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Abstract

Previous studies have shown that deep neural networks (DNNs) with common
settings often capture target functions from low to high frequency, which is called
Frequency Principle (F-Principle). It has also been shown that F-Principle can
provide an understanding to the often observed good generalization ability of
DNNs. However, previous studies focused on the loss function of mean square
error, while various loss functions are used in practice. In this work, we show that
the F-Principle holds for a general loss function (e.g., mean square error, cross
entropy, etc.). In addition, DNN’s F-Principle may be applied to develop numerical
schemes for solving various problems which would benefit from a fast converging
of low frequency. As an example of the potential usage of F-Principle, we apply
DNN in solving differential equations, in which conventional methods (e.g., Jacobi
method) is usually slow in solving problems due to the convergence from high to
low frequency.

1 Introduction

Deep neural networks (DNNs) has achieved many state-of-the-art results in various fields [1], such as
object recognition, language translation and game-play. A fully understanding of why DNNs can
achieve such good results remains elusive. The often used DNNs equip much more parameters than
the number of the training data. As Von Neumann said “With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk”. It is no surprise that such DNNs can well fit the
training data. However, counter-intuitive to the traditional learning theory, such DNNs often do not
overfit (DNNs often generalize well to the test data which are not seen during the training), which is
often referred to as “apparent paradox” [2].

A series of recent works [3, 4, 5, 6, 7, 8, 9, 10], both experiments and theories, have gained us more
understanding to this paradox. In this work, we focus on the Fourier analysis of DNNs [3, 4, 5].
Although the often used dataset, such as MNIST and CIFAR, are relative simple compared with
practical dataset, the input dimension (the pixel number of each input image) is still very high for a
quantitative analysis. A good starting point to understand this apparent paradox is to find an example
that is simple enough for analysis but also preserves this interesting paradox. The simple example
turns out to be the fitting of a function with one-dimension (1-d) input and 1-d output [3]. A prompt
example to understand the apparent paradox is that a very high-order polynomial fitting for randomly
sampled data points often overfit the training data, that is, high oscillation occurs around the sample
boundary (Runge’s phenomenon); however, a DNN with small weight initialization, no matter how
large size the DNN is, often learns the training data with a relative flat function [10]. Starting from
such 1-d functions, experimentally [3, 5] and theoretically [4], there exists a Frequency Principle
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(F-Principle) that DNNs often first quickly capture low-frequency components while keeping high-
frequency ones small, and then relatively slowly captures high-frequency components. By F-Principle,
the high-frequency components of the DNN output is controlled by the training data. High oscillation
which exists in the Runge’s phenomenon is then absent in the DNN fitting. F-Principle also holds
well in the often used dataset [3], that is, MNIST and CIFAR-10. Theoretical work indicates that the
key ingredient underlying the F-Principle in general DNN fitting problems is that the power spectrum
of the activation function decays in the Fourier space, where the power-decay property is easy to be
satisfied, such as sigmoid function and rectified linear unit.

Previous studies focused on the DNN with mean square error [3, 4, 5]. It is yet to study whether
F-Principle applies in the DNN with other types of loss functions. This is important since loss function
varies in different problems, such as image classification and solving differential equations [11].
In this work, we perform a theoretical analysis to show that for a general loss function, e.g., cross
entropy, the F-Principle qualitative holds in the DNN training, which is also verified by experiments.
The first experiment is a classification problem with the loss function of cross entropy. The second
experiment is to apply DNN to solve Poisson equation by using Dirichlet’s principle.

The DNN is a powerful tool to solve differential equations [11, 12, 13], especially for high-
dimensional problems. It is well-known that different frequencies converge with different speeds
in solving differential equations by numerical schemes. For example, for the Jacobi method, low
frequency converges much slower than high frequency. Multigrid method is designed to speed up the
convergence, which explicitly first captures low-frequency parts [14]. In addition, manual frequency
marching from low frequency to high frequency has achieved great success in designing numerical
schemes in various problems, such as inverse scattering problems [15] and Cryo-EM reconstruction
problems [16]. By showing F-Principle in solving Poisson’s equations, we emphasize that the DNN
structure, which implicitly endows low frequency with high priority, could be a powerful tool to the
problems that benefit from a fast converging of low frequency. For example, we propose an ideal
that combines DNN and conventional methods (e.g., Jacobi method or Gauss-Seidel method), in
which DNN is in charge of capturing low-frequency parts and conventional methods are in charge of
capturing high-frequency parts. This idea is exemplified by solving a 1-d Poisson’s equation.

