
ternal input currents to neurons. This adaptability offers significant
engineering advantages, particularly the capability to execute multiple
tasks within a single chip architecture. Our spiking neural network
model is grounded in biologically plausible neuron models, extending
from the simple Leaky Integrate-and-Fire (LIF) model to more complex
Hodgkin–Huxley type models. We also provide theoretical evidence
that our network’s firing rates converge to optimal solutions for a
variety of optimization problems, such as LASSO and Elastic-Net [22–
24]. A notable strength of our proposed model is its considerably faster
early convergence when compared to leading optimization algorithms
https://doi.org/10.1016/j.neucom.2025.129392
Received 16 May 2024; Received in revised form 15 November 2024; Accepted 8 J
vailable online 20 January 2025 
925-2312/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
anuary 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
https://github.com/XuexingDu/Spiking-LCA
mailto:songting@sjtu.edu.cn
mailto:zdz@sjtu.edu.cn
https://doi.org/10.1016/j.neucom.2025.129392
https://doi.org/10.1016/j.neucom.2025.129392
http://creativecommons.org/licenses/by/4.0/


X. Du et al.

t

c

r

L
t

r
h
s
t
r

h
i

a
s

h

t
s

f

a

𝝐

t
d
s
f
r

i

m

s
o
t
i
l
a
t
o

t
c

Neurocomputing 624 (2025) 129392 
like FISTA [7]. This enhanced convergence speed enables our model
to reach reliable solutions more swiftly, aligning well with practical
scenarios where energy efficiency and time are of the essence [25–29].

The rest of this paper is structured as follows: Section 2 presents
he optimization problems central to our research. Section 3 provides

an overview of the generalized Spiking LCA, along with theoretical
demonstrations of its convergence across various optimization scenar-
ios. Section 4 compares our algorithm with a traditional widely used
optimization algorithm FISTA [7] in solving practical problems within
ompressed sensing and signal processing domains. Lastly, we broaden

the application of our algorithm to encompass additional types of
eal-world optimization problems.

1.1. Related works

The Spiking LCA was primarily developed to tackle the constrained
ASSO optimization problem [18]. The algorithm’s ability to converge
o the precise solution of the constrained LASSO problem was the-

oretically proven in Ref. [19]. Moreover, a rigorous analysis of the
convergence rate, which enhanced our understanding of the compu-
tational capabilities of SNNs, was provided in Ref. [30]. Subsequent
esearch has effectively extended the Spiking LCA on neuromorphic
ardware to address practical problems [25–29,31]. However, in these
tudies, the hardware was limited to solving a single type of optimiza-
ion problem at a time, as addressing different optimization problems
equired alterations to the chip architecture [32–34]. Additionally, the

neuron model employed in the Spiking LCA was based on a capacitor
circuit, which contrasts with the resistor–capacitor (RC) circuit models
that more accurately represent real neurons. Our work addresses these
issues by developing a generalized Spiking LCA. This algorithm is
designed to support efficient multitasking within the same chip archi-
tecture, while ensuring compatibility with diverse neuron models and
diverse connectivity patterns among neurons.

In the field of signal processing, various optimization algorithms
ave been developed to solve sparse representation problems. These
nclude gradient descent-based methods such as the ISTA, its accel-

erated version FISTA [7], and the learned ISTA (LISTA) [35], which
incorporates deep learning techniques to enhance performance. Ad-
ditionally, greedy algorithms like matching pursuit are widely used,
iteratively selecting dictionary atoms that best match the residual
signal [36]. Basis pursuit formulates the sparse representation problem
as a linear programming task, seeking the sparsest solution that satisfies
signal reconstruction constraints [37]. Moreover, several evolutionary
algorithms (EAs), such as Genetic Algorithm, Differential Evolution,
nd Particle Swarm Optimization, have been applied to sparse repre-
entation optimization problems [38–40]. Among these methods, FISTA

has gained prominence due to its effectiveness and computational effi-
ciency in large-scale sparse optimization problems, as detailed in A.2.
Accordingly, we compare our generalized Spiking LCA with FISTA to
ighlight the superior performance of our method.

2. Sparse approximation and recovery problems

Sparse approximation and recovery problems are fundamental prob-
lems in signal processing and machine learning, aiming to exploit
signals’ sparsity for various applications. These problems have attracted
significant attention in recent years due to their wide range of applica-
ions, including image processing, seismic wave detection, and feature
election [41–44].

Sparse approximation primarily represents a given signal using a
ew non-zero coefficients from an overcomplete dictionary. It seeks the

optimal sparse linear combination of atoms (basis functions) in the
dictionary that approximates the given signal. In sparse approximation
problems, we assume that the signal comprises structured components
nd unstructured additive noise, as expressed in Eq. (1),
𝐬 = 𝛷𝐚 + 𝝐, (1)

2 
where a vector input 𝐬 ∈ R𝑀 corresponds to an input signal from a
particular class of signals. It is a linear combination of an overcomplete
dictionary 𝛷 = [𝜙1, 𝜙2,… , 𝜙𝑁 ] (a dictionary with more atoms than
the input signal dimension) using coefficients 𝐚 ∈ R𝑁 . Furthermore,

represents additive Gaussian white noise.
While the sparse approximation problem focuses on finding the op-

imal sparse representation 𝐚 for a given signal 𝐬 using an overcomplete
ictionary, sparse recovery aims to reconstruct a sparse signal from a
et of limited, noisy, and underdetermined measurements. This problem
requently arises in compressed sensing, which aims to accurately
ecover the original sparse signal from a smaller number of linear

measurements than those required by the Nyquist–Shannon sampling
theorem. The primary concept behind compressed sensing is to exploit
the inherent sparsity or compressibility in a specific transformation
domain, such as the wavelet or Fourier domain [45–47]. Mathemat-
cally, compressed sensing is described as follows. Consider a signal
𝐱 ∈ R𝑁 , which is 𝐾-sparse in a transformation domain 𝛹 , i.e., only
𝐾 coefficients in the transformed domain are non-zero (𝐾 ≪ 𝑁). This
can be expressed as 𝐱 = 𝛹𝐚, where 𝐚 ∈ R𝑁 is the 𝐾-sparse coefficient
vector. The signal 𝐱 can be measured using an 𝑀 × 𝑁 measurement
matrix 𝛷, with 𝑀 ≪ 𝑁 , resulting in a compressed measurement vector
𝐬 ∈ R𝑀 , satisfying: 𝐬 = 𝛷𝐱 = 𝛷 𝛹𝐚. Since 𝛷 and 𝛹 are incoherent,
i.e., their columns are not correlated, the product of the two matrices
𝐴 = 𝛷 𝛹 can be treated as a new sensing matrix. The goal is to recover
the sparse coefficient vector 𝐚 from the compressed measurement vector
𝐬.

The algorithms used to solve sparse recovery and sparse approxi-
ation problems are often the same. In this paper, 𝐴 represents either

𝛷 or 𝛷 𝛹 collectively. We aim to solve the underdetermined system
𝐬 = 𝐴𝐚 + 𝜖, with the prior knowledge that only a few entries in 𝐚 are
non-zero. This problem is mathematically formulated as follows:

min
𝐚

𝐸 = 1
2
‖𝐬 − 𝐴𝐚‖22 + 𝜆𝐶(𝐚), (2)

where the objective function in Eq. (2) comprises two terms. The
first term measures the mean squared reconstruction error (MSR) of
signals while the second term 𝐶(𝐚) imposes a penalty that promotes
parsity in the coefficient vector. The parameter 𝜆 balances the trade-
ff between data fidelity and sparsity. However, directly optimizing
his objective function with the 𝓁0-norm, 𝐶(𝐚) = ‖𝐚‖0, as the sparsity-
nducing function is computationally intractable, i.e., an NP-hard prob-
em [48]. Therefore, alternative surrogate sparsity-inducing functions
re commonly used, with the 𝓁1-norm, 𝐶(𝐚) = ‖𝐚‖1, a convex func-
ion that encourages sparsity, being a popular solution. The resulting
ptimization problem, known as LASSO [22], is expressed as:

min
𝐚

𝐸 = 1
2
‖𝐬 − 𝐴𝐚‖22 + 𝜆‖𝐚‖1. (3)

In some problems, we have additional requirement on the variable 𝐚
o be non-negative, i.e., 𝐚 ≥ 0. This variation is referred to as the
onstrained LASSO problem:

min
𝐚≥0

𝐸 = 1
2
‖𝐬 − 𝐴𝐚‖22 + 𝜆‖𝐚‖1. (4)

Although there have been significant advancements in solving the
LASSO problem, such as ISTA, FISTA, and LISTA [7,35], its compu-
tational complexity is a major challenge for real-time digital signal
processing applications that deal with large-scale signals. Thus, the
computational demands of the LASSO problem limit its practical ap-
plicability, where rapid and low-power reconstruction algorithms are
crucial. Therefore, there is a growing demand for efficient algorithms
and hardware architectures that enable real-time processing of large-
scale signals or data. Indeed, developing such technologies is vital for
advancing signal processing and machine learning, and with real-world
applications.



X. Du et al.

L
i
c
l

𝐮

i
v
t

o
𝐚
v
t
a
o

i
t
t
b

a
s

𝑏
g

𝑖

d
w

w

S

𝑇

w
E

e
c
d
a
l
T
m

i

m
𝑡

Neurocomputing 624 (2025) 129392 
3. The generalized Spiking LCA

3.1. Review of LCA and Spiking LCA

To elucidate our approach, we first provide an overview of the
ocally Competitive Algorithm (LCA) and its spiking variant, the Spik-
ng LCA. The LCA, often termed Analog LCA, is known for its robust
onvergence characteristics and capability to tackle large-scale chal-
enges [49]. The LCA’s architecture comprises an interconnected neural

network encompassing 𝑁 neurons. The LCA can solve the LASSO prob-
lem represented in Eq. (3) by evolving the dynamics of the neuron’s
membrane potential described by

̇ (𝑡) = 1
𝜏
[𝐛 − 𝐮(𝑡) − (

𝐴𝑇𝐴 − 𝐼
)

𝐚(𝑡)],

𝐚(𝑡) = 𝑇±𝜆(𝐮(𝑡)), 𝑇±𝜆(𝐮) = 𝑇𝜆(𝐮) + 𝑇𝜆(−𝐮)
𝑇𝜆(𝐮(𝑡)) = max(|𝐮| − 𝜆, 0) ⋅ sgn(𝐮).

(5)

In the above neuronal dynamics model, each neuron receives a constant
nput 𝐛 ∈ R𝑀 , which is determined as 𝐛 = 𝐴𝑇 𝐬. Here, the matrix 𝐴 and
ector 𝐬 are as defined in the original LASSO problem Eq. (3). When
he firing threshold of the neuron is reached, the neuron dispatches

inhibitory signals to its counterparts. 𝑊 = 𝐼 − 𝐴𝑇𝐴 characterizes this
inter-neuronal interaction strength, and 𝜏 denotes the time constant
f neuronal response. The neurons communicate through activations
(𝑡), akin to spike rates. The function 𝑇𝜆(⋅) enforces output sparsity
ia a soft-thresholding mechanism. Recent empirical evidence suggests
hat LCA demonstrates local asymptotic stability, ensuring resilience
gainst external disturbances and convergence to equilibrium states
ver time [50]. Consequently, for specific inputs, the system converges

to a unique and stable solution consistent with the global minimum of
a LASSO optimization problem [50].

