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Emergence of spatially periodic diffusive waves in small-world neuronal networks
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It has been observed in experiment that the anatomical structure of neuronal networks in the brain possesses
the feature of small-world networks. Yet how the small-world structure affects network dynamics remains to
be fully clarified. Here we study the dynamics of a class of small-world networks consisting of pulse-coupled
integrate-and-fire (I&F) neurons. Under stochastic Poisson drive, we find that the activity of the entire network
resembles diffusive waves. To understand its underlying mechanism, we analyze the simplified regular-lattice
network consisting of firing-rate-based neurons as an approximation to the original I&F small-world network.
We demonstrate both analytically and numerically that, with strongly coupled connections, in the absence of
noise, the activity of the firing-rate-based regular-lattice network spatially forms a static grating pattern that
corresponds to the spatial distribution of the firing rate observed in the I&F small-world neuronal network.
We further show that the spatial grating pattern with different phases comprise the continuous attractor of both
the I&F small-world and firing-rate-based regular-lattice network dynamics. In the presence of input noise, the
activity of both networks is perturbed along the continuous attractor, which gives rise to the diffusive waves.
Our numerical simulations and theoretical analysis may potentially provide insights into the understanding of
the generation of wave patterns observed in cortical networks.
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I. INTRODUCTION

Neuronal networks exhibit rich dynamics. For example,
waves of neuronal activity have been observed in multiple
brain areas and brain states across species [1–3], which can be
either spontaneously generated or evoked by external stimuli
[4,5]. In addition, neuronal population activity can synchro-
nize and oscillate [6,7] to support rich cognitive functions [8].
And the membrane potential of individual neurons in the net-
work has been observed to switch between up and down states
under certain brain conditions [9–11]. The alternating activity
is believed to be crucial for sensory signal processing [12–14],
which may correlate with the bistability of neuronal dynamics
[15] and the spike-timing-dependent adaption process [16]. At
present, the mechanisms underlying many of these dynamical
phenomena are under active investigation.

It is believed that the rich dynamics of neuronal networks
are intimately related to the corresponding network structures,
i.e., cortical connections linking individual neurons and neu-

*songting@sjtu.edu.cn
†zdz@sjtu.edu.cn

ronal populations are a key determinant of the capacity of the
cortex to generate complex network dynamics. Accordingly,
many studies have theoretically investigated the influence of
network structure with specific types of connections on the
dynamics of neuronal networks. For instance, it has been
found that slow and fast oscillations can emerge in a sparsely
and randomly connected network [17]. In other studies, by
accounting for the fact that neurons prefer connecting locally
to their neighbors, various localized connectivity kernels have
been used to investigate network dynamics. Traveling waves
can be generated when the connectivity kernel possesses an
exponential decay structure [18,19]. Localized bump activity
has been observed when the connectivity kernel follows a
Gaussian profile [20]. In addition, static periodic structure can
be generated when the connectivity kernel takes the shape of
a Mexican hat [21].

In addition to the aforementioned properties of cortical
connections, neuronal networks have been observed to pos-
sess the prominent property of small-world networks [22,23]
with high clustering coefficients and short path lengths [24]
in various brain areas across species. For instance, the small-
world property has been identified in the full connectivity
matrix of nematode Caenorhabditis elegans [25], macaque
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visual cortex [26], cat thalamocortical circuit [27], and the
human brain [28]. As the small-world topology minimizes
wiring costs in the brain meanwhile keeping high dynamical
complexity [29], it is of great interest to investigate network
dynamics with small-world connectivity in the experimental
and computational neuroscience fields.

The influence of small-world structure on neuronal net-
work dynamics has been investigated previously. It has been
shown that small-world structure can induce or influence
particular dynamics, e.g., synchronization dynamics and self-
sustained dynamics in the integrate-and-fire neuronal network
[30,31]. Moreover, the small-world topology can affect the
spike mode of neurons in the excitatory Hodgkin-Huxley
neuronal network [32], and the network clustering properties
have strong relevance to the decision-making accuracy in a
firing rate neuronal network [33]. In addition to neuronal
networks, there are studies showing that the dynamics of
epidemic and rumor spreading among agents can also be
highly influenced by small-world network properties [34,35].
In particular, small-world networks are found to present a
much faster disease propagation than regular-lattice networks
[36].

In this work, we numerically and analytically investigate
how the small-world structure generated from the effective
rewiring of regular-lattice networks gives rise to the dynamics
of spontaneous waves in the network. The article is organized
as follows. In Sec. II, we introduce the integrate-and-fire
(I&F) network model, the generation of network connectiv-
ity, and the simulation algorithm of network dynamics. In
Sec. III, we numerically investigate the dynamics of small-
world networks composed of I&F neurons, and find that the
activity of the entire network resembles diffusive waves, and
the activity of an individual neuron alternates between up and
down states when the coupling strength is sufficiently strong.
In Sec. IV, we analyze the simplified firing-rate-based regular-
lattice network model to extract the mechanism underlying
the observed dynamical phenomena in our simulations of
the I&F small-world networks, and further show that the
spatial grating pattern with different phases comprise the
continuous attractor of the dynamics in both the I&F small-
world networks and firing-rate-based regular-lattice networks.
In Sec. V, we explore the dynamics of small-world networks
by varying the network sparsity and dimension. Finally, in
Sec. VI, we discuss the implications of our work and its
novelty in contrast to previous works.

II. NETWORK MODELS AND SIMULATION
ALGORITHMS

A. Integrate-and-fire neuronal model

The I&F neuronal network model has been applied to
capture many dynamical phenomena observed in large-scale
neuronal assemblies [17,37–40]. The neuronal network in our
simulations is composed of both excitatory (E ) and inhibitory
(I) neurons. The governing equation for the membrane poten-
tial vk

i of the ith neuron in the kth population (k = E , I) is

dvk
i

dt
= −gL

(
vk

i − εR
) + Ik

i (t ), (1)

where εR is the resting voltage, gL is the leak conductance, and
Ik
i (t ) is the input current. The voltage vk

i evolves according
to Eq. (1) when vk

i < εT , where εT is the firing threshold.
As vk

i crosses εT , the neuron sends a pulse input to its con-
nected downstream neurons at the time when vk

i reaches εT ;
meanwhile vk

i is reset to its resting voltage εR. Upon resetting,
vk

i immediately follows Eq. (1) again. In our simulations, we
choose gL = 50 s−1. In addition, the dimensionless values of
the voltages are set as εR = 0.0, εT = 1.0 [41,42].

