fit (CEMEMIPE)
HEK IR

S5
FEE BB BR— KRE
MG PR MAER BEA MR
(FEmEFC/NET)
BE I
Github: https://github.com/xuzhiqin1990/understanding d1

Email: xuzhiqin@sjtu.edu.cn, zhyy.sjtu@sjtu.edu.cn

2026 4F 1 H 1 H

https://github.com/xuzhiqin1990/understanding_dl

H ok

L ST SR e 5
1 MAMEEAA . 5
L e ==« 6
L3 SRR . o 7
1.4 FEERE . . . 7

4.1 BEEEMA (DET) | . . . o o 7

4.2 BFEJEN] . . . 9

; 9

.51 BORARSGHACE . . . 9

1.5.2 AWERR] 10

5.3 REAEGIZGRMER . 10

.54 AHRHRZEREL. . . . o 11

55 scmpssabiSm o . .. 12
.. 14
B s T SRGERIR RN 16

D1 SCIGTRITN - . o o e 16
0.2 SCIGHBR . . o o 16
D3 HEELRH . . . 17

DA SZISTETH 17
DAL FRBMERLER] . 17
D.A2 BRI . o o 18
DA3 BUEEREL . . . 19

....................................... 20
R5.1 {E%—: REMIAL P MESEEES 20

2

P52 T4 EAERBOMIMESEORESER 21

D6 WEMEREE . 23
ST oM R e 24
B SZdsE: EEBULTFIIZA - o 24

8.2 SZISEMB . . 24

3.3 HIEHEEAHN 25

B.4 SIS .. 26

Bal FRHERE] 26
B.A.2 SZEGESIERNEY 26
B.5 RIAMIEITBISII ... 27
Bo1 FEHE .. 27
B.5.2 SZISISIH 28
B.6 BHMAMBRETESZIN . . 30
B.6.1 FEETIE] . . . 30
B.6.2 SEINENIH 32
B MZREHARSIIN 35
B.7.1 B . .., 35
B.7.2 SERNENIH 35

....................................... 37

S : =) 3
W1 SEISTREL 39

39

4.3 SIS HE RS 40
W31 zbfmmparad. 40
W.3.2 Transformer BSZHl 40
W.3.3 BOREMIRID 41
WA SZISAUACEE . . 41
WAl BaRAR 41

42

43

43

W52 REEETOA . . o o 43

.. 16

b % Boon G oA A B Ty 5% T 10 a7
....................................... 47
: SRR 47
....................................... 18

E31 xitisgamtl. . 48
5.3.2 BRI . . . 49
B.3.3 BB . L 50
...................................... 50

50
B.Al WEALR R . o o o 50
b5.4.2 % Transformer B2 L. 50
b.a3 REwalmmEmzms] 52

Chapter 1

A&

IR AV LS L oAl R

T T

"
\
LN

Jupyter CHYATDAZE GitHub #50,

1.1 Phepazs AR

AR —DH L2 SRS 7R BN T —HIUNGRE S = {(2s, v Hov, (2, vi) €
R?. BE—NHA—ZRBUZ MR, RIPZ R 2R 4%,

fo(x) = Zaja(wjx +b;). (1.1)
RT TR, EX
hi = fg(lﬂi). (12)

H LG R o (2) 24 ReLU(z) = max{0, z}. tanh(z) &, FATXHER 2, w, b, a #§
AR, X T RAERTE, SRSA NG FAITAED (BEPL) BHEE NIRRT 4L
RSN e A A ey, B RREIRI A 7 SRR . B RBIIZRR Bk s %
NI Ty 2%

X‘TT%%&% 0 = (ah Wy, b17 A2, W2, ", b’m)7 ?‘Zﬂ‘]@ﬁTﬁggﬁF%%iﬁﬁ?ﬁnéﬁz
oL
0t+1 = et — 77870;5' (14)

'https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/frequency_principle

https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/frequency_principle

FEA AN, BRI EIT & h — a; — 0 — x;, TEEJL (information flow)
TS 2 — 0 — a; — hy, XPEWIFAHR, BRI AR EERE. BMeE, @il
SO RAE R T R iR 22 R H i UL A B B IR

N HERERIERE fo(x):

folx) = Whg o (Whg 4 plt]), (1.5)
;E\:':F‘ = R‘bd,Wm c Rde,bm c RmX1,W[2] c RdOXm7 “o” %%,%%Xﬂhmﬁﬁﬁ/‘]@%
(entry-wise operation) (BIHIXIMICHEAMA) . XHL d ZABIRILERE, m R REIZ #2200
HIANEL, do REHMAEE . AR SRS n MERRE, HAESRHEITE T, o

B BUEMEE
Y = h(X)=WHso(WHXx + B, (1.6)

Hit X e R Y € R{dnxn], Bl ¢ Rmxn Bl W — 31BN plt] Ep Bl — [b[”, b[l]7 . ,b[l]]o
X LERFZ] AT RE LRI 22 R 245
—A L R ZC Rl

fo(zx) = wl—1lgs0 (WE250(--- (W[lla o (W[o]m + b[O]) + b[”))+ b[L—2]) + b1, (1.7)

;Hij:‘:[W[l] € le+1xml’b[l] S Rm“rlamo = dzn = da mrp = doa g %gﬁ\rﬂ%@ﬁo :\{%%t:gﬁl:j{
RN R, MARANTA (2ECHREZ + 820280 RIMESEECh

6= wll wil ... wit=t plol plt] ... plE-ily

WU s TEie s WL T DA BRI 7 o S A 4 -

V() == 1.8
V)= ool gy 4 b1y 1<1<L—1 (1.9)
fo(m) = fo(x) = W fF (@) + plE-Y (1.10)

1.2 BTy

FATERIC T B AN TR I W — S8 ARSI, hdsth T 2 M 25X e— 1R
ARG NE. R, B — DB TIA S E DI E R LS, XTRPX A" Ba T BN
HRBLHC N B2 FERABEIE T, AT IR R R R R E AR I X EA B G LA AT -
BN, FE AL AW, 8K s AR fa] SR B A R WF TS &, il W8 E MR) 73
FALE AL, BETH TR EA E A . X285 T RN TR RS 2y AR A TSR

TN, FEALRE A, S MIATLER SRk 58 ST 1A R R B S ARG B SR, AL T
LR E S B A LA . FEUEERE b, Z2 sl it — AR SR g el T AR,
R TSR REILG, TS T R B A AE

Z MR K, FATHERFFAR G P28, AT DA e —LE A a7 SR A i) A T, S A) A
A, AT, AL, PR RURX SARHE B A AR R M g . 28R, R
SR, AR AR A P AT B) S ERRE L N T A A (X AR AT 527535 AT DA
B FATIAE M e e, Sy db— DR R IR R A s 0 BB AR K. BT iR B R, 1
L2 W 28) SERR PRI AR R, FRAT TR A i A B AU & — 2 R B I BT AR HEA T B 9 . — i,
—HYEFIRRG R B, (T AT RIS BRI 55— T, AR W 2 A BEAR R,
) WAARR AR . R MBOE AL UGS, - dE N P e A RS 2 ST R L.
AL —ZE)RR ST, AT RT DARI AR R0 22 0 258 A — LR T SRR AT, it — AR R A e
ORI ZE3T R B6Gl PRLE, FEARTT R, FRATRERET —4E MIEURIT e, i BAR RSBl] 1323 5%
AN W 28 A o S A P A — RO

1.3 e Hbs

FATTEEIG LA 22 0 28 1| G P e N) 3 P B 2 I 25 A R S D ARG, B
JE B> R AY o X 9 265 i e R s e RO R AT A, AT A B A 35 T
MEENX— A

FEVEATSCIBLIT I, FRATT TR B — e AT B, B PR SC R 45 SR BB S RATI 5 S D 1 ¢
Bl BEAb, FRATHREE L AR ERZE A 2 BITAl i 22 00 4 0 N IR A B3 1A 2 > S

1.4 PR ALl

1.4.1 BEiffdsn2H (DFT)

BERUE LIS (Discrete Fourier Transform, DFT) S HLH- 734 Byl b ig—Fh
ST EE KA IR BRI E 5 2 R IR sy, ATTHE 7R (5 S (e R P . X
TMEENEBRGES {o.}, HRKEN N, HDFT E304:

N-1
X, = Z zpe 2N =01, N — 1.
n=0
Hr, X FRESTES kDR EWIRE. @it DET, 3477 ARG S 098iR%, A 2Hr
S5 R LAY

TEMZ ML) fe it DFT A DA SRS WA oL, BE—22 0 At
ARIFMA LB AE . SR, FEVEATHGE AT, 2 ROREERARE. IR RERAR, &
PRI BIEAE o I AR o) . IR, TESEPR#RfEd, AR IR 2B R
R R G BB B

NHEAHEER T —NFH DFET M E SR, 8l o R SRR MZEA 1
RS i B :

from utils import dft_analysis

nnn

func: dft_analysis(f, T, N)

Perform DFT analysis on a gtven function f with a total time of

T and N samples.

Args:
f (function): The function to be analyzed.
T (float): The total time of the signal.
N (int): The number of samples.

Returns:

None

nnn

def f(t):

return np.sin(2*np.pixt) + np.sin(6*np.pix*t)

print ('sample size=50: ')

dft_analysis(f=f, T=2, N=50)

print ('sample size=8: ')

dft_analysis(f=f, T=2, N=8)

1.4.2 A JEON

PR E M FENGRad RErfr, 22 0 20 1) - S Ul S A R ERABUSE 2, T A 3 M 5
BRI TR] A RERA R~ o 3K — BT AT 1o e LI AR SR PR o 8 LI 5 A R I 1)
o S [Y R MR — RSN IR LR TZNE , XL R th AR 2 S HES o o i 2
A, FRATREMS AL I 2 o 22 19 265 AT 228 2027 > S BEAS [RDER (14 B o

1.5 i YR
1.5.1 Bl A2k S sk B
HARR RO =T 5Z B &I, oy
f(z) = sin(x) + sin(3z) + sin(5x).