Despite the efficacy of LCA in solving large-scale challenges, it
has certain limitations. For example, its dependence on continuous-
time dynamics may enhance computational and energy costs, especially
on traditional computing platforms. Therefore, the Spiking LCA is
conceived to circumvent these challenges and harness the potential
of neuromorphic hardware [25,51]. The Spiking LCA harnesses the
energy-efficient properties inherent to spiking neural encoding by in-
tegrating spike-driven neuronal dynamics into the LCA paradigm. This
ntegration significantly enhances power efficiency by capitalizing on
he strengths of spiking neural networks (SNNs) [19,25,27,51]. Note
hat the Spiking LCA addresses the constrained LASSO specifically
ecause of the inherently non-negative firing rates of neurons.

To implement the Spiking LCA in an SNN, each of the 𝑁 neurons
receives a somatic input current 𝜇𝑖(𝑡) over time 𝑡 to change its mem-
brane potential 𝑣𝑖(𝑡). The membrane potential accumulates according
to the equation

𝑣𝑖(𝑡) = ∫

𝑡

0
(𝜇𝑖 − 𝜆)𝑑 𝑡, (6)

while it remains below the firing threshold 𝑣𝑡ℎ, and 𝜆 ≥ 0 represents
 predefined bias current. This bias current is set as the constant 𝜆
pecified in Eq. (4). When 𝑣𝑖(𝑡) reaches 𝑣𝑡ℎ at time 𝑡𝑖,𝑠𝑝, neuron 𝑖 is

said to fire a spike, and 𝑣𝑖(𝑡) is set to the value of the reset voltage
𝑣𝑟𝑒𝑠𝑒𝑡. At the same time, inhibitory currents are injected into all other
neurons connected with neuron 𝑖. In the numerical simulation, the
non-dimensional values 𝑣𝑟𝑒𝑠𝑒𝑡 = 0, 𝑣𝑡ℎ = 1 are used.

The somatic input current 𝜇𝑖(𝑡) consists of a constant input current
𝑖 = 𝐴𝑇

𝑖 𝐬 and synaptic input currents from other neurons, which is
overned by

𝜇𝑖(𝑡) = 𝑏𝑖 −
∑

𝑗≠𝑖
𝑤𝑖𝑗

(

𝛼 ∗ 𝜎𝑗
)

(𝑡), (7)

where 𝑤𝑖𝑗 = 𝐴𝑇
𝑖 𝐴𝑗 is the synaptic weight from neuron 𝑗 to neuron

, 𝜎𝑗 (𝑡) =
∑

𝑘 𝛿(𝑡 − 𝑡𝑗 ,𝑘) is the sum of Dirac delta functions, and 𝑡𝑗 ,𝑘
corresponds to the 𝑘th spike time of the 𝑗th neuron. The function 𝛼(𝑡) =
𝑒−𝑡 for 𝑡 ≥ 0 and zero otherwise, implying that the synaptic current is
 p

3 
modulated by a weighted exponential decay function when an input
is received, consistent with experimental observation. The operator ∗
enotes convolution. Differentiating both sides with respect to time 𝑡,
e obtain the differential equation

𝜇̇𝑖(𝑡) = 𝑏𝑖 − 𝜇𝑖(𝑡) −
∑

𝑗≠𝑖
𝑤𝑖𝑗𝜎𝑗 (𝑡). (8)

The Eqs. (6)–(8), along with the definition of the spike trains 𝜎𝑖(𝑡),
describe the Spiking LCA.

To demonstrate the algorithm’s convergence, we introduce two
variables, the spike rate 𝑎𝑖(𝑡) and the average somatic input current 𝑢𝑖(𝑡),

hich are defined below:

𝑎𝑖(𝑡) = 1
𝑡 − 𝑡0 ∫

𝑡

𝑡0
𝜎𝑖(𝑠)𝑑 𝑠,

𝑢𝑖(𝑡) = 1
𝑡 − 𝑡0 ∫

𝑡

𝑡0
𝜇𝑖(𝑠)𝑑 𝑠.

(9)

Here, 𝑡0 is the initial time point of the simulation or experiment, serving
as the starting point for averaging. Using definitions of 𝑢𝑖, 𝜇𝑖 and 𝑎𝑖 from
Eqs. (8)–(9), we can derive:

𝑢̇𝑖(𝑡) = 𝑏𝑖(𝑡) − 𝑢𝑖(𝑡) −
∑

𝑗≠𝑖
𝑤𝑖𝑗𝑎𝑗 (𝑡) −

[𝑢𝑖(𝑡) − 𝑢𝑖
(

𝑡0
)

]
𝑡 − 𝑡0

, (10)

which is the spiking analog of the original LCA dynamics Eq. (5). In the
piking LCA, the potential accumulation is regulated by Eq. (6). Conse-

quently, the relationship between 𝑢𝑖(𝑡) and 𝑎𝑖(𝑡) satisfies
𝜆
(

𝑢𝑖(𝑡)
)

− 𝑎𝑖(𝑡) → 0 as 𝑡 → ∞, where 𝑇𝜆(⋅) is described by

𝑇𝜆(𝑢(𝑡)) =
{

𝑢(𝑡) − 𝜆 if 𝑢(𝑡) > 𝜆
0 else.

(11)

Strict inhibitory connections ensure the average soma current remains
within bounds. As 𝑡 → ∞,

(

𝑢𝑖(𝑡) − 𝑢𝑖
(

𝑡0
))

∕
(

𝑡 − 𝑡0
)

→ 0. This indicates
that the system tends towards the same limit as observed in LCA,

hich is equivalently the solution to the constrained LASSO problem
q. (4) [19].

3.2. The generalized Spiking LCA

The spiking LCA excludes essential features such as the leaky prop-
rty and refractory period of a biological neuron. Furthermore, it
onsiders a linear input–output curve, in contrast with the non-linear
ynamics observed in real biological neurons. Regarding the networks’
rchitecture, existing LCA algorithms focus on inhibitory connections,
imiting their application to a particular set of optimization problems.
herefore, to generalize the Spiking LCA to integrate a wide range of
ore biologically plausible neuron models in a unified framework [19,

25,27], we now develop a generalized Spiking LCA.
Fig. 1 illustrates the sparse coding idea and the core architecture

of the generalized Spiking LCA model. This model involves a network
comprising 𝑁 interconnected neurons linked to all others through
a current-based point neuron mechanism. The neuronal dynamics is
governed by:

𝑐
𝑑 𝑣𝑖
𝑑 𝑡 = 𝐼 𝑖𝑜𝑛𝑖 + 𝐼 𝑖𝑛𝑝𝑢𝑡𝑖 (𝑡), 𝑖 = 1,… , 𝑁

f 𝑣𝑖 (𝑡) > 𝑣𝑡ℎ 𝑣𝑖 (𝑡) = 𝑣𝑟𝑒𝑠𝑒𝑡 𝑡 ∈ (𝑡𝑠𝑝, 𝑡𝑠𝑝 + 𝑡𝑟𝑒𝑓 ),
(12)

where c represents the neuron’s membrane capacitance, 𝐼 𝑖𝑜𝑛𝑖 (𝑡) is the
ionic current in the neuron, and 𝐼 𝑖𝑛𝑝𝑢𝑡𝑖 (𝑡) refers to the injected current
that depends on the recurrent inputs and the external constant in-
puts, which will be determined below. A neuron’s membrane potential
governs the generation of a spike train, which accumulates according
to Eq. (12). The corresponding neuron generates a spike when the

embrane potential reaches the firing threshold 𝑣𝑡ℎ at a specific time
= 𝑡𝑠𝑝. This spike either inhibits or excites other neurons and resets its
otential to the resting potential 𝑣 during the refractory period.
𝑟𝑒𝑠𝑒𝑡



X. Du et al.

𝑢

Neurocomputing 624 (2025) 129392 
Fig. 1. The generalized Spiking LCA inspired by the visual cortex system. (a) Sparse coding is a technique used to simulate the sparse neural activity observed in the primary
visual cortex. The input signal is reconstructed by computing a weighted sum of the receptive fields of model neurons, representing the specific regions of the input space that
each neuron responds to. This approach allows for efficient and selective visual information processing, similar to the brain’s. (b) In the generalized Spiking LCA, each neuron
receives an external input, 𝐼 𝑖𝑛𝑝𝑢𝑡 = 𝑔−1(𝐚), as well as recurrent input from neighboring neurons.
Following the spiking LCA, the average soma current 𝑢𝑖(𝑡) is required
to follow

̇ 𝑖(𝑡) = 𝑏𝑖(𝑡) − 𝑢𝑖(𝑡) −
∑

𝑗≠𝑖
𝑤𝑖𝑗𝑎𝑗 (𝑡) −

[𝑢𝑖(𝑡) − 𝑢𝑖
(

𝑡0
)

]
𝑡 − 𝑡0

. (13)

Note that, for different forms of ionic current 𝐼 𝑖𝑜𝑛𝑖 , the relationship
between firing rate 𝑎𝑖(𝑡) and the input current 𝑢𝑖(𝑡) may not necessarily
satisfy 𝑎𝑖(𝑡) = 𝑇𝜆

(

𝑢𝑖(𝑡)
)

as that in the classic Spiking LCA model, where
𝑇𝜆(𝑢) is defined in Eq. (11). As this relation is crucial to prove the
convergence of the spiking LCA that solves the constrained LASSO
problem, our generalized Spiking LCA requires further design on the
input current 𝐼 input

𝑖 to make the relation 𝑎𝑖(𝑡) = 𝑇𝜆
(

𝑢𝑖(𝑡)
)

hold.
To design the input current, we next take the leaky integrate-and-

fire model as an example, i.e., 𝐼 𝑖𝑜𝑛𝑖 = −𝑔𝐿
(

𝑣𝑖 − 𝑣𝑟𝑒𝑠𝑒𝑡
)

, where 𝑔𝐿 is the
leaky conductance, 𝑣𝑟𝑒𝑠𝑒𝑡 is the reset potential after a spike. We can
analytically solve the model and derive both the gain function 𝑎 = 𝑔(𝑢)
and its inverse function, which are depicted in Eq. (14).

𝑎 = 𝑔(𝑢) =
[

𝑡𝑟𝑒𝑓 − 𝑐
𝑔𝐿

log
(

1 − 𝑔𝐿𝑣𝑡ℎ
𝑢

)

]−1
, 𝑢 ≥ 𝑔𝐿𝑣𝑡ℎ

𝑔−1(𝑎) = 𝑔𝐿𝑣𝑡ℎ

1 − exp(𝑔𝐿
(

𝑡𝑟𝑒𝑓 − 1
𝑎

)

∕𝑐)
.

(14)

We compute the average soma current, 𝑢𝑖(𝑡), for each neuron at every
time step based on Eq. (13). Using this current, we then calculate the
input current 𝐼 input

𝑖 = 𝑔−1(𝑇𝜆(𝑢𝑖)) and apply it to each neuron in the
subsequent time step. Accordingly, we then ensure that the output
firing rate 𝑎𝑖 now satisfies the condition 𝑎𝑖 = 𝑇𝜆

(

𝑢𝑖
)

. This holds because
for the 𝑖th neuron,

𝑎𝑖 = 𝑔(𝐼 input
𝑖 ) = 𝑔(𝑔−1(𝑇𝜆(𝑢𝑖))) = 𝑇𝜆

(

𝑢𝑖
)

. (15)

The above procedure can be generalized to a large variety of neuron
models beyond the leaky integrate-and-fire model, and correspondingly
we derive the following theorem for the convergence of our generalized
Spiking LCA.

