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Abstract. Granger causality (GC) stands as a powerful causal inference tool in time
series analysis. Typically estimated from time series data with finite sampling rate, the
GC value inherently depends on the sampling interval τ. Intuitively, a higher data
sampling rate leads to a time series that better approximates the real signal. However,
previous studies have shown that the bivariate GC converges to zero linearly as τ ap-
proaches zero, which will lead to mis-inference of causality due to vanishing GC value
even in the presence of causality. In this work, by performing mathematical analysis,
we show this asymptotic behavior remains valid in the case of conditional GC when
applying to a system composed of more than two variables. We validate the analyti-
cal result by computing GC value with multiple sampling rates for the simulated data
of Hodgkin-Huxley neuronal networks and the experimental data of intracranial EEG
signals. Our result demonstrates the hazard of GC inference with high sampling rate,
and we propose an accurate inference approach by calculating the ratio of GC to τ as τ
approaches zero.
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1 Introduction

The investigation into the structure and function of the brain has always been an impor-
tant topic in neuroscience research. Within the pursuit of this field, a crucial aspect is to
unravel the functional interactions across different neurons or cortical areas in the brain.
With the development of neuroscience techniques, from invasive recordings to noninva-
sive methods [30, 35], activities can be recorded simultaneously from multiple neurons
and across different brain areas. And recent years have seen numerous works about
functional connectivity and causal modeling [14, 24] based on brain signals, attempting
to provide insights into the patterns of brain functionalities. “Functional connectivity”
measures the degree of co-activation of neurons or brain areas, which is often calculated
by the correlation coefficient between neural time series data. However, correlation coef-
ficient cannot provide directional information about the interactions.

Granger causality (GC), proposed in 1950s, has been introduced to the field of neuro-
science since the beginning of this century [5, 6, 11, 12, 37]. GC can infer the direction of
causal interactions between neural signals, and has been applied to various types of neu-
ral data, including single-cell and multi-cell recordings [4], local field potentials (LFPs)
[9,28], electroencephalography (EEG) [17,18], magnetoencephalography (MEG) [13], and
functional magnetic resonance imaging (fMRI) [7, 31, 41]. In recent years, there has been
a gradual emergence of research focusing on the theoretical basis of applying GC anal-
ysis, rooted in the theory of linear regression, to nonlinear neural systems. It has been
theoretically established in previous works that GC, despite being a linear method, pos-
sesses the capability to extract nonlinear causal interactions within neural systems under
certain conditions, and can be applied to reconstructions of the structural connectivity of
neuronal networks [2, 8, 12, 33, 43].

However, it has been found that the GC value depends on the sampling interval of the
time series, and it may even infer a false causal relationship when the sampling interval
is not properly chosen [26]. Further mathematical analysis has been developed to reveal
the dependence of GC on sampling interval for a pair of neurons, which showed that
the bivariate GC converges to zero linearly as the sampling interval approaches zero.
In addition, a practical approach was proposed to reliably estimate the causal relations
between nodes in the network [44, 45]. It successfully overcomes the issue of vanishing
GC caused by small sampling interval, i.e. high sampling rate in recent experimental
measurements, when the original system satisfies certain conditions.

It is noted that the previous analysis mainly focused on the conventional GC on a bi-
variate system, which limits its applicability to large neural systems composed of more
than two variables. In this work, we extend the mathematical analysis to the case of mul-
tivariate conditional GC, and show that the asymptotic structure of conditional GC with
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respect to sampling interval remains to exist, i.e. the conditional GC approaches zero
linearly as the sampling interval approaches zero. We numerically verify the analytical
result using time series data simulated by a Hodgkin-Huxley (HH) network model and
a public data set of the intracranial EEG signals recorded from epilepsy patients.

The paper is organized as follows. In Section 2, we briefly introduce the Hodgkin-
Huxley neural network model and the conditional GC analysis. In Section 3, we derive
the asymptotic behavior of conditional GC value regarding sampling interval, and verify
the asymptotic structure of conditional GC value by analyzing the HH neural network
model and the iEEG data recorded from the experiment. In Section 4, we conclude by
discussing the feasibility and accuracy of applying conditional GC analysis to real ex-
perimental and clinical time series data by exploiting the asymptotic structure of condi-
tional GC.

2 Materials and methods

2.1 The Hodgkin-Huxley model

The Hodgkin-Huxley (HH) model was proposed by Hodgkin and Huxley in early 1950s
[19–22], which captures the activity of the membrane potential of a single neuron and the
mechanism of action potential generation. The membrane potential dynamics of the i-th
HH neuron in a network is governed by the following equations:

C
dVi

dt
=−(Vi−VNa)GNam3

i hi−(Vi−VK)GKn4
i −(Vi−VL)GL+ I

input
i ,

dmi

dt
=(1−mi)αm(Vi)−miβm(Vi),

dhi

dt
=(1−hi)αh(Vi)−hiβh(Vi),

dni

dt
=(1−ni)αn(Vi)−niβn(Vi),

where

αn(Vi)=
0.1−Vi/100

exp(1−Vi/10)−1
, βn(Vi)=0.125 exp

(

−
Vi

80

)

,

αm(Vi)=
2.5−Vi/10

exp(2.5−Vi/10)−1
, βm(Vi)=4 exp

(

−
Vi

18

)

,

αh(Vi)=0.07 exp

(

−
Vi

20

)

, βh(Vi)=
1

exp(3−Vi/10)+1
.

