
RESEARCH ARTICLE NEUROSCIENCE
APPLIED MATHEMATICS

Causal connectivity measures for pulse-output network
reconstruction: Analysis and applications
Zhong-qi K. Tiana,b,c,1 , Kai Chena,b,c,1 , Songting Lia,b,c,2 , David W. McLaughlind,e,f,g,2 , and Douglas Zhoua,b,c,h,2 ID

Contributed by David W. McLaughlin; received April 3, 2023; accepted March 3, 2024; reviewed by David Hansel and Dario L. Ringach

The causal connectivity of a network is often inferred to understand network function.
It is arguably acknowledged that the inferred causal connectivity relies on the causality
measure one applies, and it may differ from the network’s underlying structural
connectivity. However, the interpretation of causal connectivity remains to be fully
clarified, in particular, how causal connectivity depends on causality measures and
how causal connectivity relates to structural connectivity. Here, we focus on nonlinear
networks with pulse signals as measured output, e.g., neural networks with spike
output, and address the above issues based on four commonly utilized causality
measures, i.e., time-delayed correlation coefficient, time-delayed mutual information,
Granger causality, and transfer entropy. We theoretically show how these causality
measures are related to one another when applied to pulse signals. Taking a simulated
Hodgkin–Huxley network and a real mouse brain network as two illustrative examples,
we further verify the quantitative relations among the four causality measures and
demonstrate that the causal connectivity inferred by any of the four well coincides
with the underlying network structural connectivity, therefore illustrating a direct link
between the causal and structural connectivity. We stress that the structural connectivity
of pulse-output networks can be reconstructed pairwise without conditioning on the
global information of all other nodes in a network, thus circumventing the curse of
dimensionality. Our framework provides a practical and effective approach for pulse-
output network reconstruction.

causality | correlation | mutual information | Granger causality | transfer entropy

The structural connectivity of a network, such as a cortical network, is of great importance
in understanding the cooperation and competition among nodes in the network (1–3).
However, it is often difficult to measure directly the structural connectivity of a network.
On the other hand, with the development of experimental techniques in neuroscience, it
has become feasible to record simultaneously, with high temporal resolution, the activities
of many nodes in a network (4–6). This provides a possibility to reveal the underlying
connectivity of the network by analyzing the nodes’ activity data and identifying the
causal interactions (connectivity) among them (7–12).

There are difficulties in measuring these causal interactions: One of the most widely
used statistical indicators for interaction identification is the correlation coefficient
(13–15) that characterizes linear dependence between two nodes. The correlation coeffi-
cient is symmetric, and thus cannot distinguish the driver-recipient relation to recover the
causal connectivity (16). To solve this, the time-delayed correlation coefficient (TDCC)
(15, 17) is used to detect the direction of causal connectivity. However, TDCC, as a linear
measure, may fail to capture causal interactions in nonlinear networks. As a nonlinear
model-free generalization of TDCC, time-delayed mutual information (TDMI) (18–20)
was proposed to measure the flow of information in nonlinear networks. Despite their
mathematical simplicity and computational efficiency, TDCC and TDMI cannot exclude
the historical effect of signals and may encounter the issue of overestimation (19–21).
Granger causality (GC) (22–24) and transfer entropy (TE) (19, 25, 26) were two other
measures that were introduced to detect causal connectivity with the exclusion of the
signal’s own historical effects. GC is based on linear regression models and assumes
the causal relation can be revealed by analyzing low-order statistics of signals (up to
the variance). Consequently, the validity of GC for nonlinear networks is in general
questionable (27). In contrast, TE is a nonparametric information-theoretic measure that
quantifies the causal interactions with no assumption of interaction models. However, it
requires the estimation of the probability distribution of dynamical variables conditioned
on the historical information in networks, which makes TE suffer from the curse of
dimensionality in practical applications to network systems with many nodes (28–30).
It is known that the causal connectivity inferred by different causality measures can
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be inconsistent with each other (31–33). With one exception [TE
has been proven to be equivalent to GC for Gaussian variables
(34)], there is little understanding of the relationships between
these measurement techniques, including when they accurately
(or inaccurately) predict causal interaction (connectivity).

The determination of structural connectivity from causal
interactions faces even more fundamental difficulties: First, causal
interactions may not be the result of direct structural connections
between the nodes of the network, but rather the result of cor-
relations arising from common external stimuli, or correlations
arising from indirect connections (for example, there are two
direct connections, from X to Y and from Y to Z , denoted by
X → Y and Y → Z , respectively. This results in correlations
between X and Z , yet no direct connection from X to Z ). For
clarity, a pair of neurons Y and X with a synaptic connection
from Y to X , denoted as Y → X , are called d-conn (directly
connected) (Y, X ) pair. Otherwise, we term them an id-conn
(indirectly connected) (Y, X ) pair. Second, causal connectivity,
as inferred from any of the above four measures, is statistical rather
than structural (35–39), i.e., causal connectivity quantifies direct
statistical correlation among network nodes, whereas structural
connectivity corresponds to physical connections among network
nodes. In general, it is not clear whether structural connectivity
can be reconstructed from causal connectivity.

In this work, we address the above issues for an important class
of nonlinear networks, which we term pulse-output networks
and which include spiking neural networks. The activity of each
node in a pulse-output network can be described as a stochastic
binary time series for the presence/absence of a pulse (spike) in
each time window, e.g., spike train. Under this description, we
illustrate mathematically that the four causal connectivity mea-
sures (TDCC, TDMI, GC, and TE) can be represented by one
another, to leading order in a perturbation expansion. Next, both
by simulations of a Hodgkin–Huxley (HH) neural network and
with experimentally measured data from mouse cortical network
(40, 41), we verify that the mathematical relations among the four
causality measures are valid for representative samples of pulse-
output networks. More importantly, for pulse-output networks,
we demonstrate that the underlying structural connectivity can
be recovered from the causal connectivity, itself inferred from any
one of four causality measures. For pulse-output networks of both
simulated Hodgkin–Huxley neural networks and a real mouse
cortical network (40, 41), we show that the potential problems
with the recovery of structural connectivity from causal connec-
tivity, e.g., confounders and hidden nodes, can be resolved.

We emphasize that the pulse-output nature of a spiking
neuronal network allows one to represent the neuronal signal
as a binary time series, with random spike times. With the
utility of this stochastic binary representation, our analytical
framework shows, using only pairwise information between
neurons, i) the establishment of mathematical relationships
between four common measures of causal connectivity, and
ii) the accurate pairwise predictions of structural connectivity
from causal connectivity, without conditioning on the global
information from all other nodes. Thus, the reconstruction can
circumvent the curse of dimensionality and can be applied to
the reconstruction of structural connectivity in large-scale pulse-
output nonlinear systems or subsystems.

Results
Concepts of Generalized Pairwise TDCC, TDMI, GC, and TE.
Consider a nonlinear network of N nodes with dynamics given
by

dZ
dt

= F(Z, t), [1]

where Z = (Z1, Z2, ..., ZN ). We focus on the application of
TDCC, TDMI, GC, and TE to each pair of nodes without
conditioning on the rest of nodes in the network, accounting
for the practical constraint that conditional causality measures
in general require the information of the whole network that is
often difficult to observe. For the ease of illustration, we denote
a pair of nodes as X = Zi and Y = Zj, and their measured time
series as {xn} and {yn}, respectively.

TDCC (15, 17), as a function of time delay m, is defined by

C(X, Y ; m) =
cov(xn, yn−m)

�x�y
,

where “cov” represents the covariance, �x and �y are the standard
deviations of {xn} and {yn}, respectively. A positive (negative)
value of m indicates the calculation of causal value from Y to X
(from X to Y ), and nonzero C(X, Y ; m) indicates the existence of
causal interaction between X and Y . Without loss of generality,
we consider the case of positive m in the following discussions,
that is, the causality measure from Y to X .