GRRBCE IR T R AR L B S, TR 2 R AR R A) 1 A
RIS B :

def get_y(x):

nnn

Function to fit.

Args:
z (float): input wvalue.

Returns:
float: output walue.
nnn
alpha=2
y = np.sin(x)+np.sin(3*x)+np.sin (5%x)

return y

args.training_input, args.training_target, args.test_input, args.

test_target = get_dataset(args, get_y)

9

print ("The training data size: ", args.training_input.shape)

print ("The target function:")
plot_target (args)

APl
o B FATHEEOMEIIZE R R, FrRRAERIXI, B 0R m R B B
1.5.2 fysdt iy

AR Z 2PN (MLP), i A S 28 S5 FNIT B 352 R 2 oo ios: 2ok
{5 RO DA i 4 T S -
ARy B

act_func = get_act_func(args.act_func_name)

#Initialize the neural network model
model = Model(args.t, args.hidden_layers_width, args.input_dim,

args.output_dim, act_func).to(args.device)

1.5.3 BARUIZE e Bt 7

FATRIA0 8 52 AR 2R S A6 B R ek B AT R FRATRE 39 T 2 R A ik R B
FHEH Adam A4 -
RSy B

Define the optimizer: determine the gradient descent optimization
algorithm, the default is Adam.

if args.optimizer=='sgd':

optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
else:

optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

10

Define the loss function: the loss function is the mean square
error.

loss_fn = nn.MSELoss(reduction='mean')

XA epoch, FATIIAT LGRS, FHORAFBEIBIRAE . BB <%,
RSy B

for epoch in range(args.epochs+1):
Set the model to training mode

model.train()

Train one step
loss, training_output = train_one_step(

model, optimizer, loss_fn, args)

Test the trained model
loss_test, output = test(

model, loss_fn, args)

Record the loss and output

args.loss_training_lst.append(loss)

args.loss_test_lst.append(loss_test)

args.training_output.append(training_output.detach().cpu().
numpy ())

Print the loss and time
if epoch % args.plot_epoch ==
print (" [%d] loss: %.6f valloss: %.6f time: %.2f s" %
(epoch + 1, loss, loss_test, (time.time()-t0)))

1.5.4 HIXERZR VS

RTS8 0 250 AN [RS8 RN R 28 R UL B3T3 s
RN R ZE M T R it R RN ARy B (B 2257 o AR iREE , FRATRT AT

11

FEME PR BRI WA HEE . SiliEfy DET A2z fon, FATHe R E AR ek ot 2
[) I R DB (XS 7 PR AR A T UL

FHRHRZE VR A R

e — fol
AF (k) =

P& =5

Hot by FORBRUERAERUR kb ARIRIE, fr T8 AR BHENER b AL RIE(E.
Ui)y B

create the absolute error array

abs_err = np.zeros([len(idxl), len(args.training_output)])

calculate the absolute error
tmpl = y_fft[idx1]
for i in range(len(y_pred_epoch)):
tmp2 = my_fft(y_pred_epoch[i]) [idx1]
abs_err[:, i] = np.abs(tmpl - tmp2)/(le-5 + tmpl)

AT 2SR B0
o PR 2SR VPAG ARSI TR A RO ERR I, JUHRAE R R BOXER 2T I
RIE AL RENS B R 7 AN TR AR B0 A SO L
o BEGQABRFE AW RS PR EAE AR, B A iR e T R A e AR
AR/ M RIX RZE AT AP AN ISR O B IR (R, PR IRZE TR 211k

1.5.5 B8R b T Bt

R RS G , FATAT AT BT BTSRRI S, 2 HI R E R il A
[RIB R B R ZE A A B 2R, AT DABSIIE) 45 g 717 S A S U
RSy B

def plot_abs_err(args, abs_err):

nnn

Plot the heatmap of the relative error for different

frequencies.

12

Args:
args: A dictionary containing save path.

abs_err: The absolute error array.

Returns:

None

nnn

initialize the figure
plt.figure(figsize=(8, 6))
ax = plt.gca()

plot the heatmap of the relative error
plt.pcolor(abs_err, cmap='RdBu', vmin=0.1, vmax=1, linewidths
=0.4)

set the colorbar

plt.colorbar ()

set the z-axzis labels and its fontsize

plt.xlabel ('Epoch', fontsize=22)

Set the y-axzis ticks and labels to 1, 2, 3
plt.yticks([0.5, 1.5, 2.5], [1, 2, 3], fontsize=22)

Set the y-axzis tick parameters to hide the tick marks and set
the tick label size

plt.gca() .yaxis.set_tick_params(size=0)

plt.gca() .tick_params(axis='y', labelsize=22)

plt.gca() .tick_params (axis='x', labelsize=22)

plt.title('Absolute Error', fontsize=22)

plt.tight_layout ()

13

save the figure
plt.savefig(os.path.join(args.path, 'hot.png'))
plt.show ()

plt.close()

BRI LT R . Ao FR LA g SE. oIA BE R el B MR Y93tk
A ASHREE R, AT UAR B F AR B ECR = A T Z R o BV Y A IR (AR 45 . 00 H
PREQEIII AR, BRI 2 A RIS A 2 o] PAR Y H AR . A R B 2OR
= FEBR AL M ZE SR G TR RIS IR 22, BARAREIR Ik epoch, ZeARAREN
index $7BUMUESFRBAL. 2 OARMEM B EEERIMRER/D, B O AR5
ZERK o AEUNGRAY SRR PR B R) SO R PR, JLAS epoch SEE 2P ATHIAREF, T 5
AT T 2000 A epoch A KE] TRU/NAINS R . AIARTIRIEE), B ERIT ,
FHUE R

Target

e 1 glo
2 o —— Target 3
075 A e Model output 0.8
]
T 1072
2 0.6
0 = 2
Q1073
§ 0.4
1074 1
-2 10-5 0.2
-2 0 2 0 10 20 30 40 0 1000 2000 3000
frequency Epoch

Pl 1.1 Al e e RSO0 FELAH TR A — 4E RS SE

1.6 155

MM G IR A Z B2 N R, W SERIR . 2R HARREL.
PG R . XN R AR P R 7] DA 2 A i 7, WP e 24
X AR S U 4 S0 o

B, FABRME TPIR RIS H AR R B R I S0 . X PR
S0 3 A A AR R R P R ST BRI B2, PR O R I s o (TR IR M
5 10% 2B .)

Bl 1 BTSN IR EE A S R R AU SR . AR AREREL sin(z) + a x sin(dz)
B, Hr o AEEMNSE. BATTAKFBAARBCA a, PARTRBENEZ AR AT, 2 M

14

FAXFIRZE <10% Firds i 20 505 1 R ARABAH R 22 <10% s 2 B0 Heq

il 20 WS RS AIART 5 A L Y I SIGH RS . A ARER AL sin(x) + 0.2 x sin(k -) 2
Bil, Hb kR ENSE FATATDACRREARARBCA &, YRR BCNTEIZ HARBRECT , 5 2 =4
HRHRZE <10% Fraz B AR50 i R AR X 25 <10% PFrds 20 8y LU fH

15

Chapter 2

KT SEGERIA G Sk

P

Jupyter CHYATDAZE GitHub #50,

2.1 SEBEWIST

FERI 2SI GRad R, A R BRI R AR 22 I 25 BRI kBl 2 i R . FEAS
g, AR A B 4RSI WA FRIIR LR, M S B 3 1A et
U0 AT/ MR AL R 22 R s 2 R I SURER LS, AR RSB IR — M n B

RN BER R B . FERTIR IS, & 2T ARCEZ AR, HA Y
PR, (HRFEgd —Bint il gha, iRt 2ol vz, arm i igoce —3%,
JG=AMETR T — K. TER—RT, ARMAEICH AR 58 —FeR) (BTaME), B,
EATH e AR .

2.2 M Hbs

T A L, 0T DA R ORI A (L T M2 K 4 S B O LI R, DAL
S 2 S 4 1 45 SR A 005 T DA LA A) 22 O 45 4 R 0 22 4 0
R

'https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/condense_exg

16

https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/condense_exp

Initial: Neurons different After training: Clustered

@
)
'ij///

2.3 PpILAl

o SeMEIXM: AR LECRIS, M ZAERI IR (LI REAL & R, S RmAIX A Al
TEE AR/, R AR AR A AT DA — B 8 8 JE T Ll

fo(x) = fo" (x) = fo)(x) + Ve fow)(x) - (8(t) — 6(0)). (2.1)

—> O

K 2.1 HARREER IS .

o BERIX: SRR LEING, M ZTERIIR LI A REAL SR, MAE SR AIRS
ARFEREIRR, IR A RE] — DRI, R R AR AT

o WRFMIXBE: AT ARMERBER KR 0], W25 R B SR R AR LA T o

2.4 S

2.4.1 phepgEiR
AT — IR, B — AR, — MR R— MR . 9%
ST .
fo(w) =D aro(wiz +by),

k=1
Hrr,

17

2.4.2 BEWIR
SHRIRAKT I M ZE N GR A X B . ARSI G A RIaR 5 v -
o BUEWIIRIL: we ~ N(0,€21,)
o (WERIHAIL: b ~ N(0,£2)
o SHERIIRIL: a, ~ N(0,€?)