Theorem 1. If the gain curve of the neuron model in the spiking neural
network is continuous (not limited to the LIF model), then by applying an
external input current 𝐼 input

𝑖 = 𝑔−1
(

𝑇𝜆
(

𝑢𝑖
))

, as time approaches infinity,
the firing rate 𝐚 is equivalent to the output of LCA and converges to the
optimal solution of Eq. (4).

Proof. For any neuron model with a continuous gain function 𝑔(⋅),
the average current dynamics of the 𝑖th neuron in the spiking neural
4 
network established based on this model satisfies

𝑢̇𝑖(𝑡) = 𝑏𝑖(𝑡) − 𝑢𝑖(𝑡) −
∑

𝑗≠𝑖
𝑤𝑖𝑗𝑎𝑗 (𝑡) −

[𝑢𝑖(𝑡) − 𝑢𝑖
(

𝑡0
)

]
𝑡 − 𝑡0

,

𝑎𝑖 = 𝑔
(

𝐼 input
𝑖

)

.

(16)

To prove the convergence of this system, we first introduce two lem-
mas:

Lemma 1. If 𝑔(⋅) = 𝑇𝜆(⋅), applying any additional current at each step is
unnecessary. As time approaches infinity, the firing rate 𝐚 is equivalent to
the output of LCA and converges to the optimal solution of Eq. (4).

Proof. see Ref. [18] for details. □

Lemma 2. There exists an upper bound 𝐵+ and a lower bound 𝐵− such
that 𝜇𝑖(𝑡), 𝑢𝑖(𝑡) ∈

[

𝐵−, 𝐵+
]

,∀𝑖, 𝑡 ≥ 0.

Proof. In terms of network connections, our model distinguishes itself
from previous works, which solely permitted inhibitory connections
to maintain bounded soma current magnitudes and the corresponding
average potentials. By incorporating realistic neuron models into our
approach, the firing rate of the neurons is inherently limited, precluding
it from becoming infinitely large. Consequently, we establish a lower
bound and an 𝑅 > 0 such that 𝑡𝑖,𝑘+1− 𝑡𝑖,𝑘 ≥ 1∕𝑅 for all 𝑖 = 1, 2,… , 𝑛, and
𝑘 ≥ 0, whenever two spike times are present. This insight confirms that
the soma currents in our model are bounded both above and below.
We define 𝐶 = max𝑖,𝑗

|

|

|

𝑤𝑖,𝑗
|

|

|

and 𝐵 = max𝑗
|

|

|

𝑏𝑗
|

|

|

, acknowledging that the
inner product of features and biases is finite. Employing the fact that
(

𝛼 ∗ 𝜎𝑗
)

(𝑡) ≤
∑∞

𝑙=0 𝑒
− 𝑙

𝑅 < ∞, we demonstrate the following:

‖

‖

𝜇𝑖(𝑡)‖‖ =
‖

‖

‖

‖

‖

‖

𝑏𝑖 −
∑

𝑗≠𝑖
𝑤𝑖𝑗

(

𝛼 ∗ 𝜎𝑗
)

(𝑡)
‖

‖

‖

‖

‖

‖

≤
‖

‖

‖

‖

‖

‖

|

|

𝑏𝑖|| +
∑

𝑗≠𝑖

|

|

|

𝑤𝑖𝑗
|

|

|

(

𝛼 ∗ 𝜎𝑗
)

(𝑡)
‖

‖

‖

‖

‖

‖

≤
‖

‖

‖

‖

‖

‖

max
𝑗

|

|

|

𝑏𝑗
|

|

|

+
∑

𝑗≠𝑖

|

|

|

𝑤𝑖𝑗
|

|

|

(

𝛼 ∗ 𝜎𝑗
)

(𝑡)
‖

‖

‖

‖

‖

‖

≤ ‖

‖

‖

𝐵 + 𝑛𝐶
(

𝛼 ∗ 𝜎𝑗
)

(𝑡)‖‖
‖

≤
‖

‖

‖

‖

‖

𝐵 + 𝑛𝐶
∞
∑

𝑙=0
𝑒−

𝑙
𝑅
‖

‖

‖

‖

‖

< ∞.

(17)

Implying the soma currents are bounded from above and below. □



X. Du et al.

[

𝑢
B

𝑢

t

N

t
o
l
t
c
L
i
t

a

v
p

s
s

𝑢

f
t
c
𝑇
f
𝑔
o
o

s
g
F
b
l
w
a
t
d
r

p
i
c

t

a

c

e

n

Neurocomputing 624 (2025) 129392 
Proof.
Hence, we adopt the proof of Ref. [19] and state 𝑢(𝑡) =

𝑢1(𝑡), 𝑢2(𝑡),… , 𝑢𝑁 (𝑡)
]𝑇 has at least one limit point 𝑢∗ ∈ R𝑁 such that

(

𝑡𝑘
)

→ 𝑢∗ as the sequence of 𝑡𝑘 → ∞ when 𝑘 → ∞ from the
olzano–Weierstrass theorem. This implies:

lim
𝑡→∞

𝑢̇𝑖(𝑡) = lim
𝑡→∞

𝜇𝑖 − 𝑢𝑖
𝑡 − 𝑡0

= 0. (18)

For other neuron models, we evaluate the average soma current 𝑢𝑖(𝑡)
for each neuron at each iteration. We then calculate the input current
𝐼 input
𝑖 = 𝑔−1

(

𝑇𝜆
(

𝑢𝑖
))

using this current. Subsequently, we determine
the output firing rate 𝑎𝑖 as 𝑎𝑖 = 𝑇𝜆

(

𝑢𝑖
)

by applying the activation
function 𝑔(⋅) to input current 𝐼 input

𝑖 . This sequence of steps ensures that
our spiking neural network converges to the solution of the constrained
LASSO problem. The dynamics of 𝑢𝑖(𝑡) can be expressed as follows:
̇ 𝑖(𝑡) = 𝑏𝑖 − 𝑢𝑖(𝑡) −

∑

𝑗≠𝑖
𝑤𝑖𝑗𝑎𝑗 (𝑡),

𝑎𝑖 = 𝑔
(

𝐼 input
𝑖

)

= 𝑇𝜆
(

𝑢𝑖
)

𝑡 → ∞.
(19)

Hence 𝑇𝜆
(

𝑢
(

𝑡𝑘
))

→ 𝑇𝜆 (𝑢∗) = 𝑎∗, we can conclude the system converges
o the same limit found in LCA. With the above results, we complete

the proof. □

In the A.1, four commonly used neuronal models are introduced.
ote that analytical expressions for the gain function of these mod-

els are generally infeasible. However, we can approximate the gain
function numerically, and subsequently incorporate them into our al-
gorithm and perform numerical experiments below.

In our previous analysis, we set 𝐶(𝐚) = ‖𝐚‖1 in Eq. (2) to solve
he LASSO problem. As we progress, we intend to show the versatility
f our algorithmic framework in addressing diverse optimization prob-
ems. This adaptability can be achieved by substituting 𝐶(𝐚) with al-
ernative penalty functions. Specifically, we investigate our algorithm’s
apability to tackle the Elastic-Net optimization and the unconstrained
ASSO problem, which are two important problems often encountered
n real-world applications. In fact, for any penalty function that satisfies
he following rules,

1. 𝐶(⋅) is non-negative and subanalytic on [0,+∞).
2. The first-order derivative of 𝐶(⋅) is continuous and non-negative

on [0,+∞), i.e., 𝐶 ′(⋅) > 0.
3. Define 𝑇 −1

𝜆 (𝑎) = 𝜆 𝑑𝐶(𝑎)
𝑑 𝑎 +𝑎, then the first-order derivative of 𝑇𝜆(⋅)

is continuous and positive on (0,+∞). i.e., 𝑇 ′
𝜆(⋅) > 0.

For rules 1 and 2, convergence of the corresponding LCA system is
guaranteed [51–54]. Regarding rule 3, it is established that within the
interval (0,+∞), functions such as 𝑇𝜆(⋅) and 𝑇 −1

𝜆 (⋅) exist. Based on these
ssurances, we can establish the following theorem:

Theorem 2. Consider 𝐶(⋅) satisfying previously mentioned rules 1–3. Then,
the firing rate 𝐚 of the spiking neural network is globally asymptotically con-
ergent, and 𝐚 will converge to the solution of the corresponding optimization
roblem described by Eq. (2).

Proof. Let 𝐶(⋅) adhere to all the stipulations previously outlined. Under
uch a condition, the average current dynamics of the 𝑖th neuron in the
piking neural network satisfies

̇ 𝑖(𝑡) = 𝑏𝑖(𝑡) − 𝑢𝑖(𝑡) −
∑

𝑗≠𝑖
𝑤𝑖𝑗𝑎𝑗 (𝑡) −

[𝑢𝑖(𝑡) − 𝑢𝑖
(

𝑡0
)

]
𝑡 − 𝑡0

,

𝑎𝑖 = 𝑇𝜆(𝑢𝑖), 𝜆
𝑑𝐶

(

𝑎𝑖
)

𝑑 𝑎𝑖
= 𝑢𝑖 − 𝑎𝑖 = 𝑇 −1

𝜆
(

𝑎𝑖
)

− 𝑎𝑖,

(20)

where the interconnection between 𝐶(𝑎𝑖) and 𝑇𝜆(𝑢𝑖) is given by the
equation 𝜆 𝑑𝐶(𝑎𝑖)

𝑑 𝑎𝑖 = 𝑇 −1
𝜆 (𝑎𝑖) − 𝑎𝑖. By utilizing this relationship, we can

solve for 𝑎𝑖 in terms of 𝑢𝑖 to determine the corresponding activation
function 𝑇 (⋅).
𝜆

5 
To tackle the optimization problem by Eq. (2), we perform the
ollowing steps for each neuron in our network. First, we compute
he average current 𝑢𝑖(𝑡) at every iteration step. Then, we inject the
urrent 𝐼 input

𝑖 = 𝑔−1
(

𝑇𝜆
(

𝑢𝑖
))

, where different activation functions
𝜆(⋅) are used for the optimization problem with different penalty
unctions. This leads to the neuron’s output activation 𝑎𝑖 = 𝑔

(

𝐼 input
𝑖

)

=
(

𝑔−1
(

𝑇𝜆
(

𝑢𝑖
)))

= 𝑇𝜆
(

𝑢𝑖
)

. This procedure ensures the convergence
f our spiking neural network towards the solution of the general
ptimization problem Eq. (2). □

4. Numerical experiments

This section presents a series of numerical experiments to demon-
trate the effectiveness of the generalized Spiking LCA and its conver-
ence behavior. Our tests encompass both synthetic and real datasets.
or the synthetic data, we aim to confirm the solution equivalence
etween the generalized Spiking LCA and various optimization prob-
ems. Subsequently, we juxtapose the performance of our algorithm
ith different penalty functions, highlighting the superiority of our
lgorithm regarding power consumption and processing time. The dic-
ionary entries 𝛷 are sampled randomly from a standard Gaussian
istribution, represented by  (0, 1). Additionally, we explore the algo-
ithm’s efficacy in several practical applications, such as sparse signal

and CT image reconstruction. All numerical experiments are conducted
the Brainpy neural engineering simulation platform [55] on a server
owered by an A100 GPU platform. As a comparative algorithm, FISTA
s implemented in Python utilizing the NumPy library for efficient
omputation.

