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Summary

This section focus on generalization of deep Learning and how to utilize frequency perspective to
study generalization.
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1 Fourier analysis

1.1 Definition

The conventional definition of Fourier transforms (FT) in signal processing is as follows.

• Continuous FT (CFT)

F [g(x)](ξ) =

∫ ∞
−∞

g(x)e−2πiξx dx, F−1[ĝ(ξ)](x) =

∫ ∞
−∞

ĝ(ξ)e2πiξx dξ (1)

• Discrete-Time FT (DTFT) (− 1
2∆
≤ ξ ≤ 1

2∆
, x = j∆, j ∈ Z)

FDTFT,∆[g(x)](ξ) = ĝDTFT (ξ) =
∞∑

j=−∞

g(j∆)e−2πiξj∆ (2)

F−1
DTFT,∆[ĝ(ξ)](j) = ∆ ·

∫ 1
2∆

− 1
2∆

ĝDTFT (ξ)e2πiξj∆ dξ (3)

• Fourier Series (FS) (−T
2
≤ x ≤ T

2
, ξ = k

T
, k ∈ Z)

FFS,T [g(x)](k) = ck =
1

T
·
∫ T

2

−T
2

g(x)e−2πitk/Tdx F−1
FS,T [ck](x) =

∞∑
k=−∞

cke
2πixk/T (4)

The {ck}k∈Z above is called Fourier coefficients.
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• Discrete FT (DFT) (j, k ∈ 0, 1, . . . N − 1)

FDFT
[
{aj}N−1

j=0

]
(k) =

N−1∑
j=0

aje
−2πikj/N F−1

DFT

[
{bk}N−1

k=0

]
(j) =

1

N

N−1∑
k=0

bke
2πikj/N (5)

Note that if the sampling interval is finite-width, then there is a smallest frequency (discrete
frequency); if the sampling is discrete, then, there is a maximum frequency (finite-interval frequency
range). That is, band limite in one domain equivalent to discretize in another domain.

1.2 From Continuous FT to Discrete-Time FT (or Fourier Series)

FDTFT,∆[g(x)](ξ) =
∞∑

j=−∞

g(j∆)e−2πiξj∆ (6)

=
∞∑

j=−∞

∫ ∞
−∞

ĝ(ξ′)e2πiξ′j∆ dξ′e−2πiξj∆ (7)

=
∞∑

j=−∞

∞∑
M=−∞

∫ M
∆ + 1

2∆

M
∆ −

1
2∆

ĝ(ξ′)e2πiξ′j∆ dξ′e−2πiξj∆ (8)

=
∞∑

j=−∞

∞∑
M=−∞

∫ 1
2∆

− 1
2∆

ĝ(ξ′ +
M

∆
)e2πiξ′j∆ dξ′e−2πiξj∆ (9)

Define ĥ(ξ′) = ĝ(ξ′ + M
∆

),

FDTFT,∆[g(x)](ξ) =
1

∆

∞∑
M=−∞

∞∑
j=−∞

(
∆

∫ 1
2∆

− 1
2∆

ĥ(ξ′)e2πiξ′j∆ dξ′

)
e−2πiξj∆. (10)

By using inverse DTFT,

FDTFT,∆[g(x)](ξ) =
1

∆

∞∑
M=−∞

∞∑
j=−∞

h(j∆)e−2πiξj∆. (11)

By using DTFT,

FDTFT,∆[g(x)](ξ) =
1

∆

∞∑
M=−∞

ĥ(ξ) (12)

=
1

∆

∞∑
M=−∞

ĝ(ξ +
M

∆
). (13)

Therefore, for any ĝ(ξ) is a periodic function. There is not meaning to discuss frequency which is larger
than M

2∆
. In the discrete sampling, the signal of frequency ξ ∈ [− 1

2∆
, 1

2∆
] is the summation of many

frequency of the original singal. This is the aliasing phenomenon.
The Nyquist Sampling Theorem states that: A bandlimited continuous-time signal can be sampled

and perfectly reconstructed from its samples if the waveform is sampled over twice as fast as it’s highest
frequency component.
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Homework Prove the signal reconstructed from the inverse of DTFT in Eq. (3) is the same as the
true function at xj = j∆.

