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Abstract

Incorporating biological neuronal properties into Artificial Neural Networks
(ANNs) to enhance computational capabilities is under active investigation in
the field of deep learning. Inspired by recent findings indicating that dendrites
adhere to quadratic integration rules for synaptic inputs, this study explores the
computational benefits of quadratic neurons. We theoretically demonstrate that
quadratic neurons inherently capture correlation within structured data, a feature
that grants them superior generalization abilities over traditional neurons. This
is substantiated by few-shot learning experiments. Furthermore, we integrate
these quadratic rules into Convolutional Neural Networks (CNNs) using a bi-
ologically plausible approach, resulting in innovative architectures—Dendritic
integration inspired CNNs (Dit-CNNs). Our Dit-CNNs compete favorably with
state-of-the-art models across multiple classification benchmarks, e.g., ImageNet-
1K, while retaining the simplicity and efficiency of traditional CNNs. All source
code and models are available at https://github.com/liuchongming1999/
Dendritic-integration-inspired-CNN-NeurIPS-2024.

1 Introduction

While the Artificial Neural Network (ANN) framework has made significant advancements towards
solving complex tasks, it still faces problems that are rudimentary to real brains [6]. A notable
distinction between the modern ANN framework and the human brain is that the former relies on a
significant number of training samples, which consumes large amounts of energy, whereas the latter
runs on extremely low power (<20 watts) and possesses a strong generalization capability based on
few-shot learning. Studies have demonstrated that incorporating dendritic features in ANNs can
alleviate these issues and enhance overall performance [52, 38, 30]. However, it is difficult to quantify
the nonlinear integration of dendrites, which is an essential property that allows individual neurons to
perform complex computations [43, 49]. As a result, dendritic-inspired models often employ linear
integration with nonlinear activation functions such as ReLU and Sigmoid [21, 37].

In light of recent studies revealing that the somatic responses of biological neurons to multiple
synaptic inputs on dendrites follow a quadratic integration rule [15, 28], we explore the computational
benefit of the quadratic neuron model [41]. This model substitutes the linear integration and nonlinear
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activation function of traditional point neurons with quadratic integration as follows1:

f(x) = σ(w · x+ b) → f(x) = xTAx+ w · x+ b. (1)

The expected value of a quadratic term Ex∼D[aijxixj ] closely relates to the covariance between
variables xi and xj (xi and xj are the i-th and the j-th components of vector x, respectively),
suggesting an inherent capability for capturing input correlation. This attribute allows biological
neurons to exhibit remarkable performance in correlation detection tasks [1, 29]. Here, we theo-
retically demonstrate that quadratic neurons indeed naturally capture correlation within structured
data, which is pivotal in numerous machine learning applications [7], such as language generation
[5] and video understanding [23]. This intrinsic property endows quadratic neurons with superior
generalization capabilities compared to traditional neurons, as evidenced by few-shot learning ex-
periments. We further propose a biologically plausible method to integrate them into Convolutional
Neural Networks (CNNs). Applying this approach to ResNet [16] and ConvNeXt [34] results in
novel CNN models—Dendritic integration inspired ResNet (Dit-ResNet) and Dendritic integration
inspired ConvNeXt (Dit-ConvNeXt), respectively. Evaluations on CIFAR-10 and CIFAR-100 datasets
demonstrate that Dit-ResNets significantly enhance test accuracy by merely replacing a single layer of
point neurons with quadratic neurons. On the ImageNet-1K dataset [10], Dit-ConvNeXts demonstrate
significant enhancements in top-1 accuracy with only a one percent increase in parameters, exhibiting
competitive performance compared to state-of-the-art models. Ablation studies further substantiate
the effectiveness of quadratic neurons and their capability for augmenting data correlation.

This paper is structured as follows: Section 2 reviews previous works related to dendritic-inspired
models and high-order interactive operations in neural networks. Section 3 presents a theoretical
analysis of the computational benefits derived from quadratic neurons, as demonstrated through
few-shot learning experiments. Section 4 describes the architecture of Dit-CNNs and evaluates their
performance on several computer vision benchmark datasets. Section 5 concludes the paper. All
numerical experiments in this paper are conducted using Python and executed on 8 Tesla A100
computing cards with a 7nm GA100 GPU, featuring 6,912 CUDA cores and 432 tensor cores.

2 Related work

Dendritic-inspired computational models. The significant role of dendrites in the nonlinear
integration within neural systems is well-recognized, enabling neurons to perform intricate tasks
[43, 49, 2]. Recently, numerous studies have explored the implementation of dendritic features in
ANNs from different aspects, yielding encouraging results. In [52, 21, 37], the integration of dendritic
morphology into ANNs has led to higher test accuracies on simple tasks compared to traditional
ANNs. Furthermore, dendritic plasticity rules have been employed to develop learning algorithms in
[38, 36], effectively replacing the non-biological backpropagation algorithm and achieving enhanced
performance on classification tasks with small data sizes. Additionally, in [30], dendritic nonlinearity
is considered by adding input to each layer with the Hadamard product rule, which has shown
improvements in approximation and classification experiments.

Neural networks with high-order interactions. Recent advancements in the design of deep
learning architectures have been predominantly driven by the ability to capture high-order statistics
among inputs and features. Over recent decades, there has been a pivotal shift in the foundational
neural networks used for computer vision tasks: moving from convolution-based architectures [16,
24, 56] to Transformer-based models [11, 33, 9]. This transition has been driven by the development
of the self-attention mechanism, which facilitates quadratic interactions among inputs. Additionally,
a novel category of neural networks, referred to as Mamba [14], has demonstrated exceptional
performance in tasks that require the processing of extensive high-order statistical information, such
as video understanding [32, 59, 27]. The backbone of Mamba’s architecture is a state space model
that enables high-order interactions among inputs. Moreover, the integration of high-order spatial
interactions into CNNs has also been shown to enhance performance significantly [40]. These
developments underscore the significance of high-order statistical information in tackling large-scale
complex tasks and suggest that incorporating high-order interactions as a foundational aspect of
model design is an effective strategy.

