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A cardinal feature of the neocortex is the progressive increase
of the spatial receptive fields along the cortical hierarchy. Re-
cently, theoretical and experimental findings have shown that
the temporal response windows also gradually enlarge, so that
early sensory neural circuits operate on short timescales whereas
higher-association areas are capable of integrating information
over a long period of time. While an increased receptive field is
accounted for by spatial summation of inputs from neurons in
an upstream area, the emergence of timescale hierarchy cannot
be readily explained, especially given the dense interareal cortical
connectivity known in the modern connectome. To uncover the
required neurobiological properties, we carried out a rigorous
analysis of an anatomically based large-scale cortex model of
macaque monkeys. Using a perturbation method, we show that
the segregation of disparate timescales is defined in terms of
the localization of eigenvectors of the connectivity matrix, which
depends on three circuit properties: 1) a macroscopic gradient
of synaptic excitation, 2) distinct electrophysiological properties
between excitatory and inhibitory neuronal populations, and 3)
a detailed balance between long-range excitatory inputs and
local inhibitory inputs for each area-to-area pathway. Our work
thus provides a quantitative understanding of the mechanism
underlying the emergence of timescale hierarchy in large-scale
primate cortical networks.

large-scale cortical network | timescale hierarchy | eigenvector localization |
interareal heterogeneity | detailed excitation–inhibition balance of
long-range cortical connections

The brain is organized with a delicate structure to integrate
and process both spatial and temporal information received

from the external world. For spatial information processing,
neurons along cortical visual pathways possess increasingly large
spatial receptive fields, and its underlying mechanism has been
understood as neurons in higher-level visual areas receive input
from many neurons with smaller receptive fields in lower-level
visual areas, thereby aggregating information across space (1).
More recently, a computational model (2) revealed that the
timescale over which neural integration occurs also gradually
increases from area to area along the cortical hierarchy. The
model was based on the anatomically measured directed- and
weighted-interareal connectivity of the macaque cortex (3) and
incorporated heterogeneity of synaptic excitation calibrated by
spine count per pyramidal neuron (4). It has been observed
that the decay times increased progressively along the cortical
hierarchy when signals propagate in the network, and the tempo-
ral hierarchy could change dynamically in response to different
types of sensory inputs (e.g., different hierarchy of timescales for
somatosensory input versus visual input) (2). By manipulating pa-
rameters of the model, simulation results further demonstrated
that both within and between regions of anatomical properties
could affect the hierarchy of timescales in neuronal population
activity (2). A hierarchy of temporal receptive windows is func-
tionally desirable, so that the circuit dynamics operate on short
timescales in early sensory areas to encode and process rapidly

changing external stimuli, whereas parietal and frontal areas
canaccumulate information over a relatively long period of time
in decision-making and other cognitive processes (5, 6).

Despite the accumulating evidence in support of timescale
hierarchy across cortical areas in mice (7, 8), monkeys (9–15),
and humans (16–23), its underlying mechanism remains unclear.
In particular, since interareal connections are dense, with roughly
65% of all possible connections present in the macaque cortex
(3) and even higher connection density in the mouse cortex
(24), what circuit properties are required to ensure that dynam-
ical modes with disparate time constants are spatially localized?
How do intraareal anatomical properties determine the intrinsic
timescale of each area, and how do these intrinsic timescales
remain to be segregated rather than mixed up in the presence of
dense interareal connections? In this work, we addressed these
questions by a mathematical analysis of the model (2). Using
a perturbation method, we identified key required conditions,
in particular a detailed excitation–inhibition balance for long-
distance interareal connections that is experimentally testable.

The Multiareal Model and Hierarchical Timescales Phe-
nomenon
We first review the mathematical form of the multiareal model of
the macaque cortex and the hierarchical timescales phenomenon
captured by this model (2). The macaque cortical network model
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contains a subnet of 29 areas widely distributed from sensory to
association areas in the macaque cortex, and each area includes
both excitatory and inhibitory neuronal populations. The neu-
ronal population dynamics in the ith area are described as

τE
d

dt
νi
E =−νi

E + βE

[
I i
syn,E + I i

ext,E

]
+
, [1]

τI
d

dt
νi
I =−νi

I + βI

[
I i
syn,I + I i

ext,I

]
+
, [2]

where νi
E and νi

I are the firing rate of the excitatory and inhibitory
populations in the ith area, respectively; τE and τI are their
time constants, respectively; and βE and βI are the slope of the
frequency–current (f-I) curve for the excitatory and inhibitory
populations, respectively. The f-I curve takes the form of a
rectified linear function with [I ]+ =max (I , 0). In addition, I i

ext,E

and I i
ext,I are the external currents, and I i

syn,E and I i
syn,I are the

synaptic currents that follow

I i
syn,E = (1 + ηhi)

(
wEEν

i
E + μEE

N∑
j=1

FLNijν
j
E

)
− wEI ν

i
I ,

I i
syn,I = (1 + ηhi)

(
wIEν

i
E + μIE

N∑
j=1

FLNijν
j
E

)
− wII ν

i
I ,

where wpq , p, q ∈ {E , I } is the local coupling strength from the
q population to the p population within each area. FLNij is the
fraction of labeled neurons (FLN) from area j to area i reflecting
the strengths of long-range input (3), andμEE andμIE are scaling
parameters that control the strengths of long-range input to the
excitatory and inhibitory populations, respectively. Both local
and long-range excitatory inputs to an area are scaled by its
position in the hierarchy quantified by hi (a value normalized
between 0 and 1), based on the observation that the hierarchical
position of an area highly correlates with the number of spines
on pyramidal neurons in that area (2, 4). A constant η maps the
hierarchy hi into excitatory connection strengths. Note that both
local and long-range projections are scaled by hierarchy, rather
than just local projections, following the observation that the
proportion of local to long-range connections is approximately
conserved across areas (25). The values of all the model param-
eters are specified in Materials and Methods.