Idea: denoted the reconstructed signal by DTFT as gDTFT ,

gDTFT (x)− g(x) = ∆ ·
∫ 1

2∆

− 1
2∆

ĝDTFT (ξ)e2πiξj∆ dξ −
∫ −∞
−∞

ĝ(ξ)e2πiξj∆ dξ,

where

∆ · ĝDTFT (ξ) =

∞∑
M=−∞

ĝ(ξ +
M

∆
). (14)

The following Fig. 1 shows an example.
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图 1: CFT v.s. DTFT. Blue curve in (a)(c) is the original signal (CFT). Green curves are the sampled
Frequency domain signal (c) and reconstructed continuous signal (a).

1.3 Decay rate

Consider the Fourier transform of the following δ(x) function,

δ(x) =

∞ x = 0

0 x 6= 0
and

∫
δ(x)dx = 1. (15)

Using Eq. (1),

F [δ(x)](ξ) =

∫ ∞
−∞

δ(x)e−2πiξx dx = 1. (16)

The FT of δ(x) is a constant, which does not decay. Consider the Heaviside function

H(x) =

1 x ≥ 0

0 x < 0
. (17)

The derivative of H(x) is δ(x). The FT is as follows

F [H(x)](ξ) =

∫ ∞
−∞

H(x)e−2πiξx dx, (18)

and
H(x) =

∫ ∞
−∞

Ĥ(ξ)e2πiξx dξ. (19)
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Take derivative of the above equation at both sides,

δ(x) =

∫ ∞
−∞

2πiξĤ(ξ)e2πiξx dξ =

∫ ∞
−∞

δ̂(ξ)e2πiξx dξ. (20)

Then, we have
Ĥ(ξ) =

1

2πiξ
. (21)

Therefore, for the Heaviside function, its Fourier component’s amplitude decays as 1/|ξ|. Similarly, we
can prove that if a function is continuous up to α order, its its Fourier component’s amplitude decays
as 1/|ξ|α+2. Note the integration of H(x) is continuous, we denote α = −1 for H(x).

2 Introduction of F-Principle

Deep neural networks (DNNs) have achieved tremendous success in many applications, such as
computer vision, speech recognition, speech translation, and natural language processing etc. However,
DNN sometimes fails and causes critical issues in applications. For example, in the application of auto-
drive, DNN can recognize a stop sign as a speed limit sign due to an invisible perturbation. Such a
“black-box” system has permeated many aspects of daily life and important industries. It is as much
urgent and important to provide a satisfactory interpretation for DNN as the understanding of nature.

A key to understand DNNs is to study the error of DNNs in learning problems. The error can be
decomposed into three types as follows. Approximation error measures the distance between the target
function and the best function in the hypothesis set. According to the universal approximation theorem
[1], a sufficient wide DNN with at least one hidden layer can approximate any function to a desired
precision. Note that the activation function cannot be polynomial. Generalization error measures the
distance between the best function in the hypothesis set and the best function learned by the DNN
based on given samples. Note that a large DNN is often able to represent the target function, i.e.,
the approximation is close to zero, and the best function in the hypothesis set is often unknown. The
generalization error often refers to the distance between the target function and the function learned by
the DNN based on given samples. Optimization error measures the distance between the best function
learned by the DNN based on given samples and the function learned by the DNN based on the given
algorithm and given samples.

A large DNN is often able to represent the target function, i.e., the approximation is close to zero.
Although the optimization problem of deep learning is highly non-convex, emiprical studies found the
gradient-descent-based methods often find the global minimum, i.e., optimization error is close to zero.
However, the generalization error varies in different training algorithms and datasets. It remains an
problem to study the generalization error of deep learning.

One interesting problem is that the generalization performance seems violate the traditional wis-
dom, that is, DNNs often generalizes well although the number parameters is much larger than the
number of samples. Traditional statistical theory suggests that as the model complexity (e.g., the
parameter number) increases, the model will finally overfit the training data, i.e., generalize badly.
For example of Runge’s phenomenon, a low-order polynomial function may not perfectly fit the noisy
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training data well, but it may recover the true function well; however, a very high order polynomial
function often fit the noisy training data well, but it osicalltes significantly, which often leads to a very
bad generalization. In the case of DNN, although the DNN is capable of fitting the training with highly
oscillated function, it often learns the data by a relative flat curve [5]. Such one dimensional case is
similar to the high dimensional real problem [11].

This oscillation and flatness from low-dimensional examples inspires us to study the training process
of DNNs in the Fourier domain. A Frequency Principle (F-Principle) as follows [6, 9, 3]:

DNNs often fit target functions from low to high frequencies during the training.

