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Abstract

Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate
dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise
quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a
pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The
summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited
separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient k. The rule is
valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition.
In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input
time differences and input locations. The coefficient k is demonstrated to be nearly independent of the input strengths but
is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron
model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe
the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple
inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the
bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as
functionally sparse.
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Introduction

For information processing, a neuron receives and integrates

thousands of synaptic inputs from its dendrites and then induces

the change of its membrane potential at the soma. This process is

usually known as dendritic integration [1–3]. The dendritic

integration of synaptic inputs is crucial for neuronal computation

[2–4]. For example, the integration of excitatory and inhibitory

inputs has been found to enhance motion detection [5], regularize

spiking patterns [6], and achieve optimal information coding [7] in

many sensory systems. They have also been suggested to be able to

fine tune information processing within the brain, such as the

modulation of frequency [8] and the improvement of the

robustness [9] of gamma oscillations. In order to understand

how information is processed in neuronal networks in the brain, it

is important to understand the computational rules that govern the

dendritic integration of synaptic inputs.

Dendritic integration has been brought into focus with active

experimental investigations (see reviews [1,10] and references

therein). There have also been many theoretical developments

based on physiologically realistic neuron models [11,12]. Among

those works, only a few investigate quantitative dendritic

integration rules for a pair of excitatory and inhibitory inputs

[3,13] and there has yet to be an extensive investigation of the

integration of a pair of excitatory inputs or a pair of inhibitory

inputs. In this work, we propose a precise quantitative rule to

characterize the dendritic integration for all types of synaptic

inputs and validate this rule via realistic neuron modeling and

electrophysiological experiments.

We first develop a theoretical approach to quantitatively

characterize the spatiotemporal dendritic integration. Initially,

we introduce an idealized two-compartment passive cable model

to understand the mathematical structure of the dendritic

integration rule. We then verify the rule by taking into account

the complicated dendritic geometry and active ion channels. For

time-dependent synaptic conductance inputs, we develop an

asymptotic approach to analytically solve the cable model. In this

approach, the membrane potential is represented by an asymptotic

expansion with respect to the input strengths. Consequently, a

hierarchy of cable-type equations with different orders can be
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derived from the cable model. These equations can be analytically

solved order by order using the Green’s function method. The

asymptotic solution to the second order approximation is shown to

be in excellent agreement with the numerical solutions of the

original cable model with physiologically realistic parameters.

Based on our asymptotic approach, we obtain a new theoretical

result, namely, a nonlinear spatiotemporal dendritic integration

rule for a pair of synaptic inputs: the summed somatic potential

(SSP) VS can be well approximated by the summation of the two

postsynaptic potentials V1 and V2 elicited separately, plus an

additional third nonlinear term proportional to their product, i.e.,

VS(t)~V1(t)zV2(t)zk(t)V1(t)V2(t): ð1Þ

The proportionality coefficient k encodes the spatiotemporal

information of the input signals, including the input locations and

the input arrival times. In addition, we demonstrate that the

coefficient k is nearly independent of the input strengths. Because

the correction term kV1V2 to the linear summation of V1 and V2

takes a bilinear form, we will refer to the rule (1) as the bilinear

spatiotemporal dendritic integration rule. In the remainder of the

article, unless otherwise specified, all the membrane potentials will

be referred to those measured at the soma.

We note that our bilinear integration rule is consistent with

recent experimental observations [3]. In the experiments [3], the

rule was examined at the time when the excitatory postsynaptic

potential (EPSP) measured at the soma reaches its peak for a pair

of excitatory and inhibitory inputs elicited concurrently. We

demonstrate that our bilinear integration rule is more general than

that in Ref. [3]: (i) our rule holds for a pair of excitatory and

inhibitory inputs that can arrive at different times; (ii) our rule is

also valid at any time and is not limited to the peak time of the

EPSP; (iii) our rule is general for all types of paired synaptic input

integration, including excitatory-inhibitory, excitatory-excitatory

and inhibitory-inhibitory inputs.

Our bilinear integration rule is derived from the two-compart-

ment passive cable model. We then validate the rule in a

biologically realistic pyramidal neuron model with active ion

channels embedded. The simulation results from the realistic

model are consistent with the rule derived from the passive cable

model. We further validate the rule in electrophysiological

experiments in rat hippocampal CA1 pyramidal neurons. All of

our results suggest that the form of the bilinear integration rule is

preserved in the presence of active dendrites.

As mentioned previously, there are thousands of synaptic inputs

received by a neuron in the brain. We therefore further apply our

analysis to describe the dendritic integration of multiple synaptic

inputs. We demonstrate that the spatiotemporal dendritic integra-

tion of all synaptic inputs can be decomposed into the sum of all

possible pairwise dendritic integration, and each pair obeys the

bilinear integration rule (1), i.e.,

VS(t)~
X

p

V
p
E(t)z

X
q

V
q
I (t)z

X
i,j

kij
EI (t)Vi

E(t)V
j
I (t)

z
X
k,l

kkl
EE(t)Vk

E(t)Vl
E(t)z

X
m,n

kmn
II (t)Vm

I (t)Vn
I (t),

ð2Þ

where VS denotes the SSP, V
p
E denotes the pth individual EPSP,

V
q
I denotes the qth individual inhibitory postsynaptic potential

(IPSP), k
ij
EI , kkl

EE , and kmn
II are the corresponding proportionality

coefficients with superscripts denoting the index of the synaptic

inputs. We then confirm the bilinear integration rule (2)

numerically using realistic neuron modeling. The decomposition

of multiple inputs integration in rule (2) leads to a graph

representation of the dendritic integration. Each node in the

graph corresponds to a synaptic input location, and each edge

connecting two nodes represents the bilinear term for a pair of

synaptic inputs given at the corresponding locations. This graph

evolves with time, and is all-to-all connected when stimuli are

given at all synaptic sites simultaneously. However, based on

simulation results and experimental observations, we can estimate

that there are only a small number of activated synaptic

integration, or edges in the graph, within a short time interval.

Therefore, the graph representing the dendritic integration can

indeed be functionally sparse.

Finally, we comment that, in general, it is theoretically

challenging to analytically describe the dynamical response of a

neuron with dendritic structures under time-dependent synaptic

conductance inputs. One simple approach to circumvent this

difficulty is to analyze the steady state of neuronal input-output

relationships by assuming that both the synaptic conductance and

the membrane potential are constant [3,12]. Such analyses can be

applied to study dendritic integration, but they usually oversim-

plify the description of the spatial integration, and fail to describe

the temporal integration. Another approach to circumvent the

difficulty is to study the cable model [14,15] analytically or

numerically. For the subthreshold regime, in which voltage-gated

channels are weakly activated, the dendrites can be considered as a

passive cable. Along the cable, the membrane potential is linearly

dependent on injected current input. This linearity enables one to

use the Green’s function method to analytically obtain the

membrane potential with externally injected current. In contrast,

the membrane potential depends nonlinearly on the synaptic

conductance input [12]. This nonlinearity greatly complicates

mathematical analyses. Therefore, in order to solve the cable

model analytically, one usually makes the approximation of

Author Summary

A neuron, as a fundamental unit of brain computation,
exhibits extraordinary computational power in processing
input signals from neighboring neurons. It usually
integrates thousands of synaptic inputs from its dendrites
to achieve information processing. This process is known
as dendritic integration. To elucidate information coding, it
is important to investigate quantitative spatiotemporal
dendritic integration rules. However, there has yet to be
extensive experimental investigations to quantitatively
describe dendritic integration. Meanwhile, most theoreti-
cal neuron models considering time-dependent synaptic
inputs are difficult to solve analytically, thus impossible to
be used to quantify dendritic integration. In this work, we
develop a mathematical method to analytically solve a
two-compartment neuron model with time-dependent
synaptic inputs. Using these solutions, we derive a
quantitative rule to capture the dendritic integration of
all types, including excitation-inhibition, excitation-excita-
tion, inhibition-inhibition, and multiple excitatory and
inhibitory inputs. We then validate our dendritic integra-
tion rule through both realistic neuron modeling and
electrophysiological experiments. We conclude that the
general spatiotemporal dendritic integration structure can
be well characterized by our dendritic integration rule. We
finally demonstrate that the rule leads to a graph
representation of dendritic integration that exhibits
functionally sparse properties.
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constant synaptic conductance [16,17]. The approximation can

