fit (CEMEMIPE)
HEK IR
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(FEmEFC/NET)
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Chapter 1

A&

IR AV LS L oAl R

T T

"
\
LN

Jupyter CHYATDAZE GitHub #50,

1.1 Phepazs AR

AR —DH L2 SRS 7R BN T —HIUNGRE S = {(2s, v Hov, (2, vi) €
R?. BE—NHA—ZRBUZ MR, RIPZ R 2R 4%,

fo(x) = Zaja(wjx +b;). (1.1)
RT TR, EX
hi = fg(lﬂi). (12)

H LG R o (2) 24 ReLU(z) = max{0, z}. tanh(z) &, FATXHER 2, w, b, a #§
AR, X T RAERTE, SRSA NG FAITAED (BEPL) BHEE NIRRT 4L
RSN e A A ey, B RREIRI A 7 SRR . B RBIIZRR Bk s %
NI Ty 2%

X‘TT%%&% 0 = (ah Wy, b17 A2, W2, ", b’m)7 ?‘Zﬂ‘]@ﬁTﬁggﬁF%%iﬁﬁ?ﬁnéﬁz
oL
0t+1 = et — 77870;5' (14)

'https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/frequency_principle


https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/frequency_principle

FEA AN, BRI EIT & h — a; — 0 — x;, TEEJL (information flow)
TS 2 — 0 — a; — hy, XPEWIFAHR, BRI AR EERE. BMeE, @il
SO RAE R T R iR 22 R H i UL A B B IR

N HERERIERE fo(x):

folx) = Whg o (Whg 4 plt]), (1.5)
;E\:':F‘ = R‘bd,Wm c Rde,bm c RmX1,W[2] c RdOXm7 “o” %%,%%Xﬂhmﬁﬁﬁ/‘]@%
(entry-wise operation) (BIHIXIMICHEAMA) . XHL d ZABIRILERE, m R REIZ #2200
HIANEL, do REHMAEE . AR SRS n MERRE, HAESRHEITE T, o

B BUEMEE
Y = h(X)=WHso(WHXx + B, (1.6)

Hit X e R Y € R{dnxn], Bl ¢ Rmxn Bl W — 31BN plt] Ep Bl — [b[”, b[l]7 . ,b[l]]o
X LERFZ ] AT RE LRI 22 R 245
—A L R ZC Rl

fo(zx) = wl—1lgs0 (WE250(--- (W[lla o (W[o]m + b[O]) + b[”) )+ b[L—2]) + b1, (1.7)

;Hij:‘:[ W[l] € le+1xml’b[l] S Rm“rlamo = dzn = da mrp = doa g %gﬁ\rﬂ%@ﬁo :\{%%t:gﬁl:j{
RN R, MARANTA (2ECHREZ + 820280 RIMESEECh

6= wll wil ... wit=t plol plt] ... plE-ily

WU s TEie s WL T DA BRI 7 o S A 4 -

V() == 1.8
V)= ool gy 4 b1y 1<1<L—1 (1.9)
fo(m) = fo(x) = W fF (@) + plE-Y (1.10)

1.2 BTy

FATERIC T B AN TR I W — S8 ARSI, hdsth T 2 M 25X e— 1R
ARG NE. R, B — DB TIA S E DI E R LS, XTRPX A" Ba T BN
HRBLHC N B2 FERABEIE T, AT IR R R R R E AR I X EA B G LA AT -
BN, FE AL AW, 8K s AR fa] SR B A R WF TS &, il W8 E MR ) 73
FALE AL, BETH TR EA E A . X285 T RN TR RS 2y AR A TSR



TN, FEALRE A, S MIATLER SRk 58 ST 1A R R B S ARG B SR, AL T
LR E S B A LA . FEUEERE b, Z2 sl it — AR SR g el T AR,
R TSR REILG, TS T R B A AE

Z MR K, FATHERFFAR G P28, AT DA e —LE A a7 SR A i) A T, S A ) A
A, AT, AL, PR RURX SARHE B A AR R M g . 28R, R
SR, AR AR A P AT B ) S ERRE L N T A A (X AR AT 527535 AT DA
B FATIAE M e e, Sy db— DR R IR R A s 0 BB AR K. BT iR B R, 1
L2 W 28 ) SERR PRI AR R, FRAT TR A i A B AU & — 2 R B I BT AR HEA T B 9 . — i,
—HYEFIRRG R B, (T AT RIS BRI 55— T, AR W 2 A BEAR R,
) WAARR AR . R MBOE AL UGS, - dE N P e A RS 2 ST R L.
AL —ZE )RR ST, AT RT DARI AR R0 22 0 258 A — LR T SRR AT, it — AR R A e
ORI ZE3T R B6Gl PRLE, FEARTT R, FRATRERET —4E MIEURIT e, i BAR RSBl ] 1323 5%
AN W 28 A o S A P A — RO

1.3 e Hbs

FATTEEIG LA 22 0 28 1| G P e N ) 3 P B 2 I 25 A R S D ARG, B
JE B> R AY o X 9 265 i e R s e RO R AT A, AT A B A 35 T
MEENX— A

FEVEATSCIBLIT I, FRATT TR B — e AT B, B PR SC R 45 SR BB S RATI 5 S D 1 ¢
Bl BEAb, FRATHREE L AR ERZE A 2 BITAl i 22 00 4 0 N IR A B3 1A 2 > S

1.4 PR ALl

1.4.1 BEiffdsn2H (DFT)

BERUE LIS (Discrete Fourier Transform, DFT) S HLH- 734 Byl b ig—Fh
ST EE KA IR BRI E 5 2 R IR sy, ATTHE 7R (5 S (e R P . X
TMEENEBRGES {o.}, HRKEN N, HDFT E304:

N-1
X, = Z zpe 2N =01, N — 1.
n=0
Hr, X FRESTES kDR EWIRE. @it DET, 3477 ARG S 098iR%, A 2Hr
S5 R LAY



TEMZ ML) fe it DFT A DA SRS WA oL, BE—22 0 At
ARIFMA LB AE . SR, FEVEATHGE AT, 2 ROREERARE. IR RERAR, &
PRI BIEAE o I AR o) . IR, TESEPR#RfEd, AR IR 2B R
R R G BB B

NHEAHEER T —NFH DFET M E SR, 8l o R SRR MZEA 1
RS i B :

from utils import dft_analysis

nnn

func: dft_analysis(f, T, N)

Perform DFT analysis on a gtven function f with a total time of

T and N samples.

Args:
f (function): The function to be analyzed.
T (float): The total time of the signal.
N (int): The number of samples.

Returns:

None

nnn

def f(t):

return np.sin(2*np.pixt) + np.sin(6*np.pix*t)

print ('sample size=50: ')

dft_analysis(f=f, T=2, N=50)

print ('sample size=8: ')

dft_analysis(f=f, T=2, N=8)




1.4.2 A JEON

PR E M FENGRad RErfr, 22 0 20 1) - S Ul S A R ERABUSE 2, T A 3 M 5
BRI TR] A RERA R~ o 3K — BT AT 1o e LI AR SR PR o 8 LI 5 A R I 1)
o S [ Y R MR — RSN IR LR TZNE , XL R th AR 2 S HES o o i 2
A, FRATREMS AL I 2 o 22 19 265 AT 228 2027 > S BEAS [RDER (14 B o

1.5 i YR
1.5.1 Bl A2k S sk B
HARR RO =T 5Z B &I, oy
f(z) = sin(x) + sin(3z) + sin(5x).

GRRBCE IR T R AR L B S, TR 2 R AR R A ) 1 A
RIS B :

def get_y(x):

nnn

Function to fit.

Args:
z (float): input wvalue.

Returns:
float: output walue.
nnn
alpha=2
y = np.sin(x)+np.sin(3*x)+np.sin (5%x)

return y

args.training_input, args.training_target, args.test_input, args.

test_target = get_dataset(args, get_y)
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print ("The training data size: ", args.training_input.shape)

print ("The target function:")
plot_target (args)

APl
o B FATHEEOMEIIZE R R, FrRRAERIXI, B 0R m R B B
1.5.2  fysdt iy

AR Z 2PN (MLP), i A S 28 S5 FNIT B 352 R 2 oo ios: 2ok
{5 RO DA i 4 T S -
ARy B

act_func = get_act_func(args.act_func_name)

#Initialize the neural network model
model = Model(args.t, args.hidden_layers_width, args.input_dim,

args.output_dim, act_func).to(args.device)

1.5.3  BARUIZE e Bt 7

FATRIA0 8 52 AR 2R S A6 B R ek B AT R FRATRE 39 T 2 R A ik R B
FHEH Adam A4 -
RSy B

# Define the optimizer: determine the gradient descent optimization
algorithm, the default is Adam.

if args.optimizer=='sgd':

optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
else:

optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

10




# Define the loss function: the loss function is the mean square
error.

loss_fn = nn.MSELoss(reduction='mean')

XA epoch, FATIIAT LGRS, FHORAFBEIBIRAE . BB <%,
RSy B

for epoch in range(args.epochs+1):
# Set the model to training mode

model.train()

# Train one step
loss, training_output = train_one_step(

model, optimizer, loss_fn, args)

# Test the trained model
loss_test, output = test(

model, loss_fn, args)