In contrast to the linear measure TDCC, TDMI is a model-free
method being able to characterize nonlinear causal interactions
(18–20). TDMI from Y to X is defined by

I(X, Y ; m) =
∑

xn,yn−m

p(xn, yn−m) log
p(xn, yn−m)

p(xn)p(yn−m)
, [2]

where p(xn, yn−m) is the joint probability distribution of xn, yn−m,
p(xn) and p(yn−m) are the corresponding marginal probability
distributions. I(X, Y ; m) is nonnegative and vanishes if and only
if xn and yn−m are independent (20). Nonzero I(X, Y ; m) implies
the existence of causal interaction from Y to X for a positive m.

It has been noted that TDCC and TDMI could overestimate
the causal interactions when a signal has a long memory (19–
21). As an alternative, GC was proposed to overcome the
issue of overestimation based on linear regression (22, 23, 42).
The autoregression for X is represented by xn+1 = a0 +∑k

i=1 aixn+1−i + �n+1, where {ai} are the estimated autore-
gression coefficients and �n+1 is the residual. By including the
historical information of Y with a message length l and a time-
delay m, the joint regression for X is represented by xn+1 =
ã0 +

∑k
i=1 ãixn+1−i +

∑l
j=1 b̃jyn+2−m−j +�n+1, where {ãi} and

{b̃j} are the estimated joint regression coefficients, and �n+1 is the
corresponding residual. If there exists a causal interaction from Y
to X , then the prediction of X using the linear regression models
shall be improved by additionally incorporating the historical
information of Y . Accordingly, the variance of residual �n+1 is
smaller than that of �n+1. Based on this concept, the GC value
from Y to X is defined by

GY→X (k, l ; m) = log
Var(�n+1)
Var(�n+1)

.

The GC value is also nonnegative and vanishes if and only if
{b̃j} = 0, i.e., the variance of residual �n+1 for X cannot be
reduced by including the historical information of Y . Note that,
by introducing the time-delay parameter m, the GC analysis
defined above generalizes the conventional GC analysis, as the
latter corresponds to the special case of m = 1.
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GC assumes that the causal interaction can be fully captured
by the variance reduction in the linear regression models, which
is valid for Gaussian signals but not for more general signals.
As a nonlinear extension of GC, TE was proposed to describe
the causal interaction from the information theoretic perspective
(19). The TE value from Y to X is defined by

TY→X (k, l ; m) =
∑

xn+1,x(k)
n ,y(l)

n+1−m

p(xn+1, x(k)
n , y(l)

n+1−m)

· log
p(xn+1|x

(k)
n , y(l)

n+1−m)

p(xn+1|x
(k)
n )

, [3]

where the shorthand notation x(k)
n = (xn, xn−1, ..., xn−k+1) and

y(l)
n+1−m = (yn+1−m, yn−m, ..., yn+2−m−l ), k, l indicate the length

(order) of historical information of X and Y , respectively. Similar
to GC, the time-delay parameter m is introduced that generalizes
the conventional TE, the latter of which corresponds to the
case of m = 1. TE is nonnegative and vanishes if and only
if p(xn+1|x

(k)
n , y(l)

n+1−m) = p(xn+1|x
(k)
n ), i.e., the uncertainty

of xn+1 is not affected regardless of whether the historical
information of Y is taken into account.

In this work, we investigate the mathematical relations among
TDCC, TDMI, GC, and TE by focusing on nonlinear networks
described by Eq. 1 with pulse signals as measured output, e.g.,
the spike trains measured in neural networks. Consider a pair of
nodes X and Y in the network of N nodes, and denote their
pulse-output signals by

wx(t) =
∑

l

�(t − �xl ) and wy(t) =
∑

l

�(t − �yl ), [4]

respectively, where �(·) is the Dirac delta function, and {�xl } and
{�yl } are the output time sequences of nodes X and Y determined
by Eq. 1, respectively. With the sampling resolution of Δt, the
pulse-output signals are measured as binary time series {xn} and
{yn}, where xn = 1 (yn = 1) if there is a pulse signal, e.g., a spike
generated by a neuron, of X (Y ) occurred in the time window
[tn, tn + Δt), and xn = 0 (yn = 0) otherwise, i.e.,

xn =
∫ tn+Δt

tn
wx(t)dt and yn =

∫ tn+Δt

tn
wy(t)dt, [5]

and tn = nΔt. Note that the value of Δt is often chosen to
make sure that there is at most one pulse signal in a single small
enough time window. In the stationary state, the responses xn
and yn can be viewed as stochastic processes when the network is
driven by stochastic external inputs. In such a case, for the sake
of simplicity, we denote px = p(xn = 1), py = p(yn = 1), and
define Δpm = p(xn=1, yn−m=1)

p(xn=1)p(yn−m=1) − 1, measuring the dependence
between xn and yn−m.

Mathematical Relation between TDMI and TDCC. For the re-
lation between TDCC and TDMI when applied to nonlinear
networks with pulse-output signals, we prove the following
theorem:
Theorem 1. For nodes X and Y with pulse-output signals given in
Eqs. 4 and 5, we have

I(X, Y ; m) =
C2(X, Y ; m)

2
+ O(Δt2Δp3

m), [6]

where the symbol “O” stands for the order.

Proof: The basic idea is to Taylor expand TDMI in Eq. 2 with
respect to the term p(xn,yn−m)

p(xn)p(yn−m)
− 1 (the detailed derivation can

be found in SI Appendix, Supporting Information Text 1B), then
we arrive at the following expression:

I(X, Y ; m) =
∑

xn,yn−m

p(xn, yn−m) log
(

1 +
p(xn, yn−m)

p(xn)p(yn−m)
− 1
)

=

[
p(xn = 1, yn−m = 1)− pxpy

] 2

2(px − p2
x)(py − p2

y )
+ O(Δt2Δp3

m).

Since TDCC can be written as

C(X, Y ; m) =
p(xn = 1, yn−m = 1)− pxpy√

(px − p2
x)(py − p2

y )
, [7]

we have

I(X, Y ; m) =
C2(X, Y ; m)

2
+ O(Δt2Δp3

m).

�

Mathematical Relation between GC and TDCC. We next derive
the relation between GC and TDCC as follows:

Theorem 2. For nodes X and Y with pulse-output signals given in
Eqs. 4 and 5, we have

GY→X (k, l ; m) =
m+l−1∑

i=m

C2(X, Y ; i) + O(Δt3Δp2
m). [8]

Proof: From the definition, GC can be represented by the
covariances of the signals (34) as

GY→X (k, l ; m) = log
Γ(xn+1|x

(k)
n )

Γ(xn+1|x
(k)
n ⊕ y(l)

n+1−m)
, [9]

where Γ(x|y) = cov(x) − cov(x, y)cov(y)−1cov(x, y)T for
random vectors x and y, cov(x) and cov(y) denote the covariance
matrix of x and y, respectively, and cov(x, y) denote the cross-
covariance matrix between x and y. The symbol T is the transpose
operator and ⊕ denotes the concatenation of vectors.