By simulating the model, it has been observed in ref. 2 that
the decay time of neuronal response in each area increases
progressively along the visual cortical hierarchy when a pulse
input is given to area V1, as shown here in Fig. 1A. Early visual
areas show fast and transient responses while prefrontal areas
show slower responses and longer integration times with traces
lasting for several seconds after the stimulation. In addition,
white-noise input to V1 is also integrated with a hierarchy of
timescales by computing the autocorrelation of neuronal activity
at each area (2). As shown in Fig. 1B, the activity of early sensory
areas shows rapid decay of autocorrelation with time lag while
that of association areas shows slow decay. In Fig. 1C, by fitting
single or double exponentials to the decay of the autocorrelation
curves (2), the dominant timescale of each area tends to increase
along the hierarchy approximately, and thus a hierarchy of widely
disparate timescales emerges from this model. It is worth noting,
however, that the timescale does not change monotonically with
the anatomically defined hierarchy (x axis); the precise pattern is
sculpted by the measured interareal wiring properties.

Note that, although the multiareal model (Eqs. 1 and 2) is
nonlinear by taking into account a rectified linear f-I curve, the
stimuli in our simulations drive all neuronal population activities
above the firing threshold with positive input currents to all areas.
Therefore, the stimuli essentially drive the network dynamics into
the linear regime. Before we perform mathematical analysis to

A

B C

Fig. 1. The hierarchical timescales phenomenon simulated in the macaque
multiareal model. (A) A pulse of input to area V1 is propagated along the
hierarchy, displaying increasing decay times as it proceeds. (B) Autocorrela-
tion of area activity in response to white-noise input to V1. (C) The dominant
time constants in all areas, extracted by fitting single or double exponentials
to the autocorrelation curves (2). In A–C, areas are arranged and colored by
position in the anatomical hierarchy.

understand the mechanism underlying the emergence of hierar-
chical timescales in the simulations, to simplify the notation, we
rewrite the network dynamics Eqs. 1 and 2 in the linear regime
in the form

d

dt
ν =Wν + I ext , [3]

where

ν =
[
ν1
E , . . . , ν

n
E , ν

1
I , . . . , ν

n
I

]T
, W =

[
DEE + FEE DEI

DIE + FIE DII

]
,

with n = 29, and DEE , DEI , DIE , DII being four diagonal matri-
ces whose ith element on their diagonal line is

d i
EE =

βE

τE

[
(1 + ηhi)wEE − 1

βE

]
, d i

EI =−βE

τE

[
wEI

]
,

d i
IE =

βI

τI

[
(1 + ηhi)wIE

]
, d i

II =−βI

τI

[
wII +

1

βI

]
,

respectively, and matrices FEE and FIE being two nondiagonal
matrices whose ith-row–jth-column element is

f ijEE =
βE

τE

[
(1 + ηhi)μEEFLNij

]
, f ijIE =

βI

τI

[
(1 + ηhi)μIEFLNij

]
,

respectively. Note that matrices DEE , DEI , DIE , DII reflect local
intraareal interactions, while matrices FEE and FIE reflect long-
range interareal interactions. In addition, elements in DEE , DIE ,
FEE , and FIE depend on area hierarchy hi while elements in DEI

and DII are constant. Finally, the external input vector is

I ext =
[
βE
τE

I 1
ext,E , . . . ,

βE
τE

I n
ext,E ,

βI
τI
I 1
ext,I , . . . ,

βI
τI
I n
ext,I

]T
.

Denoting the eigenvalues and eigenvectors of the connectiv-
ity matrix W as λi and V i (i = 1, 2, . . . , 2n), respectively, i.e.,
WV i = λiV i , the analytical solution of Eq. 3 can be obtained
as

νi(t) =
2n∑
j=1

(
ãj e

λj t +

∫ t

0

eλj (t−t′)Ĩj (t
′)dt ′

)
V i

j , [4]
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where νi and V i
j are the ith element in ν and V j , respectively,

and ãj and Ĩj are the coefficients for the initial condition and
the external input, respectively, represented in the coordinate
system of the eigenvectors {V j}. Note that, from Eq. 4, each
area integrates input current with the same set of time constants
{τi} determined by the real part of the eigenvalues, i.e., τi =
−1/Re{λi}. Therefore, the characteristic timescale of each area
across the network is expected to be similar in the general case.
To obtain distinct timescales at each area, it requires 1) the
localization of eigenvectors V j , i.e., most of the elements in
V j are close to zero, and 2) the orthogonality of all pairs of
eigenvectors, i.e., the nonzero elements nearly nonoverlap for
different V j .