Hep, e =05, vy B DESE, HTERIR T2, WmEHPImEAanr N

TN T A TR A 00 25 s 1 090 25) B A R -
ARy B

class Linear (nn.Module):

def __init__(self, t, hidden_layers_width=[100],

input_size

=20, num_classes: int = 1000, act_layer: nn.Module =

O):

super (Linear, self).__init__Q)

self .num_classes = num_classes

self.input_size = input_size

self .hidden_layers_width = hidden_layers_width

self.t = t

layers: List[nn.Module] = []

self.layers_width = [self.input_size]+self.
hidden_layers_width

for i in range(len(self.layers_width)-1):

layers += [nn.Linear(self.layers_width[i],

self.layers_width[i+1]),

act_layer]

nn.RelLU

layers += [nn.Linear(self.layers_width[-1], num_classes,

bias=False)]

18

self .features = nn.Sequential (*layers)

self. _initialize_weights ()

def forward(self, x):

x x.view(x.size(0), -1)
x = self.features(x)

return X

def _initialize_weights(self) -> None:

for obj in self.modules():

if isinstance(obj, (nn.Linear, nn.Conv2d)):
nn.init.normal_(obj.weight.data, 0, 1 /
self.hidden_layers_width [0]**(self.

gamma))

if obj.bias is not None:
nn.init.normal_(obj.bias.data, 0, 1 /

self.hidden_layers_width [0]*x*(

self.gamma))

2.4.3 Bk
ARSI HCBEAN [T bR O P 5 PR RE R S o] R A R AR B 37 -

e ReLU: max(0, x)

@

. ef—e”
. tanh.ez+€1

1
14+e—*

o Sigmoid:

o zxtanh(z)

IR AR R T RIS R AR B R L
RISy B

19

def get_act_func(act_func):

if act_func == 'Tanh':
return nn.Tanh ()

elif act_func == 'RelU':
return nn.ReLU()

elif act_func == 'Sigmoid':
return nn.Sigmoid ()

elif act_func == 'xTanh':

return xtanh()
else:

raise NameError ('No such act func!')

act_func = get_act_func(args.act_func_name)
DI Y
fRRS B
model = Linear(args.gamma, args.hidden_layers_width, args.input_dim

, args.output_dim, act_func).to(args.device)

il FIR AR DA AN RN, IR R N (0, 75) A

2.5 SHEAESS

2.5.1 55— ARG TP S Bris b s ol

%% : condense.ipynb
SR DA —4E R BN UG B A

f(z) =0.2«ReLU(x — 1/3) + 0.2 x ReLU(—z — 1/3)

BATREE, WEARRERIAG T 22 (o) XYIZRad AR5 -

WEAFRR v E (W0 0.1,0.5 F1 1), Bf7Em I R ZER, WA ZITTRHE (5 [l FE
AR . T BT E BRI 2) R A A2) 1 AR T loss IR AR BT,

U E P S

T —4E A REL, IR A ReLU fE R 30E R AL, A& To)y AR) & -

%

20

AMAEITCSET (ar, wr) W PAST B — BT TFRHE by = wi/|lwellz F1—A
FORHI i TTIRAOARIE A = [an[l|lwrll2, BF (Ag, p)e RT—HERA, BT A T EIN,
wy, = (wy, by,) B THER . B, FAVEHEEA @, T x B [—m,) WA Q) KFR
Hoymm. B Q= arctan (),

N AR T EHREAS checkpoint Hrpi 8 TT Ty [l AR (A AURD
R v B

def get_ori_A(checkpoint):

weil, bias, wei2 = get_parameter (checkpoint)
weil = weil.squeeze ()

bias = bias.squeeze()

wel2 = wei2.squeeze ()

wei = weil / (weil ** 2 + bias **x 2)*x(1/2)

bia bias / (weil ** 2 + bias ** 2)**x(1/2)

*

torch.acos (wei)

A = wei2 * (weil **x 2 + bias ** 2)**x(1/2)

ori = torch.sign(bia)

return ori, A

W R s%E by,

2.5.2 B35 SYERREINRIG S BOBER S
%1 initial condense.ipynb
SRR 5 4R, 1 ZEd i) R AL

flz) = Z 3.5sin(bxy + 1)
k=1
Ho gl x = (v1, 22, 23, 24, 75), M [—4, 2] FECPREARE],
KA Adam flifb#%, PA Tanh pREVEAROEREL, #1755
XL b
T AE R, ToiE A AR AR AR F AT AL 2T RRAE . FEXFRF O T, FRATTAT AR H 4%
SRR e Al 1 A A o 2 () I A RN

21

0.15 0.3

0.3
0.10 0.2 0.2
> 0.05 > 01 > 0.1
0.009 True 0.0, True 0.0 True
— Test — Test — Test
00570 65 oo 0.5 1.0 0140 65 oo 05 1.0 010 Zos 0.5 1.0
(a) y=0.1 (b) y=0.5 (c)y=1.0
0.03 . .
ini feature ini feature
ini feature : « fin feature 0.03 fin feature
fin feature
S § § 0.02
£ ° ®0.01] , =
0.00 | caEEmsE—— l SEEEEE———
orientation - B B orien:ation ' ’ ’ - ¢ B orien"c)ation ' ’ ’
(d)y=0.1 (e) y=10.5 (fyv=1.0
B 2.2: RFER/MIIRIE T, PiJZE ReLU MZ8 1 T SL i 45 51 o
ASEAMPLEE: PS5 w Fl v BYRIZARLEE & LR
uTv
D(u,v) = a2 o) 2 (2.2)
MR AGZAAEE R 1, WISERT A) P47
N AR T T REREAS checkpoint FRZE ST AR SEAR(URE H AR
RS) B
def seperate_vectors_by_eigenvector(vector_group):
mask = np.linalg.norm(vector_group,axis=1) > 0
vector_group = vector_group [mask]
similarity_matrix = np.dot(vector_group,vector_group.transpose
O)
w,v = np.linalg.eig(similarity_matrix)
index = np.argmax(w)
tmpeig = v[:,index]
order_mask = np.argsort(tmpeig)

22

similarity_matrix = similarity_matrix[order_mask,:]
similarity_matrix = similarity_matrix[:,order_mask]

return similarity_matrix,order_mask

s SRR RN T TSRO IR, JATH% B AR AR (LB A W P e AR (X B2 4
FFAE) X SRR AT — e, PAIKEN R — 7 1a 4 1 T ATEARH B (0
BHUITE wy HIER

50

—0.25

—0.50

—0.75

-1.00

10 20 30 40 50
index

Kl 2.3: WIAHEER I R IZAMULE AT IR 4R

2.6 WRIESHEE

SR 9BUDL @ + tanh(x) A BRI PR A P RS i AL
BIEIGERL, TTOLE% — TR RO BT AR SRR 14 .

23

Chapter 3

T T

SRS V9 95 W

P
|~
P

Jupyter CHYATDAZE GitHub #50,

3.1 s A EAL Pzt

LA R AR A W, LG ML gy > B SR AR i 52 R 1 24 5 I SR RE AR i
FAVCRC, ARG UGG A A . SR, R BE2E: T 1 SE BRANEE AR 5 31X — BB T T 1 BH X
Fo B SHOOR B VI A AR ECR RS LT, TR 2 I 28 AT SR e 8 e It AL S 11032
ﬂc@ﬁb X — R E WIS F AR N” 2k (Generahzatlon Puzzle). ZAS2H S AEiE

17 RMAEIT” (Optimistic Estimate) FISHER , RARZX —IL W GrATHLH . R0
fr e AR RS T Hﬂ?ﬁ%d”%%ﬁéﬂ%@?ﬁﬁﬁ PRAL (BRIZZZbiR2E) WM
B/MEA R HAZ L AR PTG A -

L AEm AT URIRIIGR) BERERE, RIRES RO IR A e PR e AR AP I
2. TEIZIAR S XS A A T e 0
3. BT LR OUE S KA H B R SUUT 75 1) e/ VR A B

3.2 e Hbs

AL 0 B ARSI R AT BE A — 2L g T B i . S, AT
KRR HIE T FAF R A SRR A VR AL A AR R BT i FEAS R R S AR e, kA1)

'https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/Optimistic_Estimate

24

https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/Optimistic_Estimate

YL, A2, — LRy 5 R A PR AR LRI H A e BT R A Rl i SR LR AR
LR A 2 I SRR A A R R T S AR RS B AR LR A R

3.3 BB ILANl

TR L, BB fo 10060 A H ARBREL £ SRAERY n AR, BRI [+ N
T PRI WIAT, AT AT DA AR fo FORMHARRREL, B £ € F = {f(;;0)|0 € RV},
BRATEDUT , AT A B2 e o g e [l v it

minlz (f (x:;0) — f*(x:))°. (3.1)

6 n <
=1

FRGGCHA fo., HH O FRILSIIIIRTISEL. B2 TR TE LHRE:
Definition 3.3.1. BARSHH T mag 5 ES (XM BHFE) Op :={0]| fo=f",0 e RM}

TELSEAT . ARZSHESRRRIZRREN 0, R HAP R RRIZAMRE, BreA
e ZEMH UL, FATIAREIRIZ H s i . (B2 BRI, AR A 3 25
WTWE B BRE S, B B RIS LR IS A REAPREIZ AL 2 IERY SEIR B G . (HU2, ARIK
5 B IS OL, KSR A ERRAE— MRS, BATAIRERT DA EL S B TR H
NS

oG, PRI, SBPIEAAERIRE O, BUEF AR 0 5l bA
WE Bk (A2, H—, SHERRERRRMATTAGIRITTRAEMANER, St 04
FEAR AR AS WEEH . 5, HbndE ©p WIE BN 0. FEXY SIREPLRFRRT
B XA LAHER N 0. B ARG L@ AT AT . — WAL (R A SRiaa k)
SRR e H ARSI, R SCAnE

MWL FER RS ©p- 19— “&IL” & 67 M pIia L

AR f(50) = [(50) == *(-) + V for () (0 — 0) KAHIAE/NABIE N (6, €)
PG TR IREALE, b 0/ € O, WG, [By

1 i 2
— (s i) - 3.2
i 2 F@) 52

BoiE— AR, [(1 0) 1F @ WO — MR, A AR
rank(V for()") = dim (span {9, f(: 00},) AT HARILER: HAIHE

n = dim (span {00, f(9/)}?11)

25

IREARME [0 ZWHIMETRRIE %, FATRX AR, e T4
PNSECRGRE] —MUIRR KL, SRI5 5 X 2 R RO L 25 1] A 45K

Definition 3.3.2 (BESEMBINEL). & T 58T a9 R fo 53 E 07 c RM, HA4%
LSk
Ry, (0%) := dim(span{0y, f (6 };,) (3.3)

b span{di ()}, = {20, aigi() | ars. .., anr € R} R AR KMR 2 dim() 27 %
M R B R 1R) B MRS

Bl 1. 23 F—Af ey Z 2R f(x;0) =0 x,0,x € RY, EiET—AN 4305 0° 4, 42
A akagit Hidfe A R X TFTHEANASLK 0, RFFE AR 00, f(x;0) = 2, K6 HiXkdy
T F 2R R, 2R P R 1) G Y H

Ry, (0") = dim(span{0y, f(-; 0*)}%_) = dim(span{xz;}) = d. (3.4)

Definition 3.3.3 (BREMUBINRL). xF FHEZRHFRK f* € F, £F F:={f(;0)]|0 c RM}
AR BITN, A O =0 | f(50) = f*,0 € RM AT BARASE. RIS A:

Rfe(f*) ‘= min Rfe(g*) (35)

0+€0 4

BRR, FRATRR LB AR, TR T B AR B, IS5 SR R ey
FEARMILE .