The input current injected into the ith neuron of the kth
population consists of three parts,

Ik
i (t ) = IkExt

i (t ) + IkE
i (t ) + IkI

i (t ), (2)

where IkExt
i (t ) = f k

∑
s δ(t − ζ k

is) is the feed-forward external

input, IkE
i (t ) = JE

∑NE

j=1 CkE
i j

∑
s δ(t − τE

js) is the recurrent
excitatory input from neurons in the network, and IkI

i (t ) =
−JI

∑NI

j=1 CkI
i j

∑
s δ(t − τ I

js) is the recurrent inhibitory input
from neurons in the network. Here δ(·) is the Dirac delta
function, f k is the strength of the external input to a neu-
ron in the kth population, and Jl is the coupling strength
between a neuron and its upstream neurons from the lth
population (k, l = E , I). The coupling constant Ckl

i j = 1 or 0
is an element in the connectivity matrix of the network that
describes whether there exists a connection from the upstream
jth neuron in the lth population to the downstream ith neuron
in the kth population. The spike-time sequence {ζ k

is} from
the external input to the ith neuron in the kth population is
generated by a stochastic Poisson process with rate νk . The
feed-forward external Poisson input to each neuron in the
network is generated independently. The spike-time sequence
{τ k

js} of the recurrent input is the time of the sth spike from the
jth neuron in the kth population (k = E , I) generated from the
network dynamics.

B. Network connectivity

We consider a network of NE excitatory neurons and NI

inhibitory neurons. For the construction of a one-dimensional
small-world network, we first uniformly place all the exci-
tatory neurons in a line (0,1] with the ith excitatory neuron
located at x = i/NE , and we take the same procedure for all
the inhibitory neurons. Then, we apply a distance-dependent
algorithm [43] to generate network connectivity including
the regular-lattice and small-world types. The details of the
algorithm are described below. We first calculate the distance
between the ith neuron in the kth population and the jth
neuron in the lth population defined as dkl

i j = 2 min(|i/Nk −
j/Nl |, 1 − |i/Nk − j/Nl |). We then calculate the probability
that an edge from the jth neuron in the lth population to the
ith neuron in the kth population exists as

p
(
Ckl

i j = 1
) = βpl

0 + (1 − β )�
(
pl

0 − dkl
i j

)
, (3)

where �(·) is the Heaviside function, and pl
0 is the parameter

representing the sparsity of the network. For example, pl
0 = 0

corresponds to a network with no connections, and pl
0 = 1

corresponds to a network with all-to-all connections. Note
that, we set pl

0 to be only dependent on the upstream neuron
type l (l = E , I). The parameter β is the rewiring probabil-
ity representing the chance of long-range connections. For
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FIG. 1. The network connectivity. (a) Average path length L(β )
(red circles) and clustering coefficient C(β ) (blue squares) in the
networks generated by Eq. (3) (normalized by their values in the
regular-lattice limit) as function of β. We choose NE = NI = 104

and pE
0 = pI

0 = 0.1. (b) The small-world connectivity profile. The
neuron located at xi (= i/N) prefers to receive links from its local
neighbors, i.e., presynaptic excitatory neurons located in the range
[xi − pE

0 /2, xi + pE
0 /2] (red) and presynaptic inhibitory neurons lo-

cated in the range [xi − pI
0/2, xi + pI

0/2] (blue). In addition, due to
the small-world property, there also exist a few long-range connec-
tions (dashed lines).

example, as shown in Fig. 1(a), β = 0 corresponds to a
regular-lattice network where neurons are locally connected
with one another only when the distance among them is short.
It can be seen that the regular-lattice network possesses a high
clustering coefficient and a long average path length among
neurons; β = 1 corresponds to an Erdös-Rényi random net-
work where each neuron is globally connected with other
neurons with equal probability despite the distance among
them. It can be seen that the Erdös-Rényi random network
possesses a low clustering coefficient and a short average path
length among neurons; and a small β value (e.g., 0.001 <

β < 0.1) corresponds to a small-world network with both high
clustering coefficients and short path lengths. In our simula-
tions, we set β = 0.01 to generate small-world networks. The
connectivity profile of the small-world networks is shown in
Fig. 1(b).

Finally, we generate the connections between any two
neurons based on the connection probability calculated by
Eq. (3). We repeat the process for all pairs of neurons to
generate networks with the structures of regular-lattice and
small-world properties for our simulations. It has been shown
[43] that this process is equivalent to the rewiring process in a
regular-lattice network proposed in Ref. [25]. We thus refer to
this process as the effective rewiring process.

C. Simulation algorithms

The simulation of the I&F neuronal network is carried
out by the event-driven algorithm [44] that achieves machine
accuracy. The event-driven algorithm for Poisson process as
external inputs proceeds by generating the time of the next
external spike. When a neuron receives an external spike, its
voltage will increase. If the voltage exceeds the threshold, this
neuron is said to fire at the time when its voltage reaches the
threshold and sends pulse input to its downstream neurons.
Its voltage is then held at the reset level, and the voltages
of its downstream neurons are instantaneously increased (for
excitatory inputs) or decreased (for inhibitory inputs). It is

possible that the voltages of these downstream neurons may
now cross the threshold as well. In such a case, these neu-
rons also fire. Subsequently, their voltages are held at the
reset level, meanwhile their downstream neurons’ voltages are
changed. This process repeats until no new neurons fire. We
emphasize that in our dynamics we hold the voltage of the
neurons that just fired at the reset level in order to prevent any
of these neurons from firing more than once at any given time.
After all the neurons are updated at the current simulation
time, we release these neurons from the reset voltage to follow
the dynamics governed by Eq. (1) until the next external spike.