1A can always be considered a symmetric matrix, attributable to the bilinear operation present in f(x).
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Table 1: The overview of current works with quadratic format.

Reference Quadratic format How quadratic
operation is used

Biological
interpretation

Theory for
quadratic term

[54],[12],[4], [53] f(x) = (wax)(wbx) Pixel-Wise N N

[48],[20],[35],[60] f(x) = xTAx Pixel-Wise N N

Dit-CNNs f(x) = xTAx Channel-Wise Y Y

Previous works have explored the concept of quadratic integration as a sophisticated alternative to
traditional linear summation. Table 1 summarizes various neuron models formulated in quadratic
formats, along with their relevant references. The one-rank format of quadratic neurons, when applied
across entire networks, is documented in [54, 12, 4, 53], demonstrating enhanced performance
in classification tasks. Studies such as [48, 20, 35, 60] have implemented quadratic neurons on
a pixel-wise basis within convolution layers, yielding modest improvements in test accuracy. In
contrast, Table 1 illustrates how our Dit-CNNs approach departs from these models by integrating a
biological interpretation of channel-wise quadratic operations and providing a theoretical analysis of
the computational advantages offered by quadratic neurons.

3 Quadratic neurons possess enhanced generalization capabilities

This section provides a theoretical analysis demonstrating how quadratic neurons enhance generaliza-
tion capabilities by effectively capturing correlation within structured data. Additional numerical
experiments corroborate this assertion. The detailed proofs can be found in Appendix A.

3.1 Binary classification for normal distributions

Assume that the data points of two classes are equally sampled from two different non-degenerate
normal distributions: class1 ∼ N(µ1,Σ1), class2 ∼ N(µ2,Σ2), where µj ∈ Rd, Σj ∈ Rd×d (j =
1, 2). Then the optimal classifier yopt(x) : Rd → {1, 2} can be defined according to the sampling
probability:

yopt(x) = argmax
j∈{1,2}

pj(x), (2)

where pj(x) is the probability (density function) of sampling point x from distribution N(µj ,Σj).

If a single quadratic neuron, as described in Equation (1) (f(x) = xTAx+ w · x+ b, where A is a
symmetric matrix), is used to solve the above binary classification task, we can prove the following
theorems:
Theorem 1. (Existence) The critical points with respect to the cross-entropy loss L(A,w, b) are
given as follows:

A∗ = Σ−1
1 − Σ−1

2 , w∗ = −2(Σ−1
1 µ1 − Σ−1

2 µ2), b
∗ = µT

1 Σ
−1
1 µ1 − µT

2 Σ
−1
2 µ2 + log

(
|Σ1|
|Σ2|

)
.

i.e.
∂L

∂A
|A∗,w∗,b∗= 0,

∂L

∂w
|A∗,w∗,b∗= 0,

∂L

∂b
|A∗,w∗,b∗= 0,

where

L(A,w, b) =
1

2

[
Ex∼class1

(
log(1 + ef(x))

)
+ Ex∼class2

(
log(1 + e−f(x))

)]
.

Moreover, the corresponding classifier generated by this formula is the same as the theoretically
optimal classifier in Equation (2).
Theorem 2. (Uniqueness) Consider the conditional cross-entropy loss defined on a set Ω ∈ M(Rd),
where M(Rd) denotes the Lebesgue σ-algebra on Rd:

L(A,w, b | Ω) = 1

2

[
Ex∼class1,x∈Ω

(
log(1 + ef(x))

)
+ Ex∼class2,x∈Ω

(
log(1 + e−f(x))

)]
,
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where
Ex∼classj ,x∈Ω (g(x)) =

∫
Ω

g(x)pj(x) dµ,

then the unique solution satisfying

∂L(A,w, b | Ω)
∂A

|A∗,w∗,b∗= 0,
∂L(A,w, b | Ω)

∂w
|A∗,w∗,b∗= 0,

∂L(A,w, b | Ω)
∂b

|A∗,w∗,b∗= 0

for every Ω ∈ M(Rd) is given by:

A∗ = Σ−1
1 − Σ−1

2 , w∗ = −2(Σ−1
1 µ1 − Σ−1

2 µ2), b
∗ = µT

1 Σ
−1
1 µ1 − µT

2 Σ
−1
2 µ2 + log

(
|Σ1|
|Σ2|

)
.
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Figure 1: Visualization of classifier boundaries for two models (a single quadratic neuron
with 2-dimensional inputs and a two-layer MLP comprising 2-ReLU(10)-1) across two distinct
tasks. For each task, the impact of varying training sample sizes is examined. Model comparisons
are performed under uniform conditions, utilizing identical random seeds and hyperparameters for
fairness. Training is executed using stochastic gradient descent (SGD) with a learning rate of 0.1
over 10,000 epochs. The term "theoretical" denotes the optimal classifier’s boundary as specified in
Equation (2), while "numerical" represents the empirical classification boundary obtained from the
model.