# Record the loss and output

args.loss_training_lst.append(loss)

args.loss_test_lst.append(loss_test)

args.training_output.append(training_output.detach().cpu().
numpy ())

# Print the loss and time
if epoch % args.plot_epoch ==
print (" [%d] loss: %.6f valloss: %.6f time: %.2f s" %
(epoch + 1, loss, loss_test, (time.time()-t0)))

1.5.4  HIXERZR VS

RTS8 0 250 AN [RS8 RN R 28 R UL B3T3 s
RN R ZE M T R it R RN ARy B (B 2257 o AR iREE , FRATRT AT

11



FEME PR BRI WA HEE . SiliEfy DET A2z fon, FATHe R E AR ek ot 2
[ ) I R DB (XS 7 PR AR A T UL

FHRHRZE VR A R

e — fol
AF (k) =

P& =5

Hot by FORBRUERAERUR kb ARIRIE, fr T8 AR BHENER b AL RIE(E.
Ui )y B

# create the absolute error array

abs_err = np.zeros([len(idxl), len(args.training_output)])

# calculate the absolute error
tmpl = y_fft[idx1]
for i in range(len(y_pred_epoch)):
tmp2 = my_fft(y_pred_epoch[i]) [idx1]
abs_err[:, i] = np.abs(tmpl - tmp2)/(le-5 + tmpl)

AT 2SR B0
o PR 2SR VPAG ARSI TR A RO ERR I, JUHRAE R R BOXER 2T I
RIE AL RENS B R 7 AN TR AR B0 A SO L
o BEGQABRFE AW RS PR EAE AR, B A iR e T R A e AR
AR/ M RIX RZE AT AP AN ISR O B IR (R, PR IRZE TR 211k

1.5.5 B8R b T Bt

R RS G , FATAT AT BT BTSRRI S, 2 HI R E R il A
[RIB R B R ZE A A B 2R, AT DABSIIE ) 45 g 717 S A S U
RSy B

def plot_abs_err(args, abs_err):

nnn

Plot the heatmap of the relative error for different

frequencies.

12




Args:
args: A dictionary containing save path.

abs_err: The absolute error array.

Returns:

None

nnn

# initialize the figure
plt.figure(figsize=(8, 6))
ax = plt.gca()

# plot the heatmap of the relative error
plt.pcolor(abs_err, cmap='RdBu', vmin=0.1, vmax=1, linewidths
=0.4)

# set the colorbar

plt.colorbar ()

# set the z-axzis labels and its fontsize

plt.xlabel ('Epoch', fontsize=22)

# Set the y-axzis ticks and labels to 1, 2, 3
plt.yticks([0.5, 1.5, 2.5], [1, 2, 3], fontsize=22)

# Set the y-axzis tick parameters to hide the tick marks and set
the tick label size

plt.gca() .yaxis.set_tick_params(size=0)

plt.gca() .tick_params(axis='y', labelsize=22)

plt.gca() .tick_params (axis='x', labelsize=22)

plt.title('Absolute Error', fontsize=22)

plt.tight_layout ()
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# save the figure
plt.savefig(os.path.join(args.path, 'hot.png'))
plt.show ()

plt.close()

BRI LT R . Ao FR LA g SE. oIA BE R el B MR Y93tk
A ASHREE R, AT UAR B F AR B ECR = A T Z R o BV Y A IR (AR 45 . 00 H
PREQEIII AR, BRI 2 A RIS A 2 o] PAR Y H AR . A R B 2OR
= FEBR AL M ZE SR G TR RIS IR 22, BARAREIR Ik epoch, ZeARAREN
index $7BUMUESFRBAL. 2 OARMEM B EEERIMRER/D, B O AR5
ZERK o AEUNGRAY SRR PR B R ) SO R PR, JLAS epoch SEE 2P ATHIAREF, T 5
AT T 2000 A epoch A KE] TRU/NAINS R . AIARTIRIEE ), B ERIT ,
FHUE R

Target

e 1 glo
2 o —— Target 3
075 A e Model output 0.8
]
T 1072
2 0.6
0 = 2
Q1073
§ 0.4
1074 1
-2 10-5 0.2
-2 0 2 0 10 20 30 40 0 1000 2000 3000
frequency Epoch

Pl 1.1 Al e e RSO0 FELAH TR A — 4E RS SE

1.6 155

MM G IR A Z B2 N R, W SERIR . 2R HARREL.
PG R . XN R AR P R 7 ] DA 2 A i 7, WP e 24
X AR S U 4 S0 o

B, FABRME TPIR RIS H AR R B R I S0 . X PR
S0 3 A A AR R R P R ST BRI B2, PR O R I s o (TR IR M
5 10% 2B . )

Bl 1 BTSN IR EE A S R R AU SR . AR AREREL sin(z) + a x sin(dz)
B, Hr o AEEMNSE. BATTAKFBAARBCA a, PARTRBENEZ AR AT, 2 M
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FAXFIRZE <10% Firds i 20 505 1 R ARABAH R 22 <10% s 2 B0 Heq

il 20 WS RS AIART 5 A L Y I SIGH RS . A ARER AL sin(x) + 0.2 x sin(k - ) 2
Bil, Hb kR ENSE FATATDACRREARARBCA &, YRR BCNTEIZ HARBRECT , 5 2 =4
HRHRZE <10% Fraz B AR50 i R AR X 25 <10% PFrds 20 8y LU fH
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Chapter 2

KT SEGERIA G Sk

P

Jupyter CHYATDAZE GitHub #50,

2.1 SEBEWIST

FERI 2SI GRad R, A R BRI R AR 22 I 25 BRI kBl 2 i R . FEAS
g, AR A B 4RSI WA FRIIR LR, M S B 3 1A et
U0 AT/ MR AL R 22 R s 2 R I SURER LS, AR RSB IR — M n B

RN BER R B . FERTIR IS, & 2T ARCEZ AR, HA Y
PR, (HRFEgd —Bint il gha, iRt 2ol vz, arm i igoce —3%,
JG=AMETR T — K. TER—RT, ARMAEICH AR 58 —FeR) (BTaME), B,
EATH e AR .

2.2 M Hbs

T A L, 0T DA R ORI A (L T M2 K 4 S B O LI R, DAL
S 2 S 4 1 45 SR A 005 T DA LA A ) 22 O 45 4 R 0 22 4 0
R

'https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/condense_exg
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Initial: Neurons different After training: Clustered

@
)
'ij///

2.3  PpILAl

o SeMEIXM: AR LECRIS, M ZAERI IR (LI REAL & R, S RmAIX A Al
TEE AR/, R AR AR A AT DA — B 8 8 JE T Ll

fo(x) = fo" (x) = fo)(x) + Ve fow)(x) - (8(t) — 6(0)). (2.1)

—> O

K 2.1 HARREER IS .

o BERIX: SRR LEING, M ZTERIIR LI A REAL SR, MAE SR AIRS
ARFEREIRR, IR A RE ] — DRI, R R AR AT

o WRFMIXBE: AT ARMERBER KR 0], W25 R B SR R AR LA T o

2.4 S

2.4.1 phepgEiR
AT — IR, B — AR, — MR R— MR . 9%
ST .
fo(w) =D aro(wiz +by),

k=1
Hrr,

17



2.4.2 BEWIR
SHRIRAKT I M ZE N GR A X B . ARSI G A RIaR 5 v -
o BUEWIIRIL: we ~ N(0,€21,)
o (WERIHAIL: b ~ N(0,£2)
o SHERIIRIL: a, ~ N(0,€?)

Hep, e =05, vy B DESE, HTERIR T2, WmEHPImEAanr N

TN T A TR A 00 25 s 1 090 25 ) B A R -
ARy B

class Linear (nn.Module):

def __init__(self, t, hidden_layers_width=[100],

input_size

=20, num_classes: int = 1000, act_layer: nn.Module =

O):

super (Linear, self).__init__Q)

self .num_classes = num_classes

self.input_size = input_size

self .hidden_layers_width = hidden_layers_width

self.t = t

layers: List[nn.Module] = []

self.layers_width = [self.input_size]+self.
hidden_layers_width

for i in range(len(self.layers_width)-1):

layers += [nn.Linear(self.layers_width[i],

self.layers_width[i+1]),

act_layer]

nn.RelLU

layers += [nn.Linear(self.layers_width[-1], num_classes,

bias=False)]

18




self .features = nn.Sequential (*layers)

self. _initialize_weights ()

def forward(self, x):

x x.view(x.size(0), -1)
x = self.features(x)

return X

def _initialize_weights(self) -> None:

for obj in self.modules():

if isinstance(obj, (nn.Linear, nn.Conv2d)):
nn.init.normal_(obj.weight.data, 0, 1 /
self.hidden_layers_width [0]**(self.

gamma) )

if obj.bias is not None:
nn.init.normal_(obj.bias.data, 0, 1 /

self.hidden_layers_width [0]*x*(

self.gamma))

2.4.3 Bk
ARSI HCBEAN [T bR O P 5 PR RE R S o ] R A R AR B 37 -

e ReLU: max(0, x)

@

. ef—e”
. tanh.ez+€1

1
14+e—*

o Sigmoid:

o zxtanh(z)