2 F-Principle with general loss function

Consider a general DNN, and denote its output as ϒθ (x), where θ stands for the DNN parameters
and x stands for the input. Represent ϒθ (x) with orthonormal basis {pk(x)}:

ϒθ (x) = ∑
k

cθ ,k pk(x), (1)

where cθ ,k is the coefficient of mode k depending on θ . Denote the loss at sample x as

lx = l(ϒθ (x)). (2)

The total loss L is
L = ∑

x
lx = ∑

x
l(ϒθ (x)). (3)

Consider the gradient of the total loss with respect to parameter θ :

∂L
∂θ

= ∑
x

∂ l(ϒθ (x))
∂θ

(4)

= ∑
x

∂ l(ϒθ (x))
∂ϒ

∂ϒθ (x)
∂θ

(5)

= ∑
x

∂ l(ϒθ (x))
∂ϒ

∑
k

pk(x)
∂cθ ,k

∂θ
(6)

= ∑
k

∂cθ ,k

∂θ
∑
x

∂ l(ϒθ (x))
∂ϒ

pk(x). (7)

Let

dk , ∑
x

∂ l(ϒθ (x))
∂ϒ

pk(x). (8)
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dk is the coefficient of ∂ l(ϒθ (x))/∂ϒ at the component of pk. Consider that {pk(x)} is Fourier basis.
According to Riemann-Lebesgue lemma, if a function is an integrable function on an interval, then
the Fourier coefficients of this function tend to 0 as the order k tends to infinity. Therefore, when the
activation function and the target function both are integrable functions on the considered interval,
cθ ,k and dk tend to 0 as the order k tends to infinity. Denote

Lk , ∑
k

∂cθ ,k

∂θ
dk. (9)

We have
∂L
∂θ

= ∑
k

Lk. (10)

Therefore, we can decompose ∂L/∂θ into a summation of Lk, which tends to 0 as the order k tends
to infinity. This analysis implies that for any loss function, the change of any parameter θ at each
training step is affected more by lower frequencies, which would rationalize the F-Principle in general
loss functions, as examined in the following experiments.

3 Experiment: cross entropy loss

The loss function of cross entropy is widely used in classification problems. We use experiments to
show that F-Principle holds in the DNN training with this loss function.

3.1 Toy data

Consider a target function y(x) = (y1(x),y2(x)), where

y1(x) =
{

1 x≥ 0
0 x < 0

, (11)

y2(x) =
{

0 x > 0
1 x≤ 0

. (12)

This fitting problem is a toy classification problem. In the DNN in this problem, the output layer
has two neurons with softmax as activation function. The output is denoted as ϒ(x) = (ϒ1(x),ϒ2(x)).
The loss function is

L =
2

∑
j=1

L j =−
2

∑
j=1

∑
x

y j(x) logϒ j(x)+(1− y j(x)) log(1−ϒ j(x)). (13)

For illustration, we focus on y1(x), which is shown in Fig.1a. Next, we examine the convergence of
different frequencies. In a finite interval, the frequency components of a target function are quantified
by Fourier coefficients computed from Discrete Fourier Transform (DFT). Note that because the
frequency in DFT is discrete, we can refer to a frequency component by its index instead of its
physical frequency. The Fourier coefficient of y1(x) for the γ-th frequency component is denoted
by F [y1](γ) (a complex number in general). |F [y1](γ)| is the corresponding amplitude, where | · |
denotes the absolute value. Note that we call γ the frequency index. |F [y1](γ)| is shown in Fig. 1b. To
examine the convergence behavior of different frequency components during the training of a DNN,
we compute the relative difference of the DNN output ϒ1(x) and y1(x) in frequency domain at each
recording step, i.e.,

∆F(γ) =
|F [ϒ1](γ)−F [y1](γ)|

|F [ϒ1](γ)|
. (14)

During the training, ϒ1(x) captures y1(x) from low to high frequency in a clear order, as shown in
Fig.1c.
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(a) (b) (c) DNN

Figure 1: F-Principle with cross entropy loss. The first output dimension of the target function is
shown in (a) and its Fourier coefficient amplitude as a function of frequency index is shown in (b).
Frequency peaks are marked by black dots. (c) Relative difference at different recording steps for
different selected frequency indexes. The training data are evenly sampled in [−1,1] with sample
size 201. We use a DNN with width 400-400-200-100 with full batch training, the output layer has
two neurons with softmax as activation function, and learning rate is 2×10−4. The parameters of the
DNN are initialized following a Gaussian distribution with mean 0 and standard deviation 0.1.