III. SIMULATIONS OF I&F NEURONS IN SMALL-WORLD
NETWORKS

Here we perform the simulation of pulse-coupled I&F neu-
rons in a network with small-world structure. When the recur-
rent input strength is small, as shown in Fig. 2(a), neurons fire
irregularly and asynchronously. This activity pattern has been
commonly observed in many theoretical studies [45,46] and
experimental recordings [47]. As the input strength increases,
after crossing a critical value, the network starts to spatially
form multiple active clusters in the line (0, 1]. Neurons within
each cluster fire actively, and neurons between each cluster
stay silent. As shown in Fig. 2(b), these active clusters are
approximately evenly spaced during a time period of hundreds
of milliseconds. We refer to this network activity as the
grating pattern. We note that this grating pattern has also
been observed in other networks with different connectivity
structures [19,48]. However, the mechanisms underlying this
pattern generation have not been fully studied. For instance,
the grating pattern is found to be related to the instability
of the system with positive eigenvalues [19,48]. Yet how the
spatial frequency of the grating pattern is determined remains
unclear. Interestingly, when the network evolves for hundreds
of seconds, the active clusters start to move up and down
continuously, as shown in Fig. 2(c). And these active clusters
remain approximately evenly spaced during their movement.
Consequently, if we randomly select a neuron and record its
membrane potential trace, we can observe clear transitions
between active and inactive states, i.e., up and down states,
as shown in Fig. 2(d).

We next quantitatively characterize the properties of the
grating pattern observed in the simulations of I&F small-
world neuronal network dynamics. Within a short time period,
the grating pattern is found to be nearly static. In addition,
as shown in Fig. 2(e), it can be approximated by a periodic
function r(x) = rmax[1 + cos(ωx + φ)]/2, where ω and φ

capture the spatial frequency and the phase of the grating
pattern, respectively. To characterize the long-time behavior
of the grating pattern, we divide a long time period into several
short time periods, and calculate the frequency and phase
values in each short time period correspondingly. In particular,
the phase is calculated sequentially along time and, in each
time period, it is chosen to be the value closest to the phase
value in the previous time period. Therefore, the phase value
can go beyond the range of [0, 2π ]. It has been found in our
simulations that the frequency is time invariant but the phase
is time dependent. Therefore, we can use the phase value to
parametrize the dynamics of the grating pattern.
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FIG. 2. Dynamics of I&F neurons in a small-world network.
(a)–(c) Spike rasters of all the excitatory neurons. (a) is the case
of weak connection and (b) and (c) are the cases of strong con-
nection. (b) and (c) show the short- and long-time behavior of
the network, respectively. (d) Normalized membrane potential of
a sample neuron that exhibits transitions between up and down
states as time evolves. (e) The spatial profile of the network firing
activity in the line (0,1] (blue) fitted by the function r(x) = rmax[1 +
cos(ωx + φ)]/2 (red). The time-averaged firing rate of each neuron
is obtained from (b). (f) Variance of phase difference δφ as a
function of time increment δT . The blue dots are obtained from
the simulation in the I&F small-world neuronal network, and the
black line is the linear fitting with slope 0.39. We set JE = 0.001,
νE = νI = 3 kHz for (a) and JE = 0.01, νE = νI = 6.7 kHz for
(b)–(f). Other parameters are pE

0 = pI
0 = 0.1, NE = NI = 104, f E =

f I = 0.03, and JI = 2JE . Here the dynamics of the inhibitory popu-
lation is almost the same as that of the excitatory population shown
above.

We then calculate the difference between two phases corre-
sponding to the start and the end of each long time period with
length δT . As shown in Fig. 2(f), the variance of the phase
change is nearly proportional to the time increment δT , i.e.,

Var(δφ) = 2DδT,

where D is a constant. This linear relation indicates that the
phase dynamics of the network firing activity is a diffusion

process. We next perform a theoretical analysis to investigate
the mechanism underlying the generation of the grating pat-
tern and the diffusive activity of the I&F small-world neuronal
network.

IV. ANALYSIS OF THE MECHANISM UNDERLYING
NETWORK DYNAMICS

A. The emergence of the grating pattern

For the ease of analysis, we introduce the firing-rate-based
neuronal model as an approximation to the I&F neuronal
model. The firing rate dynamics of the ith neuron in the kth
population is the following:

τr
drk

i

dt
= −rk

i + �
(
μk

i (t )
)
, (4)

where μk
i (t ) is the total current input to the ith neuron in

the kth population, and �(·) is the transfer function that de-
scribes the relationship between an input and the correspond-
ing neuronal firing rate response. The transfer function has
the threshold-linear function form �(x) = (x − x0)�(x − x0)
which has similar features to the gain curve of the I&F neuron.
Here �(·) is the Heaviside function. This kind of nonlinear
transfer function has been studied previously [49–51]. In
addition, x0 is the effective threshold and τr is the time
constant of the firing rate. In this work, we take x0 = gL/2 and
τr = 2 ms.

As shown in Fig. 3(a), we find that the approximation
is quite good for the single neuron dynamics. In addition,
according to Eq. (2), the total input is given by

μk
i (t ) = f kνk + JE

NE∑
j=1

CkE
i j rE

j (t )

− JI
NI∑
j=1

CkI
i j rI

j (t ) + σ kξ k
i (t ),

where f k , JE , JI , and Ckl
i j are defined in the same way as those

in the I&F neuronal model, νk is a constant corresponding to
the rate of the Poisson input to the I&F neurons in the kth
population, and rl

j is the time-dependent firing rate of the jth
neuron in the lth population. The fluctuations of the external
input into the ith neuron in the kth population are modeled
as Gaussian white noise denoted by σ kξ k

i (t ), where (σ k )2

is the variance and 〈ξ k
i (s)ξ l

j (t )〉 = δklδi jδ(s − t ). As shown
in Figs. 3(b) and 3(c), when choosing the same parametric
values as those in Fig. 2(b), we can also obtain the grating
pattern in the firing-rate-based neuronal network [Eq. (4)]. In
the following analysis, we first consider the case without the
external input noise, i.e., σ k = 0.