IR AR R T RIS R AR B R L
RISy B
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def get_act_func(act_func):

if act_func == 'Tanh':
return nn.Tanh ()

elif act_func == 'RelU':
return nn.ReLU()

elif act_func == 'Sigmoid':
return nn.Sigmoid ()

elif act_func == 'xTanh':

return xtanh()
else:

raise NameError ('No such act func!')

act_func = get_act_func(args.act_func_name)
DI Y
fRRS B
model = Linear(args.gamma, args.hidden_layers_width, args.input_dim

, args.output_dim, act_func).to(args.device)

il FIR AR DA AN RN, IR R N (0, 75) A

2.5 SHEAESS

2.5.1 55— ARG TP S Bris b s ol

%% : condense.ipynb
SR DA —4E R BN UG B A

f(z) =0.2«ReLU(x — 1/3) + 0.2 x ReLU(—z — 1/3)

BATREE, WEARRERIAG T 22 (o) XYIZRad AR5 -

WEAFRR v E (W0 0.1,0.5 F1 1), Bf7Em I R ZER, WA ZITTRHE (5 [l FE
AR . T BT E BRI 2 ) R A A2 ) 1 AR T loss IR AR BT,

U E P S

T —4E A REL, IR A ReLU fE R 30E R AL, A& To)y AR ) & -

%
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AMAEITCSET (ar, wr) W PAST B — BT TFRHE by = wi/|lwellz F1—A
FORHI i TTIRAOARIE A = [an[l|lwrll2, BF (Ag, p)e RT—HERA, BT A T EIN,
wy, = (wy, by,) B THER . B, FAVEHEEA @, T x B [—m, ) WA Q) KFR
Hoymm. B Q= arctan (),

N AR T EHREAS checkpoint Hrpi 8 TT Ty [l AR (A AURD
R v B

def get_ori_A(checkpoint):

weil, bias, wei2 = get_parameter (checkpoint)
weil = weil.squeeze ()

bias = bias.squeeze()

wel2 = wei2.squeeze ()

wei = weil / (weil ** 2 + bias **x 2)*x(1/2)

bia bias / (weil ** 2 + bias ** 2)**x(1/2)

*

torch.acos (wei)

A = wei2 * (weil **x 2 + bias ** 2)**x(1/2)

ori = torch.sign(bia)

return ori, A

W R s%E by,

2.5.2 B35 SYERREINRIG S BOBER S
%1 initial condense.ipynb
SRR 5 4R, 1 ZEd i) R AL

flz) = Z 3.5sin(bxy + 1)
k=1
Ho gl x = (v1, 22, 23, 24, 75), M [—4, 2] FECPREARE],
KA Adam flifb#%, PA Tanh pREVEAROEREL, #1755
XL b
T AE R, ToiE A AR AR AR F AT AL 2T RRAE . FEXFRF O T, FRATTAT AR H 4%
SRR e Al 1 A A o 2 () I A RN
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0.15 0.3

0.3
0.10 0.2 0.2
> 0.05 > 01 > 0.1
0.009 True 0.0, True 0.0 True
— Test — Test — Test
00570 65 oo 0.5 1.0 0140 65 oo 05 1.0 010 Zos 0.5 1.0
(a) y=0.1 (b) y=0.5 (c)y=1.0
0.03 . .
ini feature ini feature
ini feature : « fin feature 0.03 fin feature
fin feature
S § § 0.02
£ ° ®0.01] , =
0.00 | caEEmsE—— l SEEEEE———
orientation - B B orien:ation ' ’ ’ - ¢ B orien"c)ation ' ’ ’
(d)y=0.1 (e) y=10.5 (fyv=1.0
B 2.2: RFER/MIIRIE T, PiJZE ReLU MZ8 1 T SL i 45 51 o
ASEAMPLEE: PS5 w Fl v BYRIZARLEE & LR
uTv
D(u,v) = a2 o) 2 (2.2)
MR AGZAAEE R 1, WISERT A ) P47
N AR T T REREAS checkpoint FRZE ST AR SEAR(URE H AR
RS ) B
def seperate_vectors_by_eigenvector(vector_group):
mask = np.linalg.norm(vector_group,axis=1) > 0
vector_group = vector_group [mask]
similarity_matrix = np.dot(vector_group,vector_group.transpose
O)
w,v = np.linalg.eig(similarity_matrix)
index = np.argmax(w)
tmpeig = v[:,index]
order_mask = np.argsort(tmpeig)

22




similarity_matrix = similarity_matrix[order_mask,:]
similarity_matrix = similarity_matrix[:,order_mask]

return similarity_matrix,order_mask

s SRR RN T TSRO IR, JATH% B AR AR (LB A W P e AR (X B2 4
FFAE ) X SRR AT — e, PAIKEN R — 7 1a 4 1 T ATEARH B (0
BHUITE wy HIER

50

—0.25

—0.50

—0.75

-1.00

10 20 30 40 50
index

Kl 2.3: WIAHEER I R IZAMULE AT IR 4R

2.6 WRIESHEE

SR 9BUDL @ + tanh(x) A BRI PR A P RS i AL
BIEIGERL, TTOLE% — TR RO BT AR SRR 14 .
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Chapter 3

T T

SRS V9 95 W

P
|~
P

Jupyter CHYATDAZE GitHub #50,

3.1 s A EAL Pzt

LA R AR A W, LG ML gy > B SR AR i 52 R 1 24 5 I SR RE AR i
FAVCRC, ARG UGG A A . SR, R BE2E: T 1 SE BRANEE AR 5 31X — BB T T 1 BH X
Fo B SHOOR B VI A AR ECR RS LT, TR 2 I 28 AT SR e 8 e It AL S 11032
ﬂc@ﬁb X — R E WIS F AR N” 2k (Generahzatlon Puzzle). ZAS2H S AEiE

17 RMAEIT” (Optimistic Estimate) FISHER , RARZX —IL W GrATHLH . R0
fr e AR RS T Hﬂ?ﬁ%d”%%ﬁéﬂ%@?ﬁﬁﬁ PRAL (BRIZZZbiR2E) WM
B/MEA R HAZ L AR PTG A -

L AEm AT URIRIIGR) BERERE, RIRES RO IR A e PR e AR AP I
2. TEIZIAR S XS A A T e 0
3. BT LR OUE S KA H B R SUUT 75 1) e/ VR A B

3.2 e Hbs

AL 0 B ARSI R AT BE A — 2L g T B i . S, AT
KRR HIE T FAF R A SRR A VR AL A AR R BT i FEAS R R S AR e, kA1)

'https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/Optimistic_Estimate
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https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/Optimistic_Estimate

YL, A2, — LRy 5 R A PR AR LRI H A e BT R A Rl i SR LR AR
LR A 2 I SRR A A R R T S AR RS B AR LR A R

3.3 BB ILANl

TR L, BB fo 10060 A H ARBREL £ SRAERY n AR, BRI [+ N
T PRI WIAT, AT AT DA AR fo FORMHARRREL, B £ € F = {f(;;0)|0 € RV},
BRATEDUT , AT A B2 e o g e [l v it

minlz (f (x:;0) — f*(x:))°. (3.1)

6 n <
=1

FRGGCHA fo., HH O FRILSIIIIRTISEL. B2 TR TE LHRE:
Definition 3.3.1. BARSHH T mag 5 ES (XM BHFE) Op :={0]| fo=f",0 e RM}

TELSEAT . ARZSHESRRRIZRREN 0, R HAP R RRIZAMRE, BreA
e ZEMH UL, FATIAREIRIZ H s i . (B2 BRI, AR A 3 25
WTWE B BRE S, B B RIS LR IS A REAPREIZ AL 2 IERY SEIR B G . (HU2, ARIK
5 B IS OL, KSR A ERRAE— MRS, BATAIRERT DA EL S B TR H
NS

oG, PRI, SBPIEAAERIRE O, BUEF AR 0 5l bA
WE Bk (A2, H—, SHERRERRRMATTAGIRITTRAEMANER, St 04
FEAR AR AS WEEH . 5, HbndE ©p WIE BN 0. FEXY SIREPLRFRRT
B XA LAHER N 0. B ARG L@ AT AT . — WAL (R A SRiaa k)
SRR e H ARSI, R SCAnE

MWL FER RS ©p- 19— “&IL” & 67 M pIia L

AR f(50) = [ (50) == *(-) + V for () (0 — 0) KAHIAE/NABIE N (6, €)
PG TR IREALE, b 0/ € O, WG, [ By

1 i 2
— (s i) - 3.2
i 2 F@) 52

BoiE— AR, [ (1 0) 1F @ WO — MR, A AR
rank(V for()") = dim (span {9, f(: 00}, ) AT HARILER: HAIHE

n = dim (span {00, f( 9/)}?11)
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IREARME [0 ZWHIMETRRIE %, FATRX AR, e T4
PNSECRGRE] —MUIRR KL, SRI5 5 X 2 R RO L 25 1] A 45K

Definition 3.3.2 (BESEMBINEL). & T 58T a9 R fo 53 E 07 c RM, HA4%
LSk
Ry, (0%) := dim(span{0y, f (6 };,) (3.3)

b span{di ()}, = {20, aigi() | ars. .., anr € R} R AR KMR 2 dim() 27 %
M R B R 1R) B MRS

Bl 1. 23 F—Af ey Z 2R f(x;0) =0 x,0,x € RY, EiET—AN 4305 0° 4, 42
A akagit Hidfe A R X TFTHEANASLK 0, RFFE AR 00, f(x;0) = 2, K6 HiXkdy
T F 2R R, 2R P R 1) G Y H

Ry, (0") = dim(span{0y, f(-; 0*)}%_ ) = dim(span{xz;} ) = d. (3.4)

Definition 3.3.3 (BREMUBINRL). xF FHEZRHFRK f* € F, £F F:={f(;0)]|0 c RM}
AR BITN, A O =0 | f(50) = f*,0 € RM AT BARASE. RIS A:

Rfe(f*) ‘= min Rfe(g*) (35)

0+€0 4

BRR, FRATRR LB AR, TR T B AR B, IS5 SR R ey
FEARMILE .

