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ANALYSIS OF THE DENDRITIC INTEGRATION OF EXCITATORY
AND INHIBITORY INPUTS USING CABLE MODELS∗

SONGTING LI† , DOUGLAS ZHOU‡ , AND DAVID CAI§

Abstract. We address the question of how a neuron integrates excitatory (E) and inhibitory
(I ) synaptic inputs from different dendritic sites. For an idealized neuron model with an unbranched
dendritic cable, we construct its Green’s function and carry out an asymptotic analysis to obtain its
solutions. Using these asymptotic solutions, in the presence of E and I inputs, we can successfully
reveal the underlying mechanisms of a dendritic integration rule, which was discovered in a recent
experiment. Our analysis can be extended to the multi-branch case to characterize the E -I dendritic
integration on any branches. The novel characterization is confirmed by the numerical simulation of a
biologically realistic neuron.
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1. Introduction

A neuron, as a fundamental unit of brain computation, exhibits great computational
power in processing input signals from neighboring neurons [3, 11]. It receives thousands
of spatially distributed synaptic inputs from its dendrites and then integrates them at
the soma, leading to the neuronal information processing. This procedure is called
dendritic integration. Only when the somatic membrane potential crosses a certain
threshold, does the neuron initiate a spike and transmit information to downstream
postsynaptic neurons via its axon. Dendritic integration rules, which determine the
spike timing, are under active investigation in order to elucidate information coding in
the brain.

There are two types of synaptic inputs, excitatory (E ) input that induces an increase
in neuronal membrane potential, known as excitatory postsynaptic potential (EPSP),
and inhibitory (I ) input that induces a decrease in neuronal membrane potential, known
as inhibitory postsynaptic potential (IPSP). While the integration of E inputs has been
extensively studied experimentally [8], E -I integration remains to be fully explored, yet
are equally important for information processing in the brain [1, 9, 14]. Recently, a
quantitative integration rule for a pair of E and I inputs was discovered in experiment.
In the experiment [5], when an E input and an I input were elicited simultaneously
at two different locations on the dendritic trunk of a rat CA1 pyramidal neuron, the
summed somatic potential (SSP) was found to be always smaller than the linear sum
of the individual EPSP and IPSP measured at the soma, as illustrated in figure 1.1A.
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Fig. 1.1. Dendritic integration of a pair of E-I inputs. (A) Left is a plot of a biological neuron
with a pair of E-I inputs indicated by arrows. Right is an example of EPSP, IPSP, SSP, SC, and
the corresponding linear sum. t∗ denotes the time when EPSP reaches its peak. Note that SSP is
lower than the linear sum. Figure is modified from ref. [5]. (B) Simulation results of the model
(equation (2.4)) in confirmation of the rule (1.1): Ratio of SC to EPSP (SC/EPSP) plotted against
IPSP (red circle) and SC/IPSP plotted against EPSP (blue square). Fixing EPSP amplitude while
varying IPSP amplitude from 0.2mV to 3mV, SC/EPSP increases linearly with IPSP. Similarly, fixing
IPSP amplitude while varying EPSP amplitude from 1mV to 8mV, SC/IPSP increases linearly with
EPSP. Lines indicate linear fit. Stimuli are given at the locations xE = 300µm, xI = 240µm. Inset:
experimental results (the inset is modified from ref. [5]). (C) Asymmetry of shunting coefficient κ in
the model (equation (2.4)): κ as a function of distance between E location and the soma for three fixed
I locations at 50 µm, 200 µm and 350 µm, respectively (marked by colored lines). Inset: experimental
results for the same set of the I locations (the inset is modified from ref. [5]). The insets have the same
axis labels as in the main figures. Parameters in our simulation are within the physiological regime
[5, 7], c= 1µF ·cm−2, gL = 0.05mS ·cm−2, εE = 70mV , εI =−10mV , S= 2827.4µm2, ra = 100Ωcm,
l= 600µm, d= 1µm. σEr = 5ms, σEd = 7.8ms, σIr = 6ms, σId = 18ms.