help investigate some aspects of dendritic integration, however, the

approximation in such a case is not sufficiently realistic because the

synaptic conductances in vivo are generally time-dependent. On

the other hand, one can study the dendritic integration in the cable

model numerically. The compartmental modeling approach [14]

enables one to solve the cable model with time-dependent synaptic

inputs. This approach has been used to investigate many aspects of

dendritic integration. For instance, it was discovered computa-

tionally that dendritic integration of excitatory inputs obeys a

certain qualitative rule, i.e., EPSPs are first integrated nonlinearly

at individual branches before summed linearly at the soma

[18,19], which was verified later in experiments [20,21]. Clearly,

the computational approach can help gain insights into various

phenomena of spatiotemporal dynamics observed at the dendrites,

however, a deep, comprehensive understanding often requires

analytical approaches. Note that this point has also been

emphasized in Ref. [22]. Here, our analytical asymptotic method

can solve the cable model with time-dependent synaptic inputs

analytically and reveal a precise quantitative spatiotemporal

dendritic integration rule, as will be further illustrated below.

Results

We first study the dendritic integration of a pair of excitatory

and inhibitory inputs (E-I), a pair of excitatory inputs (E-E), and a

pair of inhibitory inputs (I-I) case by case. In each case, we first

analytically derive the bilinear integration rule from the two-

compartment passive cable model, and then validate the bilinear

integration rule using the realistic model of a pyramidal neuron

with both active channels and dendritic branches; we further

validate the bilinear integration rule in electrophysiological

experiments in rat CA1 pyramidal neurons. We then derive the

bilinear integration rule for multiple excitatory and inhibitory

inputs, and validate this rule in the simulation. Based on our

bilinear integration rule for multi-inputs, we finally propose a

graph representation of dendritic integration.

Bilinear Rule for E-I Integration
We begin to study the spatiotemporal dendritic integration of a

pair of excitatory and inhibitory inputs. An analytical derivation of

the bilinear integration rule is described in the section of

Derivation of the Rule. The details of the cable model used in

the derivation can be found in the section of Materials and

Methods. The validation of the bilinear integration rule using the

realistic neuron modeling and electrophysiological experiments is

described in the section of Validation of the Rule. The spatial

dependence of the coefficient k in the rule is described in the

section of Spatial Dependence of kEI .

Derivation of the rule. Most neurons possess complicated

dendritic morphology, however, for simplicity, we start to

investigate the spatiotemporal dendritic integration rule with an

idealized two-compartment passive cable model, in which a

spherical soma is connected to an unbranched cylindrical dendrite

with finite length l and diameter d . The distance between a

dendritic location and the soma is denoted by x. Given an

excitatory input at location x~xE and at time t~tE , and an

inhibitory input at location x~xI and at time t~tI , the

membrane potential dynamics is governed by

c
Lu

Lt
~{ Lu{

X
q~E,I

fq q(t{tq)d(x{xq)(u{eq)z
d

4ra

L2u

Lx2
, ð3Þ

where u is the membrane potential with respect to the resting

potential on the dendrite, c is the membrane capacitance per unit

area, ra is the axial resistivity, and L is the leak conductance per

unit area. The excitatory and inhibitory input strengths fE and fI

control the amplitude of EPSP and IPSP, respectively. The

variables E and I denote the unitary excitatory and inhibitory

conductances per unit area with their peak value normalized to

unity [described by Equation (29)]. eE and eI are the correspond-

ing reversal potentials, respectively. The values of the parameters

in the model can be found in the section of Materials and

Methods.

By assuming that one dendritic end is sealed and the other

dendritic end connects to the spherical soma, the boundary

conditions are given by

Lu

LxDx~l
~0, ð4Þ

c
Lu(0,t)

Lt
~{ Lu(0,t)z

pd2

4Sra

Lu

LxDx~0
, ð5Þ

where S is the surface area of the soma. The initial condition is

simply set as

u(x,0)~0 ð6Þ

for a neuron at its resting state.

For the physiological regime, the corresponding synaptic input

strengths, fE and fI , are relatively small in the model [Equations

(3)–(6)]. To be specific, for the amplitude of an EPSP less than

6mV and the amplitude of an IPSP less than {3mV , the

corresponding strengths fE and fI are considered to be small.

Therefore, we can represent the membrane potential as an

asymptotic series in powers of fE and fI as follows:

u(x,t)~
X
k~0

? X
mzn~k

f m
E f n

I umn(x,t): ð7Þ

Substituting Equation (7) into Equations (3)–(6), order by order,

we can obtain its asymptotic solutions umn(x,t). The solutions to

the second order (mznƒ2) are described below (see the section of

Materials and Methods for a detailed calculation). For the zeroth

order, we have

u00(x,t)~0: ð8Þ

The solution corresponds to the fact that the membrane

potential response remains at its resting state when there is no

stimuli presented (fE~0, fI~0). The first order excitation O(fE) is

u10(x,t)~G(x,xE ,t) � ½eE E(t{tE)�, ð9Þ

where ‘�’ denotes convolution in time, and G(x,y,t) is the Green’s

function of the cable equation given a d impulse input (the

analytical expression is presented in the section of Materials and

Methods). Note that the input eE E at xE can be viewed as the

synaptic current when the local membrane potential is maintained

at the resting state. The second order of excitation O(f 2
E ) is

Spatiotemporal Integration Rule of Synaptic Inputs
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u20(x,t)~G(x,xE ,t) � ½{ E(t{tE)u10(xE ,t)�, ð10Þ

where the expression of u10(xE ,t) is given in Equation (9). Note

that the input { Eu10 at xE can be viewed as the synaptic current,

which is the product of the local conductance E with the first

order local membrane potential u10. Similarly, we have the first

and second order inhibition O(fI ) and O(f 2
I ):

u01(x,t)~G(x,xI ,t) � ½eI I (t{tI )�, ð11Þ

u02(x,t)~G(x,xI ,t) � ½{ I (t{tI )u01(xI ,t)�: ð12Þ

For the order of O(fEfI ), we have

u11(x,t) ~G(x,xE ,t) � ½{ E(t{tE)u01(xE ,t)�
zG(x,xI ,t) � ½{ I (t{tI )u10(xI ,t)�:

ð13Þ

where u10(x,t) and u01(x,t) are given by Equations (9) and (11),

respectively. On account of the fact that eE~70mV (relative to the

resting potential) is nearly an order of magnitude larger than

DeI D~10mV , u11 in Equation (13) can be further simplified as

u11(x,t)&G(x,xI ,t) � ½{ I (t{tI )u10(xI ,t)�, ð14Þ

which indicates that the nonlinear integration effect mainly

originates from the outward synaptic current, i.e., I u10, induced

by the first order EPSP measured at the inhibitory input site xI ,

i.e., u10(xI ,t).