We first prove that the autocorrelation function (ACF) of
binary time series {xn} as a function of time delay takes the order
of Δt (see SI Appendix, Supporting Information Text 1C for the
proof, SI Appendix, Fig. S1). Accordingly, we have

cov(x(k)
n ) = �2

x (I + Â),

where Â = (âij), âij = O(Δt), and I is the identity matrix.
Hence,

Γ(xn+1|x
(k)
n ) = �2

x −
1
�2

x
cov(xn+1, x(k)

n )(I− Â)

· cov(xn+1, x(k)
n )T + O(Δt5). [10]
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In the same way, we have

Γ(xn+1|x
(k)
n ⊕ y(l)

n+1−m)

= �2
x −

1
�2

x
cov(xn+1, x(k)

n )(I− Â)cov(xn+1, x(k)
n )T

−
1
�2

y
cov(xn+1, y(l)

n+1−m)(I− B̂)cov(xn+1, y(l)
n+1−m)T

+ O(Δt4Δp2
m). [11]

where B̂ = (b̂ij), b̂ij = O(Δt). Substituting Eqs. 10 and 11 into
Eq. 9 and Taylor expanding Eq. 9 with respect to Δt, we can
obtain

GY→X (k, l ; m) =
m+l−1∑

i=m

C2(X, Y ; i) + O(Δt3Δp2
m). [12]

The detailed derivation of Eqs. 10, 11, and 12 can be found in
SI Appendix, Supporting Information Text 1C. �

Mathematical Relation between TE and TDMI. From the defini-
tions of TE and TDMI, TE can be regarded as a generalization
of TDMI conditioning on the signals’ historical information
additionally. To rigorously establish their relationship, we require
that

∥∥x(k+1)
n+1

∥∥
0 ≤ 1 and

∥∥y(l)
n+1−m

∥∥
0 ≤ 1 in the definition of TE

given in Eq. 3, where
∥∥·∥∥0 denotes the l0 norm of a vector, i.e.,

the number of nonzero elements in a vector. This assumption
indicates that the length of historical information used in the
TE framework is shorter than the minimal time interval between
two consecutive pulse-output signals. With this condition, we
mathematically establish the following theorem:

Theorem 3. For nodes X and Y with pulse-output signals given
in Eqs. 4 and 5, under the assumption that

∥∥∥x(k+1)
n+1

∥∥∥
0
≤ 1 and∥∥∥y(l)

n+1−m

∥∥∥
0
≤ 1, we have

TY→X (k, l ; m) =
m+l−1∑

i=m

I(X, Y ; i) + O(Δt3Δp2
m), [13]

where TY→X is defined in Eq. 3.

Proof: To simplify the notation, we denote x(k)
n = (xn, xn−1, ...,

xn−k+1) and y(l)
n+1−m = (yn+1−m, yn−m, ..., yn+2−m−l ) as x− and

y−, respectively. From Eq. 3, we have

TY→X (k, l ; m)=
∑

xn+1,x−,y−
p(xn+1, x−, y−) log

p(xn+1|x−, y−)
p(xn+1|x−)

=
m+l−1∑

i=m

I(X, Y ; i) +A+ B,

[14]

where

A =
∑

xn+1,y−
p(xn+1, y−) log

p(y−|xn+1)∏
j p(yj|xn+1)

∏
j p(yj)

p(y−)

and

B =
∑

xn+1,x−,y−
p(xn+1, x−, y−) log

p(xn+1|x−, y−)
p(xn+1|y−)

p(xn+1)
p(xn+1|x−)

and
∏

j in A represents
∏n+1−m

j=n+2−m−l . The detailed derivation
of Eq. 14 can be found in SI Appendix, Supporting Information
Text 1D. A and B in Eq. 14 consist of multiple terms, and the
leading order of each term can be analytically calculated. For the
sake of illustration, we derive the leading order of one of these
terms and the leading order of the rest terms can be estimated
in a similar way. Under the assumption that

∥∥x(k+1)
n+1

∥∥
0 ≤ 1

and
∥∥y(l)

n+1−m
∥∥

0 ≤ 1, the number of nonzero components is at

most one in x(k+1)
n+1 and y(l)

n+1−m. Without loss of generality, we
assumed xn+1 = 1 and yn+1−m = 1. In such a case, we can
obtain the following expression in A,

p(xn+1, y−) log
p(y−|xn+1)∏

j p(yj|xn+1)

∏
j p(yj)

p(y−)

∣∣∣∣
xn+1=1,yn+1−m=1

= pxp2
y

∑
j 6=n+1−m

Δpn+1−j + O(Δt3Δp2
m).

We can further show that the leading order of all the terms in
A cancel each other out (SI Appendix, Supporting Information
Text 1D), thus we haveA = O(Δt3Δp2

m). Similarly, we can also
show B = O(Δt3Δp2

m) (SI Appendix, Supporting Information
Text 1D), and thus

TY→X (k, l ; m) =
m+l−1∑

i=m

I(X, Y ; i) + O(Δt3Δp2
m).

�

Mathematical Relation between GC and TE. From Theorems 1–
3, we can prove the following theorem (see details in SI Appendix,
Supporting Information Text 1E):

Theorem 4. For nodes X and Y with pulse-output signals given
in Eqs. 4 and 5, under the assumption that

∥∥∥x(k+1)
n+1

∥∥∥
0
≤ 1 and∥∥∥y(l)

n+1−m

∥∥∥
0
≤ 1, we have

GY→X (k, l ; m) = 2TY→X (k, l ; m) + O(Δt2Δp3
m), [15]

where TY→X is defined in Eq. 3.

Note that in Theorems 3 and 4, we require the condition∥∥x(k+1)
n+1

∥∥
0 ≤ 1 and

∥∥y(l)
n+1−m

∥∥
0 ≤ 1 to establish the relations of

causality measures. However, the relations of the four causality
measures remain to hold approximately in the absence of this
condition, as will be discussed below.

We summarize the relations among the four causality measures
in Fig. 1. Note that the relations depend on the condition of
weak dependence between X and Y described by small Δpm (see
derivations in SI Appendix, Supporting Information Text 1). We
note that in some extreme case with very strong inhibition, Δpm
can approach −1 so that the relations no longer hold. In such
case ofΔpm ≈ −1, different equivalence relations among the four
causality measures apply, as developed in SI Appendix, Supporting
Information Text 2. We describe the numerical verification of
these relations in the Discussion.
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Fig. 1. Mathematical relations among TDCC, TDMI, GC, and TE established
by four theorems.

Mathematical Relations of Causality Measures Verified in HH
Neural Networks. To verify the relations among the causality
measures derived above, as an illustrative example, we apply gen-
eralized pairwise TDCC, TDMI, GC, and TE to the HH neural
network described in Materials and Methods. We first consider a
d-conn pair of neurons Y → X in an HH network containing 10
excitatory neurons driven by independent homogeneous Poisson
inputs. Let {�xl } and {�yl } be the ordered spike times of neuron
X and Y in the HH network respectively and denote their spike
trains as wx(t) =

∑
l �(t − �xl ) and wy(t) =

∑
l �(t − �yl ),

respectively. With a sampling resolution of Δt, the spike train
is measured as a binary time series as described above. To
numerically verify the above theorems, we then check the order
of the remainders in Eqs. 6, 8, 13, and 15 in terms of Δt and
Δpm. Note that Δpm, the measure of the dependence between
X and Y , is insensitive to sampling resolution Δt (SI Appendix,
Fig. S2). Therefore, by varying sampling intervalΔt and coupling
strength S (linearly related to Δpm), respectively, the orders of
the remainders are consistent with those derived in Eqs. 6, 8, 13,
and 15 as shown in Fig. 2. In addition, Fig. 3 verifies the relations
among the causality measures by changing other parameters. For
example, in Eqs. 8, 13, and 15, the four causality measures are
proved to be independent of the historical length k, which is
numerically verified in Fig. 3A. And although the values of GC
and TE rely on the historical length l in Fig. 3B, the mathematical
relations among the four causality measures revealed by Theorems
1–4 hold for a wide range of l . Recall that, in order to establish
rigorously the relations of the causality measures of Theorems
3 and 4, our proofs required the assumption

∥∥x(k+1)
n+1

∥∥
0 ≤ 1

and
∥∥y(l)

n+1−m
∥∥

0 ≤ 1. This assumption can often be satisfied:
For example, in the above simulations, the memory time of the
neuron is about 20 ms, while the interspike interval is around

A B

Fig. 2. Numerical verification of the convergence order of the remainders
in terms of (A) Δt and (B) Δpm. The convergence orders for Δt in (A) and
Δpm in (B) agree well with Theorems 1–4 (R2 > 0.998). The gray dashed and
solid lines indicate the 2nd-order and 3rd-order convergence, respectively.
The four causality measures are calculated from a d-conn pair in an HH
network of 10 excitatory neurons randomly connected with probability 0.25.
The parameters are set as k = l = 5 and m = 6 (time delay is 3 ms), S = 0.02
mS cm−2 in (A), and Δt = 0.5 ms in (B).