Theorem 1 identifies an analytical critical point for a quadratic neuron with cross-entropy loss, which
emerges as the optimal classifier. On the other hand, Theorem 2 establishes the uniqueness of
this critical point under conditional cross-entropy loss, where Ω denotes the regions occupied by
distinct batches of data points. Under these conditions, the quadratic parameters will converge to this
unique critical point when using the stochastic gradient descent (SGD) algorithm. It is demonstrated
that, unlike traditional neuron, quadratic neuron inherently possesses the ability to converge to the
optimal classification solution by directly including the covariance matrix. This finding is supported
by simulated data in Task 1 (identical covariance) and Task 2 (non-identical covariance) shown
in Figure 1, which indicates that quadratic neuron consistently achieves the theoretically optimal
classification outcome. Moreover, in comparison to a multi-layer perceptron (MLP) with two layers,
quadratic neuron surpass traditional neuron in Task 2 which require capturing correlation information
from data distributions (require fewer training samples to converge to the optimal solution). This
highlights the unique capability of quadratic neurons to identify internal correlations within structured
data, offering a possible explanation for their superior generalization capability compared to traditional
neurons, a topic that will be further explored in numerical experiments below.
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3.2 Few-shot learning experiments on MNIST and Arabic MNIST

From the above classification tasks for normal distributions as depicted in Figure 1, it is suggested
that quadratic neurons may require fewer training samples in comparison to traditional neurons. We
next examine this few-shot learning capability of quadratic neurons on the MNIST [25] and Arabic
MNIST datasets [19]. The results, presented in Figure 2, indicate that quadratic neurons outperform
MLP with two layers when trained with a limited number of samples on both datasets. This evidence
shows the enhanced generalization ability of quadratic neurons in applications. Further insights
into the mechanism through which quadratic neurons capture data correlation in the MNIST dataset,
and a related theorem concerning multi-class classification for normal distributions, are detailed in
Appendix B.

Figure 2: Performance of two models on few-shot learning tasks with MNIST and Arabic
MNIST datasets. The first model consists of 10 quadratic neurons with a 784-dimensional input,
while the second model is a MLP with the configuration of 784-ReLU(8000)-10. Both models are
evaluated under identical conditions using the same training protocol, which includes SGD with a
learning rate of 0.1 and a batch size of 100 across 20 epochs. The term ’Sample size’ refers to the
ratio of the number of training samples to the full training set. Experiments are conducted for each
model and sample ratio across ten runs, and the resulting test accuracy is depicted through an error
bar plot (error bar represents the upper and lower bound for test accuracy).

4 Integrating quadratic neurons into CNNs with biological plausibility

𝑤1

𝑤2

𝑤3

𝑥1

𝑥2

𝑥3

Retinal 
ganglion 
cell

Cone cells

Figure 3: Schematic of the biological interpretation of how quadratic neurons integrated into
CNN. Our Dit-CNN is inspired by neural networks in the visual system. For example, different
types of cone cells encode various color (channel) information, and retinal ganglion cells receive
inputs from multiple types of cone cells [22], the responses can be modeled as having receptive fields
(convolutional kernels) related to different color channels (w1 ∗ x1, w2 ∗ x2, w3 ∗ x3). When multiple
channel inputs are present, traditional CNNs simply linearly sum the corresponding responses. In
contrast, neurons integrate these inputs with an additional quadratic term based on the dendritic
quadratic integration rule. This approach leads to the formulation of our Dit-CNN after simplification.
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The concept of convolution [13], inspired by the discovery of the receptive field in the cat visual
cortex [18], laid the foundation for CNNs [26] which have been designed to efficiently tackle
large-scale vision tasks. The underlying biological interpretation of convolution is that each neuron
exhibits varying responses at different image locations based on its receptive field (convolution
kernel). Traditionally, CNNs have focused solely on the linear integration of inputs from presynaptic
neurons. Specifically, for an input X ∈ RCin×Hin×Win , where Cin represents the number of
input layer neurons (channels), and Hin and Win denote the height and width of the input feature,
respectively. Given convolution kernels w ∈ RCin×Cout×(2l+1)×(2l+1), the convolution output,
Y = Conv(X) ∈ RCout×Hout×Wout , represents the response of neuron i at location [j, k] to inputs
from locations [j − l : j + l, k − l : k + l] across all input layer neurons:

Y [i, j, k] =

Cin∑
m=1

w[m, i, :, :] ∗X[m, j − l : j + l, k − l : k + l]. (3)

However, acknowledging that neurons with dendrites obey a quadratic integration rule, we propose
a novel approach that incorporates quadratic neurons into CNNs as depicted in Figure 3. This
adaptation incorporates a quadratic integration term among inputs from different neurons at the
same location. Specifically, with a quadratic integration coefficient A ∈ RCout×Cin×Cin , the output
neuron’s response in Equation (3) is modified as follows:

Y [i, j, k] =

Cin∑
m=1

w[m, i, :, :] ∗X[m, j − l : j + l, k − l : k + l] +XT [:, j, k]A[i, :, :]X[:, j, k]︸ ︷︷ ︸
Quadratic integration

. (4)

4.1 Evaluations on CIFAR-10 and CIFAR-100

Dataset and models. Our initial experiments utilize the CIFAR dataset, which includes 50,000
training images and 10,000 testing images. The experimental setup follows the ResNet configurations
as outlined in [16], comprising models such as ResNet-20, ResNet-32, ResNet-56 and ResNet-110. To
reduce computational demands, we incorporate quadratic neurons specifically into one layer—namely,
the second layer of the first block in the second stage of the ResNet architecture [16]. Additionally,
to address issues related to gradient dynamics, such as gradient explosion, a Layer Normalization
(LN) layer [3] is implemented immediately before the layer equipped with quadratic neurons.

Table 2: Comparative performance of Dit-ResNets and structurally similar models on CIFAR.