By computing the eigenvalues and eigenvectors of matrix
W, as shown in Fig. 2A, the timescale pool {τi} derived from

A

B

C

Fig. 2. Eigenvectors of the network connectivity matrix and their approx-
imations from the perturbation analysis. (A) Eigenvectors of the network
connectivity matrix W. Each column shows the amplitude of an eigenvector
at the 29 areas, with corresponding timescale labeled below. (B) Eigenvec-
tors of W calculated from the first-order perturbation analysis. (C) Similarity
measure defined as the inner product of the corresponding eigenvectors in
A and B.

eigenvalues can be classified into two groups; one group shows a
quite fast timescale of about 2 ms, and the other group includes
relatively slow timescales ranging from tens to hundreds of
milliseconds. In addition, we are particularly interested in the
excitatory population because the majority of neurons in the cor-
tex are excitatory neurons. We observe that the magnitude of the
eigenvectors corresponding to the fast timescale is nearly zero for
the excitatory population at each area, while that corresponding
to the slow timescale is weakly localized and weakly orthogonal,
i.e., each eigenvector has a few nonzero elements that almost
do not overlap with other eigenvectors’ nonzero elements.
According to Eq. 4, the pattern of eigenvectors gives rise to
the disparate timescales for the excitatory neuronal population
at each cortical area. We next perform mathematical analysis to
investigate the sufficient conditions for 1) vanishing magnitude of
the excitatory component of fast-eigenmode eigenvectors and 2)
weak localization and orthogonality of the excitatory component
of slow-eigenmode eigenvectors in this network system.

Perturbation Analysis of the Model
We note that the parameters of the model (specified in Materials
and Methods) give

ε=
βE

τE
/
βI

τI
≈ 0.094, δ =

μEE

μIE
− wEI

wII + 1/βI
≈ 0.038,

which can be viewed as two small parameters to allow us to
perform perturbation analysis below.

We first study the network in the absence of the long-range
interactions among areas. In this scenario, we study the 2 × 2

block matrix D =

[
DEE DEI

DIE DII

]
in which each block is a diagonal

matrix defined above. By viewing ε= βE
τE

/βI
τI

as a small parame-
ter, we have

DII ,DIE ∼O(1); DEI ,DEE ∼O(ε) [5]

from their definitions. Accordingly, we can prove the following
proposition:

Proposition 1. If DII ∼O(1), DIE ∼O(1), DEI ∼O(ε), DEE ∼
O(ε), then D has n eigenvalues being O(ε) and n eigenvalues being
O(1).
Proof. It is straightforward to prove that matrix D can be diago-
nalized by matrix P; i.e.,

Λ = P−1DP =

[
ΛU O
O ΛL

]
=

[
DEE + ADIE O

O −DIEA+DII

]
,

where

P =

[
I + AB −A
−B I

]
,

I is the identity matrix, and diagonal matrix A satisfies −(DEE +
ADIE )A+DEI + ADII = 0 and diagonal matrix B satisfies
DIE + B(DEE + ADIE ) + (DIEA−DII )B = 0.

We solve the equation of A and choose one of the two solutions
of A as

A=
1

2
D−1

IE

[
DII −DEE +

√
(DII −DEE )2 + 4DIEDEI

]
,

where the square root of a diagonal matrix is defined as
taking the square root of its elements. Due to the fact that
DII ∼O(1), DIE ∼O(1), DEI ∼O(ε), DEE ∼O(ε), we have
A=−DEID

−1
II +O(ε2)∼O(ε), and B =DIED

−1
II +O(ε)∼

O(1). Accordingly, we have
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ΛU =DEE −DEID
−1
II DIE +O(ε2)∼O(ε),

ΛL =DII +DEID
−1
II DIE +O(ε2)∼O(1). �

From Proposition 1, the eigenvalues of D have two separated
scales belonging to ΛU and ΛL, respectively. As the timescales
of the network system are given by τi =−1/Re{λi} (λi is the
ith diagonal element in matrix Λ), the separation of scales for
eigenvalues in ΛU and ΛL explains that the intrinsic timescale
pool can be classified into two groups with a separation of scales,
which is mainly determined by the distinct electrophysiological
properties between excitatory and inhibitory neuronal popula-
tions within each area described by ε. In addition, from the anal-
ysis, the eigenvalues in ΛL with large magnitude (fast timescale)
are less sensitive to the hierarchy level becauseΛL ≈DII , and the
elements in DII do not depend on hi . Therefore, the gradient of
hi across areas barely affects the fast-timescale pool. In contrast,
the eigenvalues in ΛU with small magnitude (slow timescale)
are more sensitive to the hierarchy level because ΛU ≈DEE −
DEID

−1
II DIE , and both the elements in DEE and DIE depend

on hi . Therefore, the gradient of hi across areas increases the
range of the slow-timescale pool. Further, the slow timescales of
each area in this disconnected network are segregated and follow
the hierarchical order hi as the corresponding eigenvectors are
perfectly localized and orthogonal to each other.

Now we consider the multiareal network in the presence of
long-range interactions. Adding long-range connectivity to local
connectivity matrix D changes the eigenvalues and eigenvectors
of matrix D, which can be analyzed in the following.