A B

C D

Fig. 3. Dependence of causal values on parameters of (A) order k, (B) order
l, (C) time delay, and (D) coupling strength S obtained from the same pair
of neurons in the HH network in Fig. 2. In (C), a positive (negative) time
delay indicates the calculation of causal values from neuron Y to neuron X
(from X to Y ). The green curve represents the summation of squared TDCC
C(X, Y ;m), the red curve represents twice of the summation of TDMI I(X, Y ;m),
the orange curve stands for GC GY→X (k, l;m), and the blue curve stands for
twice of TE TY→X (k, l;m). The curves virtually overlap in (A)–(D) (all significantly
greater than those of randomly surrogate time series, P < 0.05). The gray
dashed curve in (A)–(C) is the significance level of causality for an id-conn
pair in the same HH network. The gray star curve in (D) is the quadratic fit
of causal values with respect to different S. The parameters are set as (A):
l = 1, S = 0.02 mS cm−2, Δt = 0.5 ms, m = 6; (B): k = 1, S = 0.02 mS cm−2,
Δt = 0.5 ms, m = 6; (C): k = l = 1, S = 0.02 mS cm−2, Δt = 0.5 ms; (D):
k = l = 1, Δt = 0.5 ms, m = 6.

100 ms. However, even when the assumption breaks down in
the regime of high firing rate, the mathematical relations among
the four causality measures remain to hold approximately, as
examined numerically in SI Appendix, Fig. S3.

We next verify the mathematical relations among the causality
measures for the parameter of time delay m by fixing parameters
k and l . In principle, the value of k and l in GC and TE shall be
determined by the historical memory of the system. To reduce
the computational cost (15, 43, 44), we take k = l = 1 for all the
results below. It turns out that this parameter choice works well
for pulse-output networks because of the short memory effect
in general, as will be further discussed later. Fig. 3C shows the
mathematical relations hold for a wide range of the time-delay
parameter used in computing the four causality measures (see
more examples in SI Appendix, Fig. S4).

We further examine the robustness of the mathematical
relations among TDCC, TDMI, GC, and TE by scanning the
parameters of the coupling strength S between the HH neurons
and external Poisson input strength and rates. As shown in
Fig. 3D, the values of the four causality measures with different
coupling strength are very close to one another. Their relations
also hold for a wide range of external Poisson input parameters (SI
Appendix, Fig. S5). From the above, the mathematical relations
among TDCC, TDMI, GC, and TE described in Theorems 1–4
are verified in the HH network.

Relation between Structural Connectivity and Causal Connec-
tivity in HH Neural Networks. We next discuss the relation
between the inferred causal connectivity and the structural
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A B

Fig. 4. Distributions of causal values in an HH network of 100 excitatory
neurons randomly connected with probability 0.25. (A) The distribution
of causal values of each pair of neurons in the whole network. (B) The
distribution of causal values of each pair of neurons in an HH subnetwork
of 20 excitatory neurons. The parameters are set as k = l = 1, S = 0.02
mS cm−2, Δt = 0.5 ms, and m = 6. The colors are the same as those in Fig. 3
and the curves nearly overlap.

connectivity. Note that the causal connectivity inferred by these
measures is statistical rather than structural (35–37), i.e., the
causal connectivity quantifies the direct statistical correlation
or dependence among network nodes, whereas the structural
connectivity corresponds to physical connections among network
nodes. Therefore, a precise relationship between causal connec-
tivity and structural connectivity has been unclear. In Fig. 3C,
the peak causal value from Y to X (at time delay around 3 ms,
m = 6) is greater than the significance level (the gray dashed line
in Fig. 3C ), while the causal value from X to Y is not. Based
on this, the inferred direct causal connections between X and Y
are consistent with the underlying structural connections. From
now on, we adopt peak causal values, m = 6, to represent the
causal connectivity unless noted explicitly.

To investigate the validity of this consistency in larger net-
works, we further investigate a larger HH network (100 excitatory
neurons) with random connectivity structure and homogeneous
coupling strength (SI Appendix, Fig. S6A). As shown in Fig. 4A,
the distributions of all four causal values across all pairs of
neurons virtually overlap, which again verifies their mathematical
relations given by Theorems 1–4. In addition, as the network
size increases from 10 to 100 neurons, the distributions of the
causality measures in Fig. 4A exhibit a bimodal structure with
a clear separation of orders. By mapping the causal values with
the structural connectivity, we find that the right bump of the
distributions with larger causal values corresponds to d-conn
pairs, while the left bump, with smaller causal values, corresponds
to id-conn pairs. The well separation of the two modals indicates
that the underlying structural connectivity in the HH network
can be accurately estimated from the causal connectivity.

The performance of this reconstruction approach can be
quantitatively characterized by the receiver operating character-
istic (ROC) curve and the area under the ROC curve (AUC)
(31, 45, 46) (Materials and Methods). It is found that the AUC
value becomes 1 when applying any of these four causality
measures (SI Appendix, Fig. S6B), which indicates that the
structural connectivity of the HH network could be reconstructed
with 100% accuracy. We point out that the reconstruction of
network connectivity based on causality measures is achieved
by calculating the causal values between each pair of neurons
that requires no access to the activity data of the rest of neurons.
Therefore, this inference approach can be applied to a subnetwork
when the activity of neurons outside the subnetwork is not
observable. For example, when a subnetwork of 20 excitatory HH
neurons is observed, the structural connectivity of the subnetwork

can still be accurately reconstructed without knowing the
information of the rest 80 neurons in the full network as shown in
Fig. 4B. In such a case, the AUC values corresponding to the four
causality measures are 1 (SI Appendix, Fig. S6C ). In addition,
we have also shown that, for HH networks with heterogeneous
coupling strength (for example, the coupling strength follows
a log-normal distribution), accurate reconstructions of network
structural connectivity can still be achieved (SI Appendix, Fig. S7).
To increase biological plausibility, we have enlarged network size
to 104 neurons activated in a balanced excitation-inhibition state
(Networks in balanced states in the Discussion). In such a large bal-
anced network, accurate reconstruction performance is preserved.