As previously mentioned, our goal is to solve the sparse approxi-
mation and recovery problem, for which we have constructed a corre-
sponding sparsely firing spiking neural network. Based on this, we have
analyzed the computational complexity of our algorithm for solving
a problem with a dimension of 𝑁 . For a network with 𝑁 neurons,
the two primary computational components are neuron state updates
and spike transmission. Neuron state updates involve recalculating
membrane potentials and average somatic input current 𝑢𝑖(𝑡) for each
neuron, 𝑖 = 1, 2,… , 𝑁 , resulting in a computational cost of 𝑂(𝑁)
per time step. The computational cost of spike transmission depends
on the number of neurons firing and their connections at each time
point. For instance, when only one neuron fires, processing this spike
requires updating the synaptic inputs of all connected neurons, leading
to a computational complexity of 𝑂(𝑁) in a fully connected network.
However, because neurons in our problem fire sparsely—so the average
number of neurons firing at each time step is much less than one—
he overall computational burden is predominantly due to neuron

state updates. In comparison, FISTA has a computational complexity of
𝑂
(

𝑁2) per iteration because it involves matrix–vector multiplications
nd requires updating all variables in each iteration. This leads to

higher computational costs, especially for large 𝑁 .
The energy efficiency of our algorithm is based on its computational

omplexity, as discussed previously. Our proposed generalized Spiking
LCA achieves a lower computational complexity compared to FISTA,
thereby reducing the number of operations required for convergence.
When implemented on traditional von Neumann hardware architec-
tures, this reduction in computational complexity translates to lower
nergy consumption.

More importantly, since our algorithm is based on spiking neural
etworks (SNNs), deploying it on neuromorphic platforms such as

Intel’s Loihi or IBM’s TrueNorth allows it to benefit from hardware
optimized for spike-based computations. These chips exploit the sparse
and asynchronous nature of spiking neural computations to achieve
low-power performance. Recent work has implemented the original
Spiking LCA algorithm on the neuromorphic Loihi chip, achieving ap-
proximately 1% of the power consumption required by FISTA [25,51].
In addition, the energy consumption of our generalized Spiking LCA is
comparable to the original Spiking LCA.



X. Du et al.

P
s

L
H

𝐚

i

A

o
a

b
l
y

Neurocomputing 624 (2025) 129392 
Fig. 2. Numerical results for the toy model. (a) The computational time for solving LASSO problems of varying sizes, comparing spiking neural networks with FISTA. (b)
erformance of spiking neural networks based on various models, i.e., Leaky Integrate-and-Fire, Generalized Integrate-and-Fire model, Morris–Lecar, and Wang–Buzsaki model, in
olving optimization problems, 𝐴 ∈ R5000×10000. The metric 𝑁 𝑀 𝑆 𝐸 = 10 log10 (‖𝑎̂ − 𝑎‖22∕‖𝑎̂‖

2
2

)

indicates normalized mean square error, where 𝑎̂ denotes the original signal.
c
G

𝑙
𝑎
r
i
i
a

f
s
c
0

i
e
1
w
a
i
t

s

4.1. Signal recovery

In the last decade, sparse signal recovery, particularly in solving the
ASSO problem, has attracted significant attention from researchers.
ence, to assess our algorithm’s performance, we start with a toy model

involving the recovery of a real-valued signal, denoted as 𝐚 ∈ R𝑁 ,
where 𝑁 is the signal length. To generate the synthetic sparse signal
, we randomly select 𝐾 positions out of 𝑁 to be nonzero. These

nonzero elements are assigned values drawn independently from a
standard normal distribution, while the remaining 𝑁 − 𝐾 elements
are set to zero, ensuring ‖𝐚‖0 = 𝐾. We then generate the observation
matrix 𝐴 ∈ R𝑚×𝑛 (with 𝑚 < 𝑛), where each entry 𝐴𝑖𝑗 is independently
drawn from a Gaussian distribution with zero mean and unit variance.
The observation vector 𝐛 is computed as the product of 𝐴 and 𝐚,
i.e., 𝐛 = 𝐴𝐚. Our experiments assess the execution time of FISTA
and generalized Spiking LCA, and their recovery performance. As the
signal recovery problem scale enlarges, FISTA’s runtime significantly
increases. In contrast, generalized Spiking LCA demonstrates a steadier
ascent in computation time, as illustrated in Fig. 2(a). This difference
s due to our algorithm’s execution on the A100 GPU, which supports

extensive parallel computations. As a result, the growth in problem size
does not lead to a sharp rise in the computation time of our method.

In principle, the execution time of the generalized Spiking LCA can
be further substantially reduced if we implement the algorithm on the
neuromorphic chip like Loihi by achieving parallel computation across
all neuron nodes. In this context, Loihi dedicates additional resource
cores to manage larger neuron sizes, enabling extensive parallel pro-
cessing across all cores. Hence, the runtime of generalized Spiking LCA
is more influenced by factors such as the number of neurons within
a resource core and spike traffic rather than the specific scale of the
optimization problem. This feature highlights the substantial potential
of generalized Spiking LCA for practical applications and its promising
advantages in real-world scenarios.

We next evaluate the performance of the generalized Spiking LCA.
part from the LIF model, our algorithm can construct networks based

on other biophysical neuron models, such as the GIF model [56], the
Morris–Lecar (M–L) model [57], and the Wang–Buzsaki model [58].
The detailed model description can be found in the A.1. For the ease of
comparative testing, we set 𝑛 = 10000, 𝑚 = 5000, and 𝐾 = 500, and use
normalized mean square error (NMSE) as a measure of estimation error.
The simulation results are illustrated in Fig. 2(b), which infers that
ur algorithm has a quicker initial convergence than the FISTA method
cross diverse SNN architectures with different neuronal models.

In the previous sections, we have introduced our algorithm’s capa-
ility to solve the constrained LASSO problem. However, in many cases,
everaging the 𝓁𝑝 norm with 0 < 𝑝 < 1 as a regularization term can
ield solutions that are both sparser and more accurate [59,60]. Direct

minimization of these non-convex norms is challenging; consequently,
6 
various approximation methods have been widely adopted [59–61].
Common approaches include iterative reweighted algorithms and the
onstruction of non-convex functions that approximate the 𝓁𝑝 norm.
iven that the second approach is easier to implement, we adopt it to

optimize our algorithm.
We then investigate the performance of generalized Spiking LCA

with non-convex penalty functions, for instance, exponential, logarith-
mic, and arctangent functions. The exponential penalty is defined as
𝐶(𝑥) = 1 − 𝑒−𝛾 𝑥 with 𝛾 > 0. The logarithmic penalty is given by 𝐶(𝑥) =
 𝑜𝑔(𝑥+𝜃) where 𝜃 ≥ 1, and the arctangent penalty is expressed as 𝐶(𝑥) =
𝑟𝑐 𝑡𝑎𝑛(𝑥∕𝜂) with 𝜂 > 0. These non-convex functions need to satisfy
ules 1–3 to ensure stability and convergence during experiments. It
s obvious that these functions meet rules 1 and 2. For rule 3, there
s a wide range of possible penalties that can be applied under an
ppropriate 𝜆, To meet this rule, the condition 𝐶 ′′(𝑥) > − 1

𝜆 must be
satisfied for all 𝑥 ∈ (0,+∞).

In our experiments, we initially fine-tune the parameter 𝜆 through
numerical tests to investigate its impact on the algorithm’s performance
under various penalty settings. With parameters set to 𝑛 = 1200, 𝑚 =
750, and 𝐾 = 200, the results reveal that performance is sensitive to 𝜆,
as shown in Fig. 3. Specifically, when 𝜆 is set too high, a large num-
ber of neurons become inhibited and cannot fire within a short time
rame, adversely affecting the algorithm’s performance. Conversely, a
mall 𝜆 diminishes the penalty effect, effectively nullifying the sparsity
onstraint. To balance these effects, we fine-tune 𝜆 within the range of
.01 to 0.1 in subsequent experiments to find the optimal solution.

We further investigate the performance of our algorithm under
different conditions, we set parameters 𝛾 = 1, 𝜃 = 1, and 𝜂 = 1. It
s important to note that for vector 𝐚, the function 𝐶(⋅) operates on
ach component of the vector individually. For example, with 𝐶(𝑥) =
 − 𝑒−𝑥, the function applied to vector 𝐚 would be 𝐶(𝐚) = 1 − 𝑒−𝐚,
here the 𝑖th component is 𝐶

(

𝑎𝑖
)

= 1 − 𝑒−𝑎𝑖 . Additionally, the strategy
pplied to the current model adheres to the second approach delineated
n Theorem 2, allowing for a robust and effective application of the
heoretical framework. In our experiments, we focus on the signal

recovery problem, same task described in Section 4.1. First, we test the
algorithms using the same dictionary 𝛷 ∈ R7500×10000 in a noise-free sce-
nario, with 𝜆 set to 0.1. The choice of penalty function also influences
the algorithm’s performance. The exponential penalty is the optimal
choice among the penalties tested, as illustrated in Fig. 4(a). Fig. 4(b)
illustrates the performance across varying sparsity levels, suggesting
that the reconstruction quality improves as the signal becomes more
parse, which is evident from the decreasing NMSE values. To evaluate

the algorithm’s noise robustness, we compare signal recovery results
across varying noise intensities, as shown in Fig. 4(c), where the noise
intensity is represented by the signal-to-noise ratio (SNR) between the
corrupted and original signals. We also examine the model’s resilience
to failures by comparing the probability of successful recovery using the



X. Du et al.

(

r

t

Neurocomputing 624 (2025) 129392 
Fig. 3. Performance comparison of the generalized Spiking LCA variants across different values of the regularization parameter 𝜆. (a) Recovery performance under varying 𝜆
values, measured by NMSE in dB, showing the accuracy of each algorithm’s variant. (b) Sparsity of the recovered signal as a function of 𝜆.
Fig. 4. Comparison of the generalized Spiking LCA algorithm’s performance using non-convex penalty functions. (a) Convergence among four different non-convex penalty functions.
b) Performance across diverse sparsity levels, with sparsity represented as a percentage of non-zero elements in the signal. (c) Performance under different levels of noise, with

noise intensity represented by the SNR between the corrupted and original signals. (d) Probability of successful recovery across diverse sparsity levels.
s

t
i
t

same dictionary at different sparsity levels. Here, successful recovery is
defined as achieving an NMSE below −15 dB in a noise-free scenario,
with each algorithm tested on a sample of 100 trials, following the
eference. As shown in Fig. 4(d), when the sparsity is less than 20%,

our algorithm consistently demonstrates robust performance across
multiple experiments.