3.4 bR

3.4.1 PBTHEFTEE

Lo X e fo AHARBREL f*, MROEE SOTERBIRRE H s ok RO 75 19 R WAL A B
Ryo(f7)

2. iR AR AR A

3.4.2 SRR E:
LM EBRBRECHRAE, B0 PR A S

2. XGRS

26

(a) B FHEE B NEOLELE TSRO L 1SS BULBAEKBELRI M e R R
I MM RE SR N, FET12% B 0 J2 S0 P 0 I P
(b) R AHEIE RTINS SR BRI e, HE AR R
i, BRI R
(c) APV SROABIRIAT: 2 ST R S0 AT T, KI2 5T R e
WS, /M2 FG AN
3. JEREAEA L T RIIIL FERB RO RCR , BINE (s
4. W S T AR B R B

5. SFENETI R RUAEAS BEAEA TR EE AT

3.5 T Al P B S
3.5.1 Bl
oG, FATHEE AR L KT SRR R
fu(x;0) = 0y + 0121 + 025, (3.6)

BoE HAReRECH f*(x) = 14z, SBBLRA M = 34024 HIRIEER 0" = [0;,01,05]" € R?,
H Ry (0') = dim (span {1, 21, 22}) = 3. HIL, XFAEM f* € Fu:={fu(;0)|0 € R*}, FA]
A Ry (f*) =My =3.

Bk, AT BRI TR SHACH fan(250) = 00 + 0101 + 020320, PRECESEAT)
IRIRFER Fao = Fu, (BERBESE FARRAELE . BB SRR AR BT . MRS HE
] R b0 R AR Ry -

| ¥,%=%=a
Ry (0") = dim (span{1, xy, 05z, 0525 }) = (3.7)
3, others.
BRSO SO My = 3. o MU Bq. (B.A), Rl 185 B BerE Jo s 5k
6] F R ECh

2, f*e{ap+ arri]ag, a1 € R}, (3.8)

3, f*e€{ao+ a1z + asxalas #0,a9,a1,as € R}.

RfNL (f*) = {

EARATTERM, AREAER fao R T BTSRRI RN Ry, (f7) = 2.

27

3.5.2 SEHGEIE

X AARRE [() = 1 + a1, FAV 0 B LA AF LR R U A, 2 T A
FEAS B NS F A e B R o

BB E S B bRk B, HBEECREN (-1, 1] 29 A FEHLREE
Rl)i Bt

& X B A B H
def f_star(x, a=1.0, b=0.0):
y=1+ax*x[:, 0] + b * x[:, 1]

return y

def generate_data(a, b, num_samples):
X = 2 * torch.rand(num_samples, 2) - 1
y = f_star(x, a, b)

return x, y

test_size = 1000
x_test, y_test = generate_data(1.0, 0.0, test_size)
test_dataset = torch.utils.data.TensorDataset(x_test, y_test)

XA EABLAAE Pytorch HHRgSEENT :

class NonLinearModel (torch.nn.Module):
def _ _init__(self):

super (NonLinearModel, self).__init__(Q)

self.theta0 = torch.nn.Parameter(torch.randn(1) * sigma)
self.thetal = torch.nn.Parameter(torch.randn(1) * sigma)
self.theta2 = torch.nn.Parameter(torch.randn(1l) * sigma)
self.theta3 = torch.nn.Parameter(torch.randn(1l) * sigma)

def forward(self, x):
return self.thetaO + self.thetal * x[:, 0] + self.theta2 =*
self.thetald * x[:, 1]

R RE T :

28

batch_size, num_epochs, 1lr = 1024, 10000, 1le-1
test_iter = torch.utils.data.Dataloader(test_dataset, batch_size,
shuffle=True)
train_ls_dict_NL = {}
test_ls_dict_NL = {}
for sample_size in range(1l, 4):
net = NonLinearModel ()
X_train, y_train = generate_data(l1.0, 0.0, sample_size)
train_dataset = torch.utils.data.TensorDataset(x_train, y_train
)
train_iter = torch.utils.data.DatalLoader (train_dataset,
batch_size, shuffle=True)
train_1ls_dict_NL[sample_size], test_ls_dict_NL[sample_size] =
train(net, train_iter, num_epochs, lr, try_gpu(), test_iter=

test_iter)

AT ASE AR BRI R AR R A AL iR ZE R A R A A AE— SR O B B, I
PR BIE TR SRREA F, SSCR AR X

import seaborn as sns
from matplotlib import cm
from matplotlib.colors import LogNorm, Normalize

set_figsize((3.5, 2.5))

sns.heatmap(np.array([[test_1s_dict[1][-1], test_1ls_dict[2][-1],
test_1ls_dict[3][-1]], [test_ls_dict_NL[1][-1], test_1ls_dict_NL
[2]1[-1], test_ls_dict_NLI[3]J[-1]]]1), cmap='RdBu', annot=False,
norm=LogNorm (vmax=1e0, vmin=1e-8))

plt.vlines(1, 1, 2, colors='yellow', linestyles='dashed')

plt.vlines(2, 0, 1, colors='yellow', linestyles='dashed')

plt.xlabel ('Sample size')

plt.ylabel ('Model')
plt.xticks([0.5, 1.5, 2.5], ['1', '2', '3'])

29

plt.yticks ([0.5, 1.5], ['Linear', 'Non-linear'])
plt.show ()
SR EERANT
©
()
£
-
Io]
©
o
=5
0]
£
<
o
2
1 2 3
Sample size

& 3.1: sCig 4k R

b, AT AR AN AR AR A 1, 2, 3 FEA TR Zhad e nl HlAk -

_ _ \ == Training_loss_3
10714 ~ -1 0§ 10714 _loss_:
\\~ 10 N Test_loss_3
1073 ~ -3 ~ -3
0 o 10 Sso 10
wn \\ wn \\ wn
8 107° 4 ~ 810754 ~ & 1075 A
3 S = \\\ = ~.
107 1077 S~ 10771 \
I i Training_loss_1 S == Training_loss_2 = . \\
10774 Test_loss_1 \x\ 107° A Test_loss_2 S~ 1071 ~3
T T T T T T T T T T T T T T T y
0 10 20 30 0 20 40 60 80 100 0 200 400 600 800 1000
Epoch Epoch Epoch

Kl 3.2 BRI, MZERIA T BIDAREAR 1, 2, 3 RHllZhad e,

3.6 Mo iR Y S

3.6.1

P B

HMHE—A fo = AB WAELIER M R, X MBRAEIRBR I M b A AT 55 oA 1

i, AT EARRZM n AR TE S = {((s4.), M) Y HIRE BRI M*,

H

>N

H (i,) FORRRE M BIATAISIR RS A0S, FATEME AR M R A B i,
FAVEA S M HAb 7 B

30

1071 X 10-1) == Training_loss_2 101 \\ — = Training_loss_3
\\\ T Test_loss_2 Test_loss_3
1073 s 1073 1 X 10-3 X
S
" S 3 » S
8 105 ~ g 10°° X 2 10-5 S
g1o So g 10 N S 10 S
~ -7 X S
107 S 10 N 1077 SR
0| T Training_loss_1 10-9 SN N
10~ "~ N -9 DS
Test_loss_1 ~. S 10 =
T

T
0

T
10

T
20

T
30

Epoch

40

T
0

T
20

T
40

T T
60 80

Epoch

T
0

T T T T T T
50 100 150 200 250 300
Epoch

Kl 3.3 AR, WAEIG A AR 1, 2, 3 Il gadte.
% P& AR B R PR 42 AT 55

=l

WERFEATEE B E DR T SRR fo = W € R, FE BT HIIA 10 06 LT e
H o MELATT H AR

(3.9)

n

1 *
min — > (Wi, - M;,)°,

o n
s=1

W H AT P TTR SREIBE, ARSI, PR) IRRk AR
ERUMRRATEE A fo = AB, A, B € R (IR pAHMERIEE, RIHBIE TR
S/ MERLT F

(3.10)

n

1 .
min — Z ([AB]isjs - Mz‘sjs)

6 n
s=1

2, (3.11)
Hr M* cR™? 0= (A,B), UK A B cR™ [AB], ;. (RFERLHE W = AB 54 i,
11, 5 js BIEdE . EXANHELMEEE Y, A W AT B 5 —HEaaiil g, FrAsiEl
AT REABRRRAR, AIMAEH SRR 3 MEA R Bz I X Rk 1 R
LR FRER SR R, FRATA] AR E AT M € RO [sRMAEA R (B
) -
Rg,(M*) = 2rpg-d — 134,

Hrp rage = rank(M*) & M* PHFERR.