Here, C is the membrane capacitance and Vi is the membrane potential, mi,hi,ni are gat-
ing variables of sodium and potassium ionic channels. And VNa,VK,VL are the reversal
potential of sodium, potassium and leaky currents, respectively, GNa, GK, GL are the con-

ductance of sodium, potassium and leaky currents, respectively. I
input
i is the total input
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current to the i-th neuron. The parameters above are set as C=1µF·cm−2,VNa=115mV,
VK=−12mV,VL=10.6mV, GNa=120mS·cm−2, GK=36mS·cm−2, GL=0.3mS·cm−2. Here
all voltages are relative to the resting potential [15].

The kinetics of the input current to i-th neuron is modeled by

I
input
i = IE

i + II
i ,

IE
i =−

(

Vi−VE
G

)

GE
i ,

II
i =−

(

Vi−VI
G

)

GI
i ,

where IE
i (II

i ) represents the excitatory (inhibitory) input that the i-th neuron received.
VE

G (VI
G) is the corresponding reversal potential, with VE

G = 65 mV (VI
G =−15 mV). The

dynamics of conductance GE
i (GI

i ) is governed by [29]

dGE
i

dt
=−

GE
i

σE
d

+HE
i ,

dGI
i
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=−

GI
i

σI
d

+HI
i ,

dHE
i
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=−

HE
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σE
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+∑
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i δ
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)

+∑
j 6=i

(

SEEδE,Qi
δE,Q j

+SIEδI,Qi
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)

mijg
(
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,

dHI
i

dt
=−

HI
i
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r

+∑
j 6=i

(

SEIδE,Qi
δI,Q j

+SIIδI,Qi
δI,Q j

)

mijg
(

V
pre
j

)

,

where the synaptic input from the pre-synaptic neuron to the post-synaptic variable
HE

i (H I
i ) shapes as a sigmoid function [10, 32]

g
(

V
pre
j

)

=
1

1+exp
(

−
(

V
pre
j −85

)

/2
) .

Here, σE
r (σI

r ) and σE
d (σI

d) are the rising and decaying time constants of the input conduc-
tance GE

i (GI
i ), with the value σE

r =0.5ms,σI
r=0.5ms,σE

d =3.0ms,σI
d=7.0ms. The i-th neuron

is driven by independent excitatory homogeneous Poisson input (Poisson process) with
input strength FE

i and rate µE
i . In this work, all neurons receive Poisson inputs with the

same strength FE
i =FE and rate µE

i =µE. TE
i,k indicates the arriving time of k-th input pulse

received by the i-th neuron, which differs from neuron to neuron.
The connection among HH neurons in the network is depicted by a binary adjacency

matrix M =(mij), with mij = 1 indicating a direct connection from neuron j to neuron i
and mij = 0 indicating no direct connection. The coupling strength from a neuron of

type Qj to a neuron of type Qi is SQiQ j (Qi,Qj ∈ {E,I}, where E is for excitatory, and I
is for inhibitory). δQi,Q j

represents the Kronecker delta function taking the value of 1

when Qi =Qj and otherwise 0. And V
pre
j is the membrane potential of the j-th neuron as

a presynaptic neuron.
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In this model, when the membrane potential Vj(t) exceeds the threshold at around
15mV, it will rapidly ramp up to near 100mV in a few milliseconds and then quickly de-
cay back to form a sharp spike, which is known as the action potential. Whenever an exci-
tatory (inhibitory) neuron fires a spike, it will induce a sharp increment on the variables
HE

i (H I
i ) of its post-synaptic neurons, defined by the adjacency matrix M. As a conse-

quence, the conductance of excitatory (inhibitory) input current increases followed by
the corresponding change in the membrane potential of the post-synaptic neuron. There-
fore, the causal relation between the membrane potentials of a pre-post neuron pair is
conducted through its synaptic coupling term. Our previous studies have shown that
this causal relation can be captured by GC analysis [42, 43].

2.2 Conditional Granger causality

Granger causality analysis operates under the premise that if incorporating the history
of time series yt reduces the prediction error for another time series xt, then a causal
influence from yt to xt exists [25, 34, 38, 39]. While conventional GC analysis is initially
formulated in a bivariate context, it can be naturally extended to a multivariate form as
the conditional GC [16]. Here we briefly revisit the conditional GC in a trivariate setting
for the sake of later elaborations.

Let Xt =(xt, yt, zt)
⊤

, where xt, yt and zt are three stationary zero-mean discrete time
series satisfying the following conditions:

1. E(Xt)=0 for any t∈Z,

2. cov(Xt1
, Xt1−j)=cov(Xt2 , Xt2−j) for any t1, t2, j∈Z,

3. |Σ|>0.

Here Σ=var(Xt) represents the covariance matrix of Xt and |·| means the determinant
of a matrix.