We write the firing rate of all the neurons as a vector
r of size (NE + NI ) whose first NE elements are the firing
rate of excitatory neurons and the remaining NI elements are
that of inhibitory neurons. Correspondingly, we rewrite Ckl

i j

(for 1 � i � Nk , 1 � j � Nl , and k, l = E , I) by Ci j (for 1 �
i, j � NE + NI ). The connectivity of all the neurons can then
be rewritten as a matrix W of size (NE + NI ) × (NE + NI )
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FIG. 3. Dynamics of the firing-rate-based neuron model.
(a) Comparison of firing rates between the single firing-rate-based
neuron and the I&F neuron. While receiving the inhomogeneous
Poisson train with rate 14 + 6 sin[0.002π (1 + 9t/3000)t] kHz, the
mean firing rates of the firing-rate-based neuron and the I&F neuron
are calculated over 104 trials. The red line is for the I&F neuron,
and the blue dashed line is for the firing-rate-based neuron. The
strength of the Poisson input is fixed as 0.01. (b) The spatial profile
of the excitatory neurons’ activity for a firing-rate-based small-world
network in the line (0, 1] in Eq. (4) for a given time without
noise. The parametric values in (b) are chosen the same as those
in Fig. 2(b). (c) Spatiotemporal profile of the excitatory neurons’
activity in the same system as (b) while considering the noise of
the external input. According to the Poisson external input into the
I&F neuron, the variance of the external input into the firing-rate-
based neuron takes the value of (σ k )2 = ( f k )2νk , where f k and νk

are the strength and rate of a Poisson input in the kth population,
respectively.

with the element in the ith row and jth column Wi j = Ji jCi j .
Here, Ji j = JE for j � NE , while Ji j = −JI for j > NE .

We note that, when the input strength is small, each neuron
in the small-world I&F network exhibits irregular firing activ-
ity as shown in Fig. 2(a). The ability to fire indicates that each
neuron receives a positive input. In such a case, the transfer
function � in Eq. (4) is linear. Consequently, Eq. (4) can be
rewritten as

τr
dr
dt

= (W − I)r + b, (5)
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FIG. 4. The real part of the largest eigenvalue in different con-
nectivity matrices. (a) The real part of the largest eigenvalue λr

max of
networks with the rewiring probability β = 0.01 over 600 trials for
JE = 0.001 (upper) and JE = 0.01 (lower). The parameters in the
upper panel are chosen to be the same values as those in Fig. 2(a).
The parameters in the lower panel are chosen to be the same values
as those in Fig. 2(b). (b) The ratio of mean λr

max of (W − I) with
nonzero rewiring probability β over trials to that of a regular-lattice
network. The parameters here are set to be the same as those in
Fig. 2(b). For each value of β, the mean largest eigenvalue is
calculated over 600 trials.

where b is a vector of size (NE + NI ) whose first NE elements
equal ( f EνE − gL/2), and the remaining NI elements equal
( f IνI − gL/2). Here I is the identity matrix of size (NE +
NI ) × (NE + NI ). We define the maximum eigenvalue and
its real part of (W − I) as λmax and λr

max, respectively. Note
that the sign of λr

max determines the stability of Eq. (5). Only
when λr

max is negative can the irregular firing activity exist
and be stable in the I&F neuronal network. Consistently, the
eigenvalue corresponding to the irregular pattern in Fig. 2(a)
takes a negative real part λr

max ≈ −0.7846 ± (4 × 10−5) as
shown in the upper panel of Fig. 4(a). When λr

max is pos-
itive, Eq. (5) is no longer stable. In this case, we expect
the emergence of the grating pattern because otherwise the
I&F network remains stable and so is Eq. (5) based on the
aforementioned argument. Consistently, the eigenvalue corre-
sponding to the grating pattern in Fig. 2(b) takes a positive
real part λr

max ≈ 1.154 ± (4 × 10−4) as shown in the lower
panel of Fig. 4(a). Meanwhile, as shown in Figs. 3(b) and
3(c), we indeed can find the spatially periodic solution to
Eq. (4) (grating pattern) in such a case. Therefore, the sign
of λr

max indicates the stability of dynamical patterns generated
both in the firing-rate-based and the I&F small-world neuronal
network.

As shown in Fig. 1(b), the small-world network in our
simulations is generated by adding a few long-range con-
nections to a locally connected network whose structure is
close to regular lattice. Therefore, it can be expected that the
eigenvalues of (W − I) corresponding to the two networks are
close to each other. As shown in Fig. 4(b), the ratio of the
real part of the largest eigenvalue of a network with nonzero
rewiring probability β to that of a regular-lattice network
with zero rewiring probability approaches unity as β tends
to zero. The small-world network has a small but nonzero
β (β = 0.01 in our simulations), thus the real part of its

042401-5



GU, XIAO, LI, AND ZHOU PHYSICAL REVIEW E 100, 042401 (2019)

largest eigenvalue can be well approximated by that of the
regular-lattice network.

Based on the above results, the dynamical property of the
small-world network shall be similar to that of the regular-
lattice network. Therefore, we next turn to the analysis of the
grating pattern in the regular-lattice network.

B. Spatial frequency of the grating pattern

To analyze the spatial profile of the grating pattern in
the regular-lattice network, we further simplify the system
of Eq. (4) by considering the asymptotic limit of large net-
work size. When the network size is sufficiently large, the
input current μk

i (t ) can be expressed in terms of convolution
as

μk (x, t ) = f k (x)νk + JE NEwkE (x) ∗ rE (x, t )

− JI NIwkI (x) ∗ rI (x, t )

for x = i/Nk ∈ (0, 1], where wkE (x) and wkI (x) are rectangu-
lar kernels satisfying the periodic boundary conditions,

wkl (x) = �
(
pl

0/2 − min(|x|, 1 − |x|)), (6)

and ∗ denotes spatial convolution. Thus Eq. (4) has the
following continuous form:

τr
drk (x, t )

dt
= −rk (x, t ) + �(μk (x, t )).