4.1.1. Elastic-Net
The Elastic-Net combines the 𝓁1 and 𝓁2 penalties of the LASSO and

Ridge methods in a unified regularization approach [23], described as:

min
𝐚≥0

1
2
‖𝐬 −𝛷𝐚‖22 + 𝜆(𝜌‖𝐚‖1 +

1 − 𝜌
2

‖𝐚‖22) (21)

The generalized Spiking LCA framework is able to incorporate
he Elastic-Net formulation by modifying the slope of the activation
7 
function 𝑇𝜆(⋅) as follows:

𝑇𝜆(𝑎)
def
=

{

0 if 𝑎 ≤ 𝜆𝜌
𝑎−𝜆𝜌

𝜆(1−𝜌)+1 if 𝑎 > 𝜆𝜌 (22)

To demonstrate the effectiveness of the generalized Spiking LCA
on solving the Elastic-Net problem, we generate a dataset with sample
ize smaller than the total number of features, as an underdetermined

problem. The target variable 𝐬 is formed by combining sinusoidal
signals with different frequencies. From the 100 frequencies in 𝛷, only
he lowest 10 are utilized to generate 𝐬. The remaining features remain
nert, rendering the feature space both high-dimensional and sparse,
hus requiring a certain level of 𝓁1-penalization.

We then split the data into training and testing sets. In Fig. 5(a), the
blue line represents the signal we aim to reconstruct, and the light red
and orange dots are the sampled points. Due to noise, these sampled



X. Du et al.

(
m
F

t
t
a
u

i
l
t
m

s
a

Neurocomputing 624 (2025) 129392 
Fig. 5. LASSO and Elastic-Net methods for sparse signals recovery. (a) We partition the sampled points into training and testing sets to restore superimposed sinusoidal signals.
b) Reconstruction results of the FISTA algorithm, where the red pot represents the reconstructed signal and the blue line represents the target signal. The 𝑅2 value is used to
easure the discrepancy between the recovered signals in the test set and the actual data points. The execution time for the algorithm is standardized at 2 s, during which the

ISTA optimization algorithm achieves an 𝑅2 value of 0.82. (c) The 𝑅2 value for LASSO is 0.95. (d) Elastic-Net achieves an 𝑅2 value of 0.99.
s

n
w
c
g
C

points deviate from the true signal values. The light red dots serve as
he training dataset, used to determine the coefficient value 𝐚, while
he orange dots act as the testing dataset, to which we subsequently
pply this determined value. The performance of algorithm is eval-
ated based on their goodness of fit score. Fig. 5(b–d) display the

results of the FISTA and the generalized Spiking LCA when applied
to LASSO and Elastic-Net models. Both algorithms are run for 2 s.
The generalized Spiking LCA consistently demonstrated more accurate
predictions compared to FISTA. Moreover, the results underscore that
Elastic-Net outperforms in terms of 𝑅2 score. While LASSO is renowned
for its capability in sparse data recovery, it underperforms when the
features are highly correlated. Indeed, when several correlated features
influence the target, LASSO selects only one representative feature from
the group and discards the others. This can lead to potential loss of
nformation. In contrast, Elastic-Net promotes sparsity in coefficient se-
ection and slightly shrinks towards zero. Therefore, Elastic-Net adjusts
heir weights without eliminating them. This produces a less sparse
odel than a pure LASSO model.

4.1.2. LASSO
Next, we extend the generalized Spiking LCA to solve the uncon-

trained LASSO problem. We introduce non-negative variables 𝐚+ ≥ 0
nd 𝐚− ≥ 0, such that 𝐚 = 𝐚+ − 𝐚− and |𝐚| = 𝐚+ + 𝐚−. By defining

𝛷̃ = [𝛷 ,−𝛷] and 𝐳 =
[

𝐚+, 𝐚−
]

, we reformulate the objective function of
the unconstrained LASSO as:

min
𝐚∈R𝑛

𝑛
∑

𝑖=1
𝐚+ + 𝐚−

s.t. 𝛷𝐚+ −𝛷𝐚− = 𝐬.
+ −

≡
min
𝐳≥0

‖𝐳‖1,

s.t. 𝛷̃𝐳 = 𝐬.
(23)
𝐚 , 𝐚 ≥ 0 n

8 
The problem can be equivalently described using a Lagrangian multi-
plier approach as follows:

min
𝐳

1
2
‖𝐬 − 𝛷̃𝐳‖22 + 𝜆

2𝑁
∑

𝑘=1
𝑧𝑘, 𝑧𝑘 ≥ 0. (24)

Then we introduce a logarithmic barrier term to ensure that 𝑧𝑘 ≥
0, transforming the constrained optimization problem into an uncon-
trained problem [62]. This can be written as:

min
𝐳

1
2
‖𝐱 − 𝛷̃𝒛‖22 + 𝜆

2𝑁
∑

𝑘=1
𝑧𝑘 −

(

1
𝛾

) 2𝑁
∑

𝑘=1
log

(

𝑧𝑘
)

s.t. 𝐶
(

𝑧𝑘
)

= 𝑧𝑘 −
log

(

𝑧𝑘
)

𝛾 𝜆

(25)

where 𝐶(𝑧𝑘) represents a differentiable penalty function. The intercon-
ection between 𝐶(𝑧𝑘) and 𝑇 −1

𝜆 (𝑧𝑘) is given 𝜆 𝑑 𝐶(𝑧𝑘)
𝑑 𝑧𝑘 = 𝑇 −1

𝜆 (𝑧𝑘) − 𝑧𝑘,
hich allows one to solve for 𝑧𝑘 in terms of 𝑢𝑘 to determine the

orresponding activation function 𝑇𝜆(⋅). As an illustrative example, the
eneralized Spiking LCA has been effectively applied to reconstruct the
T image in Section 4.2.2, which belongs to the unconstrained LASSO

problem.

4.2. Applications

4.2.1. Seismic data reconstruction
Next, we demonstrate the utility of our method in a more practical

context: the reconstruction of seismic wave signals, a crucial aspect of
the Earth’s subsurface exploration and monitoring. Our experiment fo-
cuses on reconstructing seismic wave signals using the Ricker wavelet,
renowned for its ability to provide a sparse representation of these sig-
als. It showcases a relatively straightforward appearance characterized



X. Du et al.

l

a

s

S
E
u
s

i
r
t
s

r
C

Neurocomputing 624 (2025) 129392 
Fig. 6. Comparison of seismic signal reconstruction performance using the FISTA and generalized Spiking LCA algorithms. (a) Reconstruction results of the FISTA algorithm, where
the red line represents the reconstructed signal and the blue line represents the original data. (b) Reconstruction results of the generalized Spiking LCA algorithm, where the yellow
ine represents the reconstructed signal and the blue line represents the original data.
u
d

m
c
t

t

n
c
p
o
i
a

by a dominant positive peak flanked by two negative side lobes. From
n analytical perspective, its representation in the time domain is as

follows:

𝐴(𝑡) =
[

1 − 2𝜋2𝑓 2(𝑡 − 𝑡0)2
]

𝑒−𝜋
2𝑓2(𝑡−𝑡0)2 . (26)

Here, 𝐴(𝑡) delineates the wavelet’s amplitude at time 𝑡, 𝑓 denotes the
dominant frequency, and 𝑡0 represents the center time of the wavelet.
The goal is to recover the wavelet coefficient sequence 𝐚 via the
following model:

min
𝐚≥0

1
2
‖𝐬 − 𝐴𝐚‖22 + 𝜆‖𝐚‖1, (27)

where 𝐬 is the measured seismic data, 𝐴 is the Ricker wavelet matrix,
and 𝜆 controls the trade-off between the data fitting and the sparsity
terms. By adjusting the frequency and center time of Ricker wavelets,
you can create a diverse set of wavelets, each with its own distinctive
oscillation speed and temporal positioning. The matrix 𝐴 is then formed
by sampling these varied wavelets at specific time points, with each
column capturing the sampled values of a wavelet at a given frequency
and center time, thereby encompassing a broad spectrum of seismic
characteristics. Utilizing 𝐴, we model 𝐬 by identifying an optimal
combination of wavelet coefficients in the sequence 𝐚. This approach
enhances the interpretation of seismic data, improves the detection
of seismic events, and facilitates the inversion process for estimating
ubsurface characteristics.

We evaluate the performance of both FISTA and the generalized
piking LCA in recovering this signal, specifically using the El Centro
arthquake dataset. The effectiveness of each algorithm is assessed
sing the SNR, with 𝜆 fine-tuned for optimal performance, ultimately
et to 0.01. As shown in Fig. 6, upon execution for a consistent time-

frame of 2 s, the generalized Spiking LCA algorithm is demonstrated
to have superior signal reconstruction quality compared to the FISTA
algorithm, achieving an SNR value of 9.16 dB, in contrast to FISTA’s
4.36 dB.

4.2.2. Computed tomography construction
This section highlights our system’s potential benefits in a med-

cal imaging application, where real-time compressive sensing (CS)
ecovery techniques can provide substantial improvements. Computed
omography (CT) is a widely used imaging technique in medical diagno-
is and treatment. It involves using X-rays to create detailed images of

the body’s internal structures. Compressive CT imaging is of significant
interest because it can reduce scan times, improving patient throughput
and safety by reducing radiation exposure.

In this study, we explore the effectiveness of two different algo-
ithms, generalized Spiking LCA and FISTA, for reconstructing a head
T image. The image can be represented as a vector 𝐱, which is
9 
sparse in the Daubechies wavelet basis, i.e., it can be represented
sing a small number of wavelet coefficients 𝐱 = 𝛹𝐚, where 𝛹 is the
iscrete orthogonal wavelet transform matrix [63]. The signal 𝐱 can

be measured using an 𝑀 ×𝑁 discrete Gaussian random measurement
atrix 𝛷, with 𝑀 ≪ 𝑁 (e.g., the size ratio 𝑀∕𝑁 = 0.2), resulting in a

ompressed measurement vector 𝑠 ∈ R𝑀 . The experiment’s objective is
o recover the head CT image 𝐱 using the following model:

min
𝐚

1
2
‖𝑠 −𝛷 𝛹𝐚‖22 + 𝜆‖𝐚‖1 (28)

We evaluate the performance of the generalized Spiking LCA and
FISTA algorithms for image reconstruction in CT using peak signal-to-
noise ratio (PSNR) as a measure of estimation error. The parameter
𝜆 is fine-tuned and set to 0.01 for optimal results. Fig. 7 shows that
he generalized Spiking LCA algorithm can produce higher quality

reconstructed images, while the quality of images obtained by FISTA
is relatively poor.

5. Conclusion

This paper develops a novel optimization algorithm for constructing
spiking neural networks, generalized from the classical Spiking LCA.
Our algorithm’s unique feature is its flexibility, allowing it to handle
various optimization problems within a unified network architecture.
This is achieved by simply adjusting the external input current to
neurons, which enhances the algorithm’s versatility and minimizes the
need for architectural adjustments, particularly when implemented on
neuromorphic chips. The proposed spiking neural network is based on a
large number of biologically plausible neuron models, encompassing a
range from the LIF model to the Hodgkin–Huxley type model. We have
demonstrated our model’s practical utility and efficiency by applying
it to various real-world problems related to compressed sensing and
signal processing. By outperforming popular optimization algorithms,
such as FISTA, our model confirms its capability to address large-scale
optimization problems more effectively.

One limitation of our algorithm is that the dictionary bases are
ot learnable. However, in certain problems, learning the dictionary
an better represent the underlying structure of the data and im-
rove the performance of the algorithm. Recent studies have focused
n designing neural network architectures to solve dictionary learn-
ng problems [64–67]. Incorporating these methods in our existing
rchitecture can be a promising future research direction.