Model # Param.
(CIFAR10)

Acc.
(CIFAR10)

# Param.
(CIFAR100)

Acc.
(CIFAR100)

ResNet-20[16] 0.27M 91.25% 0.30M 67.26±0.68%
QResNet-20[12] 0.81M 92.22% 0.84M 67.82±0.52%
QuadraResNet-20[54] 0.81M 92.21% 0.84M 68.02±0.44%
Dit-ResNet-20 0.30M 92.66% 0.33M 68.66±0.34%
ResNet-32[16] 0.46M 92.49% 0.49M 68.52±0.55%
QResNet-32[12] 1.39M 93.10% 1.42M 69.41±0.48%
QuadraResNet-32[54] 1.39M 93.11% 1.42M 69.54±0.44%
Dit-ResNet-32 0.49M 93.17% 0.52M 69.68±0.32%
ResNet-56[16] 0.86M 93.03% 0.89M 70.17±0.67%
QResNet-56[12] 2.55M 93.66% 2.58M 71.21±0.44%
QuadraResNet-56[54] 2.55M 93.79% 2.58M 70.98±0.76%
Dit-ResNet-56 0.89M 93.90% 0.92M 71.40±0.35%
ResNet-110[16] 1.73M 93.57% 1.76M 70.84±0.76%
QResNet-110[12] 5.17M 93.88% 5.20M 71.58±0.87%
QuadraResNet-110[54] 5.17M 93.77% 5.20M 71.72±0.81%
Dit-ResNet-110 1.76M 94.33% 1.79M 72.40±0.85%

Experimental settings. The training process incorporates SGD with a weight decay of 0.0001, a
batch size of 128, and a momentum of 0.9. Following the recommendations from [12], quadratic
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integration parameters are initialized to zero, and a distinct learning rate is adopted for these parame-
ters. Initially, the learning rate for the quadratic integration matrix is set at 1, and 0.1 for all other
parameters. These rates is reduced by a factor of ten at 80 and 120 epochs, with training concluding
at 160 epochs. Data augmentation procedures mirror the original protocol: each image is padded by
4 pixels on each side, follows by random cropping of a 32× 32 section from the padded image or its
horizontal flip. For testing, a single view of the original 32× 32 image is evaluated.

Results. Table 2 presents a comparative analysis of CIFAR performance between our Dit-ResNets
and the original ResNet model [16], as well as two adaptations that incorporate quadratic neurons
[12, 54], which have shown superior outcomes among existing approaches with quadratic formats
[48, 20, 35, 60, 4]. For the CIFAR-10 dataset, given the extensive benchmarking in prior studies, we
conduct ten runs of our Dit-ResNets, reporting the optimal outcome for comparative analysis. For
CIFAR-100, we independently execute all models, documenting average test accuracy and variance
(mean±std). Our experiments indicate significant performance enhancements on both CIFAR-10
and CIFAR-100 datasets after integrating quadratic neurons into a single layer of ResNet, confirming
their efficacy. Furthermore, when comparing a deeper ResNet model with our Dit-ResNet (e.g.,
ResNet-110 vs. Dit-ResNet-56), our approach not only boosts performance but also reduces training
overhead. This suggests that augmenting the model with quadratic integration parameters is more
effective than merely increasing network depth—a traditionally favored strategy. In comparison
to other models employing quadratic neurons [12, 54], our Dit-ResNets consistently achieve the
highest test accuracy with the fewest parameters. This underscores the efficacy of our approach
in leveraging the computational advantages of quadratic neurons. These neurons, as discussed in
Section 3, demonstrate enhanced generalization capabilities.

4.2 Evaluations on ImageNet-1K

Dataset and settings. We extend our investigations to the ImageNet-1K dataset [10], which
comprises 1.28 million training images and 50,000 validation images across 1,000 categories. Our
analysis primarily focuses on top-1 accuracy on the validation set. Training is conducted at a resolution
of 224 × 224, supplemented by a comprehensive suite of data augmentation and regularization
strategies. These include RandAugment [8], mixup [57], cutmix [55], label smoothing [44], layer
scale [47], random erasing [58], exponential moving average (EMA) [39], and stochastic depth [17].
These techniques are inspired by the timm library [50] and methodologies from Touvron et al. [45].
Detailed descriptions of these hyperparameters are provided in Appendix C.

CIFAR-10 ImageNet-1K

Figure 4: Visualization of some performance results presented in Table 2 (left) and Table 3 (right).

Model description. Mirroring our approach with the CIFAR dataset, we integrate quadratic neu-
rons into a single layer of the ConvNeXt model [34] to conserve computational resources. This
adaptation results in the creation of three distinct models: Dit-ConvNeXt-T, Dit-ConvNeXt-S, and
Dit-ConvNeXt-B. Specific details about the layer replacement are discussed in the ablation study.

Results. Table 3 presents a comparative analysis of Dit-ConvNeXts against state-of-the-art models
from the existing literature. Compared to the original ConvNeXt counterparts, our Dit-ConvNeXts
exhibit an average increase of 0.5% in top-1 accuracy, with only a marginal average increase of 1% rise
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Table 3: Dit-ConvNeXts versus state-of-the-art (SOTA) models on ImageNet-1K. All models listed
in the table are trained and validated at a resolution of 224× 224.