The specific arithmetic rule for the E -I integration can be summarized as follows [5]:

VS =VE+VI +κVEVI , (1.1)

where VE , VI , and VS are the amplitude values of the EPSP, IPSP, and SSP when the
EPSP reaches its peak value. Here, VSC ≡κVEVI is the so-called shunting component
(SC ) with κ as the shunting coefficient. From the experiment [5], the value of κ does not
depend on the amplitudes of EPSP and IPSP (as shown in the inset of figure 1.1B), but
depends on the E and I input locations. In the inset of figure 1.1C, it can be seen that,
for a fixed location of the I input on the dendritic trunk, κ increases as the distance
between the E input and the soma increases when the E input is located in between
the soma and the I input, whereas κ remains almost constant when the E input is
located further away from the soma than the I input. This phenomenon of spatial
asymmetry of κ has been incorporated into a phenomenological model [15]. However,
the underlying biophysical mechanism has not been addressed.

In this work, we aim to explain the E -I dendritic integration from detailed bio-
physical conductance-based cable models. Although a neuron possesses complicated
geometrical structures and biophysical properties, we first begin our analysis with an
idealized case in which a neuron is modeled as an unbranched cylindrical dendrite con-
nected to a spherical soma. This idealized system can be described by a cable equation.
We obtain its Green’s function and perform an asymptotic analysis. Using these asymp-
totic solutions, we explain theoretically the origin of the arithmetic rule (equation (1.1))
and reveal the underlying mechanism for the spatial asymmetry of κ. Next, we extend
our asymptotic analysis to a more realistic model in which a neuron is endowed with
multiple branched dendrites. For this general case, our analysis gives rise to a new
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characterization of the shunting coefficient κ. The characterization is further confirmed
by a full numerical simulation of a biologically realistic neuron.

The paper is organized as follows. In Section 2, the unbranched case is studied.
We derive a one-dimensional unbranched dendritic cable model and obtain its Green’s
function. We then construct its asymptotic solutions and discuss the properties of
the E -I dendritic integration. In Section 3, we extend our analysis to a multi-branch
model and discuss the properties of dendritic integration for E-I inputs located on any
branches. We present discussions and conclusions in Section 4.

2. Unbranched dendrite
A neuron is endowed with complicated dendritic morphology to process input signals

from neighboring neurons. We note that the E -I integration investigated in the original
experiment [5] was mainly focused on inputs on the main trunk of a neuron. In addition,
for a large class of neurons, the tree-like dendrites can be shown to be mathematically
equivalent to a single cylindrical cable [10]. We therefore first study the E -I dendritic
integration phenomenon arising from an unbranched dendritic trunk. For the time
being, we will ignore dendritic branches and will defer a discussion of a model with
branches to Section 3.

2.1. The model. We consider an idealized passive neuron whose isotropic
spherical soma is attached to an unbranched cylindrical dendrite with finite length l
and diameter d. Each small segment in the neuron can be viewed as an RC circuit with
a constant capacitance and leaky conductance density [4, 13]. The current conservation
within a segment [x,x+∆x] on the dendrite leads to

cπd∆x
∂v

∂t
=−gLπd∆xv+Isyn+I(x)−I(x+∆x), (2.1)

where v is the membrane potential with respect to the resting potential, c is the mem-
brane capacitance density, and gL is the leaky conductance density. Here, Isyn is the
synaptic current

Isyn=−
∑
q=E,I

πd

∫ x+∆x

x

Gq ·(v−εq)dx, (2.2)

where GE and GI are excitatory and inhibitory synaptic conductance density and εE
and εI are their reversal potentials, respectively. When an excitatory input is given at
the site x=xE and an inhibitory input is given at the site x=xI , we have Gq(x,t) =
fqgq(t)δ(x−xq), where q=E,I and fq is the input strength of synaptic conductances.