3.4 bR

3.4.1 PBTHEFTEE

Lo X e fo AHARBREL f*, MROEE SOTERBIRRE H s ok RO 75 19 R WAL A B
Ryo(f7)

2. iR AR AR A

3.4.2 SRR E:
LM EBRBRECHRAE, B0 PR A S

2. XGRS
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(a) B FHEE B NEOLELE TSRO L 1SS BULBAEKBELRI M e R R
I MM RE SR N, FET12% B 0 J2 S0 P 0 I P
(b) R AHEIE RTINS SR BRI e, HE AR R
i, BRI R
(c) APV SROABIRIAT: 2 ST R S0 AT T, KI2 5T R e
WS, /M2 FG AN
3. JEREAEA L T RIIIL FERB RO RCR , BINE (s
4. W S T AR B R B

5. SFENETI R RUAEAS BEAEA TR EE AT

3.5 T Al P B S
3.5.1 Bl
oG, FATHEE AR L KT SRR R
fu(x;0) = 0y + 0121 + 025, (3.6)

BoE HAReRECH f*(x) = 14z, SBBLRA M = 34024 HIRIEER 0" = [0;,01,05]" € R?,
H Ry (0') = dim (span {1, 21, 22}) = 3. HIL, XFAEM f* € Fu:={fu(;0)|0 € R*}, FA]
A Ry (f*) =My =3.

Bk, AT BRI TR SHACH fan(250) = 00 + 0101 + 020320, PRECESEAT)
IRIRFER Fao = Fu, (BERBESE FARRAELE . BB SRR AR BT . MRS HE
] R b0 R AR Ry -

| ¥,%=%=a
Ry (0") = dim (span{1, xy, 05z, 0525 }) = (3.7)
3, others.
BRSO SO My = 3. o MU Bq. (B.A), Rl 185 B BerE Jo s 5k
6] F R ECh

2, f*e{ap+ arri]ag, a1 € R}, (3.8)

3, f*e€{ao+ a1z + asxalas #0,a9,a1,as € R}.

RfNL (f*) = {

EARATTERM, AREAER fao R T BTSRRI RN Ry, (f7) = 2.
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3.5.2  SEHGEIE

X AARRE [ () = 1 + a1, FAV 0 B LA AF LR R U A, 2 T A
FEAS B NS F A e B R o

BB E S B bRk B, HBEECREN (-1, 1] 29 A FEHLREE
Rl )i Bt

# & X B A B H
def f_star(x, a=1.0, b=0.0):
y=1+ax*x[:, 0] + b * x[:, 1]

return y

def generate_data(a, b, num_samples):
X = 2 * torch.rand(num_samples, 2) - 1
y = f_star(x, a, b)

return x, y

test_size = 1000
x_test, y_test = generate_data(1.0, 0.0, test_size)
test_dataset = torch.utils.data.TensorDataset(x_test, y_test)

XA EABLAAE Pytorch HHRgSEENT :

class NonLinearModel (torch.nn.Module):
def _ _init__(self):

super (NonLinearModel, self).__init__(Q)

self.theta0 = torch.nn.Parameter(torch.randn(1) * sigma)
self.thetal = torch.nn.Parameter(torch.randn(1) * sigma)
self.theta2 = torch.nn.Parameter(torch.randn(1l) * sigma)
self.theta3 = torch.nn.Parameter(torch.randn(1l) * sigma)

def forward(self, x):
return self.thetaO + self.thetal * x[:, 0] + self.theta2 =*
self.thetald * x[:, 1]

R RE T :
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batch_size, num_epochs, 1lr = 1024, 10000, 1le-1
test_iter = torch.utils.data.Dataloader(test_dataset, batch_size,
shuffle=True)
train_ls_dict_NL = {}
test_ls_dict_NL = {}
for sample_size in range(1l, 4):
net = NonLinearModel ()
X_train, y_train = generate_data(l1.0, 0.0, sample_size)
train_dataset = torch.utils.data.TensorDataset(x_train, y_train
)
train_iter = torch.utils.data.DatalLoader (train_dataset,
batch_size, shuffle=True)
train_1ls_dict_NL[sample_size], test_ls_dict_NL[sample_size] =
train(net, train_iter, num_epochs, lr, try_gpu(), test_iter=

test_iter)

AT ASE AR BRI R AR R A AL iR ZE R A R A A AE— SR O B B, I
PR BIE TR  SRREA  F, SSCR AR X

import seaborn as sns
from matplotlib import cm
from matplotlib.colors import LogNorm, Normalize

set_figsize((3.5, 2.5))

sns.heatmap(np.array([[test_1s_dict[1][-1], test_1ls_dict[2][-1],
test_1ls_dict[3][-1]], [test_ls_dict_NL[1][-1], test_1ls_dict_NL
[2]1[-1], test_ls_dict_NLI[3]J[-1]]]1), cmap='RdBu', annot=False,
norm=LogNorm (vmax=1e0, vmin=1e-8))

plt.vlines(1, 1, 2, colors='yellow', linestyles='dashed')

plt.vlines(2, 0, 1, colors='yellow', linestyles='dashed')

plt.xlabel ('Sample size')

plt.ylabel ('Model')
plt.xticks([0.5, 1.5, 2.5], ['1', '2', '3'])
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plt.yticks ([0.5, 1.5], ['Linear', 'Non-linear'])
plt.show ()
SR EERANT
©
()
£
-
Io]
©
o
=5
0]
£
<
o
2
1 2 3
Sample size

& 3.1: sCig 4k R

b, AT AR AN AR AR A 1, 2, 3 FEA TR Zhad e nl HlAk -

_ _ \ == Training_loss_3
10714 ~ -1 0§ 10714 _loss_:
\\~ 10 N Test_loss_3
1073 ~ -3 ~ -3
0 o 10 Sso 10
wn \\ wn \\ wn
8 107° 4 ~ 810754 ~ & 1075 A
3 S = \\\ = ~.
107 1077 S~ 10771 \
I i Training_loss_1 S == Training_loss_2 = . \\
10774 Test_loss_1 \x\ 107° A Test_loss_2 S~ 1071 ~3
T T T T T T T T T T T T T T T y
0 10 20 30 0 20 40 60 80 100 0 200 400 600 800 1000
Epoch Epoch Epoch

Kl 3.2 BRI, MZERIA T BIDAREAR 1, 2, 3 RHllZhad e,

3.6 Mo iR Y S

3.6.1

P B

HMHE—A fo = AB WAELIER M R, X MBRAEIRBR I M b A AT 55 oA 1

i, AT EARRZM n AR TE S = {((s4.), M) Y HIRE BRI M*,

H

>N

H (i, ) FORRRE M BIATAISIR RS A0S, FATEME AR M R A B i,
FAVEA S M HAb 7 B
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1071 X 10-1 ) == Training_loss_2 101 \\ — = Training_loss_3
\\\ T Test_loss_2 Test_loss_3
1073 s 1073 1 X 10-3 X
S
" S 3 » S
8 105 ~ g 10°° X 2 10-5 S
g1o So g 10 N S 10 S
~ -7 X S
107 S 10 N 1077 SR
0| T Training_loss_1 10-9 SN N
10~ "~ N -9 DS
Test_loss_1 ~. S 10 =
T

T
0

T
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T
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T
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Epoch

40

T
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T
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T
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T T
60 80

Epoch

T
0

T T T T T T
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Epoch

Kl 3.3 AR, WAEIG A AR 1, 2, 3 Il gadte.
% P& AR B R PR 42 AT 55

=l

WERFEATEE B E DR T SRR fo = W € R, FE BT HIIA 10 06 LT e
H o MELATT H AR

(3.9)

n

1 *
min — > (Wi, - M;,)°,

o n
s=1

W H AT P TTR SREIBE, ARSI, PR ) IRRk AR
ERUMRRATEE A fo = AB, A, B € R (IR pAHMERIEE, RIHBIE TR
S/ MERLT F

(3.10)

n

1 .
min — Z ([AB]isjs - Mz‘sjs)

6 n
s=1

2, (3.11)
Hr M* cR™? 0= (A,B), UK A B cR™ [AB], ;. (RFERLHE W = AB 54 i,
11, 5 js BIEdE . EXANHELMEEE Y, A W AT B 5 —HEaaiil g, FrAsiEl
AT REABRRRAR, AIMAEH SRR 3 MEA R Bz I X Rk 1 R
LR FRER SR R, FRATA] AR E AT M € RO [ sRMAEA R (B
) -
Rg,(M*) = 2rpg-d — 134,

Hrp rage = rank(M*) & M* PHFERR.