Sebr b, EAGERARE AR B R, BB TR 2 x 2 BYSERE A, PR
RKEBBN 1, WAEHHERR AR RFIIEERL: A=w’, Hfu @2 —12x1H
g, v 22— 2x 1 WFmE. Wik, HE A ReE DA E w fil o BIoERFER. B
AU, w A 2 Mo, v BF 2 MrE, BIE 4 Mg R, BITAE—NRE LT
4, PUNRERIRATIE w " RIENELAS, v g8/DF-— DL, B A EFASUE,
WHEHER 2rd—1r2=2x1x2—-12=3.

(3.12)

31

EARERI R, XTFEEN d, SRFEA R rae SEINTEIN. SRR, xR d, #
H O(r) W HAREREARFEA SN O(r?), RXIAMSEE My = d* BUMEZ.

AT BARAERE S R —A 4 x 4 1Rk 1, 2, 3 4FE, HIRWREA R 2rd — r® 115845
ARSI 7,12, 15.

3.6.2 SIRSIE

XA HARE R, 103 BRI R G, DR N MR R R B H
PRER B RIR -
T AEHATE X AARRE R, A

4 06 1.8 0.8 4 06 1.8 08 4 06 18 08
8 12 3.6 1.6 10 2.7 5.1 36 8 27 51 3.6

M; = M = M = , (3.13)
8 12 3.6 1.6 8 1.2 36 16 8 22 26 1.6
6 09 2.7 1.2 6 09 2.7 1.2 6 09 2.7 1.2

WREZHAE: rank(M;) = 1,rank(My) = 2, rank(M7) = 3.

FMT5E SORMETT sATE Y 07 2ORAE, S RF—ATH 5, FEREE ATH 5, HRHE=
=2, e RE TS,

B SN ZR AT -
RS B

d = 4
num_inputs, num_outputs, num_hiddens = d, 4, d
loss = nn.MSELoss ()
class MatrixFactorization(nn.Module):
def __init__(self):
super (MatrixFactorization, self).__init__Q)
self.linear_stack = nn.Sequential(
nn.Linear (num_inputs, num_hiddens, bias=False),
nn.Linear (num_hiddens, num_outputs, bias=False)
)
def forward(self, x):
y = self.linear_stack(torch.eye(d, d))
return y[x.T.numpy().tolist()].reshape(-1, 1), ¥y

net = MatrixFactorization ()

32

R AR AT -

outputs_sample_ls = {}
theta_A_sample_ls = {}
theta_B_sample_ls = {}
batch_size, num_epochs, 1lr = 1024, 100000, 1le-1

M = M1
test_1s_M1 = {}
for i, 1ls in enumerate(sample_patterns):
features_train, labels_train = fix_sample (M, 1ls=1s)
train_dataset = torch.utils.data.TensorDataset(features_train,
labels_train)
def init_weights(m, sigma=1le-7):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.normal_(m.weight, O, sigma)
if m.bias:
nn.init.normal_(m.bias, O, sigma)
net.apply(init_weights)
train_iter = torch.utils.data.DatalLoader (train_dataset,
batch_size, shuffle=True)
train_ls, test_ls = train(net, train_iter, num_epochs, 1lr,
try_gpu())
AB = net(features_train) [1].detach().clone()
A = np.copy(list(net.parameters()) [0].detach().T)
theta_A_sample_ls[i+1]=(A)
B = np.copy(list(net.parameters()) [1].detach().T)
theta_B_sample_ls[i+1]=(B)
outputs_sample_1s[i+1]1=(AB)
frobenius norm
test_ls_M1[i+1] = np.linalg.norm(AB - M1.numpy(), ord='fro') /
d **x 2

A FATAT AT E MR AR AR L AR 2 AL D22 B A R AR (L E— K O 1 B, 9
P BAS TR A SRR A R B, SR ETR T

33

import seaborn as sns

from matplotlib import cm

from matplotlib.colors import LogNorm, Normalize

set_figsize((3.5, 2.5))

test_ls_array = np.array([list(test_ls_M1l.values()), list(
test_1ls_M2.values()), list(test_1s _M3.values())])

test_ls_array

sns.heatmap(test_1ls_array, cmap='RdBu', annot=False, norm=LogNorm(
vmax=1e0, vmin=le-4))

plt.vlines(6, 0, 1, colors='yellow', linestyles='dashed')

plt.vlines(11, 1, 2, colors='yellow', linestyles='dashed')

plt.vlines (14, 2, 3, colors='yellow', linestyles='dashed')

plt.xlabel('Sample size')

plt.xticks(np.array([0O, 2, 4, 6, 8, 10, 12, 14]1)+0.5, [1, 3, 5, 7,
9, 11, 13, 15], rotation=0)

plt.yticks([0.5, 1.5, 2.5], ['Rank-1', 'Rank-2', 'Rank-3'])

plt.show ()

STEGLERANT , AT DAR BB TGS 1 SRR A BRI 256 I i 1) fe/ IMEAS BESE W) £

[10°
- 107!

T 1072

Rank-3 Rank-2 Rank-1

1 3 5 7 9 11 13 15
Sample size

K 3.4: LGz R, ARSI AN ARMEEAE, colorbar RFEIZLIRZE.

34

3.7 PRI g% B S

3.7.1 BFNBE

B, BB E—NHAE m MEITHF R SIEEM A MY, HEERECH tanh(z) =
Zz_zjvT$%FV%m.h()::2;1aﬂamﬂw x) Fork, Hp e RLO = (0; € Ryw; €

RO o M EIHE M =m(d+1) M4, SitEas, SuMARS BREE - mn
%&J;k(DECES

Definition 3.7.1. WEFE k(f*): £ XATAET f* b ZREHRNTE, B f* T
WEEA k(f7) 8BRS ER, 12 R4 AT B F 0 ih 2 A 1 A

KEP—AAT AR SEREN m BRI AR £, FAESERE 0 < k(%) <meo [BRI
FEAEN

Ry, (f7) = K(f)(d + 1), (3.14)

T IRFEA R 6% 1)—FBGAR, JEEE k() MHEICRFIIR [+, RIS HMATHE
JCH) a Flw 428 0, BEF 0% Xt AR k(f)(d+ 1),

AR H R R ECH— 2T f* () = tanh(z 4+ 1), WIETEEER 1, XTI ILEE
B AR, IRULREA RT3

3.7.2 SHRERIE

AV MR SERE A 2 FIGERE A 20 1 FEMZE M LR G BARREL, LR S i TR AR A
Hhe KA B EAL .
P SEBLAN R -

RIS B

MEMEER, TEH 2
num_inputs, num_outputs, num_hiddens = 1, 1, 2
loss = nn.MSELoss ()
sigma = le-12 # M4 1L 5 % th 47 o 2
class NeuralNetwork(torch.nn.Module):
def __init__(self):
super (NeuralNetwork, self).__init__()
self .hidden = nn.Linear(num_inputs, num_hiddens)

self.activation = nn.Tanh()

35

self .output = nn.Linear(num_hiddens, num_outputs, bias=

False)

def forward(self, x):
return self.output(self.activation(self.hidden(x)))

XFTMZM LS, IR T IZALREERIR A REINE, FROTXM A BT 10 YRFl
PLET:, HXHZ A RZERCFE
Rl)i B

batch_size, num_epochs, 1lr = 1024, 10000, 1le-1
test_iter = torch.utils.data.Dataloader (test_dataset, batch_size,
shuffle=True)
train_1s _dict NN_2 = {}
test_1s _dict NN_2 = {}
def init_weights(m, sigma=1le-12):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.normal_(m.weight, O, sigma)
if m.bias is not Nomne:
nn.init.normal_(m.bias, 0, sigma)
for sample_size in range(1l, 10):
1 =0
num_trails = 10
for trail in range(num_trails):
net = NeuralNetwork ()
net.apply(init_weights)
X_train, y_train = generate_data(1.0, 1.0, 1.0, sample_size
)
train_dataset = torch.utils.data.TensorDataset(x_train,
y_train)
train_iter = torch.utils.data.DatalLoader (train_dataset,
batch_size, shuffle=True)
train_1ls_dict_NN_2[sample_size], _ = train(net, train_iter,
num_epochs, 1lr, try_gpu(), test_iter=None)

compute the test loss

36

net.eval()
with torch.no_grad():
X_test, y_test = x_test.to(try_gpu()), y_test.to(
try_gpu())
y_hat = net(x_test)
1 += loss(y_hat, y_test)

test_ls_dict_NN_2[sample_size] = 1 / num_trails

e ATRATTT DAIBTERE S 2 FITERE 20 A 190 2802 Ak 1 2 I RE A 15728 A i 7 — K T 94 T [
B, RS BE T R A R E, SR R X

import seaborn as sns

from matplotlib.colors import LogNorm, Normalize

set_figsize ((3.5, 2.5))

test_ls_array = np.array([list(test_ls_dict_NN_2.values()), list(
test_1ls_dict_NN_20.values())])

sns.heatmap(test_ls_array, cmap='RdBu', annot=False, norm=LogNorm/(
vmax=1e0, vmin=1e-4))

plt.vlines(2, 0, 1, colors='yellow', linestyles='dashed')

plt.vlines(2, 1, 2, colors='yellow', linestyles='dashed')

plt.xlabel('Sample size')

plt.xticks(np.arange(10)+0.5, range(l, 11), rotation=0)

plt.yticks ([0.5, 1.5], ['Width-2', 'Width-20'])

plt.show ()

3.8 SR LAL,

R I IA P TE S B T LT A ASE I (PR3 T TCEmise e AR &L f+ H A ki
BOE O = {0] fo = f,0 € RM}), (EARIIIAIL T B SR 0L A1 306 T 2 B Sy B
WOE: BTSN T I R SRR, RO RE, 4
HHL NFEHLIEEAL T % T SR SR RTa1k , AIRES BB AR M R . E kT
Sy RIASERRRAL (SRR R M R) R/ NIRRT RS R s Hk B X — SRR
BRI (24) tHREBEIT—ALBR .