(7)

By assuming that the total input to all neurons is large, we
simplify Eq. (7) as

τr
drk (x, t )

dt
= −rk (x, t ) + μk (x, t ) − 1

2
gL. (8)

We next analyze Eq. (8) in the Fourier domain [taking the
Fourier transform of x, f̃ (n) = ∫

�
e−2πxni f (x)dx]. For each

Fourier mode n, we can obtain the coefficient matrix

A(n) =
⎡
⎣−1 + JE NE pE

0
sin(πnpE

0 )
πnpE

0
−JI NI pI

0
sin(πnpI

0 )
πnpI

0

JE NE pE
0

sin(πnpE
0 )

πnpE
0

−1 − JI NI pI
0

sin(πnpI
0 )

πnpI
0

⎤
⎦,

in which the first and second rows are obtained from the
Fourier transforms of Eq. (8) when k = E , I, respectively. The
matrix has two eigenvalues λ1(n) = −1 and

λ2(n) = −1 + JE NE pE
0

sin
(
πnpE

0

)
πnpE

0

− JI NI pI
0

sin
(
πnpI

0

)
πnpI

0

.

Substituting the relations of the parameters used in our
simulations pE

0 = pI
0 = p0, NE = NI = N , and JE = JI/2 =

J into the expression of λ2(n), we can further simplify λ2(n)
as

λ2(n) = −1 − JN p0
sin(πnp0)

πnp0
. (9)
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FIG. 5. The influence of the eigenvalue λ2 on the spatial fre-
quency of the grating pattern. (a) λ2(n) for small and large connection
strengths. JE = 0.001 for the blue curve and JE = 0.01 for the
red curve. Other parameters are chosen to be the same as that in
Fig. 2. The black dash-dotted line is the reference line y = 0. The
eigenvalue λ2 ≈ 1.1624 at n∗ = 14. (b) The Fourier coefficients of
the I&F small-world network activity in Fig. 2(e). The global peak
corresponds to the spatial frequency of the grating pattern n∗ = 14,
which is consistent with n∗ obtained from (a).

From the above expression, λ2(n) can be greater than zero for
certain n when the recurrent input strength J is large, which
has been confirmed in Fig. 5(a). The condition of large input
strength is supported by experimental observations [52].

In the case of large coupling strength, the solution to
Eq. (8) will diverge because of the positiveness of the eigen-
value λ2(n) for certain n. Therefore, the linear dynamics of
Eq. (8) may greatly deviate from that of the nonlinear I&F
network. However, in the Fourier domain, its dynamics should
still be dominated by the eigenvector corresponding to the
largest eigenvalue λ2(n∗). For this eigenvector, if we take
the inverse Fourier transform, we should be able to obtain
the long-time dynamics in the spatial domain which can be
compared with the results obtained from the I&F model as
shown in Fig. 5. Incidentally, we comment that, based on the
fact that the function − sin(x)/x reaches its maximum value
around x = 3π/2 and from Eq. (9), the spatial frequency of
the grating pattern can be approximated by n∗ ≈ 3/(2p0).
This estimation obtained from the simplified system [Eq. (8)]
gives n∗ = 15 for the case of Fig. 5, which is close to its true
frequency n∗ = 14 obtained in the I&F small-world network
[Eq. (1)].

Note that we have made two simplifications in our analysis:
one is to approximate the small-world structure by the regular-
lattice structure, and the other is to approximate the single
neuron dynamics with a rectified linear transfer function by
its linear dynamics. Because our analysis can well predict
the behavior of the original small-world network, it can be
concluded that the structure deviation from the small-world
network to the regular-lattice network and the nonlinear part
of the transfer function have little effect on the fundamental
spatial frequency of the original network activity (see more
details in Discussion).

Furthermore, to capture the spatial profile of the grating
pattern for the case without noise, the analytical solution to
Eq. (4) under the large network-size limit can be obtained
from an educated guess. As shown in Fig. 6(a), it can be
verified that a particular solution in a single period takes the
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FIG. 6. Analytical solution of the spatial profile of the grating
pattern. (a) A particular solution to Eq. (4) for the determinis-
tic case in one spatial period as given in Eq. (10). In (b) and
(c), the spatial profiles of the grating pattern (blue line) obtained
from the simulations of the I&F small-world neuronal network can
be well fitted by the particular solution given in Eq. (10) (black
line). Only two spatial periods are presented here. The external
input is f E = f I = 0.05, νE = νI = 4 kHz for (b) and f E = f I =
0.001, νE = νI = 200 kHz for (c). Other parameters are the same
as in Fig. 2(b). (d) The portion of active neurons in the I&F
small-world neuronal network as a function of the external input
rate. Blue dots are from the simulations and black line is from the
theoretical prediction X2/X . The corresponding range of population
firing rate is from 5 to 50 Hz. In order to reduce the influence of
the external input noise, f E = f I = 0.001. The coupling strength
is JI = 2JE = 0.066.

following form:

rk (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r0 sin
(
π x

X2−X1

)
, 0 � x < X2−X1

2

r0,
X2−X1

2 � x < X2+X1
2

r0 cos
(
π

x− X2+X1
2

X2−X1

)
, X2+X1

2 � x < X2

0, X2 � x � X,

(10)

where r0 is the maximum firing rate, X is the spatial period, X1

is the width of the platform within which the firing rate of all
neurons equals r0, and X2 is the width of the active cluster
within which the firing rate of all neurons is nonzero. As
discussed above, the period of the grating pattern shall be X =
1/n∗. By substituting Eq. (10) into Eq. (4), the expression of
X1, X2, and r0 in Eq. (10) can be analytically calculated as
follows:

X1 =
(

2X − p0 − π

JN

)/
2,

X2 =
(

2X − p0 + π

JN

)/
2,

r0 =
(

IExt − 1

2
gL

)/
(3 + JNX1). (11)

Here IExt = f ν is the constant external input to each neu-
ron, when we choose f E = f I = f and νE = νI = ν in the
simulation. It can be further verified that rk (x + φ) with an
arbitrary phase value φ is the solution to Eq. (7). Figures 6(b)
and 6(c) show that Eq. (10) with certain phase can well
capture the simulated spatial profile of the neuronal firing
rate in the I&F small-world network. And the performance
of our analytical solution becomes better when neurons in the
network receive less noisy external inputs.