Numerical simulation of the cable model indicates that the

second order asymptotic approximation is sufficiently accurate in

capturing the model’s solution of physiologically realistic mem-

brane potentials, as demonstrated in Fig. 1. Therefore, if only an

individual excitatory input is given [fI~0 in Equation (3)], the

corresponding EPSP measured at the soma, denoted by VE , can

be approximated by

VE(t)&
X
m~0

2

f m
E um0(0,t): ð15Þ

Similarly, if only an individual inhibitory input is given [fE~0
in Equation (3)], the corresponding IPSP measured at the soma,

denoted by VI , can be approximated by

VI (t)&
X
n~0

2

f n
I u0n(0,t): ð16Þ

If both the excitatory and inhibitory inputs are given at xE and

xI , the corresponding SSP measured at the soma, denoted by VS ,

can be approximated by

VS(t)&
X
k~0

2 X
mzn~k

f m
E f n

I umn(0,t): ð17Þ

We define the difference between the SSP, and the linear

summation of EPSP and IPSP as

VSC(t):VS(t){VE(t){VI (t): ð18Þ

From Equations (15), (16) and (17), we have

VSC(t)&fEfI u11(0,t): ð19Þ

If eI is set to be at the resting potential, we can show that the

value of VI indicating hyperpolarization vanishes, while the value

of VSC stays nearly the same. Therefore, VSC is mainly caused by

the shunting effect and thus is referred to as the shunting

component (SC). In our analysis, the SC is the leading order of the

Fig. 1. Asymptotic solutions of various orders for the two-compartment passive cable model. Asymptotic solutions for (A) EPSP, (B) IPSP,
and (C) SSP in comparison with numerical simulations of Equation (3). The blue dashed line is the first order approximation. The red circle is the
second order approximation. The black solid line is the numerical solution of the full Equation (3). The stimuli are given at the location xE~240mm
and xI ~180mm. Physiological parameters in the simulation can be found in the section of Materials and Methods.
doi:10.1371/journal.pcbi.1004014.g001
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nonlinear integration between excitation and inhibition. If we

further define the shunting coefficient kEI as

kEI (t; tE ,tI ,xE ,xI )~
VSC

VE
:VI

ð20aÞ

&{
G(0,xI ,t) � ½ I (t{tI )G(xI ,xE ,t) � E(t{tE)�
eI G(0,xE ,t) � E(t{tE):G(0,xI ,t) � I (t{tI )

, ð20bÞ

then kEI is nearly independent of the amplitude of EPSP and

IPSP, because the input strengths fE and fI , which determine the

amplitudes of EPSP and IPSP, cancel each other in both

denominator and numerator in Equation (20b).

From Equation (20a), we have the following spatiotemporal

dendritic integration rule

VS(t)~VE(t)zVI (t)zkEI (t)VE(t)VI (t): ð21Þ

The shunting coefficient kEI is nearly independent of the

amplitude of EPSP and IPSP. In addition, kEI depends on the

location of excitatory and inhibitory inputs xE and xI . For a fixed

pair of excitatory and inhibitory input locations, kEI is a function

of both time t and the arrival time difference between the

excitatory and inhibitory input t~tE{tI , as illustrated in Fig. 2.

Validation of the Rule. As the bilinear integration rule (21)

is derived from the idealized passive neuron model, we need to

investigate its validity for a realistic neuron, which has active ion

channels embedded in its tree-like dendrites.

We first perform the simulation of a biologically realistic

pyramidal neuron with active channels (morphology shown in

Fig. 2). The details of the model and the related computational

method can be found in the section of Materials and Methods.

The simulation results are summarized below.

For the case of concurrent inputs (Here, we use ‘‘concurrent’’ to

denote the case when tE~tI ), as shown in Fig. 3A, when the

excitatory and inhibitory inputs are elicited concurrently at

different locations on the dendritic trunk, the SSP is found to be

always smaller than the linear sum of the EPSP and the IPSP when

elicited separately. In this case, the bilinear integration rule (21)

holds at the time t� when the EPSP reaches its peak value. We can

vary fE to control the amplitude of EPSP (less than 6mV ) and vary

fI to control the amplitude of IPSP (less than {3mV ). For fixed

input strengths fE and fI , we obtain the set of time courses of the

EPSP, the IPSP, and the corresponding SSP. Using 9 sets of such

data with different input strengths, we find that the SC amplitude

VSC(t�) depends linearly on the product of the EPSP and IPSP

amplitudes, i.e., VE(t�)VI (t�). The excellent linear fitting in

Fig. 4A shows that the slope kEI (t�) is independent of the

amplitude of EPSP and IPSP. This result is consistent with the

experimental observation [3].

Fig. 2. Description of kEI as a function of time t and stimulus
arrival difference �tt for a fixed pair of excitatory and inhibitory
input locations. Left, a morphological plot of the realistic neuron
model. The excitatory and inhibitory input locations are indicated by
arrows. Right, (lower) an IPSP arrives at the soma earlier than an EPSP.
The arrival times are indicated by vertical dashed lines. (upper) The
shunting coefficient kEI remains at zero until the EPSP arrives at tE .
doi:10.1371/journal.pcbi.1004014.g002

Fig. 3. An example of EPSP, IPSP, SSP, SC, and the correspond-
ing linear sum. (A) The EPSP and the IPSP are elicited concurrently.
Here t� denotes the time when EPSP reaches its peak value. (B) the IPSP
is elicited 20ms before the EPSP. The results are obtained in the realistic
pyramidal neuron model simulation which is described in detail in the
section of Materials and Methods. The excitatory input is given at the
location xE~283mm and the inhibitory input is given at the location
xI~151mm.
doi:10.1371/journal.pcbi.1004014.g003

Spatiotemporal Integration Rule of Synaptic Inputs
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For the same case of concurrent inputs, we then calculate kEI at

any time t, instead of the peak time t�. We compute kEI (t) within

the interval t�{svtvt�zs, where s~10ms. We choose this

20ms interval because the amplitude of the EPSP is relatively large

within that interval. As a consequence, we can avoid a small

denominator in calculating kEI (t) and improve the numerical

accuracy. At each fixed time t, kEI (t) is estimated by linear

regression using the same 9 sets of data used to validate the

bilinear integration rule at t�. As demonstrated in Fig. 4B, at each

time t, there is a small error bar for the slope kEI estimation and

the R2 value is very close to 1. Both facts indicate an excellent

linear fitting of VE(t)VI (t) vs. VSC(t). Therefore, the shunting

coefficient kEI is nearly independent of the amplitude of EPSP

(VE ) and IPSP (VI ) at any time. As expected, the error bar for the

slope estimation increases dramatically far away from the peak

time due to the fact that the numerical accuracy is low when EPSP

and IPSP are small, in particular, when they approach zero.

However, the SC amplitude in this case is sufficiently small, and

can thus be neglected. Therefore, the bilinear integration rule can

naturally be considered valid with kEI~0mV{1.

For the case of nonconcurrent inputs, when the onset of the

inhibitory input is 20ms earlier than that of the excitatory input

(Fig. 3B), our numerical results show that the bilinear integration

rule (21) still holds, as shown in Fig. 4C–D. The rule is also

confirmed for any excitatory and inhibitory input locations

arbitrarily distributed on the dendritic trees.

We next perform electrophysiological experiments to validate

our bilinear integration rule (21). The details of the experimental

procedure can be found in the section of Materials and Methods.

In experiments, the excitatory input is given at *100mm with the

EPSP amplitude less than 8mV and the inhibitory input is given at

*50mm with the IPSP amplitude less than {3mV . For the case of

concurrent inputs, we found that VSC depends linearly on VEVI

at the time when EPSP reaches its peak, as shown in Fig. 4E, and

at a non-peak time, as shown in Fig. 4F. Therefore, the slope kEI

is nearly independent of EPSP and IPSP amplitudes. For the case

of nonconcurrent inputs, when the IPSP is elicited 20ms earlier

than the EPSP, the linear relationship between VSC and VEVI still

holds, as shown in Fig. 4G–H, except that the value R2 of the

regression is smaller (0.77 to 0.81) than those in the concurrent

case (0.90 to 0.99). Therefore, it can be seen from the above that,

the bilinear integration rule (21) is confirmed in rat hippocampal

CA1 pyramidal neurons.

Note that the bilinear integration rule is derived from an

idealized passive neuron case. Interestingly, our results from the

simulation and experiments demonstrate that the structure of the

rule is preserved in the presence of both active channels and

dendritic branches.

Spatial dependence of kEI . Although we have obtained the

form of the bilinear integration rule (21), how the value of the

shunting coefficient kEI depends on the input location is difficult to

analyze directly from its explicit form [Equation (20b)]. Here we

investigate the spatial dependence of input location for kEI , which

may partially reveal the way in which kEI encodes spatial

integration information.