Mechanism Underlying Network Connectivity Reconstruction
by Causality Measures. We next demonstrate the mechanism
underlying the validity of pairwise inference of pulse-output
signals in the reconstruction of network structural connectivity.
It has been frequently noticed that pairwise causal inference may
potentially fail to distinguish d-conn from id-conn pairs (16, 47).
For example, in the case that Y → W → X , the id-conn (Y, X )
pair, may possibly be mis-inferred as a d-conn pair via pairwise
causality measures. However, pulse-output signals circumvent
such spurious inferences as explained below. Here we take TDCC
as an example to elucidate the underlying reason for successful
reconstruction. If we denote �pY→X = p(xn = 1|yn−m =
1) − p(xn = 1|yn−m = 0) as the increment of probability of
generating a pulse output for neuron X induced by a pulse-
output signal of neuron Y at m time step earlier, we have TDCC

C(X, Y ; m) = �pY→X

√
py−p2

y
px−p2

x
through Eq. 7. For the case of

Y → W → X , we can derive �pY→X = O(�pY→W · �pW→X ),
and further C(X, Y ; m) = O (C(W, Y ; m) · C(X, W ; m)) (see
derivation details about the relations among �p, Δpm, and
causality measures in SI Appendix, Supporting Information Text
3 and Fig. S8A). Because the influence of a single pulse-output
signal is often small (e.g., in the HH neural network with
physiologically realistic coupling strengths, we obtain |�p| <
0.01 from simulation data), the causal value C(X, Y ; m) for the
id-conn (Y, X ) pair is significantly smaller than C(W, Y ; m) or
C(X, W ; m) for d-conn (Y, W ) and (W, X ) pairs as depicted in
Fig. 4A. Another key concern in pairwise inference arises from
correlated activity triggered by shared upstream drivers, termed
“confounders.” They will possibly result in the misidentification
of id-conn pairs as d-conn pairs, an issue observed in traditional
inference methodologies (47–50). For neuron pairs influenced
by a common driver, represented as Y ← W → X , where
W acts as the confounder for X and Y , a similar relation can
be derived: �pY→X (or �pX→Y ) = O(�pW→Y · �pW→X ) (SI
Appendix, Supporting Information Text 3 and Fig. S8B). As a
consequence, the indirect causality resulting from confounders is
also significantly diminished when compared to that from direct
interactions.

We also note that the increment �p is linearly dependent on the
coupling strength S (SI Appendix, Fig. S8C ), thus we establish
a mapping between the causal and structural connectivity, in
which the causal value of TDCC is proportional to the coupling
strength S between two d-conn neurons. The mapping between
causal and structural connectivity for TDMI, GC, and TE is
also established in a similar way, in which the corresponding
causal values are proportional to S2 as shown in Fig. 3D.
Therefore, the application of pairwise causality measures to
pulse-output signals is able to successfully reveal the underlying
structural connectivity of a network. Furthermore, leveraging this
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quadratic relation between causal value and coupling strength, it
is possible to estimate the coupling strength rather than “coupled
or not coupled” based on the causal value, which requires more
future studies. In summary, for pulse-output networks, structural
connectivity can be accurately inferred from causal connectivity
in a pairwise manner that overcomes computational issues of
high dimensionality. Thus, the method is potentially applicable
to experimentally measured data from large-scale biological
networks or subnetworks as discussed below.

Network Connectivity Reconstruction with Physiological Ex-
perimental Data. Next, we apply all four causality measures to
experimental data to address the issue of validity of their math-
ematical relations and reconstruction of the network structural
connectivity. Here, we analyze the in vivo spike data recorded
in the mouse cortex from Allen Brain Observatory (40, 41)
(Materials and Methods). By applying the four causality measures,
we infer the causal connectivity of those cortical networks. As
the underlying structural connectivity of the recorded neurons
in experiments is unknown, we first detect putative connected
links from the distribution of causality measures, and then
follow the same procedures as previously described in the
HH model case using ROC and AUC in signal detection
theory (31, 45, 46) (Materials and Methods) to quantify the
reconstruction performance.

Because we have demonstrated the equivalence of the four
causality measures, we will use TE as a representative causality
measure to demonstrate a way to detect putative connections.
As we have shown above, the TE values are proportional to
S2. In addition, previous experimental works observed that the
coupling strength S follows the log-normal distribution both for
intra-areal and interareal cortical networks in mouse and monkey
brains (51). Thus, the distribution of TE for d-conn pairs should

follow the log-normal distribution. In addition, we assume that
the distribution of TE for id-conn pairs also obeys the log-normal
distribution (Materials and Methods).

To validate the above assumption of two log-normal distribu-
tions of TE values, we consider an HH network where neurons are
randomly connected and the network coupling strength follows
the log-normal distribution as observed in experiment (51). In
this case, although the distribution of log TE values (log10 TY→X )
in Fig. 5A for d-conn and id-conn pairs overlap with each
other, it can be well fitted by the summation of two log-normal
distributions of TE values. Importantly, the fitted distributions
of TE of d-conn and id-conn pairs agree well with those of the
true connectivity setup in simulation as shown in Fig. 5B. Thus,
we take the log-normal fitted distributions of causality measures
as the ground truth of structural connectivity to evaluate the
performance of network connectivity reconstruction, e.g., the
AUC value is 0.997 in Fig. 5B. Additionally, we evaluate the
performance of network reconstruction by using an experimen-
tally measured log-normal distribution of synaptic weights (52).
A slightly degraded reconstruction performance can be achieved
with AUC value of 0.90, as depicted in SI Appendix, Fig. S7E .
Practically, an optimal inference threshold determined as the
intersection of the two fitted distribution curves (53) can be used
for network connectivity reconstruction, which is indicated by
the vertical solid line in Fig. 5B. In addition, the above results are
robust for a variety of coupling strength distributions, including
uniformly distributed and Gaussian distributed coupling strength
with AUC values higher than 0.95 (SI Appendix, Fig. S7).

We then apply the same ROC analysis to all the four causality
measures when analyzing experimental data under different visual
stimuli conditions. As shown in the Insets of Fig. 5 C–F, the
distribution of TDCC, TDMI, GC, and TE values are close to
each other, which again verifies their mathematical relations given

A

B D

G

C E

F

Fig. 5. Reconstruction of structural connectivity by the assumption of mixed log-normal distribution of causal values. (A) Distribution of TE values in an HH
network of 100 excitatory neurons. The entry Aij in the adjacency matrix follows a Bernoulli distribution with probability of 0.25 being 1. For the d-conn pairs,
e.g., Aij = 1, the corresponding coupling strength from neuron j to neuron i is sampled from a log-normal distribution. The blue and red curves are the simulated
and fitted distributions, respectively. Inset: Histogram of structural coupling strength, S. (B) Distributions of TE values from d-conn and id-conn pairs of HH
neurons in (A). The red and orange curves are the simulated TE values from d-conn and id-conn pairs respectively, while the blue and green curves are the fitted
TE values from d-conn and id-conn pairs respectively which are obtained from the fitting in (A). Other parameters are the same as those in Fig. 4. (C–F) ROC
curves of the network composed by the recorded neurons in experiment under visual stimuli of (C) drifting gratings, (D) static gratings, (E) natural scenes, and
(F ) natural movie, with AUC values equal to 0.950, 0.951, 0.953, 0.967. Insets: The distribution of causal values of each pair of neurons in the whole network. The
parameters are set as k = 1, l = 5, Δt = 1 ms, and m = 1. The colors are the same as those in Fig. 3. (G) The similarity matrix of TE values over all neuron pairs
across different stimuli conditions. For each pair of stimuli conditions, the similarity between the inferred TE values is measured by their correlation coefficient.
The similarity matrix is symmetric with respect to its diagonal of ones, and the lower triangular part of the matrix is shown in the heatmap.
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by Theorems 1 to 4. Furthermore, to confirm the assumption of
small |Δpm| for experimental data, we examined the distribution
of |Δpm|. As detailed in SI Appendix (SI Appendix, Fig. S9,
Top panel), a substantial majority of the distribution adheres
to the expansion assumption, specifically where |Δpm| < 1.
Under the assumption of mixed log-normal distribution (SI
Appendix, Fig. S9, Middle panel), we first infer the ground truth
of the network structural connectivity, and then evaluate the
reconstruction performance of all four causality measures by the
ROC curves as shown in Fig. 5 C–F with AUC values greater
than 0.95. To investigate the consistency of reconstruction
across different stimuli conditions, we compute the correlation
coefficient of causal values for each pair of stimuli. As shown in
Fig. 5G, our reconstruction achieves relatively high consistency
across conditions with a correlation coefficient higher than 0.75.
Note that almost all of the causal values of inconsistently inferred
connections fall into the overlapping region of the distributions
of d-conn and id-conn pairs (green curves in SI Appendix, Fig. S9,
Bottom panel) which are generally error prone. We point out that
such error prone generally exists as we can see similar phenomena
for HH networks (SI Appendix, Fig. S10).