Moreover, as shown in Fig. 6(d), we find that the portion
of active neurons in the I&F small-world network is almost
unchanged for different levels of external inputs, which is
consistent with our theoretical results as shown in Eq. (11).
We note that Eq. (10) with any arbitrary phase φ is the solution
to Eq. (7), indicating that there exists a continuous attractor
in the I&F small-world network dynamics. Therefore, noisy
input will perturb the network activity along the continuous
attractor, which induces the movement of the grating pattern.

C. Diffusivity of the grating pattern

We next investigate the feature of diffusivity of the grating
pattern. As shown in a recent experiment [52], the strength
of neuronal coupling J scales with the number of connections
K as J ∼ O(1/

√
K ). Based on this observation, we choose

the same scaling as the network size increases, where K =
N p0 in our network settings, and derive the dependence of
the diffusivity of the grating pattern on the network size. To
avoid the unrealistic situations where neurons either generate
spikes with very high firing rate or do not spike at all, we
make the external input and the cortical input comparable and
set the strength of the external input to be O(1/

√
K ) as well,

and the external input rate to be O(K ) [53,54]. Under these
scalings, the fluctuations of the external input maintain O(1)
as the network size increases.

As discussed above, the network activity has a continuous
attractor along the phase variable φ. We thus denote the
attractor as r(φ). If the input is noisy, i.e., with the stochastic
Poisson drive, the network activity will be perturbed along the
continuous attractor. Therefore, the network response can be
characterized as a function of its phase which keeps changing
as time evolves, i.e., r(φ(t )).

On the one hand, the first-order perturbation to the network
activity r with phase φ0 leads to

r(φ(t )) = r(φ0) + dr(φ)

dφ

∣∣∣
φ=φ0

δφ + o(δφ)

= r(φ0) + �′(φ0)δφ + o(δφ), (12)

where � is a vector with the ith element being the transfer
function of the ith neuron, i.e., �i(φ) = �(μi(φ)) and μi(φ)
is the total input to the ith neuron. The derivative �′(φ) is
with respect to the phase φ. The last equality holds because
of Eq. (4) in the steady state with a fixed phase value φ0.
Therefore, the change of the network activity δr under the
perturbation is

δr = �′(φ0)δφ + o(δφ). (13)

On the other hand, under the stochastic input, the change of
the network activity δr approximately follows the dynamics
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below [substituting Eq. (12) into Eq. (4) with expansion of
δr]:

τr
dδr
dt

= (K − I)δr + ση, (14)

where Ki j = d�
dμ

|μ=μi Ji jCi j , and ηi = d�
dμ

|μ=μiξi with ξi as the
standard Gaussian white noise. Note that, in our simulations,
the noise originates from the Poisson input. When the input
rate is high, the Poisson noise can be well approximated by
the Gaussian white noise ξi. Correspondingly, the variance
of ξi takes the value as σ 2 = f 2ν, identical to that of the
Poisson noise as we choose f E = f I = f and νE = νI = ν

in our simulation.
By substituting Eq. (13) into Eq. (14), we have the follow-

ing approximate dynamics of δφ:

τr�
′(φ0)

dδφ

dt
= (K − I)�′(φ0)δφ + ση. (15)

As calculated in the Appendix, (K − I) has the eigenvalue
of zero with a corresponding left eigenvector denoted by v.
Note that the dynamics of the system along the continuous
attractor mainly correspond to (K − I) consisting of the zero
eigenvalue. We then premultiply both sides of Eq. (15) by the
vector v to obtain

τrvT�′(φ0)
dδφ

dt
= vT(K − I)�′(φ0)δφ + σvTη,

and further simplify it by taking the fact of vT(K − I) = 0 to
obtain

δφ = σ

τrvT�′

∫ δT

0
vTη dt .

Because vTη is Gaussian with zero mean, we can obtain
E (δφ) = 0, Var(δφ) = 2DδT , where the diffusion coefficient
D is

D = σ 2�′T�′

2τ 2
r (vT�′)2

. (16)

As shown in Fig. 7(a), Eq. (16) can well predict the results ob-
tained from the simulations of the I&F small-world neuronal
network.

According to the scaling relation between the external
input and the network size N , we have σ ∼O(1) independent
of network size [48,53–55]. In addition, from the expression
of the analytical solution given in Eqs. (10) and (11), for
the firing rate of the ith neuron ri, we have ri ∼ O(1) and
dri/dφ ∼ O(1). The only variable that scales with the net-
work size is the total input μ to each neuron. For the total
input to the ith neurons μi with μi > 0, by taking into account
the form of the transfer function, we have μi = ri ∼ O(1)
and d�

dμ
|μ=μi = 1. Therefore, the corresponding elements in

�′ are expressed as �′
i(φ) = d�i

dμi

dμi

dφ
= dri

dφ
∼ O(1) and the ith

element in vT is vi ∼ O(1) according to Eq. (A2). For the total
input to the ith neurons μi with μi < 0, we have d�

dμ
|μ=μi = 0.

In this case, the corresponding elements in �′T�′ and vT�′
are zero.

Therefore, the inner product of vectors �′T�′, vT�′ ∼
O(N ), and we have that D ∼ O( 1

N ). This scaling relation
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FIG. 7. Diffusion coefficient. (a) Comparison between Dsim and
Dpred. Dsim is the diffusion coefficient calculated from the simulation
data in the I&F small-world neuronal network and Dpred is the diffu-
sion coefficient predicted from Eq. (16). The values of (Dpred, Dsim)
lie near the black line y = x. (b) Diffusion coefficient as a function
of network size 2N . The blue dots are calculated from the simulation
of the I&F small-world neuronal network, and the black line is the fit
using the inversely proportional function (∼1

N ). The parameters are
chosen as JE = 0.3/

√
N p0, JI = 0.6/

√
N p0, NE = NI = N , p0 =

0.1. The external Poisson input is given to each neuron independently
with strength f E = f I = 0.3/

√
N p0 and rate νE = νI = 30N p0.

has been observed in our simulations of the I&F small-world
neuronal networks as shown in Fig. 7(b).