The conductance is often modeled as gq(t) =Nq(e
− t
σqd −e−

t
σqr )Θ(t) with the peak value

normalized to unity by the normalization factor Nq and with σqr and σqd as rise and
decay time constants [7]. Here Θ(t) is a Heaviside function. The axial current I(x) can
be derived based on the Ohm’s law,

I(x) =−πd
2

4ra

∂v

∂x
, (2.3)

where ra is the axial resistivity. Taking the limit ∆x→0, equation (2.1) becomes our
unbranched dendritic cable model,

c
∂v

∂t
=−gLv−

∑
q=E,I

fqgq(t)δ(x−xq)(v−εq)+
d

4ra

∂2v

∂x2
. (2.4)
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For the boundary condition of the cable model (equation (2.4)), we assume one end of
the dendrite is sealed,

∂v

∂x

∣∣∣∣
x=l

= 0. (2.5)

For the other end connecting to the soma, which can also be modeled as an RC circuit,
by the law of current conservation, we have

cS
∂vs

∂t
=−gLSvs+Idend, (2.6)

where S is the somatic membrane area, vs is the somatic membrane potential. The
dendritic current flowing to the soma, Idend, takes the form of equation (2.3) at x= 0.
Because the voltage is continuous at the connection point, i.e., vs(t) =v(0,t), we arrive
at the other boundary condition at x= 0,

c
∂v(0,t)

∂t
=−gLv(0,t)+

πd2

4Sra

∂v

∂x

∣∣∣∣
x=0

. (2.7)

For a resting neuron, the initial condition is simply set as v(x,0) = 0.

2.2. Green’s function. In the absence of synaptic inputs, equation (2.4) is a
linear system. Using a δ impulse input, its Green’s function G(x,y,t) can be obtained
from

c
∂G

∂t
=−gLG+

d

4ra

∂2G

∂x2
+δ(x−y)δ(t), (2.8)

with the following boundary conditions and initial condition,

c
∂G(0,y,t)

∂t
=−gLG(0,y,t)+

πd2

4Sra

∂G(x,y,t)

∂x

∣∣∣∣
x=0

,
∂G

∂x

∣∣∣∣
x=l

= 0, and G(x,y,0) = 0.

For simplicity, letting τ = t/c, ξ=x
√

4ra/d, η=y
√

4ra/d, λ= l
√

4ra/d, the solution of
equation (2.8) can be obtained from the following system:

∂H

∂τ
=−gLH+

∂2H

∂ξ2
+δ(ξ−η)δ(τ), (2.9)

with rescaled boundary and initial conditions,

∂H(0,η,τ)

∂τ
=−gLH(0,η,τ)+γ

∂H(ξ,η,τ)

∂ξ

∣∣∣∣
ξ=0

,
∂H

∂ξ

∣∣∣∣
ξ=λ

= 0, and H(ξ,η,0) = 0,

where γ=
(
πd2/2S

)
(rad)

−1/2
. Taking the Laplace transform of equation (2.9), we ob-

tain

LH(ξ,η,s) =
A(η,s)e

√
s+gL(ξ−λ) +B(η,s)e

√
s+gL(λ−ξ) +e−

√
s+gL|ξ−η|

2
√
s+gL

, (2.10)

Combining the two boundary conditions (B(η,s) is thus eliminated), we have

LH(ξ,η,s) =


1√
s+gL

[A(η,s)cosh(
√
s+gL (λ−ξ))−sinh(

√
s+gL (η−ξ))] for ξ≤η,

1√
s+gL

A(η,s)cosh(
√
s+gL (λ−ξ)) for ξ >η,

(2.11)
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where

A(η,s) =
(s+gL)sinh(

√
s+gLη)+γ

√
s+gL cosh(

√
s+gLη)

(s+gL)cosh(
√
s+gLλ)+γ

√
s+gL sinh(

√
s+gLλ)

, (2.12)

whose denominator is denoted as ζ(s) for later discussions. For the inverse Laplace
transform, we need to deal with singular points that are given by the roots of ζ(s) = 0. It
can be easily verified that these singularities are simple poles and LH(ξ,η,s) is analytical
at infinity. Then LH(ξ,η,s) can be written as