Sebr b, EAGERARE AR B R, BB TR 2 x 2 BYSERE A, PR
RKEBBN 1, WAEHHERR AR RFIIEERL: A=w’, Hfu @2 —12x1H
g, v 22— 2x 1 WFmE. Wik, HE A ReE DA E w fil o BIoERFER. B
AU, w A 2 Mo, v BF 2 MrE, BIE 4 Mg R, BITAE—NRE LT
4, PUNRERIRATIE w " RIENELAS, v g8/DF-— DL, B A EFASUE,
WHEHER 2rd—1r2=2x1x2—-12=3.

(3.12)
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EARERI R, XTFEEN d, SRFEA R rae SEINTEIN. SRR, xR d, #
H O(r) W HAREREARFEA SN O(r?), RXIAMSEE My = d* BUMEZ.

AT BARAERE S R —A 4 x 4 1Rk 1, 2, 3 4FE, HIRWREA R 2rd — r® 115845
ARSI 7,12, 15.

3.6.2  SIRSIE

XA HARE R, 103 BRI R G, DR N MR R R B H
PRER B RIR -
T AEHATE X AARRE R, A

4 06 1.8 0.8 4 06 1.8 08 4 06 18 08
8 12 3.6 1.6 10 2.7 5.1 36 8 27 51 3.6

M; = M = M = , (3.13)
8 12 3.6 1.6 8 1.2 36 16 8 22 26 1.6
6 09 2.7 1.2 6 09 2.7 1.2 6 09 2.7 1.2

WREZHAE: rank(M;) = 1,rank(My) = 2, rank(M7) = 3.

FMT5E SORMETT sATE Y 07 2ORAE, S RF—ATH 5, FEREE ATH 5, HRHE=
=2, e RE TS,

B SN ZR AT -
RS B

d = 4
num_inputs, num_outputs, num_hiddens = d, 4, d
loss = nn.MSELoss ()
class MatrixFactorization(nn.Module):
def __init__(self):
super (MatrixFactorization, self).__init__Q)
self.linear_stack = nn.Sequential(
nn.Linear (num_inputs, num_hiddens, bias=False),
nn.Linear (num_hiddens, num_outputs, bias=False)
)
def forward(self, x):
y = self.linear_stack(torch.eye(d, d))
return y[x.T.numpy().tolist()].reshape(-1, 1), ¥y

net = MatrixFactorization ()
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R AR AT -

outputs_sample_ls = {}
theta_A_sample_ls = {}
theta_B_sample_ls = {}
batch_size, num_epochs, 1lr = 1024, 100000, 1le-1

M = M1
test_1s_M1 = {}
for i, 1ls in enumerate(sample_patterns):
features_train, labels_train = fix_sample (M, 1ls=1s)
train_dataset = torch.utils.data.TensorDataset(features_train,
labels_train)
def init_weights(m, sigma=1le-7):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.normal_(m.weight, O, sigma)
if m.bias:
nn.init.normal_(m.bias, O, sigma)
net.apply(init_weights)
train_iter = torch.utils.data.DatalLoader (train_dataset,
batch_size, shuffle=True)
train_ls, test_ls = train(net, train_iter, num_epochs, 1lr,
try_gpu())
AB = net(features_train) [1].detach().clone()
A = np.copy(list(net.parameters()) [0].detach().T)
theta_A_sample_ls[i+1]=(A)
B = np.copy(list(net.parameters()) [1].detach().T)
theta_B_sample_ls[i+1]=(B)
outputs_sample_1s[i+1]1=(AB)
# frobenius norm
test_ls_M1[i+1] = np.linalg.norm(AB - M1.numpy(), ord='fro') /
d **x 2

A FATAT AT E MR AR AR L AR 2 AL D22 B A R AR (L E— K O 1 B, 9
P BAS TR A SRR A R B, SR ETR T
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import seaborn as sns

from matplotlib import cm

from matplotlib.colors import LogNorm, Normalize

set_figsize((3.5, 2.5))

test_ls_array = np.array([list(test_ls_M1l.values()), list(
test_1ls_M2.values()), list(test_1s _M3.values())])

test_ls_array

sns.heatmap(test_1ls_array, cmap='RdBu', annot=False, norm=LogNorm(
vmax=1e0, vmin=le-4))

plt.vlines(6, 0, 1, colors='yellow', linestyles='dashed')

plt.vlines(11, 1, 2, colors='yellow', linestyles='dashed')

plt.vlines (14, 2, 3, colors='yellow', linestyles='dashed')

plt.xlabel('Sample size')

plt.xticks(np.array([0O, 2, 4, 6, 8, 10, 12, 14]1)+0.5, [1, 3, 5, 7,
9, 11, 13, 15], rotation=0)

plt.yticks([0.5, 1.5, 2.5], ['Rank-1', 'Rank-2', 'Rank-3'])

plt.show ()

STEGLERANT , AT DAR BB TGS 1 SRR A BRI 256 I i 1) fe/ IMEAS BESE W) £

[ 10°
- 107!

T 1072

Rank-3 Rank-2 Rank-1

1 3 5 7 9 11 13 15
Sample size

K 3.4: LGz R, ARSI AN ARMEEAE, colorbar RFEIZLIRZE.
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3.7 PRI g% B S

3.7.1 BFNBE

B, BB E—NHAE m MEITHF R SIEEM A MY, HEERECH tanh(z) =
Zz_zjvT$%FV%m.h()::2;1aﬂamﬂw x) Fork, Hp e RLO = (0; € Ryw; €

RO o M EIHE M =m(d+1) M4, SitEas, SuMARS  BREE - mn
%&J;k( DECES

Definition 3.7.1. WEFE k(f*): £ XATAET f* b ZREHRNTE, B f* T
WEEA k(f7) 8BRS ER, 12 R4 AT B F 0 ih 2 A 1 A

KEP—AAT AR SEREN m BRI AR £, FAESERE 0 < k(%) <meo [ BRI
FEAEN

Ry, (f7) = K(f)(d + 1), (3.14)

T IRFEA R 6% 1)—FBGAR, JEEE k() MHEICRFIIR [+, RIS HMATHE
JCH) a Flw 428 0, BEF 0% Xt AR k(f)(d+ 1),

AR H R R ECH— 2T f* () = tanh(z 4+ 1), WIETEEER 1, XTI ILEE
B AR, IRULREA RT3

3.7.2  SHRERIE

AV MR SERE A 2 FIGERE A 20 1 FEMZE M LR G BARREL, LR S i TR AR A
Hhe KA B EAL .
P SEBLAN R -

RIS B

# MEMEER, TEH 2
num_inputs, num_outputs, num_hiddens = 1, 1, 2
loss = nn.MSELoss ()
sigma = le-12 # M4 1L 5 % th 47 o 2
class NeuralNetwork(torch.nn.Module):
def __init__(self):
super (NeuralNetwork, self).__init__()
self .hidden = nn.Linear(num_inputs, num_hiddens)

self.activation = nn.Tanh()
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self .output = nn.Linear(num_hiddens, num_outputs, bias=

False)

def forward(self, x):
return self.output(self.activation(self.hidden(x)))

XFTMZM LS, IR T IZALREERIR A REINE, FROTXM A BT 10 YRFl
PLET:, HXHZ A RZERCFE
Rl )i B

batch_size, num_epochs, 1lr = 1024, 10000, 1le-1
test_iter = torch.utils.data.Dataloader (test_dataset, batch_size,
shuffle=True)
train_1s _dict NN_2 = {}
test_1s _dict NN_2 = {}
def init_weights(m, sigma=1le-12):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.normal_(m.weight, O, sigma)
if m.bias is not Nomne:
nn.init.normal_(m.bias, 0, sigma)
for sample_size in range(1l, 10):
1 =0
num_trails = 10
for trail in range(num_trails):
net = NeuralNetwork ()
net.apply(init_weights)
X_train, y_train = generate_data(1.0, 1.0, 1.0, sample_size
)
train_dataset = torch.utils.data.TensorDataset(x_train,
y_train)
train_iter = torch.utils.data.DatalLoader (train_dataset,
batch_size, shuffle=True)
train_1ls_dict_NN_2[sample_size], _ = train(net, train_iter,
num_epochs, 1lr, try_gpu(), test_iter=None)

# compute the test loss
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net.eval()
with torch.no_grad():
X_test, y_test = x_test.to(try_gpu()), y_test.to(
try_gpu())
y_hat = net(x_test)
1 += loss(y_hat, y_test)

test_ls_dict_NN_2[sample_size] = 1 / num_trails

e ATRATTT DAIBTERE S 2 FITERE 20 A 190 2802 Ak 1 2 I RE A 15728 A i 7 — K T 94 T [
B, RS BE T R A R E, SR R X

import seaborn as sns

from matplotlib.colors import LogNorm, Normalize

set_figsize ((3.5, 2.5))

test_ls_array = np.array([list(test_ls_dict_NN_2.values()), list(
test_1ls_dict_NN_20.values())])

sns.heatmap(test_ls_array, cmap='RdBu', annot=False, norm=LogNorm/(
vmax=1e0, vmin=1e-4))

plt.vlines(2, 0, 1, colors='yellow', linestyles='dashed')

plt.vlines(2, 1, 2, colors='yellow', linestyles='dashed')

plt.xlabel('Sample size')

plt.xticks(np.arange(10)+0.5, range(l, 11), rotation=0)

plt.yticks ([0.5, 1.5], ['Width-2', 'Width-20'])

plt.show ()