[6] and [3] independent found the F-Principle (“spectral bias” in [3]) with numerical simulations on
synthetic data and very limited real data. [10] subsequently propose a theoretical analysis framework
for one hidden layer neural network with 1-d input, which illustrates the key mechanism underlying
the F-Principle—the activation function (including tanh and Relu) in the Fourier domain decays as
frequency increases. examined the F-Principle through classification problems on benchmark datasets
with cross-entropy loss with a projection method and solving a Poisson equation with a variation loss
function. [7] also proposes that DNN can be adopted to accelerate the convergence of low frequencies
for scientific computing problems, in which most of the conventional methods (e.g., Jacobi method)
exhibit the opposite convergence behavior—faster convergence for higher frequencies. [9] systematically
summarizes some works in [10, 7] and push further the empirical study of the F-Principle in more details.
Especially, [9] proposes a Gaussian filtering method which can verify the F-Principle in high dimensional
datasets for both regression and classification problems and utilize the F-Principle to understand both
the success and failure of DNNs in different types of problems.

There have been much progress on the F-Principle since it is found recently. The study of the
training process from the frequency perspective makes important progress in understanding the strength
and weakness of DNN, such as generalization and converging speed etc., which may consist in “a
reasonably complete picture about the main reasons behind the success of modern machine learning”
([4]).

3 Empirical study of F-Principle

3.1 one-dimensional experiments

To illustrate the phenomenon of F-Principle, we use 1-d synthetic data to show the evolution of
relative training error at different frequencies during the training of DNN. we train a DNN to fit a
1-d target function f(x) = sin(x) + sin(3x) + sin(5x) of three frequency components. On n = 201

evenly spaced training samples, i.e., {xi}n−1
i=0 in [−3.14, 3.14], the discrete Fourier transform (DFT) of

f(x) or the DNN output (denoted by h(x)) is computed by f̂k = 1
n

∑n−1
i=0 f(xi)e

−I2πik/n and ĥk =
1
n

∑n−1
i=0 h(xi)e

−I2πjk/n, where k is the frequency. As shown in Fig. 2(a), the target function has three
important frequencies as we design (black dots at the inset in Fig. 2(a)). To examine the convergence
behavior of different frequency components during the training with MSE, we compute the relative
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(a) target function (b) relative error

图 2: 1d input. (a) f(x). Inset : |f̂(k)|. (b) ∆F (k) of three important frequencies (indicated by black
dots in the inset of (a)) against different training epochs.

difference between the DNN output and the target function for the three important frequencies k’s at
each recording step, that is, ∆F (k) = |ĥk − f̂k|/|f̂k|, where | · | denotes the norm of a complex number.
As shown in Fig. 2(b), the DNN converges the first frequency peak very fast, while converging the
second frequency peak much slower, followed by the third frequency peak.

3.2 Frequency in high-dimensional classification problems

The concept of “frequency” is central to the understanding of F-Principle. In this paper, the
“frequency” means response frequency NOT image (or input) frequency as explained in the following.

Image (or input) frequency (NOT used in the paper): Frequency of 2-d function I : R2 → R
representing the intensity of an image over pixels at different locations. This frequency corresponds to
the rate of change of intensity across neighbouring pixels. For example, an image of constant intensity
possesses only the zero frequency, i.e., the lowest frequency, while a sharp edge contributes to high
frequencies of the image.

Response frequency (used in the paper): Frequency of a general Input-Output mapping f . For
example, consider a simplified classification problem of partial MNIST data using only the data with
label 0 and 1, f(x1, x2, · · · , x784) : R784 → {0, 1} mapping 784-d space of pixel values to 1-d space, where
xj is the intensity of the j-th pixel. Denote the mapping’s Fourier transform as f̂(k1, k2, · · · , k784). The
frequency in the coordinate kj measures the rate of change of f(x1, x2, · · · , x784) with respect to xj, i.e.,
the intensity of the j-th pixel. If f possesses significant high frequencies for large kj , then a small change
of xj in the image might induce a large change of the output (e.g., adversarial example). For a dataset
with multiple classes, we can similarly define frequency for each output dimension. For real data,
the response frequency is rigorously defined via the standard nonuniform discrete Fourier transform
(NUDFT) as follows.