LH(ξ,η,s) =
∑
n

Hn(ξ,η)

s+kn
, (2.13)

where Hn(ξ,η) is a constant coefficient in the complex s domain, s=−kn are the singular
points. Then taking the inverse Laplace transform of equation (2.13), we obtain

H(ξ,η,τ) =
∑
n

Hn(ξ,η)e−knτ . (2.14)

Now we only need to solve kn and Hn(ξ,η) in equation (2.14) to obtain the Green’s
function of equation (2.9). We solve the singular points s=−kn first. Defining wn=
−i
√
−kn+gLλ, ζ(s) = 0 yields

tan(wn) =−wn
γλ

, (2.15)

whose roots can be determined numerically. There are solutions for wn with (n−1/2)π<
wn< (n+1/2)π for n≥1 and w0 = 0. Next, to determine the factors Hn(ξ,η), we use
the residue theorem for integrals. For a contour Cn that winds in the counter-clockwise
direction around the pole s=−kn, and that does not include any other singular points,
the integral of LH(ξ,η,s) on this contour is given by∫

Cn

LHds= 2πi

(
∂s

1

LH

∣∣∣∣
s=−kn

)−1

. (2.16)

Using equations (2.11-2.13) and (2.16), we obtain

Hn(ξ,η) =γDncos[wn(1−ξ/λ)]cos[wn (1−η/λ)], (2.17)

where Dn= 2/[γλ+γλw−1
n sin(wn)cos(wn)+2cos2(wn)] for n≥0. The solution of the

original Green’s function for equation (2.8) can now be expressed as G(x,y,t) =√
4ra/(c2d)H(ξ,η,τ).

2.3. Asymptotic solution. Because the synaptic currents (equation (2.2))
include the unknown dynamical variable v, the Green’s function cannot be directly
used to obtain the analytical solution of equation (2.4). For the physiological regime
(the amplitude of an EPSP being less than 5mV and IPSP being less than 2mV), the
corresponding required input strengths fE and fI are relatively small. Therefore, given
an E input at xE and an I input at xI , we represent v(x,t;xE ,xI) as an asymptotic
series in the powers of fE and fI ,

v=

∞∑
k=0

∑
m+n=k

fmE f
n
I vmn(x,t;X ), (2.18)
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where X ⊆{xE ,xI} is the parameter space. xE ∈X if m 6= 0; xI ∈X if n 6= 0. Substi-
tuting equation (2.18) into the cable equation (2.4), order by order, we obtain a set of
differential equations. For the zeroth-order, we have

c
∂v00

∂t
=−gLv00 +

d

4ra

∂2v00

∂x2
. (2.19)

Using the boundary and initial conditions (equations (2.5) and (2.7)), the solution is
simply v00 = 0. It can be interpreted as the fact that the membrane potential remains
at its resting state if no stimulus is presented. For the first order of excitation O(fE),

c
∂v10

∂t
=−gLv10 +

d

4ra

∂2v10

∂x2
+gE(t)δ(x−xE)εE , (2.20)

with the help of Green’s function, the solution can be expressed as

v10 =G(x,xE ,t)∗ [εEgE(t)]. (2.21)

Here ‘∗’ denotes convolution in time. Note that the input εEgE(t) at xE can be viewed
as the synaptic current when the local membrane potential is maintained at the resting
state. For the second order of excitation O(f2

E),

c
∂v20

∂t
=−gLv20 +

d

4ra

∂2v20

∂x2
−gE(t)δ(x−xE)v10. (2.22)

Because v10 is given by equation (2.21), the solution of equation (2.22) is

v20 =G(x,xE ,t)∗ [−gE(t)v10(xE ,t;xE)]. (2.23)

Note that, the second order excitatory correction in equation (2.18) has the form f2
Ev20.