3.8 SR LAL,

R I IA P TE S B T LT A ASE I (PR3 T TCEmise e AR &L f+ H A ki
BOE O = {0 ] fo = f,0 € RM}), (EARIIIAIL T B SR 0L A1 306 T 2 B Sy B
WOE: BTSN T I R SRR, RO RE, 4
HHL NFEHLIEEAL T % T SR SR RTa1k , AIRES BB AR M R . E kT
Sy RIASERRRAL (SRR R M R ) R/ NIRRT RS R s Hk B X — SRR
BRI (24 ) tHREBEIT—ALBR .
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Sample size
Kl 3.5: SLgmas R
3.9 fElk
L SPFRMEAMRITS, B M* e R JEB RIS B H
Ry, (M*) = 2rpped — 12, (3.15)

Hr rage = rank(M*) J& M* 8RR
2. & 5 x5 MR ARATSS, L8 RIIE/ IR T RBIA B R A B
3. BRI A AT 55 roUL 0B 1y B A4 (57 T3 A1 ] 52 ) S0 VRS2 H A eR BSOS R (AR A

B

Ho

4. WHILZRM AR AL, Sk 2 M 4O F AR R BT R AR A B S/ N T AR AS B
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Chapter 4

T T o S RS 2 2D HERRY
GINEAS

Jupyter FSHY AT DAZE GitHub #50,

4.1 TR

AR, K F B (LLMs) frgk kM, FEAPMESS B T B ae g . X sepieii
BN NEVGIRZIMN_ BR300y, oy T 2R B 8, AP Pl B iy B DT T o 38
(IMO) 5l L PEFTiR AT, VAL AEDA M. ORINT, 224 B i S R AR AR 2R i o A 2
PIME 55 M RAFAE IR ME , o T FIESRTH LLMs (HERRRE Ty, DFFR L NEHERpL I 2 e 2. A
SH AT LLMs AT 7E AU AL B R, A B T S A R SR R 32 EATTHY
EZZi3Eh

ZBHEBAT S & — A 2R, IR ER G 2 MR AR LA A RE T - AE
XL, FAN1H B P HERAL 55 ) — R AUR AR S A8 DA K R 06 B R BRI 5%
B A, Flan, “[A] — [B]...[B] — [C1...[A]” f&hity, . RESEEMEIIC KW
HASCAR N ZS, AR iR “[C]7.

4.2 9% Hs

Lo llgR— A/ Transformer BAUASL L 2 HfiE 1

'https://github.com/xuzhiqin1990/understanding_d1l/tree/main/code/multi-step_reasoning_code
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2. “E U A AT AT S AR <R il A

4.3 sy

4.3.1  ZBPE AR

N T B Transformer FPRZ SRS, FATBOT T — RS2 S HEBTSF
i d(a) PR, HEEREEBTIIC—F . AT T token [ —AMEREA R .
JG—A> token SR & token, FRAEZ AL RITFIRIEAT ] E A KA BB AU 4521 .

(a)

-

FAET IR
A
r 1 ¢
o @6 (@) &) & & @ E 6 E M EEE E

w2 (¢ (2 () (@) () (o) (@) () (2) (@) () @) (@) () (o) — ()

TR

\ s J
(b) 4 EEER <L)
ENN
BAE BB
3 (o)
BA —q C : o, B

Bl 4.1 ZAAEREHRSEAN Transformer ZEH7RTE A

4.3.2 Transformer iy

T AT FH— LA 2 AR S 2k Transformer K280 (1 [Ld(b)) o 878 —A 4 AFEH
X e RO Jon BEFIKEE, d Riadohon, B IAR (token i ARIA B
A) EHAET XD = Xy + Xpon € RV, FR P ML HHEATF

AD(X) <mask(XW‘1(l)W’“(l)’TXT)
=0

Vi

) xR Z A0 (X)X O g
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Hp o R softmax #ff, X© = Layernorm(X®). Hfiifkgkik, FA1HF WOWHO-T
Hy WO g WeOW DT 5 Weol, 45 1 2k R

Xao(l) — X(l) _i_quv(l)’ X(l+1) — f(l)(Xao(l)) _|_‘X‘a,o(l)7
Horr fO() FR5E | 2RI ZE M. R4 E (LRNERPRRERTIER) A
Y = argmaz(o(XPWP)) € R".
TEFATA UL S, FATBEE T AR/ d = 201, Bt RI4E RSN d, = 400, W, WE WY
Y RUBCE IAERE N dg = di = do = 64,
4.3.3 Bl Risy

ERATWBHRERE N, WRBAEIEIR TIRZ @A, IBATfEllpr B, BfEsn 1
HAl B IR S 2 LT Y token, BV RS ERRIET S, L, FRATRE R 5~
B4y 43AH N (In-Distribution, ID) 14345 4h (Out-of-Distribution, OOD) ., HA&3k{HE, FA]
7E X tokeny € [1,100] F1 tokengg € [101,200]. 43 NEHE (Traing Al Testr) & X HN5E
4 tokenyy AT, M THAMIHE (Testoon) MIRESA]THIAL S Z A tokengop. T
SR, AP ANR 4R (Traing) ARG (Testrn): X TUIZEAERHE
PREE [x4][xo]--- [x,1, FTA token #JE AR &/

Xp; — Xpi-1 (mod m) € G.
XTI P R HERREE, Frfy token i 2 -
Xoi — Xpi-1 (mod m) € {1,--- ,m}\G,
AL, AT m =51 G ={0,1,4} . FEMBLE T, FATHHRN LA "o
XFTEN S iR R Bl
1.4 BT

4.4.1 Bk

Z1THCEN) datas = get_data(args) H[IRJAz BEAS SEIG v T 55 ZEM Ba 4k
& N |
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# Train_ID

[10, 29, 51, 21, 16, 86, 29, 34, 21, 16, 86, 10, 10, 34]

[66, 87, 15, 50, 86, 96, 87, 86, 96, 97, 50, 66, 87, 96]

(6o, 64, 11, 10, 5, 60, 64, 23, 87, 11, 10, 5, 60, 23]

# Test_1ID

[91, 98, 98, 40, 54, 91, 40, 22, 22, 19, 19, 56, 54, 98]

[38, 61, 61, 59, 59, 42, 90, 53, 41, 38, 42, 90, 61, 42]

[81, 79, 26, 69, 19, 36, 79, 26, 69, 61, 61, 19, 81, 26]

# Test_00D

[95, 8, 186, 165, 140, 105, 8, 127, 127, 186, 105, 95, 105, 8]
(124, 182, 182, 109, 90, 87, 176, 90, 170, 124, 109, 176, 176, 87]
[88, 124, 135, 165, 124, 101, 122, 71, 71, 88, 101, 135, 122, 88]

4.4.2 WIRALESR . B R B IRIRES

ARSELEHRAVE 3 )2 Transformer B8, BIRIZEM T AERSCHSIA . FRATHH T4
A2 myGPT() H5LH Transformer FJIIHE.
PGB . B R S AR IRES

# 446 AR
model = myGPT(args, device).to(device)

if args.checkpoint != 'none':

model.load_state_dict(torch.load(args.checkpoint))

# PR EH

criterion = nn.CrossEntropyLoss(ignore_index=0).to(device)
#

optimizer = optim.AdamW(model.parameters(), lr=args.lr,

weight_decay=args.weight_decay)
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EEESE T3
scheduler_cosine = CosineAnnealingLR(optimizer, T_max=int (args.

optim_T_max), eta_min=float(args.optim_eta_min))

# multiplier R A¥ I E5ME¥ I EHLE, total_epoch ZFH oy A
M %K, after_scheduler T M E M HMEAMN ¥ I R EH %
scheduler = GradualWarmupScheduler (optimizer,
multiplier = float(args.optim_multiplier),
total_epoch = int(args.optim_total_epoch),

after_scheduler = scheduler_cosine)

4.5 SEHRES

4.5.1  Ei ek SR g

ARSI, FATEM T 300,000 ZAKHN 13 19 2 BHEBEIERINGE Transformer
B, WA RUE N 205, IFHE 400 il (epoch) WBUTL LK E] le-d, FHK
#fi cosine FEWMMEAE /LM 3600 DI R F] le-5. #H& K/ (batch size) BEH N
1000, fifbdshy AdamW ffbsds. FATHEM Pytoreh H A 2 50 s e KOk £48 hil EK /N
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1). [§ E:g@ﬁ BaNT
WIERIIL, BOASRR IS , IAARh =R SEERI., FTOADLECE], BU7EL 20 &
MM RIINGR)G . AR T mNRIZALRE ST, MB#iskis 17 iishizALhe

4.5.2 BRI BRI AL

T EUFHBPRAR Transformer 2 AMTANIHZL A MEFRRCIRAY , oM T34 I H AL PRI LE K500
SR B, AR WS BT, BN, RATHE token f— 52, 12
2L R U RIS e . 1, A AL > 0, IS R 5 AN AE 11
JRE AR, HARTEEMET A, FoRE SRR K, M
SBMHIE 2 MY token [T BELRIER:E, Fmli Ak R B15 .