In our previous study [23], a spatial rule for kEI as a function of

input locations has been proposed based on a theoretical analysis

of a multi-compartment cable model. Under the situation when

Fig. 4. Dendritic integration of a pair of excitatory and inhibitory inputs. (A–D) Simulation results with the excitatory input given at the
location xE~283mm and the inhibitory input given at the location xI ~151mm. (A) The SC amplitude is plotted against the product of EPSP amplitude
and IPSP amplitude, at the time when EPSP reaches its peak, i.e., t~t� (Note that {VEVI and {VSC are plotted). Varying VE less than 6mV and
varying VI less than {3mV , it can be seen that {VSC increases linearly with {VEVI . (B) Dendritic integration in the time interval t�{svtvt�zs,
where s~10ms. (upper) R2 for the goodness of the linear fitting of VSC vs. VEVI at different times. (lower) The shunting coefficient kEI (t) (in the unit
of mV{1) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval (The error bars are relatively
small and are within the circles). The circle marked by red indicates the case in (A). (C–D) The same as (A–B) except that the IPSP is elicited 20ms
before the EPSP. (E–H) Experimental results with the excitatory input given at the location xE*100mm and the inhibitory input given at the location
xI*50mm. (E–F) for concurrent inputs and (G–H) for nonconcurrent inputs that the IPSP is elicited 20ms earlier than the EPSP.
doi:10.1371/journal.pcbi.1004014.g004
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the excitatory and inhibitory inputs are given concurrently, the

spatial profile of kEI at the time when EPSP reaches its peak is

characterized by the following spatial rule: For a fixed inhibitory

input location, the I path (marked by green on the dendritic trees in

Fig. 5) is defined as the path between the soma and the inhibitory

input; Along the I path, kEI is predicted to increase as the distance

between excitatory input location and the soma increases; for any

branch (including the trunk) connecting to the I path, kEI is

predicted to be constant for all excitatory input sites on the branch.

The prediction of this spatial kEI rule is consistent with our

electrophysiological experimental results as shown in Fig. 5 (also

see Ref. [3]). We next use the spatial kEI rule to explain these

experimental results.

In Fig. 5A and 5B, an inhibitory input is given on an oblique

branch and two excitatory inputs are given at two locations on the

same oblique branch. The corresponding shunting coefficients kEI

were estimated based on Equation (20a). In our experiment, no

significant difference was found between the values of kEI when

the two excitatory locations were both distal, as shown in Fig. 5A.

This experimental observation can be easily understood by our

spatial rule for kEI because the two excitatory inputs are on the

same branch connected to the I path. By our rule above, the

shunting coefficient kEI should be the same on such a branch.

In contrast, as shown in Fig. 5B, for two excitatory inputs at

proximal locations, kEI was experimentally found significantly

smaller for the excitatory input closer to the soma. This is

consistent with our rule because kEI is predicted to be an

increasing function of the distance between the excitatory input

location and the soma for this case.

In Fig. 5C, an inhibitory input is given on the apical trunk and

two distal excitatory inputs are given at either the trunk or a

branch. For this case, the kEI values were found to be nearly

constant in our experiment. This is the case in which the two

branches where the two excitatory inputs are located connect to

the I path with the same branching point. Therefore, this

experimental observation can be understood through our rule

that all kEI on the two branches are the same as the one at the

branching point.

In Fig. 5D, an inhibitory input is given at an oblique branch

and two distal excitatory inputs are given at different branches.

For this case, the value of kEI for inhibitory and excitatory inputs

located at the same branch was found in our experiment to be

significantly larger than the case in which inhibitory and excitatory

inputs are located at different branches. For the case when

inhibitory and excitatory inputs located at different branches, by

our rule, kEI equals to the value at the branching point on the I

path. Because this branching point is closer to the soma than the

other excitatory input location on the I path, the increase of kEI

along the I path predicted by our rule explains the experimental

observation.

Our theory [23] further predicts that, in principle, it is possible

for an inhibitory input located at a branch to shunt the excitatory

input on other branches with a large value of kEI . This generalizes

the conclusion in Ref. [3], in which the shunting inhibition is

mainly confined within the branch where the inhibitory input is

located. In Ref. [3], the simulation investigation is focused on the

case when inhibitory input is elicited on a branch close to soma. In

this case, kEI for excitatory inputs on different branches is found to

be small in simulation. This observation is consistent with our rule.

According to our rule, the value of kEI for an excitatory input on

the branch is equal to that for excitatory input on the branching

point connected to the I path. Due to the branching point being

very close to the soma in their simulation, kEI can be small. In

general, when the inhibitory input is elicited at a location far from

the soma, for the excitatory input on some other distal dendritic

branch, the distance between the branching point and soma can

be large, which leads to a large value of kEI .

Bilinear Rules for E-E & I-I Integration
So far we have addressed the dendritic integration for a pair of

excitatory and inhibitory inputs. A natural question arises: how

does a neuron integrate a pair of time-dependent synaptic

conductance inputs with identical type?

The dendritic integration of excitatory inputs has been

extensively investigated in experiments (reviewed in Ref. [1]), yet

a precise quantitative characterization is still lacking. According to

our idealized cable model, given a pair of excitatory inputs with

input strengths fE1 and fE2 at locations x~xE1 and x~xE2 and at

times t~tE1 and t~tE2, the dynamics of the membrane potential

on the dendrite is governed by the following equation:

c
Lu

Lt
~{ Lu{

X
q~E1,E2

fq E(t{tq)d(x{xq)(u{eE)z
d

4ra

L2u

Lx2
ð22Þ

with the initial and boundary conditions the same as given in

Equations (4)–(6). Similarly, we can represent its solution as an

Fig. 5. Shunting coefficient kEI in branched dendrites measured in experiments. The data marked by grey squares were collected from 7
neurons in our experiments, and lines connect data from the same neuron. The data marked by black squares are the average of the data marked by
grey squares. The error bar indicates one standard deviation. In all figure panels, the locations of the inhibitory input (I) and excitatory inputs (E1 and
E2) are marked by a blue dot and red dots, respectively. The I path is marked by green. (A) The inhibitory input I at an oblique branch: kEI is nearly
constant for two distal E1 and E2 on the same branch. (B) As in (A) except that E1 and E2 are more proximal than I. kEI is significantly different at E1
and E2 sites. (C) The inhibitory input I at the trunk: kEI is nearly constant between E1 at the trunk and E2 at the oblique branch. (D) The inhibitory
input I at an oblique branch: kEI is significantly different between E1 and E2, where E1 is on the same branch as I and E2 is on a different branch.
doi:10.1371/journal.pcbi.1004014.g005
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asymptotic series and solve it order by order to obtain the

following bilinear integration rule:

VS(t)~VE1(t)zVE2(t)zkEE(t)VE1(t)VE2(t), ð23Þ

where VE1 and VE2 are EPSPs induced by two individual

excitatory inputs, and VS is the SSP when the two excitatory

inputs are present. Similar to the case of a pair of excitatory and

inhibitory inputs, the shunting coefficient kEE(t) only depends on

the excitatory input locations and the input time difference. It does

not depend on the EPSPs’ amplitudes. Here kEE will still be

referred to as a shunting coefficient because the origin of the

nonlinear integration for the paired excitatory inputs is exactly the

same as that for the paired excitatory and inhibitory inputs from

the passive cable model.

The bilinear integration rule (23) is found to be consistent with

the numerical results obtained using the same realistic pyramidal

neuron model as the one used in the section of Bilinear Rule for

E–I Integration. For a pair of excitatory inputs with their locations

fixed on the dendritic trunk, the rule holds when the amplitude of

each EPSP is less than 2mV . For the case of concurrent inputs, at

the time t� when one of the EPSPs reaches its peak value

VSC(t�)~VS(t�){VE1(t�){VE2(t�)

is found to be linearly dependent of VE1(t�)VE2(t�), as shown in

Fig. 6A. This linear relationship indicates kEE is independent of

the amplitudes of the two EPSPs. In addition, as shown in Fig. 6B,

the bilinear integration rule is numerically verified in the time

interval t�{svtvt�zs, for s~10ms, within which the ampli-

tude of EPSPs are relatively large. For the case of nonconcurrent

inputs, the bilinear integration rule is also numerically verified in

the same way, as shown in Fig. 6C–D.