By multiplying P and P−1 (given in the Proof of Proposition 1)
on both sides of W, we have

Γ = P−1WP = P−1

([
DEE DEI

DIE DII

]
+

[
FEE O
FIE O

])
P = Λ+ Σ,

where

Σ= P−1

[
FEE O
FIE O

]
P =

[
ΣUL ΣUR

ΣLL ΣLR

]
,

withΣUL = (FEE +AFIE )(I + AB),ΣUR =−(FEE + AFIE )A,
ΣLL =

[
BFEE + (I + BA)FIE

](
I + AB

)
, ΣLR = −

[
BFEE +

(I + BA)FIE

]
A and with Λ, A, and B defined in the Proof of

Proposition 1.
Denoting one of the eigenvectors of matrix Γ as [u , v ]T and

the corresponding eigenvalue as λ, we have([
ΛU 0
0 ΛL

]
+

[
ΣUL ΣUR

ΣLL ΣLR

])[
u
v

]
= λ

[
u
v

]
. [6]

According to the definition of ε= βE
τE

/βI
τI

and δ = μEE
μIE

−
wEI

wII+1/βI
, A∼O(ε), B ∼O(1) and FEE ∼O(ε), FIE ∼O(1),

we have FEE + AFIE ∼O(εδ), I + AB ∼O(1), BFEE + (I +
BA)FIE ∼O(1), and accordingly,

ΣUL ∼O(εδ), ΣUR ∼O(ε2δ), ΣLL ∼O(1), ΣLR ∼O(ε).

As ΣUR ∼O(ε2δ) is a higher-order term compared with ΛU ,
ΛL, ΣUL, ΣLL, and ΣLR, it can be dropped out in Eq. 6 and
the error of eigenvalue and eigenvector is at most O(ε2δ) (see
SI Appendix, Proposition S1 for a detailed proof). Consequently,
we can obtain two equations from Eq. 6 in the vector form,

(ΛU +ΣUL)u = λu , [7]

ΣLLu + (ΛL +ΣLR)v = λv . [8]

To describe the eigenvector property of Eqs. 7 and 8, we first
introduce the definitions of weak localization and weak orthogo-
nality as follows:

Definition 1. A vector u(δ) is weakly localized if it can be repre-
sented as u = aek + δb +O(δ2) for some k, where a ∼O(1) is a
constant number, b ∼O(1) is a constant vector, δ is a small param-
eter, and ek represents the natural basis with only the kth element
being 1 and others being zero, i.e., ek = [0, . . . , 1(kth), . . . , 0].

Definition 2. Two vectors u(δ) and v(δ) are weakly orthogonal to
each other if their inner product < u , v >∼ O(δ), where δ is a
small parameter.

With the concept of weak localization and weak orthogonality
defined above, we introduce the following proposition that de-
scribes the property of u in the system of Eqs. 7 and 8:

Proposition 2. In the system described by Eqs. 7 and 8, if all matrices
are analytic with respect to ε and δ; and if ΣUL ∼O(εδ), ΣLL ∼
O(1), ΣLR ∼O(ε), ΛU ∼O(ε), ΛL ∼O(1); and if ΛU has n
simple eigenvalues; then

1) there exist n eigenvectors [u , v ]T in which u = 0, with λ∼O(1)
correspondingly, and

2) there exist n eigenvectors [u , v ]T in which u is weakly lo-
calized and weakly orthogonal to each other, with λ∼O(ε)
correspondingly.

Proof. 1) It is noted that u = 0 is a trivial solution of Eq. 7. By
defining Σ̄LR =ΣLR/ε∼O(1), Eq. 8 becomes

(ΛL + εΣ̄LR)v = λv ,

in which v is the eigenvector of matrix ΛL + εΣ̄LR. By viewing
εΣ̄LR as a perturbation matrix to ΛL, then the leading order of λ
shall be the same as that of n elements in the diagonal line of ΛL,
which takes the order of O(1).

2) In Eq. 7, if u �= 0, by defining Λ̄U = ΛU /ε, Σ̄UL =ΣUL/εδ,
and λ̄= λ/ε, we have

(Λ̄U + δΣ̄UL)u = λ̄u . [9]

Therefore, u is also the eigenvector of matrix Λ̄U + δΣ̄UL, and λ̄
is the corresponding eigenvalue. As ΛU has n simple eigenvalues,
so does Λ̄U , and then u and λ̄ are analytic with respect to
the perturbation parameter δ (26), i.e., u =

∑∞
i=0 δ

iu i , and λ̄=∑∞
j=0 δ

jμi for δ near zero. Therefore, to the leading order, we
have

Λ̄Uu0 = μ0u0,

in which μ0 is the eigenvalue of the diagonal matrix Λ̄U , and u0

is the corresponding eigenvector. Accordingly, u0 ∈ {ek}, and
thereafter

u = ek + δu1 +O(δ2), k = 1, 2, . . . ,n,

where ek represents the kth natural basis, and the leading order
of λ= ελ̄ is εμ0 ∼O(ε). It is straightforward to verify that u are
weakly localized and weakly orthogonal to each other. �

If we denote the unit-length eigenvector of the connectivity
matrix W as [rE , r I ]

T , and denote the corresponding eigenvalue
as λ (the same as that of matrix Γ after the similarity transform),
then from Propositions 1 and 2 we have the following:

Proposition 3. Under the same conditions in Propositions 1 and 2,
the unit-length eigenvector [rE , r I ]

T of the connectivity matrix W
has the following properties:

1) For eigenvalue λ∼O(ε), the corresponding rE is weakly local-
ized and weakly orthogonal to each other, and

2) for eigenvalue λ∼O(1), the corresponding rE ∼O(ε).
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Proof. We first consider [rE , r I ]
T with nonunit length. Accord-

ing to the similarity transform, we have the following linear
relation between [rE , r I ]

T and [u , v ]T :[
rE

r I

]
= P

[
u
v

]
=

[
I + AB −A
−B I

] [
u
v

]
,

i.e., rE = (I + AB)u − Av , and r I =−Bu + v . From Proposi-
tion 1, we have A∼O(ε), and B ∼O(1).