In all our experiments, we consistently consider the response frequency defined for the mapping
function g between inputs and outputs, say Rd → R and any k ∈ Rd via the standard nonuniform
discrete Fourier transform (NUDFT)

ĝk =
1

n

n−1∑
i=0

g(xi)e
−i2πk·xi , (22)
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which is a natural estimator of frequency composition of g. As n → ∞, ĝk →
∫
g(x)e−i2πk·xν(x) dx,

where ν(x) is the data distribution.
We restrict all the evaluation of Fourier transform in our experiments to NUDFT of {yi}n−1

i=0 at
{xi}n−1

i=0 for the following practical reasons.
(i) The information of target function is only available at {xi}n−1

i=0 for training.
(ii) It allows us to perform the convergence analysis. As t→∞, in general, h(xi, t)→ yi for any i

(h(xi, t) is the DNN output), leading to ĥk → ŷk for any k. Therefore, we can analyze the convergence
at different k by evaluating ∆F (k) = |ĥk − ŷk|/|ŷk| during the training. If we use a different set of
data points for frequency evaluation of DNN output, then ∆F (k) may not converge to 0 at the end of
training.

(iii) ŷk faithfully reflects the frequency structure of training data {xi,yi}n−1
i=0 . Intuitively, high

frequencies of ŷk correspond to sharp changes of output for some nearby points in the training data.
Then, by applying a Gaussian filter and evaluating still at {xi}n−1

i=0 , we obtain the low frequency part
of training data with these sharp changes (high frequencies) well suppressed.

In practice, it is impossible to evaluate and compare the convergence of all k ∈ Rd even with a
proper cutoff frequency for a very large d of O(102) (MNIST) or O(103) (CIFAR10) due to curse of
dimensionality. Therefore, we propose the projection approach, i.e., fixing k at a specific direction, and
the filtering approach as detailed in Section 3 and 4, respectively.

3.3 Empirical study in high-dimensional classification problems

3.3.1 Examination method: Projection

For a dataset {(xi,yi)}n−1
i=0 we consider one entry of 10-d output, denoted by yi ∈ R. The high

dimensional discrete non-uniform Fourier transform of {(xi, yi)}n−1
i=0 is ŷk = 1

n

∑n−1
i=0 yi exp (−I2πk · xi).

The number of all possible k grows exponentially on dimension d. For illustration, in each examination,
we consider a direction of k in the Fourier space, i.e., k = kp1, p1 is a chosen and fixed unit vector,
hence |k| = k. Then we have ŷk = 1

n

∑n−1
i=0 yi exp (−I2π(p1 · xj)k), which is essentially the 1-d Fourier

transform of {(xp1,i, yi)}n−1
i=0 , where xp1,i = p1 · xi is the projection of xi on the direction p1 [?]. For

each training dataset, p1 is chosen as the first principle component of the input space. To examine the
convergence behavior of different frequency components during the training, we compute the relative
difference between the DNN output and the target function for selected important frequencies k’s at
each recording step, that is, ∆F (k) = |ĥk − ŷk|/|ŷk|, where ŷk and ĥk are 1-d Fourier transforms of
{yi}n−1

i=0 and the corresponding DNN output{hi}n−1
i=0 , respectively, along p1. Note that each response

frequency component, ĥk, of DNN output evolves as the training goes.
In the following, we show empirically that the F-Principle is exhibited in the selected direction

during the training process of DNNs when applied to MNIST/CIFAR10 with cross-entropy loss. The
network for MNIST is a fully-connected tanh DNN (784-400-200-10) and for CIFAR10 is two ReLU
convolutional layers followed by a fully-connected DNN (800-400-400-400-10). All experimental details
of this paper can be found in Appendix ??. We consider one of the 10-d outputs in each case using
non-uniform Fourier transform. As shown in Fig. 3(a) and 3(c), low frequencies dominate in both real



3 EMPIRICAL STUDY OF F-PRINCIPLE 8

datasets. During the training, the evolution of relative errors of certain selected frequencies (marked
by black squares in Fig. 3(a) and 3(c)) is shown in Fig. 3(b) and 3(d). One can easily observe that
DNNs capture low frequencies first and gradually capture higher frequencies. Clearly, this behavior is
consistent with the F-Principle. For other components of the output vector and other directions of p,
similar phenomena are also observed.
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图 3: Projection method. (a, b) are for MNIST, (c, d) for CIFAR10. (a, c) Amplitude |ŷk| vs. frequency.
Selected frequencies are marked by black squares. (b, d) ∆F (k) vs. training epochs for the selected
frequencies.

3.3.2 Filtering method

The projection method in the previous section enables us to visualize the F-Principle in one di-
rection for each examination at the level of individual frequency components. However, demonstration
by this method alone is insufficient because it is impossible to verify the F-Principle at all potentially
informative directions for high-dimensional data. To compensate the projection method, in this section,
we consider a coarse-grained filtering method which is able to unravel whether, in the radially averaged
sense, low frequencies converge faster than high frequencies.