Another limitation of our algorithm is that it has not been applied to
dynamic signals. However, our algorithm can process dynamic signals
frame by frame independently with moderate efficiency as we have
demonstrated the fast convergence of our algorithm for static signals.
The efficiency can be further improved by taking advantage of the
temporal variations of dynamic signals in the future.



X. Du et al. Neurocomputing 624 (2025) 129392 
Fig. 7. Reconstruction of 256 × 256 pixel CT images from simulated CS acquisition. (a) The original image. (b) The reconstructed image by FISTA, with PSNR value 24.4 dB
at 12 s. (c) The reconstructed image by the generalized Spiking LCA, with PSNR value 34.6 dB at 12 s. These comparative images demonstrate the superior performance of the
generalized Spiking LCA algorithm over FISTA when both algorithms are run for the same time.
CRediT authorship contribution statement

Xuexing Du: Writing – original draft, Visualization, Software,
Methodology, Conceptualization. Zhong-qi K. Tian: Conceptual-
ization. Songting Li: Writing – review & editing, Visualization,
Supervision, Software, Methodology, Funding acquisition, Concep-
tualization. Douglas Zhou: Writing – review & editing, Writing
– original draft, Visualization, Supervision, Software, Methodology,
Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by Science and Technology Innovation
2030 - Brain Science and Brain-Inspired Intelligence Project with Grant
No. 2021ZD0200204 (S.L., D.Z.); National Natural Science Foundation
of China Grant 12271361, 12250710674 (S.L.); National Natural Sci-
ence Foundation of China with Grant No. 12225109, 12071287 (D.Z.),
Lingang Laboratory Grant No. LG-QS-202202-01, and the Student In-
novation Center at Shanghai Jiao Tong University (X.-x.D., Z.-q.K.T.,
S.L., and D.Z.). We also thank Xiaoqun Zhang and Yanan Zhu for their
valuable suggestions and discussions on optimization algorithms.

Appendix

A.1. Neuron models

GIF model. The dynamics of the 𝑖th neuron of a generalized leaky
integrate-and-fire (GIF) network is governed [56,68]

𝑐
d𝑣𝑖
d𝑡

= −𝑔𝐿
(

𝑣𝑖 − 𝑣𝐿
)

+
∑

𝑗
𝐼𝑗 + 𝐼 input

𝑖 ,

d𝜃𝑖
d𝑡

= 𝑎
(

𝑣𝑖 − 𝑣𝐿
)

− 𝑏
(

𝜃𝑖 − 𝜃∞
)

,

d𝐼𝑗
d𝑡

= −𝑘𝑗𝐼𝑗 , 𝑗 = 1, 2,… , 𝑛
if 𝑣𝑖 > 𝜃𝑖, 𝐼𝑗 ← 𝑟𝑗𝐼𝑗 + 𝐴𝑗 , 𝑣𝑖 ← 𝑣reset , 𝜃𝑖 ← max

(

𝜃reset, 𝜃𝑖
)

,

(A.1)

where 𝑣𝑖 represents the membrane potential of the neuron, and 𝑐
refer to the membrane capacitance. The terms 𝑔𝐿 and 𝑣𝐿 are used to
denote the leak conductance and the reversal potential, respectively. 𝐼𝑗
represents an arbitrary number of internal currents. These currents are
primarily influenced by the dynamics of ion channels, providing the
model with the flexibility to simulate various neuronal firing patterns.
10 
Additionally, 𝐼 input
𝑖 denotes the externally injected current. The model

encompasses a total of 𝑛 + 2 variables: the membrane potential 𝑣𝑖, the
membrane potential threshold 𝜃, and 𝑛 internal currents. The decay of
each internal current 𝐼𝑗 is described by a third differential equation,
with a decay rate of 𝑘𝑗 .

In its formulation, the GIF model extends the Leaky Integrate-and-
Fire (LIF) model by integrating the effects of internal ionic currents
into the first differential equation. The second differential equation
elaborates on the dynamics of the firing threshold 𝜃, which is not
constant. The first term of this equation accounts for the influence of
the membrane potential on 𝜃, while the second term delineates the
decay of 𝜃 towards its equilibrium value 𝜃∞ at a decay rate b. Upon
the firing of a neuron, the membrane potential 𝑣𝑖 and the threshold 𝜃
are reset, and the internal currents are adjusted according to specific
rules.

In the numerical simulation, we set parameters as 𝑐 = 1 𝜇F ⋅ cm−2,
𝑔𝐿 = 0.05 mS ⋅ cm−2, 𝑣𝐿 = −70 mV, 𝑣𝑟𝑒𝑠𝑒𝑡 = −70 mV, 𝜃∞ = −50 mV,
𝜃𝑟𝑒𝑠𝑒𝑡 = −60 mV, 𝑛 = 0, 𝑟 = 20, 𝑎 = 0, 𝑏 = 0.01, 𝑘1 = 0.2, 𝑘2 = 0.02.

Morris–Lecar Model. The dynamics of the 𝑖th neuron of a Morris–Lecar
network is governed by [57]

𝑐
𝑑 𝑣𝑖
𝑑 𝑡 = − 𝑔Ca𝑚

∞
𝑖
(

𝑣𝑖 − 𝑣Ca
)

− 𝑔𝐾𝑤𝑖
(

𝑣𝑖 − 𝑣K
)

− 𝑔L
(

𝑣𝑖 − 𝑣L
)

+ 𝐼 input
𝑖

𝑑 𝑤𝑖
𝑑 𝑡 = 1

𝜏𝑤𝑖

(

𝑤∞
𝑖 −𝑤𝑖

)

,

(A.2)

where 𝑐 and 𝑣𝑖 denote the neuron’s membrane capacitance and mem-
brane potential, respectively. 𝐼 input

𝑖 is the injected current. The terms
𝑣Ca, 𝑣K , and 𝑣L represent the reversal potentials for the calcium, potas-
sium, and leak currents, respectively. Correspondingly, 𝑔Ca, 𝑔K , and
𝑔L are the maximum conductances for these currents. The variable
𝑤𝑖 refers to the neuron’s recovery variable, which is a normalized
potassium conductance. The parameters 𝑚∞

𝑖 and 𝑤∞
𝑖 are the voltage-

dependent equilibrium values for the normalized conductances of cal-
cium and potassium, respectively, and are defined by
𝑚∞
𝑖 = 0.5 (1 + t anh [(𝑣𝑖 − 𝑉1

)

∕𝑉2
])

𝑤∞
𝑖 = 0.5 (1 + t anh [(𝑣𝑖 − 𝑉3

)

∕𝑉4
])

,
(A.3)

where 𝑉1, 𝑉2, 𝑉3, and 𝑉4 are the constant parameters. 𝜏𝑤𝑖 is a voltage-
dependent time constant of 𝑤𝑖, defined by

𝜏𝑤𝑖 = 𝜙
(

cosh
𝑣𝑖 − 𝑉3
2𝑉4

)−1
(A.4)

where 𝜙 is a temperature-dependent parameter, fixed as a constant
in simulation. When the voltage reaches threshold 𝑣𝑡ℎ, the neuron
emits a spike to all its postsynaptic neurons. The parameters are set
in numerical simulations as 𝑔Ca = 4.4 mS ⋅ cm−2, 𝑣Ca = 130 mV,
𝑔K = 8 mS ⋅ cm−2, 𝑣K = −84 mV, 𝑔L = 2 mS ⋅ cm−2, 𝑣L = −60 mV,
𝑐 = 20 𝜇F ⋅ cm−2, 𝑉 = −1.2 mV, 𝑉 = 18 mV, 𝑉 = 2 mV, 𝑉 = 30 mV,
1 2 3 4



X. Du et al.

B

s
t

d
a
c
r
t

o

m
c
s
s
t

e

R
t

g
h
o
t
g
l
p
a
m
h

b

Neurocomputing 624 (2025) 129392 
𝜙 = 0.04, and 𝑣th = 0 mV.

Wang–Buzsaki model. The dynamics of the 𝑖th neuron of a Wang–
uzsaki network is governed by [58]

𝑐
𝑑 𝑣𝑖
𝑑 𝑡 = − (

𝐼𝑁 𝑎 + 𝐼𝐾 + 𝐼𝐿
)

+ 𝐼 input
𝑖 , (A.5)

where 𝑐 is the cell membrane capacitance; 𝑣𝑖 is the membrane poten-
tial (voltage); 𝐼 input

𝑖 is the injected current. The leak current 𝐼𝐿 =
𝑔L

(

𝑣𝑖 − 𝑣L
)

, and the transient sodium current

𝐼Na = 𝑔Na𝑚
3
𝑖,∞ℎ

(

𝑣𝑖 − 𝑣Na
)

, (A.6)

where the activation variable 𝑚𝑖 is assumed fast and substituted by its
teady-state function 𝑚𝑖,∞ = 𝛼𝑚∕

(

𝛼𝑚 + 𝛽𝑚
)

. Additionally, the inactiva-
ion variable ℎ𝑖 follows first-order kinetics:
𝑑 ℎ𝑖
𝑑 𝑡 = 𝜙

(

𝛼ℎ(1 − ℎ𝑖) − 𝛽ℎℎ𝑖
)

. (A.7)

The delayed rectifier potassium current

𝐼K = 𝑔k𝑛
4
𝑖
(

𝑣𝑖 − 𝑣K
)

, (A.8)

where the activation variable 𝑛 obeys the following equation:
𝑑 𝑛𝑖
𝑑 𝑡 = 𝜙

(

𝛼𝑛(1 − 𝑛𝑖) − 𝛽𝑛𝑛𝑖
)

. (A.9)

The 𝑚𝑖, ℎ𝑖, and 𝑛𝑖 are gating variables; 𝑣Na, 𝑣K , and 𝑣𝐿 are the reversal
potentials for the sodium, potassium, and leak currents, respectively.
Meanwhile, 𝑔Na, 𝑔K , and 𝑔𝐿 correspond to the maximum conductances
for these currents. The constant 𝜙 serves as a temperature regulation
factor. The rate variables 𝛼𝑧 and 𝛽𝑧 (𝑧 = 𝑚, ℎ, 𝑛) are defined as:

𝛼𝑚(𝑣) = − 0.1(𝑣 + 35)
exp(−0.1(𝑣 + 35)) − 1 , 𝛽𝑚(𝑣) = 4 exp(−𝑣 + 60

18
),

𝛼ℎ(𝑣) = 0.07 exp(−𝑣 + 58
20

), 𝛽ℎ(𝑣) = 1∕(exp(−0.1(𝑣 + 28)) + 1),
𝛼𝑛(𝑣) =

−0.01(𝑣 + 34)
exp(−0.1(𝑣 + 34)) − 1 , 𝛽𝑛(𝑣) = 0.125 exp(−𝑣 + 44

80
).

(A.10)

We take the parameters as in Ref. [58] that 𝑐 = 1 𝜇F ⋅ cm−2,
𝑣Na = 55 mV, 𝑣K = −90 mV, 𝑣𝐿 = −65 mV, 𝑔Na = 35 mS ⋅ cm−2,
𝑔K = 9 mS ⋅ cm−2, 𝑔𝐿 = 0.1 mS ⋅ cm−2 and 𝜙 = 5. When the voltage
𝑣𝑖 reaches the firing threshold, 𝑣t h = 20 mV, we say the 𝑖th neuron
generates a spike at this time.