37

o
<
§ =10
=
£ 1072
o
o
= -1073
o
=
o [| 104
1 2 3 456 7 8 910
Sample size
Kl 3.5: SLgmas R
3.9 fElk
L SPFRMEAMRITS, B M* e R JEB RIS B H
Ry, (M*) = 2rpped — 12, (3.15)

Hr rage = rank(M*) J& M* 8RR
2. & 5 x5 MR ARATSS, L8 RIIE/ IR T RBIA B R A B
3. BRI A AT 55 roUL 0B 1y B A4 (57 T3 A1] 52) S0 VRS2 H A eR BSOS R (AR A

B

Ho

4. WHILZRM AR AL, Sk 2 M 4O F AR R BT R AR A B S/ N T AR AS B

38

Chapter 4

T T o S RS 2 2D HERRY
GINEAS

Jupyter FSHY AT DAZE GitHub #50,

4.1 TR

AR, K F B (LLMs) frgk kM, FEAPMESS B T B ae g . X sepieii
BN NEVGIRZIMN_ BR300y, oy T 2R B 8, AP Pl B iy B DT T o 38
(IMO) 5l L PEFTiR AT, VAL AEDA M. ORINT, 224 B i S R AR AR 2R i o A 2
PIME 55 M RAFAE IR ME , o T FIESRTH LLMs (HERRRE Ty, DFFR L NEHERpL I 2 e 2. A
SH AT LLMs AT 7E AU AL B R, A B T S A R SR R 32 EATTHY
EZZi3Eh

ZBHEBAT S & — A 2R, IR ER G 2 MR AR LA A RE T - AE
XL, FAN1H B P HERAL 55) — R AUR AR S A8 DA K R 06 B R BRI 5%
B A, Flan, “[A] — [B]...[B] — [C1...[A]” f&hity, . RESEEMEIIC KW
HASCAR N ZS, AR iR “[C]7.

4.2 9% Hs

Lo llgR— A/ Transformer BAUASL L 2 HfiE 1

'https://github.com/xuzhiqin1990/understanding_d1l/tree/main/code/multi-step_reasoning_code

39

https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/multi-step_reasoning_code

2. “E U A AT AT S AR <R il A

4.3 sy

4.3.1 ZBPE AR

N T B Transformer FPRZ SRS, FATBOT T — RS2 S HEBTSF
i d(a) PR, HEEREEBTIIC—F . AT T token [—AMEREA R .
JG—A> token SR & token, FRAEZ AL RITFIRIEAT] E A KA BB AU 4521 .

(a)

-

FAET IR
A
r 1 ¢
o @6 (@) &) & & @ E 6 E M EEE E

w2 (¢ (2 () (@) () (o) (@) () (2) (@) () @) (@) () (o) — ()

TR

\ s J
(b) 4 EEER <L)
ENN
BAE BB
3 (o)
BA —q C : o, B

Bl 4.1 ZAAEREHRSEAN Transformer ZEH7RTE A

4.3.2 Transformer iy

T AT FH— LA 2 AR S 2k Transformer K280 (1 [Ld(b)) o 878 —A 4 AFEH
X e RO Jon BEFIKEE, d Riadohon, B IAR (token i ARIA B
A) EHAET XD = Xy + Xpon € RV, FR P ML HHEATF

AD(X) <mask(XW‘1(l)W’“(l)’TXT)
=0

Vi

) xR Z A0 (X)X O g

40

Hp o R softmax #ff, X© = Layernorm(X®). Hfiifkgkik, FA1HF WOWHO-T
Hy WO g WeOW DT 5 Weol, 45 1 2k R

Xao(l) — X(l) _i_quv(l)’ X(l+1) — f(l)(Xao(l)) _|_‘X‘a,o(l)7
Horr fO() FR5E | 2RI ZE M. R4 E (LRNERPRRERTIER) A
Y = argmaz(o(XPWP)) € R".
TEFATA UL S, FATBEE T AR/ d = 201, Bt RI4E RSN d, = 400, W, WE WY
Y RUBCE IAERE N dg = di = do = 64,
4.3.3 Bl Risy

ERATWBHRERE N, WRBAEIEIR TIRZ @A, IBATfEllpr B, BfEsn 1
HAl B IR S 2 LT Y token, BV RS ERRIET S, L, FRATRE R 5~
B4y 43AH N (In-Distribution, ID) 14345 4h (Out-of-Distribution, OOD) ., HA&3k{HE, FA]
7E X tokeny € [1,100] F1 tokengg € [101,200]. 43 NEHE (Traing Al Testr) & X HN5E
4 tokenyy AT, M THAMIHE (Testoon) MIRESA]THIAL S Z A tokengop. T
SR, AP ANR 4R (Traing) ARG (Testrn): X TUIZEAERHE
PREE [x4][xo]--- [x,1, FTA token #JE AR &/

Xp; — Xpi-1 (mod m) € G.
XTI P R HERREE, Frfy token i 2 -
Xoi — Xpi-1 (mod m) € {1,--- ,m}\G,
AL, AT m =51 G ={0,1,4} . FEMBLE T, FATHHRN LA "o
XFTEN S iR R Bl
1.4 BT

4.4.1 Bk

Z1THCEN) datas = get_data(args) H[IRJAz BEAS SEIG v T 55 ZEM Ba 4k
& N |

41

Train_ID

[10, 29, 51, 21, 16, 86, 29, 34, 21, 16, 86, 10, 10, 34]

[66, 87, 15, 50, 86, 96, 87, 86, 96, 97, 50, 66, 87, 96]

(6o, 64, 11, 10, 5, 60, 64, 23, 87, 11, 10, 5, 60, 23]

Test_1ID

[91, 98, 98, 40, 54, 91, 40, 22, 22, 19, 19, 56, 54, 98]

[38, 61, 61, 59, 59, 42, 90, 53, 41, 38, 42, 90, 61, 42]

[81, 79, 26, 69, 19, 36, 79, 26, 69, 61, 61, 19, 81, 26]

Test_00D

[95, 8, 186, 165, 140, 105, 8, 127, 127, 186, 105, 95, 105, 8]
(124, 182, 182, 109, 90, 87, 176, 90, 170, 124, 109, 176, 176, 87]
[88, 124, 135, 165, 124, 101, 122, 71, 71, 88, 101, 135, 122, 88]

4.4.2 WIRALESR . B R B IRIRES

ARSELEHRAVE 3)2 Transformer B8, BIRIZEM T AERSCHSIA . FRATHH T4
A2 myGPT() H5LH Transformer FJIIHE.
PGB . B R S AR IRES

446 AR
model = myGPT(args, device).to(device)

if args.checkpoint != 'none':

model.load_state_dict(torch.load(args.checkpoint))

PR EH

criterion = nn.CrossEntropyLoss(ignore_index=0).to(device)
#

optimizer = optim.AdamW(model.parameters(), lr=args.lr,

weight_decay=args.weight_decay)

42

EEESE T3
scheduler_cosine = CosineAnnealingLR(optimizer, T_max=int (args.

optim_T_max), eta_min=float(args.optim_eta_min))

multiplier R A¥ I E5ME¥ I EHLE, total_epoch ZFH oy A
M %K, after_scheduler T M E M HMEAMN ¥ I R EH %
scheduler = GradualWarmupScheduler (optimizer,
multiplier = float(args.optim_multiplier),
total_epoch = int(args.optim_total_epoch),

after_scheduler = scheduler_cosine)

4.5 SEHRES

4.5.1 Ei ek SR g

ARSI, FATEM T 300,000 ZAKHN 13 19 2 BHEBEIERINGE Transformer
B, WA RUE N 205, IFHE 400 il (epoch) WBUTL LK E] le-d, FHK
#fi cosine FEWMMEAE /LM 3600 DI R F] le-5. #H& K/ (batch size) BEH N
1000, fifbdshy AdamW ffbsds. FATHEM Pytoreh H A 2 50 s e KOk £48 hil EK /N
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1). [§ E:g@ﬁ BaNT
WIERIIL, BOASRR IS , IAARh =R SEERI., FTOADLECE], BU7EL 20 &
MM RIINGR)G . AR T mNRIZALRE ST, MB#iskis 17 iishizALhe

4.5.2 BRI BRI AL

T EUFHBPRAR Transformer 2 AMTANIHZL A MEFRRCIRAY , oM T34 I H AL PRI LE K500
SR B, AR WS BT, BN, RATHE token f— 52, 12
2L R U RIS e . 1, A AL > 0, IS R 5 AN AE 11
JRE AR, HARTEEMET A, FoRE SRR K, M
SBMHIE 2 MY token [T BELRIER:E, Fmli Ak R B15 .

el [R T Transformer BEIAUAE— NI A) TR0 B (G5 R2, 48— 29530 T 4D
WAL B R ATEO . 2 SRS R I 5 B B 54 token b Ff1]
AT DARE— S X B G AR (L), Hop2r 6 token JPes B2 (3 BLILE M1 2%
HE(EE, TTDATLECE], BB “HRFTRT MU AT token [i145AH] 2 B I 85 H: AR 5

43

(a) (b)

Accuracy Layer 3 [:]
100%
vo(0) vo(l g ..
e . s) (oW @+[c]) v+
Layer 2 D D
60%]\
e—e Traing (1w @+] H mIw>® [c]
40%
A4 Testyp Layer 1 D C]
1 1 1
0% B3 Testoop 1 attn]‘]‘ residual
Layer 0 ® @ BE .G

0 50 100 150 200

Epoch

K 4.2: (a) Transformer [ilZRUERRATZE. (b) Transformer SZPLLZ A HEFRME BN =K
IR T X i A S5 A S5 Bt L4 TR IMLEIS R E B, W% ik
ERES MG R