The idea of the filtering method is as follows. We split the frequency domain into two parts, i.e., a
low-frequency part with |k| ≤ k0 and a high-frequency part with |k| > k0, where | · | is the length of a
vector. The DNN is trained as usual by the original dataset {(xi,yi)}n−1

i=0 , such as MNIST or CIFAR10.
The DNN output is denoted as h. During the training, we can examine the convergence of relative
errors of low- and high- frequency part, using the two measures below

elow =

(∑
k 1|k|≤k0

|ŷ(k)− ĥ(k)|2∑
k 1|k|≤k0

|ŷ(k)|2

) 1
2

, (23)

ehigh =

(∑
k(1− 1|k|≤k0

)|ŷ(k)− ĥ(k)|2∑
k(1− 1|k|≤k0

)|ŷ(k)|2

) 1
2

, (24)

respectively, where ·̂ indicates Fourier transform, 1k≤k0
is an indicator function, i.e.,

1|k|≤k0
=

1, |k| ≤ k0,

0, |k| > k0.

If we consistently observe elow < ehigh for different k0’s during the training, then in a mean sense, lower
frequencies are first captured by the DNN, i.e., F-Principle.



3 EMPIRICAL STUDY OF F-PRINCIPLE 9

However, because it is almost impossible to compute above quantities numerically due to high
computational cost of high-dimensional Fourier transform, we alternatively use the Fourier transform
of a Gaussian function Ĝδ(k), where δ is the variance of the Gaussian function G, to approximate
1|k|>k0

. This is reasonable due to the following two reasons. First, the Fourier transform of a Gaussian
is still a Gaussian, i.e., Ĝδ(k) decays exponentially as |k| increases, therefore, it can approximate 1|k|≤k0

by Ĝδ(k) with a proper δ(k0) (referred to as δ for simplicity). Second, the computation of elow and ehigh

contains the multiplication of Fourier transforms in the frequency domain, which is equivalent to the
Fourier transform of a convolution in the spatial domain. We can equivalently perform the examination
in the spatial domain so as to avoid the almost impossible high-dimensional Fourier transform. The
low frequency part can be derived by

ylow,δ
i , (y ∗Gδ)i, (25)

where ∗ indicates convolution operator, and the high frequency part can be derived by

yhigh,δ
i , yi − ylow,δ

i . (26)

Then, we can examine

elow =

(∑
i |y

low,δ
i − hlow,δ

i |2∑
i |y

low,δ
i |2

) 1
2

, (27)

ehigh =

(∑
i |y

high,δ
i − hhigh,δ

i |2∑
i |y

high,δ
i |2

) 1
2

, (28)

where hlow,δ and hhigh,δ are obtained from the DNN output h, which evolves as a function of training
epoch, through the same decomposition. If elow < ehigh for different δ’s during the training, F-Principle
holds; otherwise, it is falsified. Next, we introduce the experimental procedure.

Step One: Training. Train the DNN by the original dataset {(xi,yi)}n−1
i=0 , such as MNIST or

CIFAR10. xi is an image vector, yi is a one-hot vector.
Step Two: Filtering. The low frequency part can be derived by

ylow,δ
i =

1

Ci

n−1∑
j=0

yjG
δ(xi − xj), (29)

where Ci =
∑n−1

j=0 G
δ(xi − xj) is a normalization factor and

Gδ(xi − xj) = exp
(
−|xi − xj |2/(2δ)

)
. (30)

The high frequency part can be derived by yhigh,δ
i , yi − ylow,δ

i . We also compute hlow,δ
i and hhigh,δ

i for
each DNN output hi.

Step Three: Examination. To quantify the convergence of hlow,δ and hhigh,δ, we compute the
relative error elow and ehigh at each training epoch through Eq. (28).

With the filtering method, we show the F-Principle in the DNN training process of real datasets
for commonly used large networks. For MNIST, we use a fully-connected tanh-DNN (no softmax) with
MSE loss; for CIFAR10, we use cross-entropy loss and two structures, one is small ReLU-CNN network,
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i.e., two convolutional layers, followed by a fully-connected multi-layer neural network with a softmax;
the other is VGG16 [?] equipped with a 1024 fully-connected layer. These three structures are denoted
as “DNN”, “CNN” and “VGG” in Fig. 4, respectively. All are trained by SGD from scratch. More details
are in Appendix ??.