A.2. Optimization algorithms

In the study of sparse representation and optimization, various algo-
rithms have been developed to solve the LASSO problem [7,35]. Among
these, the FISTA has gained prominence due to their effectiveness
and computational efficiency. This section provides a rationale for the
choice of algorithms compared in our numerical results, focusing on
the efficiency of FISTA in handling large-scale optimization problems
relative to other existing methods.

Currently, optimization algorithms include a series of gradient
escent-based methods such as ISTA, FISTA, and LISTA. FISTA is
n accelerated version of ISTA and is well-known for its superior
onvergence properties. Specifically, FISTA achieves a convergence
ate of 𝑂(1∕𝑘2), compared to the ISTA’s 𝑂(1∕𝑘), where 𝑘 denotes
he iteration number [7]. This accelerated convergence makes FISTA

efficient for large-scale optimization problems, which are central to
ur research focus. Additionally, LISTA introduces a learning-based

approach to accelerate convergence by optimizing parameters through
training data [35]. While LISTA can outperform traditional iterative

ethods in terms of speed, it requires extensive training data and
omputational time for parameter learning. Our study emphasizes un-
upervised algorithms that do not rely on prior training, aligning with
cenarios where training data may not be readily available. Therefore,
o focus on more efficient algorithms that do not depend on training
11 
Fig. A.1. Comparison of execution times for various optimization algorithms (FISTA,
ISTA, LISTA, MP, BP) in seconds, shown on a logarithmic scale. FISTA demonstrates the
shortest execution time, followed by MP, LISTA, ISTA, and BP, which has the longest
execution time. Error bars indicate the variability in execution time for each algorithm
across multiple runs.

data, we exclude LISTA from our comparative analysis.
Several algorithms from the field of signal processing and sparse

representation, such as Matching Pursuit (MP) and Basis Pursuit (BP),
offer alternative approaches to solving optimization problems. How-
ver, these algorithms present certain limitations when applied to

large-scale problems. MP is a greedy algorithm that iteratively selects
dictionary atoms to best match the residual signal. The sequential na-
ture of atom selection can result in significant computational overhead,
making it less efficient for high-dimensional data. BP formulates the
sparse representation problem as a linear programming task. While
precise, linear programming methods can be computationally intensive
for large-scale problems, reducing their practicality in such contexts.

Based on these facts, FISTA outperforms these methods in the con-
text of large-scale optimization problems. To demonstrate this, we next
apply ISTA, LISTA, MP, BP, and FISTA to the same sparse optimization
problem described in Section 4.1, using a consistent dictionary 𝛷 ∈
7500×10000 and a regularization parameter 𝜆 = 0.02. The iterations are

erminated once when NMSE reached below −12 dB, allowing us to
compare the final runtime of each algorithm. As shown in Fig. A.1,
FISTA outperforms the other algorithms in terms of runtime.

Furthermore, Evolutionary Algorithms (EAs), including Genetic Al-
orithm, Differential Evolution, and Particle Swarm Optimization, are
euristic methods widely applied to optimization problems. While they
ffer versatility, EAs often entail high computational complexity due
o the large number of function evaluations required, and they do not
uarantee convergence to the global optimum in optimization problems
ike LASSO. In contrast, FISTA provides a deterministic approach with
roven convergence guarantees and utilizes gradient information to
ccelerate optimization, making it more suitable for large-scale opti-
ization problems where efficiency and reliability are essential. We
ave applied these EAs along with the FISTA algorithm to the same

sparse optimization task described in Section 4.1, using a consistent
dictionary 𝛷 ∈ R10×40 and a regularization parameter 𝜆 = 0.1. As
shown in Fig. A.2, under the same termination condition of NMSE
elow −12 dB, the runtimes of these algorithms are several orders of

magnitude longer than that of the FISTA algorithm.



X. Du et al.

a

t
i

Neurocomputing 624 (2025) 129392 
Fig. A.2. Comparison of execution times (in minutes) for different optimization
lgorithms: FISTA, Differential Evolution (DE), Genetic Algorithm (GA), and Particle

Swarm Optimization (PSO). The execution time is plotted on a logarithmic scale,
indicating that FISTA is significantly faster than the other algorithms. Error bars
represent the variability in execution time across multiple runs.

Data availability

All code for synthetic signal generation, as well as the implementa-
ions of FISTA, generalized Spiking LCA, and related plotting functions,
s available on GitHub at https://github.com/XuexingDu/Spiking-LCA.

References

[1] A. De Maio, Y.C. Eldar, A.M. Haimovich, Compressed Sensing in Radar Signal
Processing, Cambridge University Press, 2019.

[2] J. Zhang, B. Chen, R. Xiong, Y. Zhang, Physics-inspired compressive sensing:
Beyond deep unrolling, IEEE Signal Process. Mag. 40 (1) (2023) 58–72.

[3] X. Chai, J. Fu, Z. Gan, Y. Lu, Y. Zhang, An image encryption scheme based on
multi-objective optimization and block compressed sensing, Nonlinear Dynam.
108 (3) (2022) 2671–2704.

[4] D. Kuzin, O. Isupova, L. Mihaylova, Bayesian neural networks for sparse coding,
in: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP, IEEE, 2019, pp. 2992–2996.

[5] L. Aitchison, M. Lengyel, With or without you: predictive coding and Bayesian
inference in the brain, Curr. Opin. Neurobiol. 46 (2017) 219–227.

[6] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse
coding, in: Proceedings of the 26th Annual International Conference on Machine
Learning, 2009, pp. 689–696.

[7] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear
inverse problems, SIAM J. Imaging Sci. 2 (1) (2009) 183–202.

[8] J. Xiang, Y. Dong, Y. Yang, FISTA-Net: Learning a fast iterative shrinkage
thresholding network for inverse problems in imaging, IEEE Trans. Med. Imaging
40 (5) (2021) 1329–1339.

[9] C. Yi, L. Ran, J. Tang, H. Jin, Z. Zhuang, Q. Zhou, J. Lin, An improved sparse
representation based on local orthogonal matching pursuit for bearing compound
fault diagnosis, IEEE Sens. J. 22 (22) (2022) 21911–21923.

[10] D.J. Field, What is the goal of sensory coding? Neural Comput. 6 (4) (1994)
559–601.

[11] B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by
learning a sparse code for natural images, Nature 381 (6583) (1996) 607–609.

[12] M. Rehn, F.T. Sommer, A network that uses few active neurones to code visual
input predicts the diverse shapes of cortical receptive fields, J. Comput. Neurosci.
22 (2) (2007) 135–146.

[13] R.N. Sachdev, M.R. Krause, J.A. Mazer, Surround suppression and sparse coding
in visual and barrel cortices, Front. Neural Circuits 6 (2012) 43.

[14] M. Zhu, C.J. Rozell, Visual nonclassical receptive field effects emerge from sparse
coding in a dynamical system, PLoS Comput. Biol. 9 (8) (2013) e1003191.

[15] V.J. Barranca, D. Zhou, Compressive sensing inference of neuronal network
connectivity in balanced neuronal dynamics, Front. Neurosci. 13 (2019) 492216.
12 
[16] V. Boutin, A. Franciosini, F. Chavane, F. Ruffier, L. Perrinet, Sparse deep
predictive coding captures contour integration capabilities of the early visual
system, PLoS Comput. Biol. 17 (1) (2021) e1008629.

[17] V.J. Barranca, G. Kovačič, D. Zhou, D. Cai, Sparsity and compressed coding in
sensory systems, PLoS Comput. Biol. 10 (8) (2014) e1003793.

[18] S. Shapero, M. Zhu, J. Hasler, C. Rozell, Optimal sparse approximation with
integrate and fire neurons, Int. J. Neural Syst. 24 (05) (2014) 1440001.

[19] P.T.P. Tang, T.H. Lin, M. Davies, Sparse coding by spiking neural networks:
Convergence theory and computational results, 2017, arXiv preprint arXiv:1705.
05475.

[20] V.J. Barranca, G. Kovačič, D. Zhou, The role of sparsity in inverse problems for
networks with nonlinear dynamics, Commun. Math. Sci. 17 (5) (2019).

[21] V.J. Barranca, Neural network learning of improved compressive sensing
sampling and receptive field structure, Neurocomputing 455 (2021) 368–378.

[22] L. Zhang, X. Wei, J. Lu, J. Pan, Lasso regression: from explanation to prediction,
Adv. Psychol. Sci. 28 (10) (2020) 1777.

[23] H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R.
Stat. Soc. Ser. B Stat. Methodol. 67 (2) (2005) 301–320.

[24] L. He, Y. Chen, C. Zhong, K. Wu, Granular elastic network regression with
stochastic gradient descent, Mathematics 10 (15) (2022) 2628.

[25] M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P.
Joshi, N. Imam, S. Jain, et al., Loihi: A neuromorphic manycore processor with
on-chip learning, IEEE Micro 38 (1) (2018) 82–99.

[26] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G.A.F. Guerra, P. Joshi, P.
Plank, S.R. Risbud, Advancing neuromorphic computing with loihi: A survey of
results and outlook, Proc. IEEE 109 (5) (2021) 911–934.

[27] K.L. Fair, D.R. Mendat, A.G. Andreou, C.J. Rozell, J. Romberg, D.V. Ander-
son, Sparse coding using the locally competitive algorithm on the TrueNorth
neurosynaptic system, Front. Neurosci. 13 (2019) 754.

[28] Y. Watkins, E. Kim, A. Sornborger, G.T. Kenyon, Using sinusoidally-modulated
noise as a surrogate for slow-wave sleep to accomplish stable unsupervised
dictionary learning in a spike-based sparse coding model, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
2020, pp. 360–361.

[29] C. Wu, Y. Xue, H. Bao, L. Yang, J. Li, J. Tian, S. Ren, Y. Li, X. Miao, Forward
stagewise regression with multilevel memristor for sparse coding, J. Semicond.
44 (10) (2023) 104101.

[30] C.N. Chou, K.M. Chung, C.J. Lu, On the algorithmic power of spiking neural
networks, 2018, arXiv preprint arXiv:1803.10375.

[31] K. Henke, M. Teti, G. Kenyon, B. Migliori, G. Kunde, Apples-to-spikes: The first
detailed comparison of LASSO solutions generated by a spiking neuromorphic
processor, in: Proceedings of the International Conference on Neuromorphic
Systems 2022, 2022, pp. 1–8.

[32] D. Chavez Arana, A. Renner, A. Sornborger, Spiking LCA in a neural circuit
with dictionary learning and synaptic normalization, in: Proceedings of the 2023
Annual Neuro-Inspired Computational Elements Conference, 2023, pp. 47–51.

[33] N. Zins, Neuromorphic Computing Applications in Robotics (Ph.D. thesis),
Michigan Technological University, 2023.

[34] D. Chavez Arana, A. Renner, A. Sornborger, A neuromorphic normalization
algorithm for stabilizing synaptic weights with application to dictionary learning
in LCA, in: Proceedings of the 2022 Annual Neuro-Inspired Computational
Elements Conference, 2022, pp. 58–60.