To assess the improvement of prediction of xt purely by the history of yt, we need
to exclude the influence of the history of zt. To achieve that, we first apply an “auto-
regression” model to fit xt given the history information of xt and zt

xt=
∞

∑
j=1

b
(x)
j xt−j+

∞

∑
j=1

b
(z)
j zt−j+ǫt, (2.1)

where b
(x)
j and b

(z)
j are the regression coefficients of the j-th order history of xt and zt,

respectively, and ǫt is the fitting residual indicating the prediction error of the model.
Next, we apply a “joint-regression” model to fit xt again given the history information of
xt, yt and zt

xt=
∞

∑
j=1

a
(x)
j xt−j+

∞

∑
j=1

a
(y)
j yt−j+

∞

∑
j=1

a
(z)
j zt−j+ηt, (2.2)
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where a
(x)
j , a

(y)
j and a

(z)
j are the regression coefficients of the j-th order history of xt,yt

and zt, respectively, where ηt is the fitting residual. The conditional GC from yt to xt

conditioned on zt is defined by

Fy→x|z= ln
var(ǫt)

var(ηt)
, (2.3)

It is worth noting that var(ηt)≤var(ǫt), since the prediction cannot worsen after incor-
porating the history of an additional time series yt. Therefore, Fy→x|z≥0. In addition, we
can also describe conditional GC in the frequency domain [36], details will be explained
in the next section.

3 Results

3.1 The derivation of asymptotic behavior of conditional GC

To infer the causal interactions in a system with continuous dynamics, practically we
first measure the activity signals with a certain sampling rate, and then perform the GC
analysis for the measured discrete time series. Therefore, the conditional GC calculated
from the discrete time series is a function of sampling interval τ, we thus denote it by

F
(τ)
y→x|z

. In this section, we will show that F
(τ)
y→x|z

tends to zero linearly as τ approaches
zero.

We denote the power spectrum matrix of Xt with sampling interval τ as S(τ)(ω),
where S(τ)(ω) = E(X̃(ω)X̃(ω)

∗
), and ·̃ means discrete-time Fourier transform and ·∗

means conjugate transpose. It has been proved that there exists a unique decomposi-
tion under the condition that: (i) S(τ)(ω) is of full rank almost everywhere and (ii) the
integral

∫ π

−π
ln|S(τ)(ω)|dω is convergent

S(τ)(ω)=A(τ)(eiω)A(τ)(eiω)
∗
,

where A(τ)(z) and A(τ)(z)
−1

are analytic inside the unit disk and A(τ)(0) is real, upper

triangular with positive diagonal coefficients [40]. Set H(τ)(ω)= A(τ)(eiω)A(τ)(0)
−1

and

Σ(τ)=A(τ)(0)A(τ)(0)
∗
, then S(τ)(ω) can be decomposed as

S(τ)(ω)=H(τ)(ω)Σ(τ)H(τ)(ω)
∗
. (3.1)

According to the mean value property of an analytic function, we have

1

2π

∫ π

−π
H(τ)(ω)dω= I.

Denote f as the frequency of the continuous-time process, and ω ∈ [−π,π] as the fre-
quency of corresponding discrete time series sampled from the continuous-time process.
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They have the relation as ω=2πτ f . Then we obtain

∫ 1
2τ

− 1
2τ

τH(τ)(2πτ f )d f = I,

which implies that the entities of H(τ) are scaled by 1/τ as τ → 0. Combining to the
scaling of S(τ) and H(τ), we know that Σ(τ) is scaled as τ as τ→0. Here we define Ĥ( f )=
limτ→0τH(τ)(ω) and Σ̂= limτ→0Σ(τ)/τ [44]. As τ approaching 0,S(τ)(ω)/τ converges to
the power spectrum matrix for the original continuous-time series.

For ease of illustration, we use the ternary variable as an example, i.e. Xt=(xt, yt, zt)
⊤

[12]. And we denote S
(τ)
1 (ω)=S(τ)(ω), i.e.

S
(τ)
1 (ω)=









S
(τ)
xx (ω) S

(τ)
xy (ω) S

(τ)
xz (ω)

S
(τ)
yx (ω) S

(τ)
yy (ω) S

(τ)
yz (ω)

S
(τ)
zx (ω) S

(τ)
zy (ω) S

(τ)
zz (ω)









,

according to Eq. (3.1), we have

S
(τ)
1 (ω)=H(τ)(ω)Σ(τ)H(τ)(ω)

∗
,

and

lim
τ→0

τH(τ)(ω)= Ĥ( f ), lim
τ→0

1

τ
Σ(τ)= Σ̂.

We denote the sub-matrix of S
(τ)
1 as

S
(τ)
2 (ω)=

[

S
(τ)
xx (ω) S

(τ)
xz (ω)

S
(τ)
zx (ω) S

(τ)
zz (ω)

]

,

and we have a similar decomposition

S
(τ)
2 (ω)=G(τ)(ω)Ω(τ)G(τ)(ω)

∗
,

and

lim
τ→0

τG(τ)(ω)= Ĝ( f ), lim
τ→0

1

τ
Ω(τ)= Ω̂.