1) From Proposition 2, we have u = ek + δu1 +O(δ2) for λ∼
O(ε) (k = 1, 2, . . . ,n). Accordingly, v can be solved as v =
(λI − ΛL − ΣLR)

−1ΣLLu ∼O(1), which gives rE ∼O(1),
and r I ∼O(1). Therefore, the length of [rE , r I ]

T denoted
by c is order O(1). By normalizing the length of [rE , r I ]

T to
be unity, we have rE = c−1(I + AB)ek +O(ε) +O(δ) being
weakly localized and weakly orthogonal to each other.

2) From Proposition 2, we have u = 0 for λ∼O(1). Accordingly,
v can be solved as the eigenvector of matrix (ΛL +ΣLR)
with unit length. Therefore, [rE , r I ]

T = [−Av , v ]T , and the
length of [rE , r I ]

T denoted by c is orderO(1). By normalizing
the length of [rE , r I ]

T to be unity, we have rE =−c−1Av ∼
O(ε). �

Note that Propositions 2 and 3 hold for sufficiently small ε
and δ near zero. However, the convergence radius of the power
series of u in Proposition 2 is not specified yet. Although dif-
ficult to calculate the convergence radius, we can compute the
analytical expression of u1 in the power series u =

∑∞
i=0 δ

iu i

in Proposition 2 to obtain the first-order perturbation solution of
u and thereby rE , which could help us gain insight about when
weak localization and orthogonality of u and rE will break down
approximately.

To the order of δ in Eq. 9, we have

Λ̄Uu1 + Σ̄ULu0 = μ0u1 + μ1u0. [10]

Without loss of generality, we assume u0 = ek , and accordingly,
μ0 = λ̄k is the kth element in the diagonal line of matrix Λ̄U . In
addition, we normalize u to make the kth element in u denoted
by uk to be unity, and correspondingly uk

i = 0 for i ≥ 1. By left
multiplying eT

j (j �= k) to Eq. 10, we have

u j
1 =

Σ̄jk
UL

λ̄k − λ̄j

, [11]

where Σ̄jk
UL is the element in the jth row and kth column in

matrix Σ̄UL. To make the first-order perturbation solution valid,
we expect that u j

1 is small compared with δ−1; otherwise the
separation of orders will no longer hold in the power series (i.e.,
first-order term δu1 becomes larger than the zeroth-order term
ek ). In such a case, the spectral gap λ̄k − λ̄j shall be large enough
compared with elements in Σ̄UL. The spectral gap of matrix Λ̄U

attributes to the gradient of excitation across areas or simply
hi . In Fig. 2 B and C, we show that the eigenvector [rE , r I ]

T ,
which is solved using the perturbation theory in Propositions 2
and 3 to the first-order accuracy (Eq. 11), agrees well with the
original eigenvector in most cases. However, some eigenvectors
show less similarity to the original eigenvectors when the first-
order perturbation theory breaks down for the reason discussed
above.

Biological Interpretations of the Three Requirements
From the above analysis, three conditions are required to obtain
weakly localized and orthogonal eigenvectors to maintain the
hierarchy of timescales: 1) small ε, 2) small δ, and 3) the gradient
of hi across areas. We briefly summarize the important roles

of the three conditions in proving eigenvector localization and
orthogonality in the perturbation analysis illustrated in Fig. 3.
As shown in Fig. 3 A and B, to remove intraareal interactions
between the excitatory and inhibitory populations within each
area, we first change the coordinate system from (rE , r I ) to
(u , v) with a transform matrix P given in Proposition 1. In the
new coordinate system, there is no local interaction between
the dynamical variables u and v . Furthermore, considering a
directed long-range projection from area j to area i in Fig. 3C,
it has been shown that small δ leads to weak interaction from
u j to u i , and small ε additionally leads to even weaker inter-
action from v j to u i that can be removed with an ignorable
error (SI Appendix, Proposition S1). And a gradient of hi leads
to a nonzero spectral gap between area i and area j. All three
conditions result in the weak localization and orthogonality of
the u component in the (u , v) coordinate system, as proved by
Proposition 2 and Eq. 11. Finally, as shown in Fig. 3D, small ε gives
rise to the fact that the leading orders of u and rE are the same,
and thus rE is also weakly localized and orthogonalized similar
to u , as proved by Proposition 3.

We next discuss the biological interpretation of the three
conditions. First, according to the definition of ε= βE

τE
/βI

τI
, small

ε indicates that the electrophysiological properties of excita-
tory and inhibitory neurons are different, in particular, their
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Fig. 3. Schematic illustration for the steps to prove weakly localized and
orthogonal eigenvectors of the connectivity matrix W. (A) Directed in-
teraction from area j to area i in the original model (Eqs. 1 and 2).
(B) One-way interaction from area j to area i after changing the coordinate
system from (rE , r I) to (u , v). (C) Small δ leads to weak interaction from
uj to ui , small ε additionally leads to even weaker interaction from vj to ui

that is ignorable (proved in SI Appendix, Proposition S1), and a gradient of
hi leads to a nonzero spectral gap between area i and area j. Accordingly,
they together lead to the weak localization and orthogonality of the u

component in the (u , v) coordinate system (proved by Proposition 2 and
Eq. 11). (D) One-way interaction from area j to area i after changing the
coordinate system from (u , v) back to (rE , r I). To the leading order, one has
ui ≈ ri

E , v ≈ ri
I + Biiri

E . In this step, small ε ensures that the leading orders
of u and rE are identical, and so are their localization and orthogonality
properties (proved by Proposition 3). In A–D, the width of lines codes the
interaction strength, and light-colored lines and nodes are not important in
the proofs.
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membrane time constant and the slope of the gain function.
The substantial difference of electrophysiological properties be-
tween the excitatory and inhibitory neurons has been supported
by experimental evidence, i.e., inhibitory neurons have larger
slope of the gain function and smaller membrane time constant
(27–30).