Arch. Model # Param. FLOPs Top-1 acc. (%)

Transformers Swin-T [33] 29M 4.5G 81.3
DeiT-S [46] 22M 4.6G 79.8

State Space Models VMamba-T [32] 22M 5.6G 82.2
VideoMamba-S [27] 26M 4.3G 81.2

CNNs

ResNet-50 [51] 26M 4.1G 80.4
SLaK-T [31] 30M 5.0G 82.5
QuadraNet36-T [53] 24M 4.1G 82.2
DeepMAD-29M [42] 29M 4.5G 82.5
ConvNeXt-T [34] 29M 4.5G 82.1
Dit-ConvNeXt-T 29M 5.0G 82.6

Transformers Swin-S [33] 50M 8.7G 83.0

State Space Models VMamba-S [32] 44M 11.2G 83.5
VideoMamba-M [27] 74M 12.7G 82.8

CNNs

ResNet-101 [51] 45M 7.8G 81.5
ResNet-152 [51] 60M 11.5G 82.0
SLaK-S [31] 55M 9.8G 83.8
QuadraNet36-S [53] 50M 8.9G 83.8
DeepMAD-50M [42] 50M 8.7G 83.9
ConvNeXt-S [34] 50M 8.7G 83.1
Dit-ConvNeXt-S 50M 9.2G 83.6

Transformers Swin-B [33] 88M 15.4G 83.5
DeiT-B [46] 87M 17.6G 81.8

State Space Models VMamba-B [32] 75M 18.0G 83.7

CNNs

SLaK-B [31] 95M 17.1G 84.0
QuadraNet36-B [53] 90M 15.8G 84.1
DeepMAD-89M [42] 89M 15.4G 84.0
ConvNeXt-B [34] 89M 15.4G 83.8
Dit-ConvNeXt-B 90M 16.7G 84.2

in parameter count. Moreover, our models maintain competitive performance against Transformer-
based, SSM-based, and CNN-based architectures, highlighting the efficacy and adaptability of
Dit-ConvNeXts. Figure 4 further shows that our model consistently improves in accuracy as the
model size increases, while other methods tend to saturate, indicating superior scaling property for
our model.

4.3 Ablation study

4.3.1 Dit-CNNs capture data correlation

The expectation of the quadratic term for Gaussian variables can be expressed as follows:

Ex∼N(µ,Σ)

[
xTAx

]
= µTAµ+ tr(AΣ).

This equation highlights that the term tr(AΣ) encapsulates the information derived from data cor-
relation. Consequently, Table 4 examines the impact of this term on the performance of Dit-CNNs
in tackling complex tasks. The data presented in Table 4 show a notable decline in accuracy for
Dit-CNNs when this term is omitted. This underscores the significance of the quadratic neurons
within Dit-CNNs, demonstrating their pivotal role in effectively capturing data correlation, which is
essential for task performance.
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Table 4: The performance of Dit-CNNs and their counterparts, from which the covariance term
tr(AΣ) and the quadratic term xTAx are omitted in quadratic neurons (Σ is estimated from training
samples).

Model Dataset Performance
(Original)

Performance
(minus tr(AΣ))

Performance
(minus xTAx)

Dit-ResNet-32 CIFAR-10 93.17% 37.78% 12.11%

Dit-ResNet-32 CIFAR-100 69.68% 22.33% 1.32%

Dit-ConvNeXt-T ImageNet-1K 82.6% 73.7% 70.6%

4.3.2 Incorporate quadratic neurons with minimal computational overhead

To manage computational costs effectively, only three layers within the ConvNeXt architecture have
been identified as suitable candidates for the integration of quadratic neurons, as depicted in Figure 5.
We explore the most effective layer for the integration of quadratic neurons and elucidate the rationale
behind this choice. Figure 5 indicates that substituting traditional neurons with quadratic neurons in
the first layer of the block 3 yields the most significant performance improvement. Additionally, a
negative correlation is observed between the model’s final accuracy and the accuracy after omitting the
quadratic term from Dit-ConvNeXt-T post-training. This correlation underscores the critical influence
of quadratic neurons on the model’s efficacy. These findings suggest that Dit-CNNs demonstrating
enhanced performance are those where quadratic neurons play a crucial role, highlighting the superior
generalization capabilities of quadratic neurons compared to traditional neurons.
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Figure 5: Left: Structure of ConvNeXt highlighting three candidate layers (in red) for integrating
quadratic neurons. Right: ImageNet-1k performance on different Dit-ConvNeXt-T, blue dots
indicates top-1 accuracy (left blue vertical axis) while green dots indicates the accuracy post-removal
of the quadratic term from Dit-ConvNeXt-T after training (right green vertical axis).

4.3.3 Channel/Pixel-wise quadratic neuron utilizations on ImageNet-1K

Table 5: Comparison of quadratic neurons between channel-wise and pixel-wise

Model Channel/Pixel-wise Top-1 acc. (%)

ConvNeXt-T Channel-wise (Our Method) 82.6
Pixel-wise 82.2

ConvNeXt-S Channel-wise (Our Method) 83.6
Pixel-wise 82.9

ConvNeXt-B Channel-wise (Our Method) 84.2
Pixel-wise 83.7

As previously discussed, our Dit-CNNs employ quadratic neurons in a channel-wise manner, which
provides a clear biological interpretation, as detailed in Section 4. Meanwhile, employing quadratic
neurons on a pixel-wise basis, akin to the quadratic convolution outlined in [20], [35], and [60], leads
to a scenario where dendritic integration occurs only when neurons receive synaptic inputs from the
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same neuron. This setup simplifies interactions between different neurons to a linear approximation, a
method that diverges from biological plausibility within the brain. The superior performance achieved
through the channel-wise application of quadratic neurons, as evidenced in Table 5, underscores the
efficacy of our model. This result supports the hypothesis that models which more closely mirror
brain-like mechanisms tend to exhibit enhanced performance.