Previous works [12] have derived the conditional GC in the frequency domain as

F
(τ)
y→x|z

=
1

2π

∫ π

−π
ln

Ω
(τ)
xx

Q
(τ)
xx (ω)Σ

(τ)
xx Q

(τ)
xx (ω)

∗ dω, (3.2)
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where

Q(τ)(ω)=









Q
(τ)
xx (ω) Q

(τ)
xy (ω) Q

(τ)
xz (ω)

Q
(τ)
yx (ω) Q

(τ)
yy (ω) Q

(τ)
yz (ω)

Q
(τ)
zx (ω) Q

(τ)
zy (ω) Q

(τ)
zz (ω)









=









Ḡ
(τ)
xx (ω) 0 Ḡ

(τ)
xz (ω)

0 1 0

Ḡ
(τ)
zx (ω) 0 Ḡ

(τ)
zz (ω)









−1

H̄(τ)(ω),

and

H̄(τ)(ω)=









H̄
(τ)
xx (ω) H̄

(τ)
xy (ω) H̄

(τ)
xz (ω)

H̄
(τ)
yx (ω) H̄

(τ)
yy (ω) H̄

(τ)
yz (ω)

H̄
(τ)
zx (ω) H̄

(τ)
zy (ω) H̄

(τ)
zz (ω)









=H(τ)(ω)P
(τ)
1

−1
,

Ḡ(τ)(ω)=





Ḡ
(τ)
xx (ω) Ḡ

(τ)
xz (ω)

Ḡ
(τ)
zx (ω) Ḡ

(τ)
zz (ω)



=G(τ)(ω)P
(τ)
2

−1
,

P
(τ)
1 =













1 0 0

0 1 0

0 −
Σ
(τ)
zy −Σ

(τ)
zx Σ

(τ)
xy /Σ

(τ)
xx

Σ
(τ)
yy −Σ

(τ)
yx Σ

(τ)
xy /Σ

(τ)
xx

1





























1 0 0

−
Σ
(τ)
yx

Σ
(τ)
xx

1 0

−
Σ
(τ)
zx

Σ
(τ)
xx

0 1

















,

P
(τ)
2 =







1 0

−
Ω

(τ)
zx

Ω
(τ)
xx

1






.

Since

lim
τ→0

1

τ
Σ(τ)= Σ̂, lim

τ→0

1

τ
Ω(τ)= Ω̂,

the limit of P
(τ)
1 and P

(τ)
2 exist, which are denoted as P̂1 = limτ→0 P

(τ)
1 , P̂2 = limτ→0 P

(τ)
2 ,

respectively. Moreover, since

lim
τ→0

τH(τ)(ω)= Ĥ( f ), lim
τ→0

τG(τ)(ω)= Ĝ( f ),

the limit of τH̄(τ)(ω) and τḠ(τ)(ω) exist and are denoted as

ˆ̄H( f )= lim
τ→0

τH̄(τ)(2πτ f )= lim
τ→0

τH(τ)(2πτ f )P
(τ)
1

−1
= Ĥ( f )P̂−1

1 ,

ˆ̄G( f )= lim
τ→0

τḠ(τ)(2πτ f )= lim
τ→0

τG(τ)(2πτ f )P
(τ)
2

−1
= Ĝ( f )P̂−1

2 .
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We can further compute the limit Q̂xx( f ) of Q
(τ)
xx (ω) as

Q̂xx( f )= lim
τ→0

Q
(τ)
xx (2πτ f )

= lim
τ→0

H̄
(τ)
xx (2πτ f )−Ḡ

(τ)
xz (2πτ f )Ḡ

(τ)
zz (2πτ f )

−1
H̄

(τ)
zx (2πτ f )

Ḡ
(τ)
xx (2πτ f )−Ḡ

(τ)
xz (2πτ f )Ḡ

(τ)
zz (2πτ f )

−1
Ḡ
(τ)
zx (2πτ f )

=
ˆ̄Hxx( f )− ˆ̄Gxz( f ) ˆ̄Gzz( f )

−1 ˆ̄Hzx( f )

ˆ̄Gxx( f )− ˆ̄Gxz( f ) ˆ̄Gzz( f )
−1 ˆ̄Gzx( f )

.

By multiplying 1/τ on both sides of Eq. (3.2), and substituting ω=2πτ f for ω, we have

1

τ
F
(τ)
y→x|z

=
1

2πτ

∫ 1
2τ

− 1
2τ

ln
(1/τ)Ω

(τ)
xx

Q
(τ)
xx (ω)(1/τ)Σ

(τ)
xx Q

(τ)
xx (ω)

∗ d2πτ f

=
∫ 1

2τ

− 1
2τ

ln
(1/τ)Ω

(τ)
xx

Q
(τ)
xx (ω)(1/τ)Σ

(τ)
xx Q

(τ)
xx (ω)

∗ d f .

Finally, by letting τ approach 0, with ‖Q̂xx( f )‖ being continuous and bounded, we can
obtain

lim
τ→0

1

τ
F
(τ)
y→x|z

=
∫ ∞

−∞
ln

Ω̂xx

Q̂xx( f )Σ̂xxQ̂xx( f )
∗ d f . (3.3)

From Eq. (3.3) with the condition that the integral is bounded, the conditional GC will
tend to zero linearly as τ approaches zero.