Therefore, according to equations (2.21) and (2.23), the correction is exactly the mem-
brane potential in response to a synaptic current −fEgEfEv10, which is the product of
the local conductance fEgE with the first order local voltage fEv10. The above proce-
dure and the physical interpretation of the result can be generalized to higher orders.
Similarly, we can have the first and second order inhibitory solutions,

v01 =G(x,xI ,t)∗ [εIgI(t)], (2.24)

v02 =G(x,xI ,t)∗ [−gI(t)v01(xI ,t;xI)]. (2.25)

For the order of O(fEfI), we have

c
∂v11

∂t
=−gLv11 +

d

4ra

∂2v11

∂x2
−gE(t)δ(x−xE)v01−gI(t)δ(x−xI)v10, (2.26)

whose solution is obtained as follows,

v11 =G(x,xE ,t)∗ [−gE(t)v01(xE ,t;xI)]+G(x,xI ,t)∗ [−gI(t)v10(xI ,t;xE)]. (2.27)

Our numerical simulation of equation (2.4) using the Crank-Nicolson method (time step
0.01ms and space step 1µm for all simulations) shows that the second order asymptotics
is sufficiently accurate to capture the solution of membrane potentials with the realistic
values of physiological parameters, as demonstrated in figure 2.1. Therefore, in the
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discussion of dendritic integration below, we will invoke the approximation v≈VE+
VI +VSC ,

VE =fEv10 +f2
Ev20, VI =fIv01 +f2

I v02, and VSC =fEfIv11 (2.28)

where VE and VI are the EPSP and IPSP upon receiving an individual excitatory and
inhibitory inputs, respectively. VSC corresponds to the shunting component measured
in experiments [5], which is the leading order of the nonlinear integration between
excitation and inhibition.
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Fig. 2.1. Asymptotic solutions of various orders for the unbranched cable model (equation (2.4))
for (A) EPSP, (B) IPSP, and (C) SSP in comparison with numerical solutions of equation (2.4). The
dashed blue line is the first order approximation. The red circle is the second order approximation.
The black solid line is the numerical solution of the full equation (2.4). Model parameters are the same
as in figure 1.1.

2.4. Dendritic integration. Now we use the above asymptotic solutions (equa-
tion (2.28)) to understand the E -I dendritic integration rule. The shunting component
can be explained in our model by VSC in equation (2.28). By definition, the shunting
coefficient is evaluated as follows,

κ=
VSC
VE ·VI

≈ v11(0,t;xE ,xI)

v10(0,t;xE)v01(0,t;xI)
. (2.29)

Note that the conductance strengths fE and fI control the membrane potential ampli-
tudes. From equation (2.29), it can be seen that, to the leading order, κ is independent
of the amplitudes of EPSP and IPSP. As has been demonstrated in our numerical sim-
ulation above, the second order asymptotic solution (equation (2.28)) is in excellent
agreement with the solution of membrane potentials in the realistic physiological pa-
rameter range (figure 2.1). Therefore, the above procedure establishes the validity of
the quadratic form of the arithmetic rule (1.1) and the expression of κ in terms of the
solutions of the cable (equation (2.4)). Our numerical simulation of the model (equation
(2.4)) further confirms the amplitude independence of κ as demonstrated in figure 1.1B.

The asymmetric spatial profile of the shunting coefficient κ (as shown in the inset
of figure 1.1C) can also be understood from the asymptotic solutions. Note that, by
ignoring the first term in equation (2.27) due to the fact that εE = 70mV is almost
an order of magnitude larger than |εI |= 10mV , v11 in equation (2.27) can be further
simplified as

v11≈G(x,xI ,t)∗ [−gI(t)v10(xI ,t;xE)], (2.30)
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which indicates that the shunting component mainly originates from the outward synap-
tic current, −gI(t)v10(xI ,t;xE), induced by the first order EPSP measured at site xI ,
i.e., v10(xI ,t;xE). Using equation (2.30), and assuming xI is fixed, we can rewrite κ as

κ∝
G(0,xI ,t)∗ [−gI(t)v10(xI ,t;xE)]

v10(0,t;xE)
. (2.31)

In the small limit of the dendritic length l, from equation (2.15), we have w0 = 0, wn≈
(n− 1