AT SR B LA Y 2 i
fr B2z P AU i B

import matplotlib.pyplot as plt

def plot_info_broadcast (input_seq, output_seq, attn_list,
key_points=[], key_flows=[], res_flows=[]):
fig = plt.figure(figsize=(6,5), dpi=100)

seq_len = attn_list[0].shape[0]
layers = len(attn_list) + 1

color_list = ['#9bbbel', '#08519C']

#EFNPNLG A4 L E, Bseqg lenM 8, XTI BEHNHFNIMLE
for i in range(layers):
for j in range(seq_len):
if len(key_points)== 0 or (i, j) in key_points:
plt.scatter(j, 4*i, c=color_list[j%2], edgecolors=
k',
s=80, linewidths=1, zorder=10)

else:

44

Outputseq 77 54 1 21 99 41 99 1 99 19 99 95 095

Layer3 © © O O

Layer2 © © O O

Layerl © © O O

Layer0 © © O O

Inputseq 99 1 21 99 38 95 1 38 19 21 95 23 1

Bl 4.3: SeRERY (R R B .

plt.scatter(j, 4*i, c='#999999', edgecolors='k',
s=80, linewidths=1, zorder=10)

KBattnWy B, BEHEEWERL, ottnfI Ak, ZHM
for i, attn in enumerate(attn_list):
for j in range(seq_len):
for k in range(seq_len):
if len(key_flows)== 0 or (i, j, k) in key_flows:
plt.plot([j, k], [4*i, 4x(i+1)], c='#3e6084d"',
lw=attn[k, jl*2, zorder=3)
else:

plt.plot ([j, k], [4%i, 4*(i+1)], c='#999999',

45

lw=attn[k, jl*2, zorder=1, alpha=0.8)

| residual By % %
for i, j in res_flows:
plt.plot([j, jl, [4xi, 4*(i+1)], c='#3e608d', ls='--', 1lw

=1, zorder=2)

4.6 gk
L isfTRCER jupyter AU, NZh—A/ NI Transformer ARSI Z S HERE
2. W HHSHORE, AR R/, weight decay FIASALAE BT HERH R A R0«
3. 147 1 PR R A, o NLENLE .

46

Chapter 5

2 BONIG I RHERR EE T 55 ma 925)

P
|~
Ph

Jupyter CHYATDAZE GitHub #50,

5.1 B HK

ARSI B TR TEAE 45 R S A AR S W ARHER R BEA TN ZR R AT ER T, AR IR A R/ N AL
RIS AEATS5 F2E T WIS S A 22 S o A 0l S TR BT 4G A R/ IR AR IS IZ AT 55 RN 52
W] o

5.2 fL55Hhib

TE PR 5 ST S RIS B T, FRA 60— SRR HUINA | LF T R A 45 B A T T
Y. R, IO RER: fi=2+5, h=a+1, i=2-2, fi=a—8, ¥
fTIATATE AL 16 AL ATBRSC. FENIGL R, 1 f1(fs) M o — 10 B50h « — 6, FE4ER f(f2)
HBcR. FEMIRI, MH AL fo(f) I, Ff17 TS transformer 1% AT A14 4557
DA R A2

() & — 10, 570 R BBk

(i) & — 6, FFEIEBURI fa(fs) WLST,

(i) AHLIN, HEEIZA R — B L5

1 https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/book_jupyter_composition_task

47

https://github.com/xuzhiqin1990/understanding_dl/tree/main/code/book_jupyter_composition_task

5.3 SEUSVOE

T TSR 4l B 0 2 b SCHEATIIE, 3% AT 45 S b7 52 . PeIb st it
D S ok LA T B A e B

(a) $HRLERE (b) HREIATEERY IR R IR
SFERET 1ANTE SRS R IRRIHBE RS BADFRE =&
IR FEIREN
1[1]:[+10 281 1 38
- albl=|bla
1] 102 431 2 a9 Ty
NAOE , 56 4 4 40
N : MiZ2: NRERMMSIRSEIAARE
81¢ MBI GEP R HEH R ES 62 3 4 56 ! SRR SAAR
. 3|: : 4 -B
4]: : s243 2
NSRBI PR S ‘—1—‘
> i AR
79 - lQ &&Eﬁﬂ%{f}iﬂg?ﬁ AR sa.ﬂ N NEHES o
EISEPHMOERERES EIGEPHMOIEHBE R ES KB SSEPRERES
RER (FEHRESHIRToken) BAEH FE5EIREHAI B token

Bl 5.10 SCERBEE LA KR LB (4, 3) BYRTREMEAIALE] . (a) BEAnl: 2 B4 (D1, 2, 3,
4) X RAFEREAZIE . T YIZREINE], 16 ATATREREN P 14 Ao C T TR, — X
(3, 4) BT T ARMEWTW, FT—XF (4, 3) MEARMALSRE . 1 WAFILITE—A
XF L AR Z BTG S B H A28 5 FARTC KM T H o 5 2R I (4, 3) 19
frth, XIPRT R BN (b) RIS (4, 3) BIPIRIERENLE: 2 I3 FRaiy (Bl 1)
B AT SRR (BLE] 2).

5.3.1 WS A B
MU UL AR f(X) (R — R & AR
f@r, ..o mn) =g (g(zims)i @), HAF 2,24 € A (5.1)

XH, AP X = (21,...,2,) W& n A token, fifRH A ={a1,a2,...,a;} PHEE, H
&g token a, € A XY REL g(z5ar). RN X, U WESOTRET A, Bl
Tiy Tip1 € Ao AR AT Z HIHY token FR R, S T RIMATS, FATRFPIHIR G
BOCHE f(rimws, wig1), PASRVAEEXS (24, 2aq0) PRI 210

FERXI LA, ATBEERSR G A = {1,2,3,4} . RO B R 19 R 8

g(z; 1) =245, gx;2)=x+1, gx3)=x-2, g(x;4) =z-28. (5.2)

48

5.3.2 Btk

TERX TR, FATEAPAEE (RD 1, 2, 3, 4) A 20-99 i 5 B aR A i A KL
Wt BAFIVESE— T — AT (B SR AR Z B IT) Rl SRR I, RS 15
HHEER. ARPIRIZE T 16 A5, FRATRIGE 55 TR e PoX Lo iy — 4> T el 4
AL U ZR AR5 -

BOATEOLT, A Anse P A & eR Ak P ARttt BT T SCAOEIRTIILS . R4
AR % S 14 (L5 U1 2 s A 0 S) 2 Tk

BARGE SBSHBCEIS , FATR A S R RN ZREE . ML FE L], R4k,
ilEmv S C T Ut

Listing 5.1: FCE#SHOBE R L OE

dname = ['13_xmO', '23 xm0O', '43 _xmO', ...]

dtrain = [0, O, O, O, O, O, 1, 1, ...]

dshow = [0, 0, 1, 0, O, 1, 0, O, ...]

dpercent = [1, 1, 1, 1, 1, 1, 9, 9, ...]

parser = argparse.ArgumentParser (description="Pytorch distributed")

parser.add_argument ('-data_size', '--data_size',6 type=int, default
=900000)

parser.add_argument('-sl', '--seq_len', type=int, default=9, help='
FFKED

WL data.py SHFEHEH) get_data() eRECRA LR TR EEE, AT :

datas = get_data(args)

print ('datasize:', len(datas['44_xel']), 'example:', datas['44_xel'
100D

print ('datasize:', len(datas['11_xm0']), ' example:', datas['1l1l_xmO
'1001)

print ('datasize:', len(datas['24_xel']), ' example:',6 datas['24_xel
'1001)

AT

datasize: 50625 example: [48, 23, 85, 4, 4, 80, 57, 86, 50, 69]
datasize: 5625 example: [41, 42, 62, 48, 1, 1, 24, 42, 88, 58]

49

datasize: 50625 example: [37, 44, 46, 87, 63, 30, 2, 4, 58, 23]

5.3.3 HIRFRML Y

T (a, az), FRATES H =R T HBUN M, 00 () BE L.

HEWTWES : 55XF (a1, a2) WIHEE B AR S PR G R A3, B M(a, a0 (2) = f(25 01, 02)

EHEWWSE: H%F (a1, a2) BIFEE HARBU SRR G REBCR—30, B Mg, .00 () #
f(z;a1,a2).

SF BRI 555 (a1, az) PIFE 2 H AR5 HXTFREXT (a2, ar) B —2, B M4, a0 (2) =
M ag,ar) ()

T AABETRAN) 3 13 S A ST AT A HE T (ARHERT, XIFR) WRSSRERT R, FAIRR X
BB g — Al (AEHEWT, XIFR) .

5.3.4 Z4k

Bndeiil o> A 2RS0T AR Az At

Bedla Bzt o BRIz AR INRSE . X N INREE b, AR (RIS)
TEIZRAE AR A H L

1155 Lzt (L55 BRIz ALROm TR Wit rydl, BITEIZRME b 3ch i alausl, RA+E
9 H AR -

5.4 LR

5.4.1 FIRAEREVE

HITFRATH B B @B R R TR, PRI 2 e A I SR A R 4
R Ry, FATFHZBUC TR A T default HIK(HE.

parser.add_argument('-sr', '--std_rate', type = float, default =

0.1, help="#FHEZHF K"

FM%H =AEFERAE: 0.1, 0.5, 0.8, AWK . PRI S/ MR RE .