It is worth mentioning that, in a previous work, Zhou et al. [44] has proved that, for

the unconditional GC F
(τ)
y→x, we have

lim
τ→0

1

τ
F
(τ)
y→x=

∫ ∞

−∞
ln

Pxx( f )

ˆ̄Hxx( f )Σ̂xx
ˆ̄Hxx( f )

∗ d f ,

where Pxx( f ) is the power spectrum density of the continuous dynamics of xt, which is
the asymptotic form of

F
(τ)
y→x =

1

2π

∫ π

−π
ln

S
(τ)
xx (ω)

H̄
(τ)
xx (ω)Σ

(τ)
xx H̄

(τ)
xx (ω)

∗ dω.

Next, we will demonstrate that the above result is a special case of conditional GC when

xt and zt are independent. In such a case, the conditional GC F
(τ)
y→x|z

becomes uncondi-

tional GC F
(τ)
y→x.

Assuming xt and zt are independent, we have

Ḡ
(τ)
xz (ω)=G

(τ)
xz (ω)=0,
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which leads to

Q
(τ)
xx (ω)=

H̄
(τ)
xx (ω)

Ḡ
(τ)
xx (ω)

=
H

(τ)
xx (ω)+Σ

(τ)
yx /Σ

(τ)
xx ·H

(τ)
xy (ω)

G
(τ)
xx (ω)

.

By substituting the expression of Q
(τ)
xx (ω) into Eq. (3.2), we can obtain

F
(τ)
y→x|z

=
1

2π

∫ π

−π
ln

G
(τ)
xx (ω)Ω

(τ)
xx G

(τ)
xx (ω)

∗

H̄
(τ)
xx (ω)Σ

(τ)
xx H̄

(τ)
xx (ω)

∗ dω

=
1

2π

∫ π

−π
ln

S
(τ)
xx (ω)

H̄
(τ)
xx (ω)Σ

(τ)
xx H̄

(τ)
xx (ω)

∗ dω

=F
(τ)
y→x.

The second equality holds by applying the decomposition of S
(τ)
2 (ω) to get S

(τ)
xx (ω).

Moreover, for multivariate variables Xt =(xt,yt,z1t,z2t, ··· ,znt)
⊤

, Eq. (3.3) still holds.

In this case, xt and yt are scalars while zt = (z1t,z2t, ··· ,znt)
⊤ becomes a vector. And in

the expression of Q̂xx( f ), ˆ̄Hxx( f ) and ˆ̄Gxx( f ) are scalar while ˆ̄Gxz( f ) is a row vector, and
ˆ̄Gzx( f ) and ˆ̄Hzx( f ) are column vectors, and ˆ̄Gzz( f ) is a matrix.

3.2 Asymptotic behavior of conditional GC verified using simulated data

In this section, we verify the asymptotic behavior of conditional GC by performing the
GC analysis with different sampling intervals on the simulated data of the HH neural
network model. We implemented the fourth order Runge-Kutta method with spike-spike
correction technique [27] when simulating a 100-HH-neuron network driven by external
Poisson inputs. The network consists of 80 excitatory and 20 inhibitory neurons ran-
domly connected with 30% connection density. The parameters of the HH model used in
simulation are listed in Table 1.

Table 1: The parameters of the HH model.

Parameters Meanings Values

FE strength of Poisson drive 0.031mS·cm−2·ms−2

µE rate of Poisson drive 2.0kHz

SEE coupling strength from E to E neurons 0.013 mS·cm−2 ·ms−2

SIE coupling strength from E to I neurons 0.013 mS·cm−2 ·ms−2

SEI coupling strength from I to E neurons 0.067 mS·cm−2 ·ms−2

SII coupling strength from I to I neurons 0.050 mS·cm−2 ·ms−2

dt time step of numerical simulation 0.025ms

τ sampling interval 0.1ms

T length of time series 4×105 ms
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By simulating the HH network, as shown in Fig. 1(A), we observe the asynchronous
state of the network, in which each neuron fires irregularly. The mean firing rates of neu-
rons range from 24.78Hz to 33.97Hz, and their membrane potentials range from −11mV
to 105 mV with respect to the resting potential, which lies in the physiological regime
of biological neurons. In addition, by changing the external input rate and connection
strengths between neurons, the network will evolve into the synchronous state with neu-
rons firing almost periodically, as shown in Fig. 1(B). In the following, we will verify the
asymptotic behavior of conditional GC using the simulated data of both states, demon-
strating that the asymptotic behavior we derived in Section 3.1 is generally valid.

Before performing the GC analysis, we first examine the stationarity of the time se-
ries as a prerequisite of the GC analysis. By dividing the time series of neural activity
into five segments, and then computing and comparing the power spectrum of each seg-
mental data, we observe the overlap of power spectrum densities across all segments,
indicating the stationarity of the original time series. The results are shown in Fig. 6 in
the Appendix A.