2 )π for n>1, which corresponds to k0 =gL, kn≈αw2
n/l

2 for n>1 with α=d/4ra.
Then, using the Green’s function and equation (2.21) , we can obtain the following
approximation for v10(xI ,t;xE),

v10≈
β

1+γl
e−gLt/c ∗gE+

2βclgE
αγ

∞∑
n=1

1

w2
n

cos
[
wn

(
1−xI

l

)]
cos
[
wn

(
1−xE

l

)]
. (2.32)

where β=γεE
(
4ra/c

2d
)1/2

. We can further show that for ∂2
xEv10(xI ,t;xE),

∂2v10

∂x2
E

≈ βcgE
αγl

[
δc

(
xI+xE

2l

)
−δc

(
xI+xE

l

)
−δc

(
xI−xE

2l

)
+δc

(
xI−xE

l

)]
, (2.33)

where the δc function is a Dirac comb with period 2. There is only one single δ func-
tion at xE =xI with a negative sign for xE,I ∈ [0,l], which means ∂xEv10(xI ,t;xE) is
a step function of xE . From equation (2.32), we have ∂xEv10(xI ,t;xE) = 0 at xE = l.
Thus, ∂xEv10(xI ,t;xE) is a positive constant for xE ∈ [0,xI ] and vanishes for xE ∈ [xI ,l].
Therefore, v10(xI ,t;xE) is a piecewise linear function, increasing for xE in between the
soma and xI , whereas it is constant when xE exceeds xI . Similarly, we can further show
that v10(0,t;xE) is a constant when xE ∈ [0,l]. Combining these facts in equation (2.31)
leads to the spatial asymmetry of κ in the small l limit. However, this phenomenon is
general, as shown in figure 1.1C, which is obtained through our numerical simulation
for a case that is beyond the asymptotic limit of small l.

For the general case, a physical intuition for the spatial asymmetry of κ can be
described as follows. If we fix the inhibitory input at xI , then G(0,xI ,t) and gI(t)
are fixed. Given an excitatory input at xE ∈ [0,xI ], the first-order membrane potential
response measured at the soma is v10(0,t;xE), and that measured at xI is v10(xI ,t;xE).
As xE approaches xI , v10(0,t;xE) decreases due to the increasing effective resistance
between xE and the soma as the distance increases between xE and the soma. In
contrast, v10(xI ,t;xE) increases due to the decreasing effective resistance between xE
and xI as the distance decreases between xE and xI . Therefore, according to equation
(2.31), κ increases as xE moves closer to xI when xE ∈ [0,xI ]. When xE>xI , both
v10(0,t;xE) and v10(xI ,t;xE) will decrease when xE moves further away from xI . The
decrease of the numerator and the denominator in equation (2.31) nearly cancel out,
hence a near constant κ.

3. Branched dendrites
As mentioned previously, a large class of dendritic trees can be equivalently treated

as an unbranched cable [10]. However, anatomical studies [6] have shown that dendritic
trees of many different types of neurons do not satisfy the assumptions of the equivalent
theorem. In addition, the majority of synaptic inputs are widely distributed on branches
rather than on the dendritic trunk. Therefore, in this section, we study the E -I dendritic
integration in a neuron with multiple dendritic branches.
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the branching point (green dot) along the trunk. (C) κ values (color-coded) for an I input (red dot)
fixed at the apical trunk, with an E input scanned throughout the active dendrite (see discussions in
Section 4.).

3.1. The model. We model a realistic neuron, as shown in figure 1.1A, by a
multi-branch model in which the soma is connected to a dendritic trunk with multiple
branches attached. The dendrites consist of a set of small segments, each of which
has a constant diameter and has dynamics described by the previous passive cable
model (equation (2.4)). To complete the mathematical description of the branched
dendrites, additional boundary conditions are prescribed at the connection site of each
segment. Suppose that one end of segments 1,2,...,n with diameter d1,d2,...,dn and
length l1,l2,...,ln, respectively, are connected to the end of segment n+1 with diameter
dn+1 and length ln+1. Then, by the current conservation law, we have the new boundary
conditions,