Second, small δ = μEE
μIE

− wEI
wII+1/βI

indicates the balanced con-
dition between the interareal excitatory and intraareal inhibitory
inputs. When the presynaptic excitatory input from the jth area
is increased by Δr jE , its influence on the excitatory population
activity in the ith area in the steady state can be calculated in
a straightforward way as Δr iE = C ijΔr jE , in which C ij ∼O(δ).
This indicates that the signal from the jth area has a small
influence on the activity of the excitatory population in the ith
area, because the global long-range excitatory input is balanced
with and canceled by the local inhibitory synaptic input, leading
to small net inputs in each signal pathway, as shown in Fig. 4. This
condition corresponds to a detailed balance of excitation and
inhibition that may benefit signal control and gating, as proposed
in previous studies (31). The importance of excitation–inhibition
balance on timescale hierarchy is supported by a recent study
showing that the imbalance of excitation and inhibition could
have a substantial effect on the change of intrinsic timescales
across brain areas, which is a manifestation of psychosis such as
hallucination and delusion (32).

Third, the gradient of hi parameterizes the gradient of synaptic
excitation across areas in the model, supported by the fact that hi
is proportional to the spine count per pyramidal neuron across
areas (2, 4) in the form of a macroscopic gradient (33). The
gradient of synaptic excitation leads to two consequences: 1) It
gives rise to the hierarchy of intrinsic timescale for each area
while being disconnected to other parts of the cortex and 2) it
stabilizes the localization of intrinsic timescale for each area in
the presence of long-range connections. From the perturbation
analysis and Eq. 11, the degree of eigenvector localization is
determined by the competition between the strength of long-
range connections encoded in matrix Σ̄UL and the spectral gap
of matrix Λ̄U . Therefore, the long-range connections tend to
delocalize eigenvectors and thus break the timescale hierarchy,
but the heterogeneity of local recurrent excitation level weakens
its effect on eigenvector delocalization in a divisive fashion. In
fact, the heterogeneity or randomness in local node properties
has been shown to give localized eigenvectors in models of a

BA

Fig. 4. The illustration of detailed balance between interareal excitation
and intraareal inhibition. The projection from V1 to V4 is shown as an
example. (A) One-way interaction from V1 to V4. V1 receives external
Gaussian input. The excitatory population in V4 receives balanced excitatory
interareal inputs from V1 (dark red) and intraareal inhibitory inputs from
the inhibitory population in V4 (dark blue). Other excitatory and inhibitory
interactions in this circuit are colored by light red and blue, respectively. (B)
Simulation of the synaptic currents received by the V4 excitatory population
induced by V1 activity. The interareal excitatory inputs (red) are balanced
with the intraareal inhibitory inputs (blue), leading to small net inputs
(black).

physical system, for instance, a phenomenon known as Anderson
localization (34) that describes the transition from a conducting
medium (corresponding to delocalized eigenvectors) to an insu-
lating medium (corresponding to localized eigenvectors). A sim-
ilar mechanism has been identified in studying the eigenvector
localization of an idealized neural network with simple nodes in
each cortical area (35).

Discussion
In this work, we investigated the requirements for the emergence
of a hierarchy of temporal response windows in a multiareal
model of the macaque cortex (2). The original model is a nonlin-
ear dynamical system by including a rectified linear f-I curve, and
it becomes essentially linear when neural population activities are
all above the firing threshold, as happened in our simulations of
a hierarchical timescale phenomenon. This fact enabled us to de-
fine the time constants precisely from the eigenmodes of the con-
nectivity matrix and carry out a detailed mathematical analysis to
identify biologically interpretable conditions. (Rectified) linear
models have been broadly used in theoretical and experimental
neuroscience studies (36–38). Although microscopic neural activ-
ity is nonlinear in general, it has been shown in a recent study (39)
that linear models can capture macroscopic cortical dynamics in
the resting state more accurately than nonlinear model families,
including neural field models for describing the spatiotemporal
average of individual neuronal activities. Nonlinear models are
more general for capturing neural circuits. However, for a non-
linear model, the time constants of the system are not uniquely
defined. A linear model can be understood as a linearization of a
nonlinear dynamical system around an internal state such as the
resting state of the brain.

In contrast to previous computational models studying the
emergence of timescales (35), the model we studied is anatom-
ically more realistic as it incorporates 1) experimental measure-
ments of directed and weighted anatomical connectivity, 2) a gra-
dient of synaptic excitation reflected by spine counts in pyramidal
neurons across areas, and 3) both excitatory and inhibitory neu-
ronal populations. By performing rigorous perturbation analysis,
we show that the segregation of timescales is attributable to the
localization of eigenvectors of the connectivity matrix, and the
parameter regime that makes this happen has three crucial prop-
erties: 1) a macroscopic gradient of synaptic excitation, 2) distinct
electrophysiological properties between excitatory and inhibitory
neuronal populations, and 3) a detailed balance between long-
range excitatory inputs and local inhibitory inputs for each area-
to-area pathway.