[35] K. Gregor, Y. LeCun, Learning fast approximations of sparse coding, in: Proceed-
ings of the 27th international conference on international conference on machine
learning, 2010, pp. 399–406.

[36] S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE
Trans. Signal Process. 41 (12) (1993) 3397–3415.

[37] S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit,
SIAM Rev. 43 (1) (2001) 129–159.

[38] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998.
[39] S. Das, P.N. Suganthan, Differential evolution: A survey of the state-of-the-art,

IEEE Trans. Evol. Comput. 15 (1) (2010) 4–31.
[40] D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview,

Soft Comput. 22 (2) (2018) 387–408.
[41] I.A. Kougioumtzoglou, I. Petromichelakis, A.F. Psaros, Sparse representations

and compressive sampling approaches in engineering mechanics: A review of
theoretical concepts and diverse applications, Probab. Eng. Mech. 61 (2020)
103082.

[42] L. Wang, L. Zhao, L. Yu, J. Wang, G. Bi, Structured Bayesian learning for recovery
of clustered sparse signal, Signal Process. 166 (2020) 107255.

[43] C. Wang, X. Li, K. Xuan, Y. Jiang, R. Jia, J. Ji, J. Liu, Interpolation of soil
properties from geostatistical priors and DCT-based compressed sensing, Ecol.
Indic. 140 (2022) 109013.

[44] G. Xu, B. Zhang, H. Yu, J. Chen, M. Xing, W. Hong, Sparse synthetic aper-
ture radar imaging from compressed sensing and machine learning: Theories,
applications, and trends, IEEE Geosci. Remote. Sens. Mag. 10 (4) (2022) 32–69.

[45] D.L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (4) (2006)
1289–1306.

[46] Y.M. Li, D. Wei, L. Zhang, Double-encrypted watermarking algorithm based on
cosine transform and fractional Fourier transform in invariant wavelet domain,
Inform. Sci. 551 (2021) 205–227.

https://github.com/XuexingDu/Spiking-LCA
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb1
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb1
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb1
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb2
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb2
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb2
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb3
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb3
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb3
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb3
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb3
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb4
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb4
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb4
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb4
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb4
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb5
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb5
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb5
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb6
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb6
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb6
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb6
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb6
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb7
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb7
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb7
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb8
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb8
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb8
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb8
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb8
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb10
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb10
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb10
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb11
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb11
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb11
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb14
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb14
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb14
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb15
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb15
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb15
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb17
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb17
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb17
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb18
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb18
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb18
http://arxiv.org/abs/1705.05475
http://arxiv.org/abs/1705.05475
http://arxiv.org/abs/1705.05475
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb20
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb20
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb20
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb21
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb21
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb21
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb22
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb22
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb22
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb23
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb23
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb23
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb24
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb24
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb24
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb25
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb25
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb25
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb25
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb25
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb29
http://arxiv.org/abs/1803.10375
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb32
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb32
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb32
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb32
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb32
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb33
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb33
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb33
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb36
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb36
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb36
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb37
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb37
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb37
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb38
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb39
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb39
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb39
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb40
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb40
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb40
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb42
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb42
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb42
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb43
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb43
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb43
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb43
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb43
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb45
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb45
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb45
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb46
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb46
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb46
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb46
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb46


X. Du et al. Neurocomputing 624 (2025) 129392 
[47] T. Ueda, Y. Ohno, K. Yamamoto, A. Iwase, T. Fukuba, S. Hanamatsu, Y. Obama,
H. Ikeda, M. Ikedo, M. Yui, et al., Compressed sensing and deep learning
reconstruction for women’s pelvic MRI denoising: utility for improving image
quality and examination time in routine clinical practice, Eur. J. Radiol. 134
(2021) 109430.

[48] B.K. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput.
24 (2) (1995) 227–234.

[49] C.J. Rozell, D.H. Johnson, R.G. Baraniuk, B.A. Olshausen, Sparse coding via
thresholding and local competition in neural circuits, Neural Comput. 20 (10)
(2008) 2526–2563.

[50] A. Balavoine, J. Romberg, C.J. Rozell, Convergence and rate analysis of neural
networks for sparse approximation, IEEE Trans. Neural Netw. Learn. Syst. 23 (9)
(2012) 1377–1389.

[51] X. Zhang, L. Yu, G. Zheng, Y.C. Eldar, Spiking sparse recovery with non-convex
penalties, IEEE Trans. Signal Process. 70 (2022) 6272–6285.

[52] A. Balavoine, C.J. Rozell, J. Romberg, Convergence of a neural network for
sparse approximation using the nonsmooth Łojasiewicz inequality, in: The 2013
International Joint Conference on Neural Networks, IJCNN, IEEE, 2013, pp. 1–8.

[53] L. Chen, Y. Gu, The convergence guarantees of a non-convex approach for sparse
recovery, IEEE Trans. Signal Process. 62 (15) (2014) 3754–3767.

[54] S.M. Fosson, A biconvex analysis for lasso 𝓁1 reweighting, IEEE Signal Process.
Lett. 25 (12) (2018) 1795–1799.

[55] C. Wang, T. Zhang, X. Chen, S. He, S. Li, S. Wu, BrainPy, a flexible, inte-
grative, efficient, and extensible framework for general-purpose brain dynamics
programming, Elife 12 (2023) e86365.

[56] Ş. Mihalaş, E. Niebur, A generalized linear integrate-and-fire neural model
produces diverse spiking behaviors, Neural Comput. 21 (3) (2009) 704–718.

[57] K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, H. Kawakami, Bifurcations in
Morris–Lecar neuron model, Neurocomputing 69 (4–6) (2006) 293–316.

[58] X.J. Wang, G. Buzsáki, Gamma oscillation by synaptic inhibition in a
hippocampal interneuronal network model, J. Neurosci. 16 (20) (1996)
6402–6413.

[59] L. Calatroni, L.U. Perrinet, D. Prandi, et al., Beyond 𝓁1 sparse coding in V1, PLoS
Comput. Biol. 19 (9) (2023) e1011459.

[60] E. Soubies, L. Blanc-Féraud, G. Aubert, A continuous exact 𝓁0 penalty (CEL0) for
least squares regularized problem, SIAM J. Imaging Sci. 8 (3) (2015) 1607–1639.

[61] Z. Lu, Iterative reweighted minimization methods for 𝓁𝑝 regularized
unconstrained nonlinear programming, Math. Program. 147 (1) (2014) 277–307.

[62] A.S. Charles, P. Garrigues, C.J. Rozell, Analog sparse approximation with
applications to compressed sensing, 2011, arXiv preprint arXiv:1111.4118.

[63] J. Shen, G. Strang, Asymptotics of daubechies filters, scaling functions, and
wavelets, Appl. Comput. Harmon. Anal. 5 (3) (1998) 312–331.

[64] T. Hu, C. Pehlevan, D.B. Chklovskii, A hebbian/anti-hebbian network for online
sparse dictionary learning derived from symmetric matrix factorization, in: 2014
48th Asilomar Conference on Signals, Systems and Computers, IEEE, 2014, pp.
613–619.

[65] W. Brendel, R. Bourdoukan, P. Vertechi, C.K. Machens, S. Denéve, Learning to
represent signals spike by spike, PLoS Comput. Biol. 16 (3) (2020) e1007692.

[66] C. Pehlevan, A.M. Sengupta, D.B. Chklovskii, Why do similarity matching
objectives lead to Hebbian/anti-Hebbian networks? Neural Comput. 30 (1)
(2017) 84–124.

[67] T.H. Lin, P.T.P. Tang, Sparse dictionary learning by dynamical neural networks,
in: International Conference on Learning Representations, 2019.

[68] C. Teeter, R. Iyer, V. Menon, N. Gouwens, D. Feng, J. Berg, A. Szafer, N. Cain, H.
Zeng, M. Hawrylycz, et al., Generalized leaky integrate-and-fire models classify
multiple neuron types, Nat. Commun. 9 (1) (2018) 709.
13 
Xuexing Du earned his B.S. in Mathematics from Shanghai
Jiao Tong University in 2018 and is currently pursuing
a Ph.D. in Applied Mathematics at the same institution.
His research focuses on the dynamical modeling of neurons
and neural networks, leveraging statistical machine learning
methods for parameter estimation in complex models, as
well as the efficient solution of large-scale optimization
problems.

Zhong-qi K. Tian earned his B.S. in Mathematics (2014)
and Ph.D. in Applied Mathematics (2020) from Shanghai
Jiao Tong University. His research interests include causal
inference, the development of efficient computational meth-
ods for large-scale cortical networks, and the exploration of
mechanisms underlying brain information processing.

Songting Li is a Professor at the Institute of Natural Sci-
ences and the School of Mathematical Sciences at Shanghai
Jiao Tong University. He earned both his B.S. (2010) and
Ph.D. (2014) in Mathematics from Shanghai Jiao Tong
University before serving as a Postdoctoral Researcher at
the Courant Institute of Mathematical Sciences, New York
University, from 2015 to 2018. His research has been fea-
tured in prestigious journals such as PNAS, CPAM, Cerebral
Cortex, Cell Reports, and NeurIPS. His academic interests
span applied mathematics and computational neuroscience,
with a particular focus on dendritic computation in neurons,
the structure and dynamics of neural networks, and the
development of brain-inspired algorithms.

Douglas Zhou is a Distinguished Professor at the Institute
of Natural Sciences and the School of Mathematical Sci-
ences at Shanghai Jiao Tong University. He earned both
his B.S. (2002) and Ph.D. (2007) in Mathematics from
Peking University before conducting postdoctoral research
at the Courant Institute of Mathematical Sciences, New
York University, from 2007 to 2009. His research has
been featured in prestigious journals such as CAMP, PNAS,
Physical Review Letters, and NeurIPS. His academic inter-
ests focus on computational neuroscience, including the
mathematical modeling and simulation of neuronal net-
work dynamics, the development of efficient computational
methods for large-scale cortical networks, the exploration
of mechanisms underlying brain information processing,
and the creation of novel mathematical tools to analyze
experimental neurophysiological data.

http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb48
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb48
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb48
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb49
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb49
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb49
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb49
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb49
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb50
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb50
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb50
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb50
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb50
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb51
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb51
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb51
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb52
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb52
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb52
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb52
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb52
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb53
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb53
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb53
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb54
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb54
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb54
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb55
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb55
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb55
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb55
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb55
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb56
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb56
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb56
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb57
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb57
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb57
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb58
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb58
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb58
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb58
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb58
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb59
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb59
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb59
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb60
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb60
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb60
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb61
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb61
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb61
http://arxiv.org/abs/1111.4118
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb63
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb63
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb63
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb64
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb64
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb64
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb64
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb64
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb64
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb64
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb65
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb65
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb65
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb66
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb66
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb66
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb66
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb66
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb67
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb67
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb67
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb68
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb68
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb68
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb68
http://refhub.elsevier.com/S0925-2312(25)00064-5/sb68

	A generalized Spiking Locally Competitive Algorithm for multiple optimization problems
	Introduction
	Related Works

	Sparse Approximation and Recovery Problems
	The generalized Spiking LCA
	Review of LCA and Spiking LCA
	The generalized Spiking LCA

	Numerical experiments
	Signal recovery
	Elastic-Net
	LASSO

	Applications
	Seismic data reconstruction
	Computed Tomography construction


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Neuron Models
	Optimization Algorithms

	Appendix . Data availability
	References