To perform the GC analysis, we shall determine the optimal regression order of joint
regression. We estimate the optimal regression order for each different sampling inter-
val τ using the Akaike information criterion (AIC), as shown in Fig. 7. We then investi-
gate the asymptotic structure of the conditional GC value, i.e. the GC value is inversely
proportional to the sampling interval τ. When the network is in the asynchronous state,
by choosing different sampling intervals, we can obtain a set of conditional GC values as
a function of the sampling interval. As shown in Fig. 2, the conditional GC value tends
to zero linearly as the sampling interval τ approaches zero. Here we include four dif-

Figure 1: Rasters of the HH network in two dynamical regimes. Each dot corresponds to a Neuron’s action
potential. (A) Asynchronous state. The parameters for the asynchronous state are shown in Table 1. (B) Near-

synchronous state. The parameters for the near-synchronous state are FE = 0.02 mS·cm−2 ·ms−2, SEE = 0.06
mS·cm−2 ·ms−2, SIE = 0.05 mS·cm−2 ·ms−2, SEI = 0.06 mS·cm−2 ·ms−2, and SII = 0.07 mS·cm−2 ·ms−2.
Other parameters are the same as those in (A).
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ferent pairs of neurons, covering all possible combinations of different types of neurons,
and the conclusion above holds for all cases. To further verify the linear convergence, we
plot the ratio between the conditional GC value over τ. As shown in the lower panel of
Fig. 2, the flattened plateau in the GC curves for small τ again indicates the validity of
the asymptotic behavior of the conditional GC value as τ→0. Similar results have been
observed in Fig. 3 when the network is in the near-synchronous state, demonstrating the
asymptotic behavior is robust and general.

We further verify the validity of Eq. (3.3) derived in the previous section. By com-
paring the theoretical and numerical values of GC/τ (as τ → 0) based on the network
simulations, as shown in Fig. 8 in Appendix B, the conditional GC value calculated nu-
merically well consists with the theoretical one given by Eq. (3.3).

Figure 2: The dependence of the conditional GC value on sampling interval τ obtained from four pairs of
neurons in the HH network in the asynchronous state. Upper panel: the relation between the conditional GC
value and τ when analyzing the causal interaction from an E neuron to an E neuron, from an E neuron to an I
neuron, from an I neuron to an E neuron, and from an I neuron to an I neuron. Lower panel: the ratio between
the conditional GC value over τ is almost constant when τ approaches zero. The blue shadow represents the
95% confidence interval of the blue curve.

Figure 3: The dependence of the conditional GC value on sampling interval τ obtained from four pairs of
neurons in the HH network in the near-synchronous state. Others are the same as in Fig. 2.
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3.3 Asymptotic behavior of conditional GC verified using experimental data

In this section, we verify the asymptotic behavior of conditional GC by performing the
GC analysis on the intracranial EEG (iEEG) data from Kaggle’s contest project (“UPenn
and Mayo Clinic’s Seizure Detection Challenge”) [3]. The iEEG data was measured from
depth electrodes implanted along anterior-posterior axis of hippocampus and the sub-
dural area of the brain during a seizure attack of epilepsy patients with temporal and
extratemporal lob epilepsy. The data was recorded from 16 channels, with 5 kHz sam-
pling frequency for each channel. The iEEG time series Xt, measured in the time period
of 100-120 seconds after the onset of the seizure attack in a patient, will be used for the
GC analysis below.

When analyzing the data, we first identify two artifacts in the raw data when plotting
the power spectrum of all 16 channels. One artifact is the interference of alternating cur-
rent (AC) in channel 2, as indicated by the periodic sharp peaks in the red curve shown
in Fig. 4(A). We develop a protocol of nonlinear filtering to remove the frequency band
contributed by AC (see details in the Appendix C). The blue curve in Fig. 4(A) is the
resultant signal after removing the AC artifact. The other artifact is the abnormal dis-
continuity of the power spectrum at 1 kHz in channel 5, as shown in the red curve in
Fig. 4(B). This discontinuity is typically caused by the quantization noise of the recorded
signal, after a lowpass filtering at 1 kHz (see details in Appendix C and Fig. 9). To alle-
viate its contamination to the GC estimation, we use a 10-th order Butterworth lowpass
filter at 530Hz to avoid the aliasing effect as the blue curve shown in Fig. 4(B).

After removing the effect of artifacts from AC and quantization noise, we further
denoise the data for the preparation of the GC analysis. We first downsample the data at
1 kHz, and then apply a de-noising operation to the down-sampled data using a linear
reconstruction procedure as follows:

Figure 4: Power spectrum of raw data and processed data after removing artifacts. (A) Power spectrum of
channel 2 before and after removing the AC signal. (B) Power spectrum of channel 5 before and after performing
lowpass filtering.
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1. Identify the optimal joint regression order m of the down-sampled data using the
AIC.

2. Calculate the regression coefficient matrix of the joint regression Â=(âjk) and the

covariance matrix Σ̂=(σ̂pq) of residual.

3. (Permutation test) Shuffle the down-sampled data 1000 times, and calculate the
regression coefficient for each shuffled data. Calculate the standard deviation sjk and rpq

of âjk and σ̂pq, respectively.

4. Truncate elements of Â with absolute value smaller than sjk/10 to zero, i.e. â∗jk =

âjk1|ajk|>=s jk/10, and truncate elements of Σ̂ with absolute value smaller than rpq/20 to

zero, i.e. σ̂∗
pq = σ̂pq1|σpq|>=rpq/20 (these non-significant coefficients are presumably caused

by noise). Here, we denote the regression coefficient and covariance after truncation as
Â∗=(â∗jk) and Σ̂∗=(σ̂∗

pq).