el [ R T Transformer BEIAUAE— NI A) TR0 B (G5 R2, 48— 29530 T 4D
WAL B R ATEO . 2 SRS R I 5 B B 54 token b Ff1]
AT DARE— S X B G AR (L), Hop2r 6 token JPes B2 (3 BLILE M1 2%
HE(EE, TTDATLECE], BB “HRFTRT MU AT token [i145AH ] 2 B I 85 H: AR 5
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(a) (b)

Accuracy Layer 3 [:]
100%
vo(0) vo(l g ..
e . s ) (oW @+[c] ) v+
Layer 2 D D
60% ]\
e—e Traing (1w @+ ] H mIw>® [c]
40%
A4 Testyp Layer 1 D C]
1 1 1
0% B3 Testoop 1 attn ]‘ ]‘ residual
Layer 0 ® @ BE .G

0 50 100 150 200

Epoch

K 4.2: (a) Transformer [ilZRUERRATZE. (b) Transformer SZPLLZ A HEFRME BN =K
IR T X i A S5 A S5 Bt L4 TR IMLEIS R E B, W% ik
ERES MG R

AT SR B LA Y 2 i
fr B2z P AU i B

import matplotlib.pyplot as plt

def plot_info_broadcast (input_seq, output_seq, attn_list,
key_points=[], key_flows=[], res_flows=[]):
fig = plt.figure(figsize=(6,5), dpi=100)

seq_len = attn_list[0].shape[0]
layers = len(attn_list) + 1

color_list = ['#9bbbel', '#08519C']

#EFNPNLG A4 L E, Bseqg lenM 8, XTI BEHNHFNIMLE
for i in range(layers):
for j in range(seq_len):
if len(key_points)== 0 or (i, j) in key_points:
plt.scatter(j, 4*i, c=color_list[j%2], edgecolors=
k',
s=80, linewidths=1, zorder=10)

else:

44




Outputseq 77 54 1 21 99 41 99 1 99 19 99 95 095

Layer3 © © O O

Layer2 © © O O

Layerl © © O O

Layer0 © © O O

Inputseq 99 1 21 99 38 95 1 38 19 21 95 23 1

Bl 4.3: SeRERY (R R B .

plt.scatter(j, 4*i, c='#999999', edgecolors='k',
s=80, linewidths=1, zorder=10)

# KBattnWy B, BEHEEWERL, ottnfI Ak, ZHM
for i, attn in enumerate(attn_list):
for j in range(seq_len):
for k in range(seq_len):
if len(key_flows)== 0 or (i, j, k) in key_flows:
plt.plot([j, k], [4*i, 4x(i+1)], c='#3e6084d"',
lw=attn[k, jl*2, zorder=3)
else:

plt.plot ([j, k], [4%i, 4*(i+1)], c='#999999',
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lw=attn[k, jl*2, zorder=1, alpha=0.8)

# | residual By % %
for i, j in res_flows:
plt.plot([j, jl, [4xi, 4*(i+1)], c='#3e608d', ls='--', 1lw

=1, zorder=2)

4.6 gk
L isfTRCER jupyter AU, NZh—A/ NI Transformer ARSI Z S HERE
2. W HHSHORE, AR R/, weight decay FIASALAE BT HERH R A R0«
3. 147 1 PR R A, o NLENLE .
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Chapter 5

2 BONIG I RHERR EE T 55 ma 925 )

P
|~
Ph

Jupyter CHYATDAZE GitHub #50,

5.1 B HK

ARSI B TR TEAE 45 R S A AR S W ARHER R BEA TN ZR R AT ER T, AR IR A R/ N AL
RIS AEATS5 F2E T WIS S A 22 S o A 0l S TR BT 4G A R/ IR AR IS IZ AT 55 RN 52
W] o

5.2 fL55Hhib

TE PR 5 ST S RIS B T, FRA 60— SRR HUINA | LF T R A 45 B A T T
Y. R, IO RER: fi=2+5, h=a+1, i=2-2, fi=a—8, ¥
fTIATATE AL 16 AL ATBRSC. FENIGL R, 1 f1(fs) M o — 10 B50h « — 6, FE4ER f(f2)
HBcR. FEMIRI, MH AL fo(f) I, Ff17 TS transformer 1% AT A14 4557
DA R A2

() & — 10, 570 R BBk

(i) & — 6, FFEIEBURI fa(fs) WLST,

(i) AHLIN, HEEIZA R — B L5

1 https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/book_jupyter_composition_task
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5.3 SEUSVOE

T TSR 4l B 0 2 b SCHEATIIE, 3% AT 45 S b7 52 . PeIb st it
D S ok LA T B A e B

(a) $HRLERE (b) HREIATEERY IR R IR
SFERET 1ANTE SRS R IRRIHBE RS BADFRE =&
IR FEIREN
1[1]:[+10 281 1 38
- albl=|bla
1] 102 431 2 a9 Ty
NAOE , 56 4 4 40
N : MiZ2: NRERMMSIRSEIAARE
81¢ MBI GEP R HEH R ES 62 3 4 56 ! SRR SAAR
. 3|: : 4 -B
4]: : s243 2
NSRBI PR S ‘—1—‘
> i AR
79 - lQ &&Eﬁﬂ%{f}iﬂg?ﬁ AR sa.ﬂ N NEHES o
EISEPHMOERERES EIGEPHMOIEHBE R ES KB SSEPRERES
RER (FEHRESHIRToken) BAEH FE5EIREHAI B token

Bl 5.10 SCERBEE LA KR LB (4, 3) BYRTREMEAIALE] . (a) BEAnl: 2 B4 (D1, 2, 3,
4) X RAFEREAZIE . T YIZREINE], 16 ATATREREN P 14 Ao C T TR, — X
(3, 4) BT T ARMEWTW, FT—XF (4, 3) MEARMALSRE . 1 WAFILITE—A
XF L AR Z BTG S B H A28 5 FARTC KM T H o 5 2R I (4, 3) 19
frth, XIPRT R BN (b) RIS (4, 3) BIPIRIERENLE: 2 I3 FRaiy (Bl 1)
B AT SRR (BLE] 2).

5.3.1 WS A B
MU UL AR f(X) (R — R & AR
f@r, ..o mn) =g (g(zims )i @),  HAF 2,24 € A (5.1)

XH, AP X = (21,...,2,) W& n A token, fifRH A ={a1,a2,...,a;} PHEE, H
&g token a, € A XY REL g(z5ar). RN X, U WESOTRET A, Bl
Tiy Tip1 € Ao AR AT Z HIHY token FR R, S T RIMATS, FATRFPIHIR G
BOCHE f(rimws, wig1), PASRVAEEXS (24, 2aq0) PRI 210

FERXI LA, ATBEERSR G A = {1,2,3,4} . RO B R 19 R 8

g(z; 1) =245, gx;2)=x+1, gx3)=x-2, g(x;4) =z-28. (5.2)
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5.3.2 Btk

TERX TR, FATEAPAEE (RD 1, 2, 3, 4) A 20-99 i 5 B aR A i A KL
Wt BAFIVESE— T — AT (B SR AR Z B IT) Rl SRR I, RS 15
HHEER. ARPIRIZE T 16 A5, FRATRIGE 55 TR e PoX Lo iy — 4> T el 4
AL U ZR AR5 -

BOATEOLT, A Anse P A & eR Ak P ARttt BT T SCAOEIRTIILS . R4
AR % S 14 (L5 U1 2 s A 0 S ) 2 Tk

BARGE SBSHBCEIS , FATR A S R RN ZREE . ML FE L], R4k,
ilEmv S C T Ut

Listing 5.1: FCE#SHOBE R L OE

dname = ['13_xmO', '23 xm0O', '43 _xmO', ...]

dtrain = [0, O, O, O, O, O, 1, 1, ...]

dshow = [0, 0, 1, 0, O, 1, 0, O, ...]

dpercent = [1, 1, 1, 1, 1, 1, 9, 9, ...]

parser = argparse.ArgumentParser (description="Pytorch distributed")

parser.add_argument ('-data_size', '--data_size',6 type=int, default
=900000)

parser.add_argument('-sl', '--seq_len', type=int, default=9, help='
FFKED

WL data.py SHFEHEH) get_data() eRECRA LR TR EEE, AT :

datas = get_data(args)

print ('datasize:', len(datas['44_xel']), 'example:', datas['44_xel'
100D

print ('datasize:', len(datas['11_xm0']), ' example:', datas['1l1l_xmO
'1001)

print ('datasize:', len(datas['24_xel']), ' example:',6 datas['24_xel
'1001)

AT

datasize: 50625 example: [48, 23, 85, 4, 4, 80, 57, 86, 50, 69]
datasize: 5625 example: [41, 42, 62, 48, 1, 1, 24, 42, 88, 58]
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datasize: 50625 example: [37, 44, 46, 87, 63, 30, 2, 4, 58, 23]

5.3.3  HIRFRML Y

T (a, az), FRATES H =R T HBUN M, 00 () BE L.

HEWTWES : 55XF (a1, a2) WIHEE B AR S PR G R A3, B M(a, a0 (2) = f(25 01, 02)

EHEWWSE: H%F (a1, a2) BIFEE HARBU SRR G REBCR—30, B Mg, .00 () #
f(z;a1,a2).