We scan a large range of δ for both datasets. As an example, results of each dataset for several δ’s
are shown in Fig. 4, respectively. Red color indicates small relative error. In all cases, the relative error
of the low-frequency part, i.e., elow, decreases (turns red) much faster than that of the high-frequency
part, i.e., ehigh. Therefore, as analyzed above, the low-frequency part converges faster than the high-
frequency part. We also remark that, based on the above results on cross-entropy loss, the F-Principle
is not limited to MSE loss, which possesses a natural Fourier domain interpretation by the Parseval’s
theorem. Note that the above results holds for both SGD and GD.
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图 4: F-Principle in real datasets. elow and ehigh indicated by color against training epoch.

4 Theoretical study of F-Principle

A key reason why deep learning is often critized as a black box is the lack of theoretical support.
A solid thoery to explain the strength and the weakness of the deep learning is important for better
understanding and better usage of the deep learning in practice. The thoery of deep learning resemble
other science, such as physics, that is, the theory should be consistent with empirical phenomena and
able to predict the behavior of deep learning in real problems. Therefore, it is important to identify
universal phenomena which can guide the development of thoeries for deep learning.

The F-Principle, found in both synthetic and real data, qualifies as one phenomenon to induce a
underlying theory for deep learning. In this section, we review theories of the F-Principle for various
settings. The theories reviewed in this section explores the F-Principle with sufficient large number of
training samples. The next section reviews a linear F-Principle with any finite samples, which enables
the exploration of the relation between the F-Principle and the generalization.
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4.1 Idealized setting

[10, 9] shows an intuitive understanding.
The activation function we consider is σ(x) = tanh(x).

σ(x) = tanh(x) =
ex − e−x

ex + e−x
, x ∈ R.

For a DNN of one hidden layer with m nodes, 1-d input x and 1-d output:

h(x) =
m∑
j=1

ajσ(wjx+ bj), aj , wj , bj ∈ R, (31)

where wj , aj , and bj are called parameters, in particular, wj and aj are called weights, and bj is also
known as a bias. In the sequel, we will also use the notation θ = {θlj} with θ1j = aj , θ2j = wj , and
θlj = bj , j = 1, · · · ,m. Note that σ̂(k) = − Iπ

sinh(πk/2)
where the Fourier transformation and its inverse

transformation are defined as follows:

f̂(k) =

∫ +∞

−∞
f(x)e−Ikx dx, f(x) =

1

2π

∫ +∞

−∞
f̂(k)eIkx dk.

The Fourier transform of σ(wjx+ bj) with wj , bj ∈ R, j = 1, · · · ,m reads as

̂σ(wj ·+bj)(k) =
2πI

|wj |
exp

(Ibjk
wj

) 1

exp(− πk
2wj

)− exp( πk
2wj

)
. (32)

Thus

ĥ(k) =
m∑
j=1

2πajI

|wj |
exp

(Ibjk
wj

) 1

exp(− πk
2wj

)− exp( πk
2wj

)
. (33)

We define the amplitude deviation between DNN output and the target function f(x) at frequency k
as

D(k) , ĥ(k)− f̂(k).

Write D(k) as D(k) = A(k)eIφ(k), where A(k) ∈ [0,+∞) and φ(k) ∈ R are the amplitude and phase of
D(k), respectively. The loss at frequency k is L(k) = 1

2
|D(k)|2, where | · | denotes the norm of a complex

number. The total loss function is defined as: L =
∫ +∞
−∞ L(k) dk. Note that according to Parseval’s

theorem, this loss function in the Fourier domain is equal to the commonly used loss of mean squared
error, that is, L =

∫ +∞
−∞

1
2
(h(x)−f(x))2 dx. For readers’ reference, we list the partial derivatives of L(k)

with respect to parameters

∂L(k)

∂aj
=

2π

wj
sin
(bjk
wj
− φ(k)

)
E0, (34)

∂L(k)

∂wj
=

[
sin
(bjk
wj
− φ(k)

)(π2ajk

w3
j

E1 −
2πaj
w2
j

)

− 2πajbjk

w3
j

cos
(bjk
wj
− φ(k)

)]
E0, (35)

∂L(k)

∂bj
=

2πajbjk

w2
j

cos
(bjk
wj
− φ(k)

)
E0, (36)
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where
E0 =

sgn(wj)A(k)

exp( πk
2wj

)− exp(− πk
2wj

)
,

E1 =
exp( πk

2wj
) + exp(− πk

2wj
)

exp( πk
2wj

)− exp(− πk
2wj

)
.