In addition, we find that when the input strengths become

sufficiently strong so as to make the depolarized membrane

potential too large, i.e. VE1VE2w5mV2, there is a deviation from

the bilinear integration rule (23). This deviation can be ascribed to

the voltage-gated ionic channel activities in our realistic pyramidal

neuron model. After blocking the active channels, the rule

becomes valid with a different value of kEE for large EPSPs

amplitudes, as shown in Fig. 7. However, we note that, regardless

of input strengths, the amplitude of SC is always two orders of

magnitude smaller than the amplitude of SSP. Therefore, the

integration of two excitatory inputs can be naturally approximated

by the linear summation of two individual EPSPs, i.e. VSC~0mV .

We then perform electrophysiological experiments with a pair of

excitatory synaptic inputs to confirm the linear summation. As

expected, this linear summation is also observed in our experi-

ments for both concurrent and nonconcurrent input cases, as

shown in Fig. 6E and 6F, respectively. Note that, the linear

summation is also consistent with experimental observations as

reported in Ref. [24].

Similarly, for a pair of inhibitory inputs, we can arrive at the

following bilinear integration rule from the cable model:

VS(t)~VI1(t)zVI2(t)zkII (t)VI1(t)VI2(t), ð24Þ

where VI1 and VI2 are IPSPs induced by two individual inhibitory

inputs, and VS is the SSP when the two inhibitory inputs are

present. Here, kII (t) is the shunting coefficient that is independent

of the IPSPs amplitudes but is dependent on the input time

difference and input locations. The above bilinear integration rule

(24) is consistent with our numerical results using the realistic

pyramidal neuron model, as shown in Fig. 8A–D. Our electro-

physiological experimental observations further confirm this rule,

as shown in Fig. 8E–H.

Fig. 6. Dendritic integration of a pair of excitatory inputs. (A–D)
Simulation results with two excitatory inputs given at the location
xE1~227mm and xE2~283mm. (A) The SC amplitude is plotted against
the product of the two EPSP amplitudes, at the time t� when one of the
EPSPs reaches its peak (Note that {VSC is plotted). Varying VE1 and
VE2 less than 2mV , it can be seen that {VSC increases linearly with
VE1VE2. (B) Dendritic integration in the time interval t�{svtvt�zs,
where s~10ms. (upper) R2 for the goodness of the linear fitting of
{VSC vs. VE1VE2 at different times. (lower) The shunting coefficient
kEE(t) (in the unit of mV{1) as the slope of the linear fitting is plotted
at different times. The error bar indicates 95% confidence interval (The
error bars are relatively small and are within the circles). The circle
marked by red indicates the case in (A). (C–D) The same as (A–B) except
that one of the EPSPs is elicited 20ms earlier than the other. (E–F) Our
experimental result shows the nearly linear summation for (E) a pair of
concurrent excitatory inputs and (F) nonconcurrent excitatory inputs
with arrival time difference 20ms, when two excitatory inputs are given
at the location xE1*50mm and at xE2*100mm.
doi:10.1371/journal.pcbi.1004014.g006
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Bilinear Rule for Multi-input Integration
In the previous sections, we have discussed the integration of a

pair of synaptic inputs. In vivo, a neuron receives thousands of

excitatory and inhibitory inputs from dendrites [2]. Therefore, we

now address the question of whether the integration rule derived

for a pair of synaptic inputs can be generalized to the case of

multiple inputs.

Our theoretical analysis shows that, for multiple inputs, the SSP

can be approximated by the linear sum of all individual EPSPs and

IPSPs, plus the bilinear interactions between all the paired inputs

with shunting coefficients k
ij
EI , kkl

EE , and kmn
II respectively (the

superscript labels the synaptic inputs), i.e.,

VS(t)~
X

p

V
p
E(t)z

X
q

V
q
I (t)z

X
i,j

k
ij
EI (t)Vi

E(t)V
j
I (t)

z
X
k,l

kkl
EE(t)Vk

E(t)Vl
E(t)z

X
m,n

kmn
II (t)Vm

I (t)Vn
I (t):

ð25Þ

We next validate the rule (25) using the realistic pyramidal

neuron model. It has been reported that, for a CA1 neuron,

inhibitory inputs are locally concentrated on the proximal

dendrites while excitatory inputs are broadly distributed on the

entire dendrites [25]. Based on this observation, we randomly

choose 15 excitatory input locations and 5 inhibitory input

locations on the model neuron’s dendrites (Fig. 9A). In the

simulation, all inputs are elicited starting randomly from 0ms
to 100ms. In order to compare Equation (25) with the SSP

simulated in the realistic neuron model, we first measure kEI ,

kEE , and kII pair by pair for all possible pairs. We then record all

membrane potential traces V1
E ,V2

E ,:::,V15
E and V1

I ,V2
I ,:::,V5

I

induced by the corresponding individual synaptic inputs. Our

results show that the SSP measured from our simulation is indeed

given by the bilinear integration rule (25), as shown in Fig. 9B

and 9C. In contrast, the SSP in our numerical simulation deviates

significantly from the linear summation of all individual EPSPs

and IPSPs.

Graph Representation of Dendritic Integration
According to our bilinear integration rule (25), the dendritic

integration of multiple synaptic inputs can be decomposed into the

summation of all possible pairwise dendritic integration. There-

fore, we can map dendritic computation in a dendritic tree onto a

graph. Each dendritic site corresponds to a node in the graph and

the corresponding shunting component is mapped to the weight of

the edge connecting the two nodes. We refer to such a graph as a

dendritic graph. The dendritic graph is an all-to-all connected

graph if all stimuli are given concurrently (Fig. 10A). However, the

dendritic integration for all possible pairs of synaptic inputs is

usually not activated concurrently in realistic situations. For

instance, if the arrival time difference between two inputs is

sufficiently large, there is no interaction between them. The

activated level of the nonlinear dendritic integration for a pair of

synaptic inputs can be quantified by the SC amplitude—the

weight of the edge in the graph. The simulation result shows that

the number of activated edges at any time is relatively small on the

dendritic graph (Fig. 10B–D), compared with the total number of

edges on the all-to-all connected graph (Fig. 10A). Therefore, for

the case of a hippocampal pyramidal neuron, the dendritic graph

could be functionally sparse in time. The functional sparsity of a

dendritic graph may also exist in neocortical pyramidal neurons.

In vivo, a cortical pyramidal neuron receives about *104 synaptic

inputs [26]. Most of them are from other cortical neurons [27,28],

which typically fire about 10 spikes per second in awake animals

[29,30]. Thus, the neuron can be expected to receive *105

synaptic inputs per second. The average number of synaptic inputs

within 10ms (membrane potential time constants in vivo) is *103.

The number of activated dendritic integration pairs within the

10ms interval is *106, which is relatively small compared with the

total possible synaptic integration pairs *108. Therefore, the

activated integrations or edges in the dendritic graph within a

short time window can be indeed functionally sparse (*10{2). In

general, the neuronal firing rates vary across different cell types,

cortical regions, brain states and so on. Therefore, based on the

above estimate, in an average sense, the graph of dendritic

integration is functionally sparse.

Discussion

Our bilinear dendritic integration rule (21) is consistent with

the rule previously reported [3], but is more general in the

following aspects: (i) Our dendritic integration rule holds at any

time and is not limited to the time when the EPSP reaches its

peak value. (ii) The rule holds when the two inputs are even

nonconcurrent. This situation often occurs because the excitatory

and inhibitory inputs may not always arrive at precisely the same

time. (iii) The form of the rule can be extended to describe the

integration between a pair of excitatory inputs, a pair of

inhibitory inputs, and even multiple inputs of mixed-types. The

Fig. 7. Integration of a pair of excitatory inputs on passive
dendrites. Simulation results with two excitatory inputs given at the
location xE1~227mm and xE2~283mm. (A) The SC amplitude is plotted
against the product of the two EPSP amplitudes, at the time t� when
one of the EPSPs reaches its peak (Note that {VSC is plotted). (B)
Dendritic integration in the time interval t�{svtvt�zs, where
s~10ms. (upper) R2 for the goodness of the linear fitting of {VSC vs.
VE1VE2 at different times. (lower) The shunting coefficient kEE(t) (in
the unit of mV{1) as the slope of the linear fitting is plotted at different
times. The error bar indicates 95% confidence interval (The error bars
are relatively small and are within the circles). The circle marked by red
indicates the case in (A). (C–D) The same as (A–B) except that one of the
EPSPs is elicited 20ms earlier than the other.
doi:10.1371/journal.pcbi.1004014.g007
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spatiotemporal information of synaptic inputs interaction is coded

in the shunting coefficient, which is a function of the input

locations and input arrival time difference.