−
πd2

n+1

4ra

∂vn+1

∂xn+1

∣∣∣∣
xn+1=ln+1

=−
n∑
j=1

πd2
j

4ra

∂vj
∂xj

∣∣∣∣
xj=0

. (3.1)

And the voltage at the connection site needs to be continuous. For the segments at the
end of dendrites and the segment connecting to the soma, boundary conditions take the
form of equations (2.5) and (2.7), respectively. In principle, Green’s function can be
obtained for this cable model. The analysis in Section 2 can be extended here to obtain
similar asymptotic results.

3.2. Integration on branches. Previous experiments [5] have investigated
the properties of κ when E and I inputs are elicited on the dendritic trunk. However,
for the general situation that E and I are distributed on the branches, it remains an
experimental challenge to fully elucidate κ’s properties.

Our cable model predicts the properties of κ as follows. As illustrated in figure 3.1A,
for a fixed I input location (marked by the black dot), the I path (marked by grey)
is defined as the path between the soma and the I input. For any branch connecting
to the I path, κ is predicted to be constant for all E sites on the branch. This can
be seen as follows. First, an analysis similar to that in Section 2.4 shows that κ only
depends on the input locations but not the input strengths. According to equation
(2.31), κ depends on v10(0,t;xE) and v10(xI ,t;xE) for a fixed I site. For an arbitrary
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E site (say, marked by the red dot) on a branch, during the evolution of v10(x,t;xE),
an axial current IE is initiated by the input current εEgE(t) at the E site (equation
(2.21)) and then flows to the remaining part of the neuron. The axial current decays
to IE′ at the branching point E′ (marked by the green dot). At E′, IE′ splits into a
flow towards soma denoted by IS and a flow towards the I site denoted by II. If we
shift the stimulus location E to E′ with a new input conductance at E′ so as to keep
IE′ unchanged, then the flows IS and II remain the same. Therefore, after the stimulus
site shifted, the membrane potential measured at the soma v10(0,t;xE) and the I site
v10(xI ,t;xE) remains unchanged. This leads to the same value of κ at site E and E′ as
seen in equation (2.31).

Our numerical simulation of a cable model with realistic geometrical and biophys-
ical property derived from the experiment [5] confirms this prediction obtained by our
asymptotic analysis. NEURON software [2] is used as a numerical solver. In figure
3.1B, we fix an I input location on a branch (marked by the red square) and scan an
E input location throughout the apical trunk. From figure 3.1B, it can be clearly seen
that κ increases as the distance between the soma and E site increases, then reaches
a constant as xE moves beyond the branching point (marked by the green dot in the
inset of figure 3.1B).

4. Discussion
Cable theory was developed about fifty years ago [10]. It has provided neuroscien-

tists a powerful tool to theoretically investigate electrical properties of dendrites and
membrane potential response to inputs. In general, an analytical solution can only be
obtained with current injection [13] or constant conductance [12] in a direct application
of Green’s function method. In vivo, however, it is the time-varying synaptic conduc-
tance that transmits signals from dendrites to the soma as the case with the experi-
mental setup [5] that we study in this work. We have developed an asymptotic method
to construct its approximate solutions for the cable system under synaptic conductance
inputs and have used these asymptotic solutions to reveal the physical mechanisms of
the E -I dendritic integration as discovered in experiment [5]. Our asymptotic method
can be naturally generalized to investigate E -E and I -I integration. We note that our
analysis has only considered the passive property of a neuron. Because a neuron con-
tains extensive active ionic channels and they play an important role in information
processing during dendritic integration [3, 11], it is important to incorporate these ac-
tive channels into theoretical work. One such example from our numerical study which
incorporates active channels as implemented in ref. [5] is shown in figure 3.1C. It depicts
a complete spatial profile of κ with the E input location scanned through all branches
for a fixed I input location (marked by the red dot). We observe that on any branch
connected to the I path, κ is nearly constant. Therefore, our characterization of κ
remains valid even for active dendrites.
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