The descent increment at any direction, say, with respect to parameter θlj , is

∂L

∂θlj
=

∫ +∞

−∞

∂L(k)

∂θlj
dk. (37)

The absolute contribution from frequency k to this total amount at θlj is∣∣∣∣∂L(k)

∂θlj

∣∣∣∣ ≈ A(k) exp (−|πk/2wj |)Flj(θj , k), (38)

where θj , {wj , bj , aj}, θlj ∈ θj , Flj(θj , k) is a function with respect to θj and k, which can be found in
one of Eqs. (34, 35, 36).

When the component at frequency k where ĥ(k) is not close enough to f̂(k), exp (−|πk/2wj |) would
dominate Glj(θj , k) for a small wj . Through the above framework of analysis, we have the following
theorem. Define

W = (w1, w2, · · · , wm)T ∈ Rm. (39)

Theorem 1. Consider a one hidden layer DNN with activation function σ(x) = tanhx. For any
frequencies k1 and k2 such that |f̂(k1)| > 0, |f̂(k2)| > 0, and |k2| > |k1| > 0, there exist positive
constants c and C such that for sufficiently small δ, we have

µ
({
W :

∣∣∣∂L(k1)
∂θlj

∣∣∣ > ∣∣∣∂L(k2)
∂θlj

∣∣∣ for all l, j
}
∩Bδ

)
µ(Bδ)

≥ 1− C exp(−c/δ), (40)

where Bδ ⊂ Rm is a ball with radius δ centered at the origin and µ(·) is the Lebesgue measure.

We remark that c and C depend on k1, k2, |f̂(k1)|, |f̂(k2)|, sup |ai|, sup |bi|, and m.

证明. To prove the statement, it is sufficient to show that µ(Slj,δ)/µ(Bδ) ≤ C exp(−c/δ) for each l, j,
where

Slj,δ :=

{
W ∈ Bδ :

∣∣∣∣∂L(k1)

∂θlj

∣∣∣∣ ≤ ∣∣∣∣∂L(k2)

∂θlj

∣∣∣∣} . (41)

We prove this for S1j,δ, that is, θlj = aj . The proofs for θlj = wj and bj are similar. Without loss of
generality, we assume that k1, k2 > 0, bj > 0, and wj 6= 0, j = 1, · · · ,m. According to Eq. (34), the
inequality |∂L(k1)

∂aj
| ≤ |∂L(k2)

∂aj
| is equivalent to

A(k2)

A(k1)

∣∣∣∣∣exp( πk1

2wj
)− exp(− πk1

2wj
)

exp( πk2

2wj
)− exp(− πk2

2wj
)

∣∣∣∣∣ · ∣∣∣ sin(bjk2

wj
− φ(k2)

)∣∣∣
≥
∣∣∣ sin(bjk1

wj
− φ(k1)

)∣∣∣ (42)
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Note that |ĥ(k)| ≤ C
∑m

j=1
|aj |
|wj | exp(− πk

2|wj |) for k > 0. Thus

lim
W→0

ĥ(k) = 0 and lim
W→0

D(k) = −f̂(k). (43)

Therefore,
lim
W→0

A(k) = |f̂(k)| and lim
W→0

φ(k) = π + arg(f̂(k)). (44)

For W ∈ Bδ with sufficiently small δ, A(k1) > 1
2
|f̂(k1)| > 0 and A(k2) < 2|f̂(k2)|. Also note that

| sin( bjk2

wj
− φ(k2))| ≤ 1 and that for sufficiently small δ,∣∣∣∣∣exp( πk1

2wj
)− exp(− πk1

2wj
)

exp( πk2

2wj
)− exp(− πk2

2wj
)

∣∣∣∣∣ ≤ 2 exp
(−π(k2 − k1)

2|wj |

)
. (45)

Thus, inequality (42) implies that∣∣∣ sin(bjk1

wj
− φ(k1)

)∣∣∣ ≤ 8|f̂(k2)|
|f̂(k1)|

exp
(
− π(k2 − k1)

2|wj |

)
. (46)

Noticing that 2
π
|x| ≤ | sinx| (|x| ≤ π

2
) and Eq. (44), we have for W ∈ Slj,δ, for some q ∈ Z,∣∣∣bik1

wi
− arg(f̂(k1))− qπ

∣∣∣ ≤ 8π|f̂(k2)|
|f̂(k1)|

exp
(
− π(k2 − k1)

2δ

)
(47)

that is,

− c1 exp(−c2/δ) + qπ + arg(f̂(k1))