Our bilinear integration rule holds in the subthreshold regime

for a large range of membrane potential. When we derive the

bilinear rule from the passive cable model, we assume that the

Fig. 8. Dendritic integration of a pair of inhibitory inputs. (A–D) Simulation results. Two inhibitory inputs are given at the location xI1~94mm
and at xI2~151mm. (A) The SC amplitude is plotted against the product of the two IPSP amplitudes, at the time t� when one of the IPSPs reaches its
peak. Varying VI1 and VI2 less than {3mV , it can be seen that VSC increases linearly with VI1VI2 . (B) Dendritic integration in the time interval
t�{5msvtvt�z15ms. (upper) R2 for the goodness of the linear fitting of VSC vs. VI1VI2 at different times. (lower) The shunting coefficient kII (t) (in
the unit of mV{1) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval (The error bars are
relatively small). The circle marked by red indicates the case in (A). (C–D) The same as (A–B) except that one of the IPSPs is elicited 20ms earlier than
the other. (E–H) Experimental results with two inhibitory inputs given at the location xI1*50mm and at xI2*100mm. (E–F) for concurrent inhibitory
inputs and (G–H) for nonconcurrent inhibitory inputs with arrival time difference 20ms.
doi:10.1371/journal.pcbi.1004014.g008

Fig. 9. Dendritic integration of multiple synaptic inputs. (A) Distribution of 15 excitatory inputs (red dots) and 5 inhibitory inputs (blue dots) at
the dendritic arbor of the realistic pyramidal neuron model. (B) One trial of membrane potential obtained by setting the arrival time of each stimulus
randomly distributed from 0ms to 100ms. The SSP (black dots) from the simulation of the realistic neuron model nearly overlaps with the SSP (red)
predicted by the bilinear integration rule (25) while deviating from the trace of the direct linear summation of all postsynaptic potentials elicited
separately (blue). (C) The direct linear sum (blue) and the SSP (red) predicted by rule (25) are plotted against the SSP from the simulation of the
realistic neuron model. Here, the data are points on the corresponding curves from ten trials sampled uniformly from 0ms to 100ms. For comparison,
the slope of the grey line is unity. It can be observed that the red dots fall on the grey line. This indicates that the predicted SSP is equal to the
simulated SSP at any time.
doi:10.1371/journal.pcbi.1004014.g009

Spatiotemporal Integration Rule of Synaptic Inputs

PLOS Computational Biology | www.ploscompbiol.org 10 December 2014 | Volume 10 | Issue 12 | e1004014



input strengths or the amplitudes of membrane potentials require

to be small. This assumption forms the basis of the asymptotic

analysis, because the second order asymptotic solutions of EPSP,

IPSP and SSP converge to their exact solutions as the asymptotic

parameters fE and fI (denoting the excitatory and inhibitory input

strengths) approach zero. In general, in the passive cable model,

the bilinear rule will be more accurate for small amplitudes of

EPSPs and IPSPs than large amplitudes. Importantly, the

assumption holds naturally that in the physiological regime when

EPSP amplitude is less than 6mV and IPSP amplitude is less than -

3mV, fE and fI are small O(10{3). However, even for EPSP

amplitude close to the threshold, i.e., 10mV, which is unusually

large physiologically, we can show that the second order

asymptotic solution can still well approximate the EPSP with a

relative error less than 5%. Thus the bilinear rule is still valid for

large depolarizations near the threshold. The validity of the

bilinear rule for large membrane potentials is also confirmed in

both simulations and experiments. In particular, in the analysis of

our experimental data, to validate the bilinear rule, we have

already included all the data when the EPSP amplitude is below

and close to the threshold because we have only excluded those

data corresponding to the case when a neuron fires.

Our bilinear dendritic integration rule (21) is derived from the

passive cable model. However, the simulation results and the

experimental observations demonstrate that the form of dendritic

integration is preserved for active dendrites. Additional simulation

results show that for the same input locations, the shunting

coefficients are generally larger on the active dendrites than those

on the passive dendrites with all active channels blocked. We also

note that the value of k in simulation is different from the value

measured in experiments. This difference may arise from the fact

that some parameters of the passive membrane properties, such as

the membrane leak conductance, may not be exactly the same as

those in the biological neuron, and we have only used a limited set

of ion channels in simulation compared with those in the biological

neuron. In addition, the input locations in the simulation and the

experiments are different, which may also contribute to this

derivation. However, the bilinear form is a universal feature in

both simulation and experiment.

By fixing excitatory input location while varying inhibitory

input location, our model exhibits that there exists a region in the

distal dendritic trunk within which the shunting inhibition can be

more powerful, i.e, a larger kEI , than in proximal dendrites. This

result is consistent with what is reported in Ref. [31]. Compared

with Ref. [31], our work provides a different perspective of

dendritic computation. In their work, the multiple inhibitory

inputs can induce a global shunting effect on the dendrites.

However, if we focus on the shunting effect only at the soma

instead of the dendrites, our theory shows that all the interactions

among multiple inputs can then be decomposed into pairwise

interactions, as described by the bilinear integration rule (25). In

addition, in this work, we focus on the somatic membrane

potential that is directly related to the generation of an action

potential. However, it is also important to investigate the local

integration of membrane potentials measured at a dendritic site

instead of that measured at the soma. Asymptotic analysis of the

cable model can show that our bilinear integration rule is still valid

for the description of the integration on the dendrites. On the

dendrites, the broadly distributed dendritic spines with high neck

resistances [32,33] will filter a postsynaptic potential to a few

millivolts on a branch [34,35]. Within this regime our bilinear

integration rule is valid. Note that our rule may fail to capture the

supralinear integration of synaptic inputs measured on the

dendrites during the generation of a dendritic spike [36].

However, if the integration is measured at the soma, our rule

remains valid even when there is a dendritic spike induced by a

strong excitatory input and an inhibitory synaptic input on

different branches [3].

The bilinear integration rule (25) can help improve the

computational efficiency in a simulation of neuronal network with

dendritic structures. By our results, once the shunting coefficients for

all pairs of input locations are measured, we can predict the

neuronal response at the soma by the bilinear integration rule (25).

By taking advantage of this, one can establish library-based

algorithms to simulate the membrane potential dynamics of a

biologically realistic neuron. An example of a library-based

algorithm can be found in Ref. [37]. To be specific, based on the

full simulation of a realistic neuron model, we can measure the time-

dependent shunting coefficient as a function of the arrival time

difference and input locations for all possible pairs of synaptic inputs

and record them in a library in advance. For a particular simulation

task, given the specific synaptic inputs on the dendrites, we can then

search the library for the corresponding shunting coefficients to

compute the neuronal response according to the bilinear integration

rule (25) directly. In such a computational framework, one can avoid

directly solving partial differential equations that govern the

spatiotemporal dynamics of dendrites and greatly reduces the

computational cost for large-scale simulations of networks of

neurons incorporating dendritic integration.