5 Conclusion

In this paper, we first provide a theoretical demonstration of the computational advantages of
quadratic neurons in capturing internal correlation within structured data. These neurons model
dendritic integration rules observed in biological neurons. Our empirical evaluations using the MNIST
and Arabic MNIST datasets for few-shot learning validate our theoretical assertions. Drawing from
the biological interpretation of CNNs, we introduce a biologically plausible method to integrate
quadratic neurons into CNN architectures, resulting in Dit-CNNs. These Dit-CNNs not only exhibit
significant performance enhancements with minimal modifications to their original counterparts but
also compete favorably with state-of-the-art models. The potential applicability of our approach
to other architectures, such as Deep-MAD [42], hints at further performance improvements. The
promising results of this research underscore the vast potential of brain-inspired models. Given that
the quadratic integration rule of neurons could be confined to specific brain areas [15, 28], future
electrophysiological experiments could reveal other neuronal integration rules. Our findings could
guide the development of brain-inspired deep neural networks by incorporating various integration
rules corresponding to different brain areas in distinct layers. Additionally, how to theoretically
analyze these new brain-inspired models will be an important issue. It is our aim to extend our
analysis concerning high-order statistical information to explore the generalization error of these
innovative brain-inspired models. We hope that our work will stimulate further investigations into
brain-inspired models, ultimately contributing to the quest for artificial general intelligence (AGI).

Limitations and Discussions

Theoretical results for quadratic neurons. Our theoretical framework is established on the
assumption that training samples are normally distributed, a simplification that might not fully
encapsulate the complexity inherent in real-world datasets. Despite this assumption, our models have
demonstrated exceptional performance on various tasks including ImageNet-1K. This underscores the
potential of quadratic neurons in capturing correlation within more intricate data distributions. Future
efforts will focus on developing a more comprehensive theoretical foundation to better understand
the mechanisms through which quadratic neurons achieve this capability.

Computational cost of quadratic neurons. While our Dendritic integration inspired Convolutional
Neural Networks (Dit-CNNs) strategically limit the increase in the number of learnable parameters
by selectively incorporating quadratic neurons in a singular layer, this modification undeniably raises
the computational complexity, as evidenced by an increase in Floating Point Operations (FLOPs).
Nevertheless, given the substantial enhancements our Dit-CNNs contribute to model performance, it
warrants further investigation into optimizing the efficiency of quadratic neuron deployment. For
instance, drawing inspiration from the inherent sparsity observed in the quadratic coefficients of
biological neurons—specifically, the pronounced quadratic interactions among synaptic inputs on the
same dendritic branch [29]—it is conceivable to predefine a sparse configuration for the quadratic
coefficients within our Dit-CNNs. This approach could potentially reduce computational demands
while maintaining performance gains.
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A Proofs of theorems for binary classification task

Assume that the data points of two classes are equally sampled from two distinct non-degenerate
normal distributions: class1 ∼ N(µ1,Σ1), class2 ∼ N(µ2,Σ2), where µj ∈ Rd, Σj ∈ Rd×d (j =
1, 2). The optimal classifier yopt(x) : Rd → {1, 2} is then defined based on the probability of
sampling any point x from these distributions. Specifically, the classifier can be expressed as:

yopt(x) = argmax
j∈{1,2}

pj(x), (5)

where pj(x) denotes the probability (density function) of sampling point x from the distribution
N(µj ,Σj). The decision rule effectively assigns x to the class with the highest probability density,
reflecting the most likely class membership based on the normal distribution parameters.

If a single quadratic neuron, as described in Equation (1) (f(x) = xTAx+ w · x+ b, where A is a
symmetric matrix), is employed to solve the binary classification task described above, we can prove
the following theorems.

A.1 Existence of the optimal solution

Theorem 3. (Existence) The critical points with respect to the cross-entropy loss L(A,w, b) are
given as follows:

A∗ = Σ−1
1 − Σ−1

2 , w∗ = −2(Σ−1
1 µ1 − Σ−1

2 µ2), b
∗ = µT

1 Σ
−1
1 µ1 − µT

2 Σ
−1
2 µ2 + log

(
|Σ1|
|Σ2|

)
.

i.e.
∂L

∂A
|A∗,w∗,b∗= 0,

∂L

∂w
|A∗,w∗,b∗= 0,

∂L

∂b
|A∗,w∗,b∗= 0,

where

L(A,w, b) =
1

2

[
Ex∼class1

(
log(1 + ef(x))

)
+ Ex∼class2

(
log(1 + e−f(x))

)]
.

Moreover, the corresponding classifier generated by this formula is the same as the theoretically
optimal classifier in Equation (5).

Proof. We express the generalized cross-entropy loss L(A,w, b) as:

L(A,w, b) =
1

2

∫
Rd

(
log(1 + ef(x))p1(x) + log(1 + e−f(x))p2(x)

)
dµ.

The gradients are computed explicitly as follows:

∂L

∂A
=

1

2

∫
Rd

(
ef(x)

1 + ef(x)
p1(x)−

1

1 + ef(x)
p2(x)

)
∂f

∂A
dµ,

and similarly for ∂L
∂w and ∂L

∂b . Given the probability density function of the multivariate normal
distribution:

pj(x) = (2π)−d/2|Σj |−1/2 exp

(
−1

2
(x− µj)

TΣ−1
j (x− µj)

)
j ∈ {1, 2}.

If the parameters A,w, b are set as:

A = Σ−1
1 − Σ−1

2 , w = −2(Σ−1
1 µ1 − Σ−1

2 µ2), b = µT
1 Σ

−1
1 µ1 − µT

2 Σ
−1
2 µ2 + log

(
|Σ1|
|Σ2|

)
,

one can obtain

f(x) = xT (Σ−1
1 − Σ−1

2 )x− 2(µT
1 Σ

−1
1 − µT

2 Σ
−1
2 )x+ µT

1 Σ
−1
1 µ1 − µT

2 Σ
−1
2 µ2 + log

(
|Σ1|
|Σ2|

)
which ensures that

ef(x) =
p2(x)

p1(x)
, ∀x ∈ Rd.
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Consequently,

ef(x)

1 + ef(x)
p1(x)−

1

1 + ef(x)
p2(x) = 0, ∀x ∈ Rd ⇒ ∂L

∂A
= 0,

∂L

∂w
= 0,

∂L

∂b
= 0.