Discussion
In this work, inspired by the pulse-output nature of spiking
neuronal networks, we have built an analytical framework upon
a stochastic binary representation of neuronal interactions. This
framework allows us, using only pairwise information between
neurons, to i) establish the mathematical relationships between
four widely used measures (TDCC, TDMI, GC, and TE)
of causal connectivity, and ii) accurately reconstruct physical
(structural) connectivity from causal connectivity in simulated
HH neuronal networks. In addition, our framework provides
the clarification and reduction of the major possible obstacles
induced by confounders and unmeasured hidden nodes in
conventional network reconstructions. Finally, we have used
this analysis of pulse-output signals to reconstruct the structural
connectivity of the real neuronal network in the mouse brain
from experimentally measured spike-train data and have achieved
promising performances.

We emphasize two key features of pulse-output signals in
eliminating of the curse of dimensionality that lead to effective
network reconstruction via our framework: i) the short timescale
of autocorrelation, and ii) the weakness of indirect causalities.
On the one hand, with small time step Δt commonly used
in experiment, the short autocorrelation timescale protects the
inferred causality from the corruption of the self-memory of time
series. Therefore, the short autocorrelation length overcomes the
curse of dimensionality in the estimation of probability density
function by reducing the order of conditioned signal history (e.g.,
k = l = 1). On the other hand, because of the spike nature of the
pulse-output signal, the causal values of d-conn pairs are several
orders of magnitude larger than those of id-conn pairs, providing
a clear distinction between the two. These two features make
our framework a practical approach for pulse-coupled network
reconstruction. In contrast, if these causality measures are directly
applied to continuous-valued signals, e.g., voltage time series of
a neuronal network, the mathematical relations derived in our
theorems do not hold (SI Appendix, Fig. S11A) and the network
reconstruction may also fail. For instance, TDCC and TDMI
give incorrect reconstruction of the structural connectivity due
to the strong self-correlation of continuous-valued time series (SI
Appendix, Fig. S11B).

In the main text, we have illustrated the effectiveness of the
four causality measures by taking the examples of an excitatory
HH neural network receiving uncorrelated external Poisson
drive (Materials and Methods). In fact, as discussed below, these
methods apply much more broadly for pulse-output networks,
including networks in synchronized states, networks receiving
correlated inputs, networks with different neuronal models,
networks comprising both excitatory and inhibitory neurons,
networks in balanced states, and networks with output by
surrogate calcium imaging data.

Synchronized States. Oscillations and synchronizations are com-
monly observed in the biological brain network, as shown in SI
Appendix, Fig. S12A. Due to the fake causality between neu-
rons introduced by the strong synchronous state, conventional
reconstruction frameworks fail to capture the true structural
connectivity. However, with our framework, high inference
accuracy (AUC > 0.88) can still be achieved (SI Appendix,
Fig. S12 B and C ). Furthermore, by applying a desynchronized
sampling method that only samples the pulse-output signals
in asynchronous time intervals (SI Appendix, Fig. S12D), we
can again perfectly reconstruct the network (AUC > 0.99, SI
Appendix, Fig. S12 E- and F ). The relation between percentages
of desynchronized downsampling and AUC values is shown in
SI Appendix, Fig. S13.

Correlated Inputs. External inputs to the network in the brain
can often be correlated. In such a case, the synchronized states
may be observed similarly as in previous cases (SI Appendix,
Fig. S14A). Nevertheless, our framework can still achieve high
inference accuracy (AUC > 0.99 with desynchronized down-
sampling methods, or AUC > 0.88 without downsampling, SI
Appendix, Fig. S14 B–F) if the external inputs are moderately
correlated, e.g., correlation coefficient less than 0.30 in our
simulation case.

Different Neuronal Network Models. We apply our framework
of reconstruction to other types of neuronal networks, including
leaky integrate-and-fire (LIF) network (54), Izhikevich network
(55), FitzHugh–Nagumo network (56), and Morris–Lecar net-
work (57) (Materials and Methods). The results of all these
networks can be seen in SI Appendix, Fig. S15. Our framework
works well, with clear two-modal distributions of causal values
(SI Appendix, Fig. S15 B, E, H, and K ) and high reconstruction
performance (AUC > 0.98, SI Appendix, Fig. S15 C, F, I, and L).

Networks Comprising Excitatory and Inhibitory Neurons.
While the computational studies above have focused on net-
works of excitatory neurons, we now extend our framework
to the case of HH networks consisting both excitatory and
inhibitory neurons. In this context, we analyze a 100-neuron
HH network configuration, comprised of 80 excitatory neurons
and 20 inhibitory neurons. Recognizing the inherent tendency of
inhibitory neurons to induce synchronization, we incorporate the
downsampling preprocessing step prior to our methods applica-
tion and achieve similarly accurate reconstructions (AUC > 0.99
with desynchronized downsampling methods, or AUC > 0.71
without downsampling, SI Appendix, Fig. S16).

Networks in Balanced States. Given that the inclusion of
inhibitory neurons does not impact the performance of our
method, we further extend our approach by applying it to the
LIF network operating in the balanced dynamical regime (58).
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The balanced state is a widely recognized feature of cortical
network dynamics, characterized by the cancelation of strong
excitatory and inhibitory inputs for each individual neuron in
the network. In the balanced state, neurons display fluctuation-
driven behavior, and the entire network is in the asynchronous
state. We simulate the balanced state of LIF neuronal networks
using parameters from previous works (59) (Materials and
Methods) with varying network sizes and sparsity levels. As
illustrated in SI Appendix, Fig. S17A, our framework exhibits
robust reconstruction performance for balanced networks with
a fixed number of connections K = 40 for each neuron. As
the network size N varies, AUC values always remain close to
1. Moreover, for a fixed network size N = 40,000, we vary
the number of connections K from 20 to 4,000, changing the
network connection density from 0.1 to 20%. Our findings
indicate that for networks with connection density below 10%,
our reconstruction framework performs well, as depicted in
SI Appendix, Fig. S17B. Note that for relatively small K , the
strong inhibition might lead to the case of Δpm ≈ −1 due
to the synaptic coupling strength being O(1/

√
K ). In such

a case, another version of mathematical relations among the
four causality measures has been developed and numerically
verified in SI Appendix, Supporting Information Text 2 and in SI
Appendix, Fig. S18A. For networks with fixed connection density,
p = K /N , as the network size N increases, the proportion
of neuronal pairs with Δpm ≈ −1 decreases (SI Appendix,
Fig. S18 C–F ). Therefore, the relations in Theorems 1–4 are
valid for large E-I balanced networks with realistically large
degree such as K = 1,000. In addition, for large sparse E-
I balanced networks, the separation between distributions of
d-conn pairs and id-conn pairs remains valid, guaranteeing good
reconstruction performances (SI Appendix, Fig. S18B).

Surrogate Calcium Imaging Data. In addition to its application
to spike-train data, our framework introduces the potential for re-
constructing structural connectivity from calcium imaging data.
Calcium imaging is widely used to visualize individual neuronal
activities. However, compared to spike-train data, calcium signals
have slower dynamics, which results in lower temporal resolution
of the signals. This restricts the ability to capture precise spike
timings for each neurons, thus, challenging the accuracy of our
framework. To evaluate the validity of our framework in such
a case, we first simulate calcium imaging data by coarsening
the precise spike-train data of simulated HH networks, which
mimics the spike train obtained by deconvoluting the calcium
imaging data in experiments. As illustrated in SI Appendix,
Fig. S19, given adequate data length, our framework can still
successfully identify the bimodal distribution of causal values,
achieving an AUC value being 0.97. Consequently, provided
with sufficient recording length, our framework may be capable
of reconstructing the intrinsic structural connectivity of neuronal
networks with measured calcium imaging data.