The theoretically identified biological conditions for the seg-
regation of timescales enable us to make experimentally testable
predictions. First, the condition of the macroscopic gradient of
synaptic excitation suggests that a shallower gradient of synaptic
excitation shall lead to less localized eigenvectors. Consequently,
the difference of time constants for a pair of areas shall be
larger if their synaptic excitation or hierarchical levels are less
similar, which can be directly tested in experiments. Second,
the condition of distinct electrophysiological properties between
excitatory and inhibitory neuronal populations suggests that the
change of neuronal physiology will affect the segregation of
timescales. This condition can be tested experimentally by using
genetic tools to knock down or knock out specific genes to change
the firing properties of neurons (40). Third, the condition of de-
tailed balance of excitation and inhibition suggests that areas with
unbalanced excitation and inhibition could also alter hierarchical
time constants. With growing evidence for excitation/inhibition
imbalance in schizophrenia (41, 42), this condition is supported
by recent experiments showing that the intrinsic time constants
of schizophrenia patients have been substantially changed (32).
And this condition can be further tested in animal models with
genetic tools to disturb the excitation–inhibition balance (43).
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It is worth mentioning that, although the specific pattern of
interareal connectivity does not affect the eigenvector localiza-
tion substantially based on the perturbation analysis, it shapes the
timescale hierarchy qualitatively. In particular, the timescale hi-
erarchy does not exactly follow monotonically the areal anatomi-
cal hierarchy in the presence of long-range connections, as shown
in Fig. 1C. Furthermore, within a brain region time constants are
heterogeneous across individual neurons (44, 45). To better re-
late the model with experimentally observed timescales in various
specific cortical areas, the roles of long-range connections, cell
types, and other circuit properties require further elucidation.

It has been noted that the neuronal activity propagates along
the hierarchy with significant attenuation in the model in ref. 2.
The attenuation can be alleviated by tuning the model pa-
rameters to the regime of strong global balanced amplification
(GBA) (46) (parameters in Materials and Methods). Balanced
amplification was originally introduced for a local neural net-
work, associated with strong nonnormality of the system where
eigenmodes are far from being orthogonal with each other (47).
A quantity called κ measures the degree of nonnormality of a
matrix (48) (κ= 1 for a normal matrix; the larger the κ value, the
more nonnormal the system). We have κ= 4.35 for the original
model (2), which is thus only slightly nonnormal. By contrast,
κ= 96.58 for the model in the strong GBA regime. Therefore,
the enhancement of signal propagation in the model correlates
with the increase of the nonorthogonality of the eigenvectors
or the nonnormality of the connectivity matrix. In the strong
GBA regime, δ ≈ 0.38, which is 10 times larger than its original
value, suggesting that the detailed balance condition is less well
satisfied. In such a case, the localization of timescales may no
longer exist in this linear model. The situation is different in
nonlinear models (2, 49, 50), where inputs may be amplified by
strongly recurrent circuit dynamics to enhance signal propaga-
tion or routing of information is selectively gated (for a subset

of connection pathways in a goal-directed manner) (31, 51),
while the conditions for a timescale hierarchy are satisfied. For
a nonlinear system, however, eigenmodes can be defined only
with respect to a particular network state. Consequently, the
time constants observed in single neurons are no longer unique
and may differ, for instance, when the brain is at rest or during
a cognitive process. It remains to be seen to what extent the
conditions identified here hold in the brain’s various internal
states, while the precise pattern of timescales can be flexibly
varied to meet behavioral demands.

Materials and Methods
Model Parameters. In the macaque cortical network model, we set τE = 20
ms, τI = 10 ms,βE = 0.066 Hz/pA,βI = 0.351 Hz/pA, wEE = 24.4 pA/Hz, wIE =

12.2 pA/Hz, wEI = 19.7 pA/Hz, wII = 12.5 pA/Hz,μEE = 33.7 pA/Hz,μIE = 25.5
pA/Hz, and η = 0.68. We set wEI = 25.2 pA/Hz and μEE = 51.5 pA/Hz for the
strong balanced amplification regime (46) introduced in Discussion. Some
of the parameters are derived from experimental measurements of primary
visual cortex (37). The FLN values are obtained from the experimental
measurements of macaque cortical connectivity (3). The hierarchy values
hi of each cortical area are obtained by fitting a generalized linear model
that assigns hierarchical values to areas (2) such that the differences in
hierarchical values predict the supragranular layer neurons (SLNs) measured
in experiment (52).

Data Availability. The python code for model simulation and perturbation
analysis is publicly available on Github (https://github.com/songting858/
mechanism-of-hierarchical-time-constants) (53). Previously published data
were used for this work (3).
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24. R. Gămănuţ et al., The mouse cortical connectome, characterized by an ultra-dense
cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97, 698–
715.e10 (2018).

25. N. T. Markov et al., Weight consistency specifies regularities of macaque cortical
networks. Cereb. Cortex 21, 1254–1272 (2011).

26. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, Ger-
many, 1966).

27. B. Ahmed, J. C. Anderson, R. J. Douglas, K. A. Martin, D. Whitteridge, Estimates of
the net excitatory currents evoked by visual stimulation of identified neurons in cat
visual cortex. Cereb. Cortex 8, 462–476 (1998).

28. L. G. Nowak, R. Azouz, M. V. Sanchez-Vives, C. M. Gray, D. A. McCormick, Electro-
physiological classes of cat primary visual cortical neurons in vivo as revealed by
quantitative analyses. J. Neurophysiol. 89, 1541–1566 (2003).