Materials and Methods

Ethics Statement
The animal-use protocol was approved by the Animal

Management Committee of the State Key Laboratory of

Fig. 10. Graph representation of dendritic integration. (A) A
complete dendritic graph with 15 excitatory inputs (red) and 5
inhibitory inputs (blue). (B–D) Activated dendritic graph at time 20ms,
50ms and 80ms, respectively. The color of an edge in (B–D) denotes the
normalized SC value. Data are collected from simulations in Fig. 9.
doi:10.1371/journal.pcbi.1004014.g010
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The Cable Model
We consider an idealized passive neuron whose isotropic

spherical soma is attached to an unbranched cylindric dendrite

with finite length l and diameter d . Each small segment in the

neuron can be viewed as an RC circuit with a constant

capacitance and leak conductance density [11,38]. The current

conservation within a segment ½x,xzDx� on the dendrite leads to

cpdDx
Lu

Lt
~{ LpdDxuzIsynzI(x){I(xzDx), ð26Þ

where u is the membrane potential with respect to the resting

potential on the dendrite, c is the membrane capacitance per unit

area, and L is the leak conductance per unit area. Here, Isyn is the

synaptic current given by:

Isyn~{
X

q~E,I

pd

ðxzDx

x

Gqdx:(u{eq), ð27Þ

where GE and GI are excitatory and inhibitory synaptic

conductance per unit area and eE and eI are their reversal

potentials, respectively. When excitatory inputs are elicited at ME

dendritic sites and inhibitory inputs are elicited at MI dendritic

sites, we have

Gq~
X
i~1

Mq X
j~1

?

f ij
q q(t{tij

q )d(x{xi
q), ð28Þ

where q~E,I . For a synaptic input of type q, f ij
q is the input

strength of the jth input at the ith location, tij
q is the arrival time of

the jth input at the ith location, xi
q is the ith input location. The

unitary conductance is often modeled as

q(t)~Nq(e
{ t

sqd {e
{ t

sqr )H(t) ð29Þ

with the peak value normalized to unity by the normalization

factor Nq, and with sqr and sqd as rise and decay time constants,

respectively [38]. Here H(t) is a Heaviside function. The axial

current I(x) can be derived based on the Ohm’s law,

I(x)~{
pd2

4ra

Lu

Lx
, ð30Þ

where ra is the axial resistivity. Taking the limit Dx?0, Equation

(26) becomes our unbranched dendritic cable model,

c
Lu

Lt
~{ Lu{

X
q~E,I

Gq(u{eq)z
d

4ra

L2u

Lx2
: ð31Þ

In particular, for a pair of excitatory and inhibitory inputs with

strength fE and fI received at xE and xI , and at time tE and tI ,

respectively, we have

c
Lu

Lt
~{ Lu{

X
q~E,I

fq q(t{tq)d(x{xq)(u{eq)z
d

4ra

L2u

Lx2
: ð32Þ

Similarly, for a pair of excitatory or inhibitory inputs with

strengths fq1 and fq2 received at xq1 and xq2, and at time tq1 and

tq2 (q~E,I ), respectively, we have

c
Lu

Lt
~{ Lu{

X
p~1,2

fqp q(t{tqp)d(x{xqp)(u{eq)z
d

4ra

L2u

Lx2
: ð33Þ

For the boundary condition of the cable model [Equation (31)],

we assume one end of the dendrite is sealed:

Lu

LxDx~l
~0: ð34Þ

For the other end connecting to the soma, which can also be

modeled as an RC circuit, by the law of current conservation, we

have

cS
Lus

Lt
~{ LSuszIdend , ð35Þ

where S is the somatic membrane area, and us is the somatic

membrane potential. The dendritic current flowing to the soma,

Idend , takes the form of Equation (30) at x~0. Because the

membrane potential is continuous at the connection point

us(t)~u(0,t), ð36Þ

we arrive at the other boundary condition at x~0:

c
Lu(0,t)

Lt
~{ Lu(0,t)z

pd2

4Sra

Lu

LxDx~0
: ð37Þ

For a resting neuron, the initial condition is simply set as

u(x,0)~0: ð38Þ

Green’s Function
In the absence of synaptic inputs, Equation (31) is a linear

system. Using a d impulse input, its Green’s function G(x,y,t) can

be obtained from

c
LG

Lt
~{ LGz

d

4ra

L2G

Lx2
zd(x{y)d(t), ð39Þ

with the following boundary conditions and initial condition,

c
LG(0,y,t)

Lt
~{ LG(0,y,t)z

pd2

4Sra

LG(x,y,t)

Lx D
x~0

,
LG

LxDx~l

~0, and G(x,y,0)~0:

For simplicity, letting t~t=c, j~x
ffiffiffiffiffiffiffiffiffiffiffiffi
4ra=d

p
, g~y

ffiffiffiffiffiffiffiffiffiffiffiffi
4ra=d

p
,

l~l
ffiffiffiffiffiffiffiffiffiffiffiffi
4ra=d

p
, the solution of Equation (39) can be obtained from

the following system,
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LH

Lt
~{ LHz

L2H

Lj2
zd(j{g)d(t), ð40Þ

with rescaled boundary and initial conditions,

LH(0,g,t)

Lt
~{ LH(0,g,t)zc

LH(j,g,t)

Lj D
j~0

,
LH

Lj D
j~l

~0, and H(j,g,0)~0,

where c~ pd2=2S
� �

radð Þ{1=2
. Taking the Laplace transform of

Equation (40), we obtain

LH(j,g,s)

~
A(g,s)e

ffiffiffiffiffiffiffiffiffiffi
sz L

p
(j{l)zB(g,s)e

ffiffiffiffiffiffiffiffiffiffi
sz L

p
(l{j)ze{

ffiffiffiffiffiffiffiffiffiffi
sz L

p
jj{gj

2
ffiffiffiffiffiffiffiffiffiffiffi
sz L

p :
ð41Þ

Combining the two boundary conditions (B(g,s) is thus

eliminated), we have

LH(j,g,s)

~

1ffiffiffiffiffiffiffiffiffiffi
sz L

p A(g,s) cosh (
ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
l{jð Þ){ sinh (

ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
g{jð Þ)½ �forjƒg,

1ffiffiffiffiffiffiffiffiffiffi
sz L

p A(g,s) cosh (
ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
l{jð Þ) forjwg,

8>>><
>>>:

ð42Þ

where

A(g,s)~
(sz L) sinh (

ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
g)zc

ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
cosh (

ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
g)

(sz L) cosh (
ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
l)zc

ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
sinh (

ffiffiffiffiffiffiffiffiffiffiffiffi
sz L

p
l)

, ð43Þ

whose denominator is denoted as f(s) for later discussions. For the

inverse Laplace transform, we need to deal with singular points

that are given by the roots of f(s)~0. It can be easily verified that

these singularities are simple poles and LH(j,g,s) is analytic at

infinity. Then LH(j,g,s) can be written as

LH(j,g,s)~
X

n

Hn(j,g)

szkn

, ð44Þ

where Hn(j,g) is a constant coefficient in the complex s domain,

and s~{kn are the singular points. Then taking the inverse

Laplace transform of Equation (44), we obtain

H(j,g,t)~
X

n

Hn(j,g)e{knt: ð45Þ

Now we only need to solve kn and Hn(j,g) in Equation (45)

to obtain the Green’s function of Equation (40). We solve the

singular points s~{kn first. Defining wn~{i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{knz L

p
l,

f(s)~0 yields

tan (wn)~{
wn

cl
, ð46Þ

whose roots can be determined numerically. There are solutions for

wn with (n{1=2)pvwnv(nz1=2)p for n§1 and w0~0: Next, to

determine the factors Hn(j,g), we use the residue theorem for

integrals. For a contour Cn that winds in the counter-clockwise

direction around the pole s~{kn, and that does not include any

other singular points, the integral of LH(j,g,s) on this contour is

given by

ð
Cn

LHds~2pi Ls
1

LHD
s~{kn

� �{1

: ð47Þ

Using Equations (42–44) and (47), we obtain

Hn(j,g)~cDn cos wn(1{j=l)½ � cos wn 1{g=lð Þ½ �, ð48Þ

where

Dn~
2

clzclw{1
n sin (wn) cos (wn)z2 cos2 (wn)