5. Generate new time series based on the same joint regression model using Â∗ and
Σ̂∗. Denote new time series as the reconstructed data.

By comparing the power spectrum and coherence (see Fig. 10 in Appendix D) of the
down-sampled data and the reconstructed data, we find that the reconstructed data ef-
fectively captures the essential information in the down-sampled data, while with less
noisy information.

After denoising, we also check the stationarity of the power spectrum of the recon-
structed data as those done for the HH network case. The optimal regression order for
each different sampling interval is estimated with the help of AIC, as shown in Fig. 7. The
asymptotic behavior of the conditional GC value as the sampling interval approaches
zero, obtained from analyzing the down-sampled data and the reconstructed data, is
shown in Fig. 5.

Figure 5: The dependence of the conditional GC value on sampling interval τ obtained from analyzing the
experimental data. Upper panel: the relation between the conditional GC value and τ when analyzing the
causal interaction from four pairs of channels. Lower panel: the ratio between the conditional GC value over τ
is almost constant when τ approaches zero. Blue curves correspond to down-sampled data, and orange curves
correspond to reconstructed data. The shadow represents the 95% confidence interval of the curve.
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It is important to note that the conditional GC value from both the down-sampled
data and the reconstructed data exhibit the characteristic of linear convergence, as de-
picted in Fig. 5 (upper panel). Moreover, when comparing with the down-sampled data
(illustrated by the blue curves in Fig. 5), the reconstructed data (depicted by the orange
curves in Fig. 5) displays a more prominent linear convergence structure. It suggests
that the experimental data after denoising shows a clear inverse linear dependence on
sampling interval when calculating the conditional GC value.

4 Discussion

Granger Causality has become a powerful statistical tool to analyze the directional causal
interactions between nodes or signals in a system. However, there exists no general the-
oretical guarantee that GC can capture the causality for those complex systems as effec-
tively as tools based on information theory [23], except for Gaussian random variables [1].
While previous works have shown that the GC analysis, albeit based on the linear regres-
sion model, is capable of inferring the causal connectivity in nonlinear systems such as
neuronal networks, which can be further used to reconstruct the structural connectivity
of networks [42]. In practice, the data analyzed by the GC method is measured with
a finite sampling rate. Therefore, the GC value depends on the sampling interval. In
a network with only two variables, it has been theoretically proved that the GC value
decays linearly as the sampling interval approaches zero [45], and it has been verified
on the simulated data of the integrate-and-fire neuronal networks [43]. Yet a theoretical
foundation remains lacking whether this asymptotic behavior of the GC value exists for
a system with more than two variables.

In this work, we have theoretically extended the asymptotic behavior of the GC value
in the two-variable case to the general case of multiple variables. And we have numeri-
cally verified the asymptotic structure using simulated data from HH networks and us-
ing experimental data from the clinical iEEG signals. For the experimental data, with
the help of nonlinear filtering and denoising through linear reconstruction protocol, we
have alleviated the impact of artifacts and noise, and have identified a clear linear decay
tendency of the conditional GC value as the sampling interval approaches zero.

Our analysis of how the conditional GC value depends on sampling interval is of
great importance for the application of GC in real-world problems. For example, in neu-
roscience, unraveling the structural and functional connectivity of cortical networks has
been under active investigations. Among many statistical methods, GC analysis is one
of the most broadly used approaches to infer the structural and causal relation of large
populations of neurons and brain areas. Intuitively, as the sampling rate becomes higher,
the measured signal becomes more accurate to approximate the underlying continuous
dynamics. However, our analysis and simulations have shown that the GC value will
vanish in a linear fashion, indicating possible mis-inference of causality due to very small
GC value even in the presence of causality. Based on the asymptotic structure of the con-
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ditional GC value, reliable estimations of causality can be achieved by calculating the
ratio of GC over sampling interval for the sampling interval close to zero, a quantity
independent of sampling interval.

Appendix A. Examination of the stationarity of time series

Figure 6: The power spectrums of sub-time-series for three dataset. A full-length time series is divided into five
segments, and then the power spectrum of each segment is plotted. (A) Corresponds to the asynchronous HH
network. (B) Corresponds to the near-synchronized HH network. (C) Corresponds to the iEEG signals measured
in experiment.

Figure 7: The optimal regression orders of “joint-regression” models (estimated by AIC) as functions of sampling
intervals τ for three data sets. (A) Corresponds to the asynchronous HH network. (B) Corresponds to the
synchronized HH network. (C) Corresponds to the iEEG signals measured in experiment.

Appendix B. Numerical verification of conditional GC expression

As a verification of Eq. 3.3, we compare the theoretical value and the numerical estima-
tion of GC/τ (as τ → 0) in a smaller HH neuronal network, consisting of 7 excitatory
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neurons and 3 inhibitory neurons. As shown in Fig. 8, the theoretical value and the nu-
merical calculation of GC/τ in the limit of τ → 0 almost overlap. This result also holds
for larger networks since the derivation of Eq. 3.3 is independent of network size.