In practice, a separation in the distribution of causal values
between the contribution of d-conn and id-conn pairs calculated
from data indicates the effectiveness of our method. To ensure
good performance, our method requires i) a sufficient number
of recorded firing events, ii) asynchrony (or only moderate
synchrony), and iii) sparse connectivity. Somewhat more quanti-
tatively, first, our method relies on the detection of accumulative
information transfer in the pulse-output signals. Hence, it
requires sufficient time length of recording signals. As shown in
SI Appendix, Fig. S20A, by scanning various coupling strengths,
our method is effective across the majority of coupling strengths

with 1.2×105 spikes per neuron (corresponding to a duration of
roughly a few hours (107 ms) of recording at a 12 Hz firing rate)
in the pulse-output signals. We note that the effectiveness of our
method relies on the magnitude disparity between d-conn and
id-conn pairs. In application, it is better to choose the causality
measure which depicts a clearer double-peak feature in the
distribution of causal values. When considering two independent
neurons with limited recording data length, the causal value lies
at approximately O(1/L) with L denoting the length of time
series. If the causal values, being quadratically related to the
coupling strength, are not considerably greater than O(1/L),
weak connections might remain undetected. Taking TDCC as
an illustrative point, based on Eqs. 3 and 6 from SI Appendix,
Supporting Information Text 1, and given px ≈ py = rΔt � 1,
it implies C(X, Y ; m) ≈ rΔtΔpm. This further indicates that
C(X, Y ; m)2 should surpass the baseline of independent pairs,
i.e.,C(X, Y ; m)2

≈ r2Δt2Δp2
m > O(1/L) = �/L, where � is

a system-dependent coefficient. Such criteria impose constraints
on the spike-train data: the mean firing rate, r, the recording
data length, L, and neuronal coupling strength (proportional to
Δpm), cannot be very small concurrently, i.e., r2LΔp2

mΔt2 > �.
Therefore, the weaker the coupling strength, the longer the length
of data that is required.

In addition, our approach works for neuronal networks in the
asynchronous regime, but it can withstand a moderate amount
of synchronization. Networks displaying extensive synchroniza-
tion or correlation (60) have consistently posed challenges for
structural connectivity reconstruction (47). We have previously
highlighted that, with the aid of downsampling techniques,
our method remains effective in quasisynchronized networks
(SI Appendix, Figs. S12, S14, and S16). For HH dynamics
with input correlation less than 30%, our method works well
after downsampling, as shown in SI Appendix, Fig. S20B.
Nevertheless, if the synchronization level rises further, the
unsynchronized periods after downsampling will possess very
few spikes, and, given the constraints discussed above, our
method may be ineffective. In addition, high-density connectivity
poses another challenge. We find that performance drops
when connection density exceeds 30% in HH networks, and
40% after downsampling (SI Appendix, Fig. S20C ). This can
be attributed to the compounded causal effects via indirect
interaction pathways (48–50). As the network connection density
increases, the number of indirect pathways also increases and
the contribution from indirect pathways toward causality will
accumulate monotonically, as formulated by Eq. 40 in SI
Appendix, Supporting Information Text 3. When these indirect
pathways exert influence commensurate to (or even surpassing)
direct connections, the reconstruction performance drops.

Materials and Methods

Reconstruction Performance Evaluation. For binary inference of structural
connectivity, analysis based on receiver operating characteristic (ROC)
curves is adopted to evaluate the reconstruction performance in this work. The
following two scenarios are considered. (Unless otherwise specified, the length of
simulatedspike-traindatausedfor reconstructionanalysis inthiswork is107 ms.)
With known structural connectivity. The conventional procedures for ROC
curves analysis can be naturally applied toward data with true labels, i.e.,
structural connectivity in our binary reconstruction case. The area under the ROC
curve (AUC) quantifies how well causality measures can distinguish d-conn pairs
from id-conn pairs. If AUC is close to 1, the distribution of the causal values
of those two kinds of pairs (d-conn and id-conn pairs) is well distinguishable,
i.e., the performance of binary reconstruction is good. If the AUC is close to
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0.5, the distributions of causal values of those two types of pairs are virtually
indistinguishable, meaning the performance of reconstruction is close to a
random guess.
Without known structural connectivity. Conceptually, the causality measures
for d-conn and id-conn pairs can be fitted by the log-normal distribution with dif-

ferent parameters, i.e., log10 T
(d-conn)
Y→X ∼ N (�1, �2

1) and log10 T
(id-conn)
Y→X ∼

N (�2, �2
2), respectively. So motivated, we fit the overall distribution with the

summation of two log-normal distributions

pc√
2��2

1

exp

(
−

(x − �1)
2

2�2
1

)
+

1− pc√
2��2

2

exp

(
−

(x − �2)
2

2�2
2

)
,

where pc is the proportional coefficient between two Gaussian distributions

log10 T
(d-conn)
Y→X and log10 T

(id-conn)
Y→X . After that, the fitted distribution of two

types of pairs is regarded as the true labels of structural connectivity. The similar
procedures, as the previous case with known structural connectivity, are applied
to obtain the ROC curve and the AUC value to evaluate the reconstruction
performance.

HH Model. The dynamics of the ith neuron of an HH network is governed (61)

C
dVi
dt

= −GL(Vi − VL) + INa
i + IKi + Iinput

i

INa
i = −GNam

3
i hi(Vi − VNa)

IKi = −GKn
4
i (Vi − VK),

dzi
dt

= (1− zi)�z(Vi)− zi�z(Vi), for z = m, h, n,

where C and Vi are the neuron’s membrane capacitance and membrane
potential (voltage), respectively; mi, hi, and ni are gating variables; VNa, VK,
and VL are the reversal potentials for the sodium, potassium, and leak
currents, respectively; GNa, GK, and GL are the corresponding maximum
conductances; and �z and �z are the rate variables. The detailed dynamics
of the gating variables m, h, n and the choice of parameters can be found
in ref. 53 and SI Appendix, Supporting Information Text 4. The input current
Iinput
i = −Gi(t)(Vi − VE) where Gi(t) is the input conductance defined by
Gi(t) = f

∑
l H(t − sil) +

∑
j AijS

∑
l H(t − �jl) and VE is the reversal

potential of excitation. Here, sil is the lth spike time of the external Poisson
input with strength f and rate �, A = (Aij) is the adjacency matrix with Aij = 1
indicating a direct connection from neuron j to neuron i and Aij = 0 indicating
no connection there. S is the coupling strength, and �jl is the lth spike time
of the jth neuron. The spike-induced conductance change H(t) is defined by

H(t) =
�d�r
�d−�r

[
exp

(
−

t
�d

)
− exp

(
−

t
�r

)]
Θ(t), where �d and �r are the

decay and rise time scale, respectively, andΘ(·) is the Heaviside function. When
the voltage Vj reaches the firing threshold, Vth, the jth neuron generates a spike
at this time, say �jl , and it will induce the ith neuron’s conductance change if
Aij = 1.