ð49Þ

for n§0. The solution of the original Green’s function for

Equation (39) can now be expressed as

G(x,y,t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ra= c2dð Þ

q
H(j,g,t): ð50Þ

Asymptotic Analysis
We first consider the case when a pair of excitatory and

inhibitory inputs are received by a neuron. Similar results can be

obtained for a pair of excitatory inputs and a pair of inhibitory

inputs. For the physiological regime (the amplitude of an EPSP

being less than 6mV and the amplitude of an IPSP being less than

{3mV ), the corresponding required input strengths fE and fI are

relatively small. Therefore, given an excitatory input at location

x~xE and time t~tE , and an inhibitory input at location x~xI

and time t~tI , we represent u(x,t) as an asymptotic series in the

powers of fE and fI ,

u~
X
k~0

? X
mzn~k

f m
E f n

I umn(x,t): ð51Þ

Substituting Equation (51) into the cable equation (31), order by

order, we obtain a set of differential equations. For the zeroth-

order, we have

c
Lu00

Lt
~{ Lu00z

d

4ra

L2u00

Lx2
: ð52Þ

Using the boundary and initial conditions [Equations (34), (37),

and (38)], the solution is simply

u00~0: (53)

For the first order of excitation O(fE), we have

c
Lu10

Lt
~{ Lu10z

d

4ra

L2u10

Lx2
z E(t{tE)d(x{xE)eE : ð54Þ

With the help of Green’s function, the solution can be expressed as

u10~G(x,xE ,t) � ½eE E(t{tE)�; (55)
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here ‘�’ denotes convolution in time. For the second order of

excitation O(f 2
E ), we have

c
Lu20

Lt
~{ Lu20z

d

4ra

L2u20

Lx2
{ E(t{tE)d(x{xE)u10: ð56Þ

Because u10 is given by Equation (55), the solution of Equation

(56) is

u20~G(x,xE ,t) � ½{ E(t{tE)u10(xE ,t)�: ð57Þ

Similarly, we can have the first and second order inhibitory

solutions,

u01~G(x,xI ,t) � ½eI I (t{tI )�, ð58Þ

u02~G(x,xI ,t) � ½{ I (t{tI )u01(xI ,t)�: ð59Þ

For the order of O(fEfI ), we have

c
Lu11

Lt
~{ Lu11z

d

4ra

L2u11

Lx2
{ E(t{tE)d(x{xE)u01

{ I (t{tI )d(x{xI )u10,

ð60Þ

whose solution is obtained as follows,

u11~G(x,xE ,t) � ½{ E(t{tE)u01(xE ,t)�

zG(x,xI ,t) � ½{ I (t{tI )u10(xI ,t)�:
ð61Þ

Numerical Simulation
For the numerical simulation of the two-compartment passive

cable model [Equation (3)], the Crank-Nicolson method [39] was

used with time step 0:01ms and space step 1mm. Parameters in our

simulation are within the physiological regime [3,12] with

c~1mF :cm{2, L~0:05mS:cm{2, eE~70mV , eI~{10mV ,

S~2827:4mm2, ra~100Vcm, l~600mm, d~1mm. sEr~5ms,

sEd~7:8ms, sIr~6ms, and sId~18ms. The time constants here

were chosen to be consistent with the conductance inputs in the

experiment [3].

The realistic pyramidal model is the same as that in Ref. [3].

The morphology of the reconstructed pyramidal neuron includes

200 compartments and was obtained from the Duke-Southampton

Archive of neuronal morphology [40]. The passive cable

properties and the density and distribution of active conductances

in the model neruon were based on published experimental data

obtained from hippocampal and cortical pyramidal neurons

[18,19,34,41–50]. We used the NEURON software Version 7.3

[51] to simulate the model with time step 0:1ms.

Hippocampal Slice Preparation and Electrophysiology
The experimental measurements of summation of EPSPs or

IPSPs in single hippocampal CA1 pyramidal cells in the acute

brain slice followed a method described in Ref. [3], with some

modifications. A brief description of modified experimental

procedure is as follows. Acute hippocampal slices (350mm thick)

were prepared from Sprague Dawley rats (postnatal day 14–16),

using a vibratome (VT1200, Leica). The slices were incubated at

34uC for 30 min before transferring to a recording chamber

perfused with the aCSF solution (2ml/min; 30–32uC). The aCSF

contained (in mM) 125 NaCl, 3 KCl, 2 CaCl2, 2 MgSO4, 1.25

NaH2PO4, 1.3 sodium ascorbate, 0.6 sodium pyruvate, 26

NaHCO3, and 11 D-glucose, and was saturated with gas

containing 95% O2 and 5% CO2 (pH 7.4). Whole-cell recording

was made from the soma of CA1 pyramidal cells using glass

micropipettes under an upright microscope (BX51WI, Olympus)

equipped with the DIC optics and an infrared camera (IR-1000E,

DAGE-MTI). The intra-micropipette solution contained (in mM)

145 K-gluconate, 5 KCl, 10 HEPES, 10 disodium phosphocrea-

tine, 4 Mg2ATP, 0.3 Na2GTP, and 0.2 EGTA (pH 7.3), together

with fluorescent dye Alexa Fluor 488 (20mM, Invitrogen) to

visualize the dendritic trees. Pipette resistance was about 3–4 MV,

and the access resistance during the whole-cell recording was

normally less than 20 MV. The same method for micro-

iontophoretic application of extracelluar glutamate or GABA at

the apical dendrite of CA1 pyramidal cells was used to elicit rapid

membrane depolarizations (EPSPs) and hyperpolarizations

(IPSPs). For all three experimental configurations (EPSP-IPSP,

EPSP-EPSP and IPSP-IPSP summation), two micro-iontopho-

retic pipettes were placed at dendritic locations 100mm and 50mm

from the soma, respectively, in particular for the EPSP-IPSP

summation GABA iontophoretic pipette was always placed at the

more proximal location than glutamate iontophoretic pipette was

placed. For each recorded cell, an electrode was placed at the

soma to set the resting membrane potential to about {60mV in

order to obtain a driving force of 15{20mV for inhibitory

GABA inputs. Electrical signals of individual and summed

iontophoretic responses were amplified and filtered at 3 kHz

(low pass) by a patch clamp amplifier (MultiClamp 700B,

Molecular Devices), digitalized (100 kHz) by an AD-DA

converter (Digidata 1440A, Molecular Devices), and acquired

by a pClamp 10.3 (Molecular Devices) into a computer for

further analysis.

Data Processing
In order to study the dendritic integration of a pair of

excitatory and inhibitory inputs, for fixed input locations and

strengths, a moving average technique with time lag 1 ms was

first applied to smooth each individual trace of the EPSP,

IPSP, and SSP recorded in our experiments. After smoothing,

we measured the amplitudes of EPSP, IPSP, and SSP at

different times, including those when EPSP reached its peak

value, and denoted them by VE , VI , and VS , respectively. By

varying the excitatory and inhibitory input strengths, we

measured values of VE , VI and VS . We then constructed a

scatter plot of {VEVI vs. {VSC~{(VS{VE{VI ) at

different times. We divided the range of {VEVI into

approximately 10 bins and averaged all the data points

({VEVI ,{VSC) within each bin. The number of bins was

chosen to ensure at least 8 data points were used for averaging.

However, the qualitative results were not sensitive to the

number of bins (e.g, from 6 bins to 16 bins). Using the Curve

Fitting Toolbox in Matlab Version 7.14, we finally fitted the

averaged data points by a linear function VSC~kEI VEVI , from

which the slope kEI was estimated together with its 95%
confidence interval. For the dendritic integration of a pair of

identical type, the same data processing procedure was

followed.
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48. Andrásfalvy BK, Magee JC (2001) Distance-dependent increase in ampa
receptor number in the dendrites of adult hippocampal ca1 pyramidal neurons.

The Journal of Neuroscience 21: 9151–9159.
49. Smith MA, Ellis-Davies GC, Magee JC (2003) Mechanism of the distance-

dependent scaling of schaffer collateral synapses in rat ca1 pyramidal neurons.

The Journal of physiology 548: 245–258.
50. Nicholson DA, Trana R, Katz Y, Kath WL, Spruston N, et al. (2006) Distance-

dependent differences in synapse number and ampa receptor expression in
hippocampal ca1 pyramidal neurons. Neuron 50: 431–442.

51. Carnevale N, Hines M (2006) The NEURON book. Cambridge: Cambridge

Univ. Press.

Spatiotemporal Integration Rule of Synaptic Inputs

PLOS Computational Biology | www.ploscompbiol.org 15 December 2014 | Volume 10 | Issue 12 | e1004014