Figure 8: The theoretical value (red line) and the numerical calculation of GC/τ (blue curve) in the limit of
τ→0. The shadow represents the 95% confidence interval of the curve.

Appendix C. The artifacts in the iEEG data

Alternating current (AC) noise

In the raw iEEG data, some channels have strong AC interfere (some channels are not
spoiled by AC at all). To remove the AC artifact, the basic idea is to estimate the compo-
nent of the AC signal g(t), and then subtract it, i.e.

x(cleaned)(t)= x(t)−g(t), t= k∆t, k∈N,

where x(t) is the original signal, x(cleaned)(t) is the processed signal after removing the
AC noise. Here we model g(t) in a general form as

g(t)= a(t)cos
(

φ(t)+w0t
)

,

where w0 is a constant, a(t) and φ(t) are smooth functions. We use a cubic spline function
with clamped boundary condition to model a(t) and φ(t). a(t) and φ(t) are assumed to
be smooth as we have observed from the power spectrum of the iEEG data.

The central frequency w0 is determined by finding the maximum of (Hanning) win-
dowed Fourier transform

w0=argmax
w

∣

∣

∣

∣

∣

T

∑
t=j∆t

x(t)q(t)e−iwt

∣

∣

∣

∣

∣

2

,
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where

q(t)=
1−cos(2πt/T)

2
.

With w0 determined, the next step is to find a(t) and φ(t) to minimize frequency compo-
nents around w0

min
a(t),φ(t)

kN

∑
k=kL

∣

∣

∣

∣

∣

T

∑
t=j∆t

e−ik∆wt
(

x(t)−g(t)
)

∣

∣

∣

∣

∣

2

. (C.1)

where kL = ⌊(w0−wwidth/2)/∆w⌋, and kN = ⌈(w0+wwidth/2)/∆w⌉. Here, ∆w is the fre-
quency step of discrete Fourier transform and wwidth is the width of frequency band to
be minimized, centered around w0. Initial guess of a(t) and φ(t) can be obtained by
windowed Fourier transform at w0: aeiφ =2∑

T
t=j∆t x(t)q(t)e−iw0t.

In our numerical practice, we use one segmentation for the spline, i.e. cubic spline
becomes a simple 3-rd order Hermite interpolation. Also note that there are peaks near
the 50 Hz harmonics for signals from some channels, often only 0.2 Hz away. To further
eliminate these artifacts, we perform the above procedure twice to the same harmonics.

Quantization noise

In the raw iEEG data, some channels show strong high-frequency power even after low-
pass filtering. This ”strange” phenomenon is cased by quantization noise. In data pro-
cessing, quantization noise refers to the error or distortion introduced when continuous
or analog data is converted into a digital representation by quantization. This process
involves truncating continuous data to discrete values with short significant digits.

To illustrate the artifact caused by quantization noise in our data, we design a toy
model and generate a 20-second stationary time series Xt using a Gaussian regression
model

Xt =A1Xt−1+A2Xt−2+···+A19Xt−19+εt (C.2)

with 1 kHz sampling frequency. We use the same regression coefficients and the same
variance of the Gaussian white noise εt that fit the iEEG data introduced in the main
text. We denote the generated data as D1. The power spectrum of D1 is shown as the
blue curve in Fig. 9. Then, D1 is filtered by a butterworth lowpass filter at f <250 Hz to
get a filtered data D2. From the power spectrum (red curve in Fig. 9), we notice a sharp
drop when the frequency passes 250 Hz due to the effect of low-pass filtering. Next, we
truncate the significant digits of data points in D2 to introduce the quantization noise and
subsequently obtain data D3. As shown in the orange curve in Fig. 9, the high frequency
components ( f >250Hz) of D3 significantly increase, which is consistent with the feature
in the power spectrum of channel 5 data in the iEEG dataset, which has been processed
after low-pass filtering (see Fig. 4(B) red curve). Again to alleviate its contamination to
the GC estimation, we apply a 10-th order Butterworth lowpass filter at 530Hz on to the
raw data as the blue curve shown in Fig. 4(B).
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Figure 9: The influence of quantization noise on the power spectrum. D1 is the data generated by the regression
model (Eq. (C.2)). D2 is the filtered data of D1 after a butterworth lowpass filter at f <250Hz. D3 is obtained
by truncating the significant digits of data points in D2.

Appendix D. The spectrum analysis of the reconstructed data

As shown in Fig. 10, by comparing the power spectra between the down-sampled data
and reconstructed data introduced in the main text, we show that the reconstructed data
keeps the spectral information of down-sampled data. In addition, we define the coher-
ence as the ratio between cross-spectrum and self power spectrum of time series

C(ω)=
Sxy(ω)Syx(ω)

Sxx(ω)Syy(ω)
,

Figure 10: (A)-(D) Comparison of the power spectra between the down-sampled data and the reconstructed
data from four representative channels of the iEEG data. (E)-(H) Comparison of the coherence curves of the
down-sampled data and the reconstructed data from four pairs of representative channels of the iEEG data.
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which characterizes the correlation between time series across different frequencies. By
comparing the coherence curves between the down-sampled data and reconstructed da-
ta, we show that the reconstructed data also keeps the correlation information of down-
sampled data.
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