The classifier generated by the quadratic neuron is defined as:

ymodel(x) =

{
1 if f(x) < 0,

2 if f(x) > 0.

Therefore,
ymodel(x) = 1 ⇔ yopt(x) = argmax

j∈{1,2}
pj(x) = 1.

Similarly, ymodel(x) = 2 implies yopt(x) = 2. Hence, ymodel(x) = yopt(x) for all x in Rd,
demonstrating the consistency between these two classifiers.

A.2 Uniqueness of the optimal solution

To prove the theorem for uniqueness, we first introduce the following preliminary lemmas:
Lemma 1. Let M(Rd) denote the Lebesgue σ-algebra on Rd. Consider f(x), a Lebesgue measur-
able function on Rd, satisfying: ∫

Ω

f(x) dµ = 0, ∀Ω ∈ M(Rd).

It follows that f(x) = 0 almost everywhere on Rd.

Proof. To demonstrate this via contradiction, let us assume, without loss of generality, that:
µ({x | f(x) > 0}) > 0.

Since

0 < µ({x | f(x) > 0}) = µ(

+∞⋃
n=1

{x | f(x) > 1

n
}) ≤

+∞∑
n=1

µ({x | f(x) > 1

n
}),

then we know there exist n0 ∈ Z∗ such that µ({x | f(x) > 1
n0

}) > 0. If we set Ω0 = {x | f(x) >
1
n0

} ∈ M(Rd), then by the property of f(x) we can derive:

0 =

∫
Ω0

f(x) dµ >
µ({x | f(x) > 1

n0
})

n0
> 0.

Hence, we have reached a contradiction.

Lemma 2. Assume f(x) = xTAx+ w · x+ b, a Lebesgue measurable function, equals zero almost
everywhere (f(x) = 0 a.e.), with A being a symmetric matrix. It then follows that A = 0, w = 0,
and b = 0.

Proof. Since f(x) is continuous, we know f(x) = 0 for ∀x ∈ Rd. Then we have:
b = f(0) = 0.

Setting x = εw for some ε > 0, we obtain:

∥w∥22 + εwTAw = 0,

letting ε go to zero, we have:
∥w∥22 = 0 ⇒ w = 0.

Having established that f(x) = xTAx, consider x = ei, where ei is the unit vector with a value
of 1 at the i-th position and 0s elsewhere. Evaluating the function at this vector, we have f(ei) =
eTi Aei = aii = 0. Subsequently, by letting x = ei+ej , where ej is another unit vector corresponding
to the j-th position, we obtain the following equation:

aii + aij + aji + ajj = 0.

Since aii = ajj = 0 and aij = aji (A is a symmetric matrix), we know:
aij = 0, ∀i, j ∈ {1, 2, . . . , d} ⇒ A = 0.
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Theorem 4. (Uniqueness) Consider the conditional cross-entropy loss defined on a set Ω ∈ M(Rd),
where M(Rd) denotes the Lebesgue σ-algebra on Rd:

L(A,w, b | Ω) = 1

2

[
Ex∼class1,x∈Ω

(
log(1 + ef(x))

)
+ Ex∼class2,x∈Ω

(
log(1 + e−f(x))

)]
,

with
Ex∼classj ,x∈Ω (g(x)) =

∫
Ω

g(x)pj(x) dµ,

then the unique solution satisfies

∂L(A,w, b | Ω)
∂A

|A∗,w∗,b∗= 0,
∂L(A,w, b | Ω)

∂w
|A∗,w∗,b∗= 0,

∂L(A,w, b | Ω)
∂b

|A∗,w∗,b∗= 0

for every Ω ∈ M(Rd) given by:

A∗ = Σ−1
1 − Σ−1

2 , w∗ = −2(Σ−1
1 µ1 − Σ−1

2 µ2), b
∗ = µT

1 Σ
−1
1 µ1 − µT

2 Σ
−1
2 µ2 + log

(
|Σ1|
|Σ2|

)
.

Proof. Following the derivation outlined in the proof of Theorem 3, we obtain:

∂L(A,w, b | Ω)
∂A

=
1

2

∫
Ω

(
ef(x)

1 + ef(x)
p1(x)−

1

1 + ef(x)
p2(x)

)
x · xT dµ,

∂L(A,w, b | Ω)
∂w

=
1

2

∫
Ω

(
ef(x)

1 + ef(x)
p1(x)−

1

1 + ef(x)
p2(x)

)
x dµ,

∂L(A,w, b | Ω)
∂b

=
1

2

∫
Ω

(
ef(x)

1 + ef(x)
p1(x)−

1

1 + ef(x)
p2(x)

)
dµ.

Hence, if A∗, w∗, and b∗ satisfy:

∂L(A,w, b | Ω)
∂A

|A∗,w∗,b∗= 0,
∂L(A,w, b | Ω)

∂w
|A∗,w∗,b∗= 0,

∂L(A,w, b | Ω)
∂b

|A∗,w∗,b∗= 0

for every Ω ∈ M(Rd). Subsequently, invoking Lemma 1 yields:

ex
TA∗x+(w∗)T x+b∗ =

p2(x)

p1(x)
, a.e.