SF BRI 555 (a1, az) PIFE 2 H AR5 HXTFREXT (a2, ar) B —2, B M4, a0 (2) =
M ag,ar) ()

T AABETRAN ) 3 13 S A ST AT A HE T (ARHERT, XIFR) WRSSRERT R, FAIRR X
BB g — Al (AEHEWT, XIFR) .

5.3.4 Z4k

Bndeiil o> A 2RS0T AR Az At

Bedla Bzt o BRIz AR INRSE . X N INREE b, AR (RIS )
TEIZRAE AR A H L

1155 Lzt (L55 BRIz ALROm TR Wit rydl, BITEIZRME b 3ch i alausl, RA+E
9 H AR -

5.4 LR

5.4.1 FIRAEREVE

HITFRATH B B @B R R TR, PRI 2 e A I SR A R 4
R Ry, FATFHZBUC TR A T default HIK(HE.

parser.add_argument('-sr', '--std_rate', type = float, default =

0.1, help="#FHEZHF K"

FM%H =AEFERAE: 0.1, 0.5, 0.8, AWK . PRI S/ MR RE .

5.4.2 Y%; Transformer Ry

TE train.py SCPFHE X train O &L, TR, AR AT (RARARS DL train.py
)
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train(args, datas)

FLARYL, Ao s . BRI K s A=

train_data_loader = get_train_data(args, datas)

args.num_batches = len(train_data_loader)

# BT A BB E XN W data_loader

data_loader_group = get_data_loader_group(args, datas)

device = torch.device("cuda:6" if torch.cuda.is_available() else "

cpu " )

my_logger = Log(f'{args.working_dirl}/train_log.log')

#* BB ELH 8
model = myGPT_specific(args, device).to(device)
if args.checkpoint != 'none':
model.load_state_dict(torch.load(args.checkpoint, map_location=
device))
my_logger.info(f'Total parameters: {sum(p.numel() for p in model.

parameters())}"')

criterion = nn.CrossEntropylLoss(ignore_index=0).to(device)

optimizer, scheduler = get_optimizer (model, args, **kwargs)

MM X} train step() PREGHEATIEESR:

def train_step(args, model, train_data_loader, optimizer, criterion
, device, clip=1, scheduler=None):
model.train()
epoch_loss = 0

total_samples = O
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for i, (dec_inputs, dec_outputs) in enumerate(train_data_loader
):
optimizer.zero_grad()
dec_inputs, dec_outputs = dec_inputs.to(device),
dec_outputs.to(device)

outputs, _ = model(dec_inputs)

batch_size = dec_inputs.size(0) # 3k Bl ¥ 7] #t %k 7 L Fr K /N

total_samples += batch_size

loss = criterion(outputs.view(batch_size, args.seq_len,

args.vocab_size) [:,-1,:], dec_outputs[:,-1].view(-1))
epoch_loss += loss.item() * batch_size # ¥ # 4 F UH %k A

/N

loss.backward ()

torch.nn.utils.clip_grad_norm_(model.parameters(), clip)

optimizer.step()

if scheduler is not None:

scheduler.step ()

return epoch_loss / total_samples # & [Fl F ¥ # %

FE— RN, RONFTEEUIIRURIE, B2 =M RIEIINGEE, T
PR,

5.4.3 Al p0IG AL BRI HE R £ MA

E X last_word_acc_reasoning () PR AL A [R] W] G4k K/ IMERLAE A DLAT- 45 F1 E. DL
45 ERHERTERI R, & X last_word_acc_symmetry () BRERPPANA [FIHI LG M/ MERIAE

52




ARWALSSFIC WAE S5 LR ERs 2. AT

def

def

last_word_acc_reasoning(args, checkpoint, data_loader):
device = torch.device( "cpu")

model = myGPT_specific(args, device).to(device)

model.load_state_dict(torch.load(checkpoint, map_location=
device))

model.eval ()

correct = 0

total_samples = O

for i, (dec_inputs, dec_outputs) in enumerate(data_loader):
dec_inputs, dec_outputs = dec_inputs.to(device),
dec_outputs.to(device)

outputs, _ = model(dec_inputs)

batch_size = dec_inputs.size(0) # 3 Bl 3% al #L &k & £ F5 K />

total_samples += batch_size

outputs = outputs.argmax(axis=-1).view(-1, args.seq_len)
correct += (outputs[:, -1] == dec_outputs[:, -1]).sum().
item ()

return correct / total_samples

last_word_acc_symmetry(args, checkpoint, data_loader):
device = torch.device( "cpu")

model = myGPT_specific(args, device).to(device)

model.load_state_dict(torch.load(checkpoint, map_location=
device))
model.eval ()

correct = 0
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total_samples = O

for i, (dec_inputs, dec_outputs) in enumerate(data_loader):
dec_inputs, dec_outputs = dec_inputs.to(device),
dec_outputs.to(device)

outputs, _ = model(dec_inputs)

batch_size = dec_inputs.size(0) # 3k B Y 7] #t k& L Fr K /N

total_samples += batch_size

outputs = outputs.argmax(axis=-1).view(-1, args.seq_len)
correct += (outputs[:, -1] == dec_outputs[:, -1]+4).sum().
item()

return correct / total_samples

BT R, FATMNK =B BITEN R i G55 E (0 N) A RIS

R G b (4 ask) ZAtk.

A1 HIPA data_loader_group['12_xel'], data_loader_groupl'43_xel'l fXFE/1
B RN T AN o R, T o, FRAT BIBIFSE AR A A AN DASE Wik

FURRERR . FATEN TR AU I T =R At il

data_loader_group = get_data_loader_group(args, datas)
model_large_init='./result_0.1/model/model_209.pt'
model_middle_init='./result_0.5/model/model_20.pt'
model_small_init='./result_0.8/model/model_209.pt'

small_init_unseen_acc=last_word_acc_reasoning(args,
model_small_init, data_loader_group['43_xel'])
middle_init_unseen_acc=last_word_acc_reasoning(args,
model_middle_init, data_loader_group['43_xel'])
large_init_unseen_acc=last_word_acc_reasoning(args,
model_large_init, data_loader_group['43_xel'])
small_init_unseen_acc_symm=last_word_acc_symmetry(args,

model_small_init, data_loader_group['43_xel'])
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middle_init_unseen_acc_symm=last_word_acc_symmetry(args,
model_middle_init, data_loader_group['43_xel'])
large_init_unseen_acc_symm=last_word_acc_symmetry(args,
model_large_init, data_loader_group['43_xel'])
small_init_seen_acc=last_word_acc_reasoning(args, model_small_init,
data_loader_group['12_xel'])
middle_init_seen_acc=last_word_acc_reasoning(args,
model_middle_init, data_loader_group['12_xel'])
large_init_seen_acc=last_word_acc_reasoning(args, model_large_init,
data_loader_group['12_xel'])
print ('small_init_unseen_rsn_acc:', small_init_unseen_acc)
print ('middle_init_unseen_rsn_acc:', middle_init_unseen_acc)
print('large_init_unseen_rsn_acc:', large_init_unseen_acc)
print ('small_init_unseen_sym_acc:', small_init_unseen_acc_symm)

print ('middle_init_unseen_sym_acc:', middle_init_unseen_acc_symm)

print('large_init_unseen_sym_acc:', large_init_unseen_acc_symm)
print ('small_init_seen_acc:', small_init_seen_acc)

print ('middle_init_seen_acc:', middle_init_seen_acc)
print('large_init_seen_acc:', large_init_seen_acc)

B AT ARG A RO AN [ et ) 2 A AR 1l 22 -

acc_list=[[large_init_seen_acc, middle_init_seen_acc,
small_init_seen_acc], [large_init_unseen_acc_symm,
middle_init_unseen_acc_symm, small_init_unseen_acc_symm], [
large_init_unseen_acc, middle_init_unseen_acc,

small_init_unseen_acc]]

fig = plt.figure(figsize=(12, 8))

format_settings(left=0.12, right=0.94, bottom=0.15, top=0.95,
major_tick_len=10, fs=24, lw=6, ms=12.5, axlw=2.5)

10

plt.rcParams['ytick.major.pad'] = 5

plt.rcParams['xtick.major.pad']
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plt.rcParams['axes.spines.top'] = False

plt.rcParams['axes.spines.right'] = False

ax = plt.gca()

labels = ['seen anchors', 'unseen anchors symmetry', 'unseen
anchors reasoning']
color_list = [(218/255, 240/255, 178/255), (146/255, 212/255,
185/255), (30/255, 128/255, 184/255)]
width = 0.15
for i, data in enumerate(acc_list):
ax.bar(np.arange(len(data))*0.7-0.7*width+i*width, data, width=
width,
label=labels[i], color=color_list[i],edgecolor="'black',
linewidth=2)
ax.yaxis.grid(True, linestyle='--', linewidth=0.7, color='gray',
alpha=0.7)
ax.set_axisbelow(True)
ax.set_xticks ([0.05,0.75,1.45])

ax.set_xticklabels(['large init', 'middle init','small init'])

ax.set_xlabel('init scale', labelpad=10)

ax.set_ylabel('accuracy')

ax.legend(loc=(0, 1.02), frameon=False, ncol=2)
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