LIF Model. The dynamics of the ith neuron in a leaky integrate-and-fire (LIF)
network is governed (59, 62)

C
dVi
dt

= −GL(Vi − VL) + Iinput
i

Vi(t) = Vreset if Vi(t) ≥ Vth,

where C and Vi are the membrane capacitance and membrane potential. VL
and GL are the reversal potential and conductance for leak currents. Compared
with HH model, LIF model drops terms of nonlinear sodium and potassium
current, and the input current is given by Iinput

i = f
∑

l �(t − sil) +∑
j AijS

∑
l �
(
t − �jl

)
, where �(·) is the Dirac delta function, sil is the lth

spike time of the external Poisson input with strength f , and rate �, �jl is the

lth spike time of jth neuron with strength S. And A = (Aij) is the adjacency
matrix defined the same as that in the HH model. When the voltage reaches the
threshold Vth, the ith neuron will emit a spike to all its connected postsynaptic
neurons, and then reset to Vreset immediately. In numerical simulation, we
use quantities: C = 1, Vreset = −65 mV, Vth = −40 mV, and the leakage
conductance is set to be GL = 0.05 ms−1 corresponding to the membrane
time constant of 20 ms.

LIF Network Model in the Balanced Regime. The dynamics of the ith neuron
with type Q in a LIF network is given below:

C
dVQi
dt

= −GL(V
Q
i − VL) + IQEi + IQIi ,

VQi (t) = Vreset if VQi (t) ≥ VQth,

where Q ∈ {E, I} represents the excitatory or the inhibitory neuron type. VQi
and VQth are the membrane potential and spike threshold potential, respectively.
And the excitatory input current to the ith neuron with type Q is given by

IQEi (t) = fQ
∑

l �
(
t − sQil

)
+ SQE

∑NE
j=1 A

QE
ij
∑

l �
(
t − �Ejl

)
, where �(·)

is the Dirac delta function, sQil is the lth spike time of the external Poisson input

for the ith neuron with type Q, fQ is the input strength and �Q is the input
rate. �Ejl is the lth spike time of the jth excitatory neuron. SQE is the strength of

the recurrent excitatory input to the neuron with type Q. AQE = (AQEij ) is the
adjacency matrix from excitatory neurons to Q-type neurons. And the inhibitory

input current is given by IQIi (t) = −SQI
∑NI

j=1 A
QI
ij
∑

l �
(
t − � Ijl

)
, where� Ijl is

the lth spike time of jth inhibitory neuron with strength SQI, and AQI = (AQIij ) is
the adjacency matrix from inhibitory neurons to Q-type neurons. In the numerical
simulation ofE-Ibalanced networks, we set parameters asC = 1,Vreset = −65
mV, VEth = −40 mV, V Ith = −54.5 mV, GL = 0.05 ms−1, and the coupling

strengths are set to be SEE = SIE = 15 mV/
√
K, SEI = 30 mV/

√
K, SII =

27 mV/
√
K, and parameters related to the Poisson drive are fE = 15 mV/

√
K,

f I = 12 mV/
√
K, �E = �I = K · 50 Hz, where K is the in-degree of a single

neuron for both E and I types, i.e., each neuron receives K excitatory projections
and K inhibitory connections from other neurons in the network.

Izhikevich Model. The dynamics of the ith neuron in an Izhikevich network is
governed (55)

�
dVi
dt

= 0.04V2
i + 5Vi + 140− ui + Iinput

i

dui
dt

= a(bVi − ui),

where Vi is the membrane potential and ui is the recovery variable describing
the force that drives Vi toward resting state. � is the time constant of Vi. a
and b describe the time scale and sensitivity (with respect to Vi) of ui. I

input
i

is the driving current containing the external Poisson input and the synaptic
input from other neurons, defined by Iinput

i = f
∑

l exp(t− sil)Θ (t − sil) +∑
j AijS

∑
l exp

(
t − �jl

)
Θ
(
t − �jl

)
, where Θ(·) is the Heaviside function

and parameters are defined similarly as those in the LIF model. When the
voltage reaches the threshold Vth, the neuron emits a spike to all its postsynaptic
neurons, and then reset Vi to c, and ui to ui + d. In numerical simulation, we
use quantities: � = 1 ms, a = 0.02 ms−1, b = 0.2 mV−1, c = −65 mV,
d = 8, Vth = 30 mV.

FitzHugh–Nagumo Model. The dynamics of the ith neuron in a FitzHugh–
Nagumo network is governed (56)

�V
dVi
dt

= Vi −
V3
i

3
− Wi + Iinput

i

�W
dWi
dt

= Vi + a− bWi,
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where Vi and Wi describe the membrane potential and recovery variable,
respectively. �V and �W are their corresponding time constants. Iinput

i is the
driving current containing the external Poisson input and the synaptic input from
other neurons, defined by Iinput

i = f
∑

l �(t− sil)+
∑

j AijS
∑

l �
(
t − �jl

)
,

where parameters are defined similarly as those in the LIF model. When the
voltage reaches the threshold Vth, the neuron emits a spike to all its postsynaptic
neurons. In numerical simulation, we set quantities: a = 0.7, b = 0.8,
Vth = 0, �V = 1 ms, and �W = 12.5 ms.

Morris–Lecar Model. The dynamics of the ith neuron in a Morris–Lecar network
is governed by (57)

C
dVi
dt

= −GCaM
∞

i (Vi − VCa)− GKWi (Vi − VK)

− GL (Vi − VL) + Iinput
i

dWi
dt

=
1

�Wi

(
W∞i − Wi

)
,

where C and Vi are the neuron’s membrane capacitance and membrane
potential, respectively; VCa, VK, and VL are the reversal potentials for the
calcium, potassium, and leak currents, respectively; GCa, GK and GL are the
corresponding maximum conductances; andWi is the neuron’s recovery variable
(normalized K+ conductance). M∞i and W∞i are the voltage-dependent
equilibrium value of the normalized conductance of calcium and potassium,
respectively, defined by

M∞i = 0.5 (1 + tanh [(Vi − V1)/V2])

W∞i = 0.5 (1 + tanh [(Vi − V3)/V4]) ,

whereV1,V2,V3, andV4 are the constant parameters.�Wi is a voltage-dependent
time constant of Wi, defined by

�Wi = �0

(
cosh

Vi − V3
2V4

)−1
,

where �0 is a temperature-dependent parameter, fixed as a constant in

simulation. Iinput
i is the driving current containing the external Poisson input and

the synaptic input from other neurons, defined by Iinput
i = f

∑
l �(t − sil) +∑

j AijS
∑

l �
(
t − �jl

)
, where parameters are defined similarly as those in

LIF model. When the voltage reaches threshold Vth, the neuron emits a spike

to all its postsynaptic neurons. In numerical simulation, we set parameters as
GCa = 4 mS · cm−2, VCa = 120 mV, GK = 8 mS · cm−2, VK = −80 mV,
GL = 2 mS · cm−2, VL = −60 mV, C = 20 mF · cm−2, V1 = −1.2 mV,
V2 = 18 mV, V3 = 12 mV, V4 = 17.4 mV, �0 = 15 ms, and Vth = 0 mV.

Neurophysiological Data. The public spike-train data are from Allen brain
observatory (40, 41), accessed via the Allen Software Development Kit
(AllenSDK) (63). Specifically, the data labeled with sessions-ID 715093703 were
analyzed in this work. The 118-d-old male mouse passively received multiple
visual stimuli from one of four categories, including drift gratings, static gratings,
natural scenes, and natural movies. The single neuronal activities, i.e., spike
trains, were recorded from multiple brain areas, including APN, CA1, CA3, DG,
LGd, LP, PO, VISam, VISl, VISp, VISpm, and VISrl, using 6 Neuropixel probes. For
each category of stimulus, the recording lasts for more than 20 min. 884 sorted
spike trains were recorded and 156 of those were used for causality analysis with
signal-to-noise ratio greater than 4 and mean firing rate greater than 0.08 Hz.
The length of spike-train data used in analysis ∼106 ms for each stimulus
condition.

Data, Materials, and Software Availability. Implementation of causality
estimation, network simulation, and processing scripts for Allen Brain Obser-
vatory data are all available through GitHub (https://github.com/neoneuron/
causal4reconstruction). Previously published data were used for this work
(40, 41).
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