V. EXTENSION FOR OTHER NETWORK STRUCTURES

A. Different p0 for E and I neuronal population

As shown in Fig. 1(b) and Eq. (6), the width of the
connectivity profile in our models and simulations is defined
as pl

0 for l = E , I . Here pl
0 also means that each neuron can

have, on average, Nl pl
0 presynaptic neurons in the lth popula-

tion. It has been found in some experiments that excitatory
neurons have broader connectivity profiles than inhibitory
neurons [56]. Meanwhile, inhibition has also been found to
be more broadly tuned than excitation [57] indicating broader
inhibitory projections than excitatory projections. Therefore,
it is interesting to investigate how the width of the projections
from excitatory and inhibitory neurons affects the network
activity.

We next perform simulations of the I&F small-world net-
work by choosing different pE

0 and pI
0 for E and I populations,

respectively. As shown in Fig. 8, the spatial frequency of the
grating pattern is almost independent of pE

0 but is dependent
on pI

0. This fact can be intuitively understood from the expres-
sion of λ2:

λ2(n) = −1 + JE NE pE
0

sin
(
πnpE

0

)
πnpE

0

− JI NI pI
0

sin
(
πnpI

0

)
πnpI

0

.

If the inhibition is much stronger than the excitation, i.e.,
JE NE pE

0 
 JI NI pI
0, the second term is negligible compared

with the third term in the above expression. Therefore, the
spatial frequency of the grating pattern n∗ at which λ2(n)
reaches its maximum value is mainly determined by the third
term involving pI

0 only. In our simulations, we find that n∗ ≈
3

2pI
0

is almost independent of pE
0 even when the inhibition is

042401-8



EMERGENCE OF SPATIALLY PERIODIC DIFFUSIVE … PHYSICAL REVIEW E 100, 042401 (2019)

0.02 0.04 0.06 0.08 0.10

0.02

0.04

0.06

0.08

0.10

p 0E

20

60

100

140

0.02 0.04 0.06 0.08 0.10

0.02

0.04

0.06

0.08

0.10 20

60

100

140

20

60

100

140

-0.1

0

0.1

(b)

(c) (d)

0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10

0.02

0.04

0.06

0.08

0.10

0.02

0.04

0.06

0.08

0.10

(a)

p 0E
p 0Ep 0E

p0
I p0

I

p0
I p0

I

FIG. 8. Spatial frequency n∗ as a function of parameters pE
0

and pI
0. The spatial frequency n∗ is analytically calculated as the

value at which λ2(n) reaches its maximum in (a), approximated as
3/(2pI

0) in (b), and directly computed from simulation data of the
I&F small-world neuronal network in (c). The relative errors between
the simulation results and the approximated value 3/(2pI

0) are shown
in (d). The parameters are chosen as JI NI pI

0 = 2JE NE pE
0 and the

network size is NE = NI = 4000.

only twice larger in magnitude than the excitation as shown in
Figs. 8(b)–8(d).

B. Small-world networks in higher dimensions

To investigate whether our results can be generalized to
small-world networks in higher dimension, we next consider
the small-world network in the two-dimensional state space
(0, 1] × (0, 1]. In the two-dimensional space, the distance
between the neuron at location (xi, yi ) and the neuron at

location (x j, y j ) can be calculated as di j =
√

2(d2
x + d2

y ) with

dx = min(|xi − x j |, 1 − |xi − x j |) in the x direction, and dy =
min(|yi − y j |, 1 − |yi − y j |) in the y direction. The network
connection is then generated with the probability identical to
Eq. (3).

We simulate a two-dimensional small-world network with
I&F neurons. As shown in Fig. 9(a), the network activity is
qualitatively similar to that of the one-dimensional network.
If the cortical input strength is large, neurons form active
clusters whose movement resembles diffusive waves. We
further generalize our results to the three-dimensional space
and observe similar phenomena in the three-dimensional I&F
small-world network as shown in Fig. 9(b). The analysis
in Sec. IV can also be generalized to the two-dimensional
and three-dimensional cases. To be specific, the connectivity
kernel has the form of the circular disk in the two-dimensional
space and the form of the ball in the three-dimensional space.
Then, for the two-dimensional case, in the Fourier domain,
one can obtain

λ2d
2 (ρ) = −1 + JE NE

ρ
rE

c J1
(
2πρrE

c

) − JI NI

ρ
rI

cJ1
(
2πρrI

c

)
,

FIG. 9. Simulations of I&F small-world neuronal networks in
higher dimensions. (a) is for a two-dimensional network of size
NE = NI = 104 and JI = 2JE = 0.04, f E = f I = 0.02, νE = νI =
10 kHz. (b) is for a three-dimensional network of size NE = NI =
2.7 × 104, JI = 2JE = 0.07, f E = f I = 0.03, νE = νI = 8 kHz.
Color codes active neurons in a short period of 400 ms in (a) and
neurons with firing rate larger than 10 Hz (for ease of illustration) in
400 ms in (b). Other parameters are pE

0 = pI
0 = 0.08.

where ρ =
√

n2
x + n2

y with frequency variables nx and ny ac-

cording to the x and y directions, rl
c =

√
Nl pl

0/π for l = E , I ,
and J1(·) is the first-order Bessel function of the first kind.
Similarly, for the three-dimensional case, one can obtain

λ3D
2 (ρ) = JE NE

2π2ρ3
sin

(
2πρrE

c

) − JE NE rE
c

πρ2
cos

(
2πρrE

c

)

− JI NI

2π2ρ3
sin

(
2πρrI

c

) + JI NI rI
c

πρ2
cos

(
2πρrI

c

) − 1,

where ρ =
√

n2
x + n2

y + n2
z with three frequency variables

nx, ny, and nz according to three directions, and rl
c =

3

√
(3Nl pl

0)/(4π ) for l = E , I . Our results find that the value
of ρ∗ corresponding to the largest eigenvalue obtained from
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the above formulas can well predict the spatial frequency of
the grating pattern in the numerical simulations of the I&F
small-world neuronal network.