5.4.2 Y%; Transformer Ry

TE train.py SCPFHE X train O &L, TR, AR AT (RARARS DL train.py
)

50

train(args, datas)

FLARYL, Ao s . BRI K s A=

train_data_loader = get_train_data(args, datas)

args.num_batches = len(train_data_loader)

BT A BB E XN W data_loader

data_loader_group = get_data_loader_group(args, datas)

device = torch.device("cuda:6" if torch.cuda.is_available() else "

cpu ")

my_logger = Log(f'{args.working_dirl}/train_log.log')

#* BB ELH 8
model = myGPT_specific(args, device).to(device)
if args.checkpoint != 'none':
model.load_state_dict(torch.load(args.checkpoint, map_location=
device))
my_logger.info(f'Total parameters: {sum(p.numel() for p in model.

parameters())}"')

criterion = nn.CrossEntropylLoss(ignore_index=0).to(device)

optimizer, scheduler = get_optimizer (model, args, **kwargs)

MM X} train step() PREGHEATIEESR:

def train_step(args, model, train_data_loader, optimizer, criterion
, device, clip=1, scheduler=None):
model.train()
epoch_loss = 0

total_samples = O

51

for i, (dec_inputs, dec_outputs) in enumerate(train_data_loader
):
optimizer.zero_grad()
dec_inputs, dec_outputs = dec_inputs.to(device),
dec_outputs.to(device)

outputs, _ = model(dec_inputs)

batch_size = dec_inputs.size(0) # 3k Bl ¥ 7] #t %k 7 L Fr K /N

total_samples += batch_size

loss = criterion(outputs.view(batch_size, args.seq_len,

args.vocab_size) [:,-1,:], dec_outputs[:,-1].view(-1))
epoch_loss += loss.item() * batch_size # ¥ # 4 F UH %k A

/N

loss.backward ()

torch.nn.utils.clip_grad_norm_(model.parameters(), clip)

optimizer.step()

if scheduler is not None:

scheduler.step ()

return epoch_loss / total_samples # & [Fl F ¥ # %

FE— RN, RONFTEEUIIRURIE, B2 =M RIEIINGEE, T
PR,

5.4.3 Al p0IG AL BRI HE R £ MA

E X last_word_acc_reasoning () PR AL A [R] W] G4k K/ IMERLAE A DLAT- 45 F1 E. DL
45 ERHERTERI R, & X last_word_acc_symmetry () BRERPPANA [FIHI LG M/ MERIAE

52

ARWALSSFIC WAE S5 LR ERs 2. AT

def

def

last_word_acc_reasoning(args, checkpoint, data_loader):
device = torch.device("cpu")

model = myGPT_specific(args, device).to(device)

model.load_state_dict(torch.load(checkpoint, map_location=
device))

model.eval ()

correct = 0

total_samples = O

for i, (dec_inputs, dec_outputs) in enumerate(data_loader):
dec_inputs, dec_outputs = dec_inputs.to(device),
dec_outputs.to(device)

outputs, _ = model(dec_inputs)

batch_size = dec_inputs.size(0) # 3 Bl 3% al #L &k & £ F5 K />

total_samples += batch_size

outputs = outputs.argmax(axis=-1).view(-1, args.seq_len)
correct += (outputs[:, -1] == dec_outputs[:, -1]).sum().
item ()

return correct / total_samples

last_word_acc_symmetry(args, checkpoint, data_loader):
device = torch.device("cpu")

model = myGPT_specific(args, device).to(device)

model.load_state_dict(torch.load(checkpoint, map_location=
device))
model.eval ()

correct = 0

53

total_samples = O

for i, (dec_inputs, dec_outputs) in enumerate(data_loader):
dec_inputs, dec_outputs = dec_inputs.to(device),
dec_outputs.to(device)

outputs, _ = model(dec_inputs)

batch_size = dec_inputs.size(0) # 3k B Y 7] #t k& L Fr K /N

total_samples += batch_size

outputs = outputs.argmax(axis=-1).view(-1, args.seq_len)
correct += (outputs[:, -1] == dec_outputs[:, -1]+4).sum().
item()

return correct / total_samples

BT R, FATMNK =B BITEN R i G55 E (0 N) A RIS

R G b (4 ask) ZAtk.

A1 HIPA data_loader_group['12_xel'], data_loader_groupl'43_xel'l fXFE/1
B RN T AN o R, T o, FRAT BIBIFSE AR A A AN DASE Wik

FURRERR . FATEN TR AU I T =R At il

data_loader_group = get_data_loader_group(args, datas)
model_large_init='./result_0.1/model/model_209.pt'
model_middle_init='./result_0.5/model/model_20.pt'
model_small_init='./result_0.8/model/model_209.pt'

small_init_unseen_acc=last_word_acc_reasoning(args,
model_small_init, data_loader_group['43_xel'])
middle_init_unseen_acc=last_word_acc_reasoning(args,
model_middle_init, data_loader_group['43_xel'])
large_init_unseen_acc=last_word_acc_reasoning(args,
model_large_init, data_loader_group['43_xel'])
small_init_unseen_acc_symm=last_word_acc_symmetry(args,

model_small_init, data_loader_group['43_xel'])

54

middle_init_unseen_acc_symm=last_word_acc_symmetry(args,
model_middle_init, data_loader_group['43_xel'])
large_init_unseen_acc_symm=last_word_acc_symmetry(args,
model_large_init, data_loader_group['43_xel'])
small_init_seen_acc=last_word_acc_reasoning(args, model_small_init,
data_loader_group['12_xel'])
middle_init_seen_acc=last_word_acc_reasoning(args,
model_middle_init, data_loader_group['12_xel'])
large_init_seen_acc=last_word_acc_reasoning(args, model_large_init,
data_loader_group['12_xel'])
print ('small_init_unseen_rsn_acc:', small_init_unseen_acc)
print ('middle_init_unseen_rsn_acc:', middle_init_unseen_acc)
print('large_init_unseen_rsn_acc:', large_init_unseen_acc)
print ('small_init_unseen_sym_acc:', small_init_unseen_acc_symm)

print ('middle_init_unseen_sym_acc:', middle_init_unseen_acc_symm)

print('large_init_unseen_sym_acc:', large_init_unseen_acc_symm)
print ('small_init_seen_acc:', small_init_seen_acc)

print ('middle_init_seen_acc:', middle_init_seen_acc)
print('large_init_seen_acc:', large_init_seen_acc)

B AT ARG A RO AN [et) 2 A AR 1l 22 -

acc_list=[[large_init_seen_acc, middle_init_seen_acc,
small_init_seen_acc], [large_init_unseen_acc_symm,
middle_init_unseen_acc_symm, small_init_unseen_acc_symm], [
large_init_unseen_acc, middle_init_unseen_acc,

small_init_unseen_acc]]

fig = plt.figure(figsize=(12, 8))

format_settings(left=0.12, right=0.94, bottom=0.15, top=0.95,
major_tick_len=10, fs=24, lw=6, ms=12.5, axlw=2.5)

10

plt.rcParams['ytick.major.pad'] = 5

plt.rcParams['xtick.major.pad']

55

plt.rcParams['axes.spines.top'] = False

plt.rcParams['axes.spines.right'] = False

ax = plt.gca()

labels = ['seen anchors', 'unseen anchors symmetry', 'unseen
anchors reasoning']
color_list = [(218/255, 240/255, 178/255), (146/255, 212/255,
185/255), (30/255, 128/255, 184/255)]
width = 0.15
for i, data in enumerate(acc_list):
ax.bar(np.arange(len(data))*0.7-0.7*width+i*width, data, width=
width,
label=labels[i], color=color_list[i],edgecolor="'black',
linewidth=2)
ax.yaxis.grid(True, linestyle='--', linewidth=0.7, color='gray',
alpha=0.7)
ax.set_axisbelow(True)
ax.set_xticks ([0.05,0.75,1.45])

ax.set_xticklabels(['large init', 'middle init','small init'])

ax.set_xlabel('init scale', labelpad=10)

ax.set_ylabel('accuracy')

ax.legend(loc=(0, 1.02), frameon=False, ncol=2)

HARIE T B BR , ATAE SRR AR A A s Bz ARk 22, iRt 5/
BRI T Sy A A B IZ A BE Ty SRTIN T S W AR AR AL At fi o) 27 ST X R
ff, BCAZE AW, WX T/ MR, Mg i) 27 > FEWT AR, B BB o

56

1 seen anchors
1 unseen anchors symmetry

1.0

o
o0

o
o

accuracy

o
I

0.0

1

Bl unseen anchors reasoning

large init

middle init
init scale

small init

Bl 5.2: N [RIRIAG A ROBEREAAE AN) Kt _E Az AL PR

o7

%25 3CHik

58

	实验手册：频率原则的验证
	神经网络基本概念
	实验背景
	实验目标
	理论基础
	离散傅里叶变换（DFT）
	频率原则

	实验步骤
	数据生成与预处理
	构建模型
	模型训练及测试过程
	相对误差的计算
	实验结果分析与可视化

	任务

	实验手册：参数凝聚现象的验证
	实验简介
	实验目标
	理论基础
	实验原理
	神经网络结构
	参数初始化
	激活函数

	实验任务
	任务一：不同初始化下神经网络参数演化情况
	任务二：高维函数的初始参数凝聚实验

	课后任务和思考

	实验手册：乐观估计的验证
	实验背景：过参数化下的泛化
	实验目标
	理论基础
	实验步骤
	理论计算阶段
	实验验证阶段

	简单的回归模型实验
	理论计算
	实验验证

	矩阵分解模型实验
	理论计算
	实验验证

	神经网络模型实验
	理论计算
	实验验证

	实验总结
	作业

	实验手册：语言模型实现多步推理的机制探究
	实验背景
	实验目标
	实验准备
	多步推理数据集
	Transformer模型
	数据集的划分

	实验核心代码
	数据生成
	初始化模型、损失函数与优化器

	实验结果
	数据生成与模型训练
	模型信息流可视化

	作业

	参数初始值对推理能力影响实验手册
	实验目的
	任务描述
	实验设定
	双锚点复合函数
	数据生成
	锚对的映射类型
	泛化

	实验步骤
	初始化尺度设定
	训练Transformer模型
	不同初始化模型准确率测试