≤ bik1

wi
≤ c1 exp(−c2/δ) + qπ + arg(f̂(k1)), (48)

where c1 = 8π|f̂(k2)|
|f̂(k1)| and c2 = π(k2 − k1). Define I := I+ ∪ I− where

I+ := {wj > 0 : W ∈ S1j,δ}, I− := {wj < 0 : W ∈ S1j,δ}. (49)

For wj > 0, we have for some q ∈ Z,

0 <
bjk1

c1 exp(−c2/δ) + qπ + arg(f̂(k1))

≤ wj ≤
bjk1

−c1 exp(−c2/δ) + qπ + arg(f̂(k1))
. (50)

Since W ∈ Bδ and c1 exp(−c2/δ) + arg(f̂(k1)) ≤ 2π, we have bjk1

2π+qπ
≤ wj ≤ δ. Then Eq. (50) only holds

for some large q, more precisely, q ≥ q0 := bjk

πδ
−2. Thus we obtain the estimate for the (one-dimensional)

Lebesgue measure of I+

µ(I+) ≤
∞∑
q=q0

∣∣∣∣∣ bjk1

−c1 exp(−c2/δ) + qπ + arg(f̂(k1))

− bjk1

c1 exp(−c2/δ) + qπ + arg(f̂(k1))

∣∣∣∣∣
≤ 2|bj |k1c1 exp(−c2/δ)

·
∞∑
q=q0

1

(qπ + arg(f̂(k1)))2 − (c1 exp(−c2/δ))2

≤ C exp(−c/δ). (51)
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The similar estimate holds for µ(I−), and hence µ(I) ≤ C exp(−c/δ). For W ∈ Bδ, the (m − 1)

dimensional vector (w1, · · · , wj−1, wj+1, · · · , wm)T is in a ball with radius δ in Rm−1. Therefore, we
final arrive at the desired estimate

µ(S1j,δ)

µ(Bδ)
≤ µ(I)ωm−1δ

m−1

ωmδm
≤ C exp(−c/δ), (52)

where ωm is the volume of a unit ball in Rm.

Theorem 2. Considering a DNN of one hidden layer with activation function σ(x) = tanh(x). Suppose
the target function has only two non-zero frequencies k1 and k2, that is, |f̂(k1)| > 0, |f̂(k2)| > 0, and
|k2| > |k1| > 0, and |f̂(k)| = 0 for k 6= k1, k2. Consider the loss function of L = L(k1) + L(k2) with
gradient descent training. Denote

S =

{
∂L(k1)

∂t
≤ 0,

∂L(k1)

∂t
≤ ∂L(k2)

∂t

}
,

that is, L(k1) decreases faster than L(k2). There exist positive constants c and C such that for sufficiently
small δ, we have

µ ({W : S holds} ∩Bδ)
µ(Bδ)

≥ 1− C exp(−c/δ),

where Bδ ⊂ Rm is a ball with radius δ centered at the origin and µ(·) is the Lebesgue measure.

证明. By gradient descent algorithm, we obtain

∂L(k1)

∂t
=
∑
l,j

∂L(k1)

∂θlj

∂θlj
∂t

= −
∑
l,j

∂L(k1)

∂θlj

∂(L(k1) + L(k2))

∂θlj

= −
∑
l,j

(
∂L(k1)

∂θlj

)2

−
∑
l,j

∂L(k1)

∂θlj

∂L(k2)

∂θlj
,

∂L(k2)

∂t
= −

∑
l,j

(
∂L(k2)

∂θlj

)2

−
∑
l,j

∂L(k1)

∂θlj

∂L(k2)

∂θlj
,

and
∂L

∂t
=
∂ (L(k1) + L(k2))

∂t
= −

∑
l,j

(
∂L(k1)

∂θlj
+
∂L(k2)

∂θlj

)2

≤ 0. (53)

To obtain

0 >
∂L(k1)

∂t
− ∂L(k2)

∂t
= −

∑
l,j

[(
∂L(k1)

∂θlj

)2

−
(
∂L(k2)

∂θlj

)2
]
, (54)

it is sufficient to have ∣∣∣∣∂L(k1)

∂θlj

∣∣∣∣ > ∣∣∣∣∂L(k2)

∂θlj

∣∣∣∣ . (55)

Eqs. (53, 54) also yield to
∂L(k1)

∂t
< 0.

Therefore, Eq. (55) is a sufficient condition for S. Based on the theorem 1, we have proved the theorem
2.
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5 Reading

Chaper 5 of Deep Learning [2], http://www.deeplearningbook.org/
Suggested Notation for Machine Learning [8].
Prof. Yanyang Xiao’s fft note.
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