VI. DISCUSSION

By simulating the dynamics of strongly coupled I&F
neuronal networks with the small-world structure, we have
observed that the network activity generates spatially periodic
diffusive waves. We have then performed a theoretical anal-
ysis to understand the emergence, the spatial frequency, and
the diffusion coefficient of the waves observed in I&F small-
world networks by using the approximated firing-rate-based
neuronal networks.

Based on the eigenvalue analysis, we find that the differ-
ence between the small-world network and the regular-lattice
network is small. Intuitively, the small difference between
the two networks results from the fact that the small-world
network is generated by rewiring very few connections in
the regular-lattice network. Based on this, our analysis can
be carried out and a continuous attractor has been identified
to explain the dynamical phenomena observed in the simula-
tions. It shall be pointed out that small-world networks can
be generated in various ways [58–60]. It is possible that the
small-world network generated in other ways may deviate
from the network generated through the effective rewiring
of the regular-lattice network in our work. In such a case,
differences in network dynamics are expected between these
small-world networks and the regular-lattice network.

Note that we approximate the dynamics of I&F neuronal
networks by a firing-rate-based neuronal network with the
rectified linear transfer function. However, certain experimen-
tal observations suggest that the transfer function follows
a rectified power-law function [61]. The power usually lies
between 2 and 5 [62]. From our simulations of the firing-rate-
based neuronal network, we find that the power of the transfer
function will change the amplitude of the grating pattern but
not its frequency. It will also not affect the critical coupling
strength above which the grating pattern emerges. However,
we should point out that, from our simulations, it has been
observed that our analysis may fail when the majority of
neurons in the network do not receive enough external input
to fire. In such a case, the total inputs to most neurons can
be negative, which falls into the nonlinear part of the transfer
function.

It has already been known that a ring network can gen-
erate spatially periodic patterns, and the emergence of the
spatial patterns is associated with a zero eigenvalue [19,48].
However, our work is not merely a reproduction of these
phenomena. In addition to these, we have derived the explicit
expressions of the spatial frequency of the pattern in both
an exact form and an approximated form, the firing rate
profile as a function of neuron location under the condition of
strong coupling [Eqs. (10) and (11)], and have discovered the
phenomenon of diffusive waves and calculated the diffusive
coefficient of the network dynamics when all the neurons
receive independent Poisson noisy inputs [Eq. (16)].

Our work suggests that a small-world neuronal network
can behave similarly to a regular-lattice neuronal network.
However, this result does not necessarily indicate that small
world is similar to regular lattice in any sense both dy-
namically and functionally. In fact, we have demonstrated
that the similarity between small-world and regular-lattice
network dynamics mainly exists in the particular dynamical
regime and condition where neurons receive strong inhibition
from their presynaptic neurons and independent external noisy
inputs. Under this condition, the dynamics of the small-
world neuronal network is dominantly affected by the high
clustering property of the small-world network. This result
indeed complements previous works investigating the dynam-
ics in a small-world neuronal network in different dynamical
regimes and conditions. For instance, if the inhibitory cou-
pling strength weakens, the self-sustained dynamics emerges
[31]. If the external inputs become coherent, distant neu-
ronal groups start to synchronize globally [30]. Under those
conditions, the dynamics of the small-world network is also
substantially affected by the short path length property of the
small-world network [32,63–65], thus being different from the
dynamics of the regular-lattice network.

In addition, we note that many previous works have inves-
tigated the regular-lattice network models with exponential,
Gaussian, or Mexican-hat connectivity kernels to understand
brain dynamics such as waves, bumps, and patterns [20,66–
68]. In these models, the dynamical phenomena rely on either
broader inhibition than excitation [66,67] or global inhibition
[20,68] to form particular patterns. Here we consider a square
kernel in our work, and show that the spatial pattern occurs
when the coupling is sufficiently strong, insensitive to the
width of the connectivity kernel. Therefore, our result pro-
vides a simple alternative mechanism to generate waves in a
network. Nevertheless, it should be pointed out that the waves
observed in the real brain may have much more complicated
structures rather than being spatially periodic. Therefore, the
quantitative comparison between simulated neuronal network
dynamics and the cerebral cortical dynamics remains to be
further investigated in the future.
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APPENDIX

Here we show that the matrix (K − I) in Eq. (14) has
the eigenvalue zero, and we calculate the corresponding left
eigenvector denoted by v.
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Note that, at the steady state of the firing-rate-based system
Eq. (4), we have

dμi

dφ

∣∣∣
φ=φ0

=
∑

j

Ji jCi j
dr j

dφ

∣∣∣
φ=φ0

,

dri

dφ

∣∣∣
φ=φ0

= d�

dμi

dμi

dφ

∣∣∣
φ=φ0

.

Thus

∑
j

Ji jCi j
d�

dμ j

dμ j

dφ

∣∣∣
φ=φ0

− dμi

dφ

∣∣∣
φ=φ0

= 0. (A1)

In a regular-lattice network, we have the following relation
(which approximately holds in a small-world network):

Ji jCi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

JjiCji i � NE , j � NE

− JE

JI JjiCji i � NE , j > NE

− JI

JE JjiCji i > NE , j � NE

JjiCji i > NE , j > NE

Thus, for i � NE , Eq. (A1) has the form as

∑
j�NE

JjiCji
d�

dμ j

dμ j

dφ

∣∣∣∣
φ=φ0

− JE

JI

∑
j>NE

JjiCji
d�

dμ j

dμ j

dφ

∣∣∣∣
φ=φ0

− dμi

dφ

∣∣∣∣
φ=φ0

= 0,

for i > NE ,

∑
j�NE

JjiCji
d�

dμ j

dμ j

dφ
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φ=φ0

− JE

JI

∑
j>NE

JjiCji
d�

dμ j

dμ j

dφ
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φ=φ0

+ JE

JI

dμi

dφ
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φ=φ0

= 0.

Therefore, vT(K − I) = 0 holds, where v has the ith element
as

vi =
⎧⎨
⎩

dμi (φ)
dφ

∣∣
φ=φ0

, i � NE

− JE

JI
dμi (φ)

dφ
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φ=φ0

, i > NE .
(A2)

That is, vT is the left eigenvector of the matrix (K − I) for the
eigenvalue zero.
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