29. N. V. Povysheva et al., Parvalbumin-positive basket interneurons in monkey and rat
prefrontal cortex. J. Neurophysiol. 100, 2348–2360 (2008).

30. A. V. Zaitsev, N. V. Povysheva, G. Gonzalez-Burgos, D. A. Lewis, Electrophysiological
classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. J. Neurophysiol. 108,
595–609 (2012).

31. T. P. Vogels, L. F. Abbott, Gating multiple signals through detailed balance of
excitation and inhibition in spiking networks. Nat. Neurosci. 12, 483–491 (2009).

32. K. Wengler, A. T. Goldberg, G. Chahine, G. Horga, Distinct hierarchical alterations of
intrinsic neural timescales account for different manifestations of psychosis. eLife 9,
e56151 (2020).

33. X. J. Wang, Macroscopic gradients of synaptic excitation and inhibition in the
neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).

34. P. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–
1505 (1958).

35. R. Chaudhuri, A. Bernacchia, X. J. Wang, A diversity of localized timescales in
network activity. eLife 3, e01239 (2014).

Li and Wang
Hierarchical timescales in the neocortex:
Mathematical mechanism and biological insights

PNAS 7 of 8
https://doi.org/10.1073/pnas.2110274119

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

F
eb

ru
ar

y 
2,

 2
02

2 

https://github.com/songting858/mechanism-of-hierarchical-time-constants
https://github.com/songting858/mechanism-of-hierarchical-time-constants
https://doi.org/10.1101/2021.10.05.463277
https://doi.org/10.1101/2021.10.05.463277
https://doi.org/10.1073/pnas.2110274119


36. A. Roxin, N. Brunel, D. Hansel, Role of delays in shaping spatiotemporal dynamics
of neuronal activity in large networks. Phys. Rev. Lett. 94, 238103 (2005).

37. T. Binzegger, R. J. Douglas, K. A. Martin, Topology and dynamics of the canonical
circuit of cat V1. Neural Netw. 22, 1071–1078 (2009).

38. D. Jercog et al., UP-DOWN cortical dynamics reflect state transitions in a bistable
network. eLife 6, e22425 (2017).

39. E. Nozari et al., Is the brain macroscopically linear? A system identification of
resting state dynamics. bioRxiv [Preprint] (2020). https://doi.org/10.1101/2020.12.21.
423856. Accessed 11 August 2021.

40. J. Gingras et al., Global Nav1.7 knockout mice recapitulate the phenotype of human
congenital indifference to pain. PLoS One 9, e105895 (2014).

41. J. H. Foss-Feig et al., Searching for cross-diagnostic convergence: Neural mechanisms
governing excitation and inhibition balance in schizophrenia and autism spectrum
disorders. Biol. Psychiatry 81, 848–861 (2017).

42. R. Jardri et al., Are hallucinations due to an imbalance between excitatory and
inhibitory influences on the brain? Schizophr. Bull. 42, 1124–1134 (2016).

43. C. L. Gatto, K. Broadie, Genetic controls balancing excitatory and inhibitory synap-
togenesis in neurodevelopmental disorder models. Front. Synaptic Neurosci. 2, 4
(2010).

44. A. Bernacchia, H. Seo, D. Lee, X. J. Wang, A reservoir of time constants for memory
traces in cortical neurons. Nat. Neurosci. 14, 366–372 (2011).

45. S. E. Cavanagh, L. T. Hunt, S. W. Kennerley, A diversity of intrinsic timescales underlie
neural computations. Front. Neural Circuits 14, 615626 (2020).

46. M. R. Joglekar, J. F. Mejías, G. R. Yang, X. J. Wang, Inter-areal balanced amplification
enhances signal propagation in a large-scale circuit model of the primate cortex.
Neuron 98, 222–234.e8 (2018).

47. B. K. Murphy, K. D. Miller, Balanced amplification: A new mechanism of selective
amplification of neural activity patterns. Neuron 61, 635–648 (2009).

48. L. N. Trefethen, M. Embree, Spectra and Pseudospectra (Princeton University Press,
2020).

49. J. F. Mejias, X. J. Wang, Mechanisms of distributed working memory in a large-scale
model of the macaque neocortex. bioRxiv [Preprint] (2020). https://doi.org/10.1101/
760231. Accessed 2 April 2021.

50. H. S. Chien, C. J. Honey, Constructing and forgetting temporal context in the human
cerebral cortex. Neuron 106, 675–686.e11 (2020).

51. X. J. Wang, G. R. Yang, A disinhibitory circuit motif and flexible information routing
in the brain. Curr. Opin. Neurobiol. 49, 75–83 (2018).

52. N. T. Markov et al., Anatomy of hierarchy: Feedforward and feedback pathways in
macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

53. S. Li, Simulation and analysis code. GitHub. https://github.com/songting858/
mechanism-of-hierarchical-time-constants. Deposited 9 September 2021.

8 of 8 PNAS
https://doi.org/10.1073/pnas.2110274119

Li and Wang
Hierarchical timescales in the neocortex:

Mathematical mechanism and biological insights

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

F
eb

ru
ar

y 
2,

 2
02

2 

https://doi.org/10.1101/2020.12.21.423856
https://doi.org/10.1101/2020.12.21.423856
https://doi.org/10.1101/760231
https://doi.org/10.1101/760231
https://github.com/songting858/mechanism-of-hierarchical-time-constants
https://github.com/songting858/mechanism-of-hierarchical-time-constants
https://doi.org/10.1073/pnas.2110274119