Simplifying this equation, we have

xT (Σ−1
1 −Σ−1

2 −A∗)x−
[
2(µT

1 Σ
−1
1 − µT

2 Σ
−1
2 ) + (w∗)T

]
x+µT

1 Σ
−1
1 µ1−µT

2 Σ
−1
2 µ2+log

(
|Σ1|
|Σ2|

)
−b∗ = 0,

which holds almost everywhere. Applying Lemma 2, we obtain:

A∗ = Σ−1
1 − Σ−1

2 , w∗ = −2(Σ−1
1 µ1 − Σ−1

2 µ2), b
∗ = µT

1 Σ
−1
1 µ1 − µT

2 Σ
−1
2 µ2 + log

(
|Σ1|
|Σ2|

)
.

B Quadratic neurons capture correlation on multi-class classification task

For a classification task with k classes, assume the training samples for these classes are equally
drawn from k normal distributions: classj ∼ N(µj ,Σj), j ∈ [k], the optimal classifier yopt(x) :
Rd → {1, 2, . . . , k} is defined by:

yopt(x) = argmax
j∈[k]

pj(x), (6)

where pj(x) represents the probability (density function) of sampling point x from the normal
distribution N(µj ,Σj). Employing k quadratic neurons for this multi-class classification task allows
for the derivation of a theorem analogous to the one discussed in the previous section:
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Theorem 5. (Existence) The critical points with respect to the cross-entropy loss L(θ) are given as
follows:

A∗
j = Σ−1

j , w∗
j = −2Σ−1

j µj , b
∗ = µT

j Σ
−1
j µj + log(|Σj |), j ∈ [k],

where

L(θ) =
1

k

k∑
j=1

Ex∼classj

log
1 +

k∑
i=1,i̸=j

efi(x)−fj(x)

 .

Moreover, the corresponding classier generated by this formula is the same as the theoretically
optimal classifier as defined in Equation (6).

Proof. The gradients can be computed explicitly as follows:

∂L

∂Aj
=

1

k

∫
Rd

 k∑
i=1,i̸=j

efj(x)∑k
i=1 e

fi(x)
pi(x)−

k∑
i=1,i̸=j

efi(x)∑k
i=1 e

fi(x)
pj(x)

x · xT dµ, j ∈ [k],

and similarly for ∂L
∂wj

and ∂L
∂bj

that can be calculated. From the derivation outlined in the proof of
Theorem 3 and the choice for critical points as follows

A∗
j = Σ−1

j , w∗
j = −2Σ−1

j µj , b
∗ = µT

j Σ
−1
j µj + log(|Σj |), j ∈ [k],

then we have

efj(x)−fi(x) =
pj(x)

pi(x)
, ∀x ∈ Rd, ∀i, j ∈ [k],

which is equivalent to

efj(x)∑k
i=1 e

fi(x)
pi(x) =

efi(x)∑k
i=1 e

fi(x)
pj(x), ∀x ∈ Rd, ∀i, j ∈ [k].

Thus, we can derive:
∂L

∂Aj
= 0,

∂L

∂wj
= 0,

∂L

∂bj
= 0, ∀j ∈ [k].

The classifier generated by quadratic neurons is defined as:

ymodel(x) = argmax
j∈[k]

fj(x),

Therefore,
ymodel(x) = j ⇔ fj(x) > fi(x), ∀i ∈ [k]/{j} ⇔ yopt(x) = j.

Hence, ymodel(x) = yopt(x) for all x in Rd, demonstrating the consistency between these two
classifiers.

Theorem 5 demonstrates that in multi-class classification tasks, each neuron captures data correlation
by directly relating to the covariance matrix of their respective class. This concept is empirically
validated through numerical experiments on the MNIST dataset, as depicted in Figure 6. The
eigenvectors associated with the largest eigenvalues of the covariance matrices, representing the
principal components of each class’s distribution, reveal the spatial correlation within that class’s data.
The marked similarity between these eigenvectors and the eigenvectors of the quadratic integration
matrices of neurons confirms that quadratic neurons effectively capture correlation from the data
distribution. This intrinsic ability of quadratic neurons to capture correlations provides a possible
explanation for the superior generalization capability of quadratic neurons.

C Experimental settings of ImageNet training

The training settings for our Dit-ConvNeXt models on ImageNet-1K are detailed in Table 6. While all
Dit-ConvNeXt variants adhere to a unified configuration, certain parameters—namely, the stochastic
depth rate, learning rate, and weight decay—are individually customized for each model variant.
These hyperparameters were optimized based on performance outcomes, utilizing a grid search over
potential learning rates from the set {0.004, 0.006, 0.008} and weight decay values options within
{0.04, 0.06, 0.08}.
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Figure 6: Comparison of Eigenvectors between covariance matrices Σj and quadratic weights Aj

for j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Left: Visualization of eigenvectors corresponding to the largest
eigenvalue of Σj alongside the most similar eigenvectors of Aj . Right: Cosine similarity metrics for
ten eigenvector pairs depicted on the left.

Table 6: ImageNet-1K training settings.

Training config Dit-ConvNeXt-T Dit-ConvNeXt-S Dit-ConvNeXt-B

Optimizer AdamW AdamW AdamW
Base learning rate 6e-3 6e-3 4e-3
Weight decay 0.08 0.06 0.06
Optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999
Batch size 4096 4096 4096
Training epochs 300 300 300
Learning rate schedule cosine cosine cosine
Warmup epochs 20 20 20
Warmup schedule linear linear linear
RandAugment [8] rand-m9-mstd0.5 rand-m9-mstd0.5 rand-m9-mstd0.5
Mixup [57] 0.8 0.8 0.8
Cutmix [55] 1.0 1.0 1.0
Random erasing [58] 0.25 0.25 0.25
Label smoothing [44] 0.1 0.1 0.1
Stochastic depth [17] 0.1 0.4 0.4
Layer scale [47] 1e-6 1e-6 1e-6
Exp. mov. avg. (EMA) [39] 0.9998 0.9998 0.9998
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