3.2 MNIST data

To verify that the F-Principle holds in the image classification problems (MNIST) with the loss
function of cross entropy, we perform Fourier analysis in the first principle component of the input
space. The procedure is as follows.

The training set is a list of images with labels: {~xk,~yk}n−1
k=0 . Each image is represented by a vector

~xk ∈ RNin , where Nin = 784 is the pixel number of an image. ~yk is an one-hot vector indicating the
label. The dimensions for the input layer and the output layer are Nin and 10, respectively. First, we
compute the first principle direction. Transform each image by

~x′j =~x j−
1
n

n−1

∑
k=0

~xk, j = 0,1, · · · ,n−1. (15)

Denote all images by X = [~x′0,~x
′
1, · · · ,~x′n−1] ∈ RNin×n. The covariance matrix is Cx = XXT . The

eigenvector of the maximal eigenvalue of Cx can be obtained, denoted by ~p1 ∈ RNin , i.e., the first
principle direction. The projection of each image in the ~p1 direction is x′k , ~pT

1~xk. We rescale x′k to xk
such that xk ∈ [0,1] by

xk =
(x′k−min j x′j)

maxl(x′l−min j x′j)
. (16)

Then, the sample set is S = {(x0,~y0),(x1,~y1), · · · ,(xn−1,~yn−1). For illustration, we only consider the
first component of~y, i.e.,~y(1). Note that now {xk}n−1

k=0 is a non-uniform sampling. Using non-uniform
FFT (NUFFT), we can obtain

F [~y(1)][γk] =
n−1

∑
j=0

~y(1)k exp(−2πix jk) . (17)

Then, the sampling on the Fourier domain is

Sγ = {(γ0,F [~y(1)](γ0)),(ω1,F [~y(1)](γ1)), · · · ,(γn−1,F [~y(1)](γn−1))}. (18)
After each training step, we feed each~xk into the DNN and obtain the DNN output ϒ(~xk):

ST = {(x0,ϒ(~x0)),(x1,ϒ(~x1)), · · · ,(xn−1,ϒ(~xn−1))}. (19)
Using non-uniform FFT (NUFFT), similarly, we can obtain the sampling of the DNN’s first dimension
output on the Fourier domain

Sϒ,γ = {(γ0,F [ϒ(1)](γ0)),(ω1,F [ϒ(1)](γ1)), · · · ,(γn−1,F [ϒ(1)](γn−1))}, (20)
which is shown in Fig.2a. We then examine the relative error of certain selected important frequency
components (marked by black squares). As shown in the first column in Fig.2b, we can observe that
the DNN tends to capture low-frequency components first.
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(a) (b)

Figure 2: F-Principle with cross entropy loss on MNIST dataset. The Fourier coefficient amplitude of
the first output dimension of the target function is shown in (a). Frequency peaks are marked by black
dots. (b) Relative difference at different recording steps for different selected frequency indexes. The
training data are 10000 test samples of MNIST dataset. We use a DNN with width 400-200 with
batch size as 128, the output layer has 10 neurons with softmax as activation function, and learning
rate is 10−5. The parameters of the DNN are initialized following a Gaussian distribution with mean
0 and standard deviation 0.2.

4 Experiment: Poisson’s equations

Consider one-dimension (1-d) Poisson’s equation [11, 17]:

−4u(x) = g(x), x ∈Ω = (−1,1) (21)

u(x) = 0, x =−1,1.

The Poisson’s equation can be solved by numerical schemes (e.g., Jacobi method) or DNN. As well
known, high frequency converges faster in the Jacobi method. In the following, we would show that
high frequency converges slower when the DNN is applied to solve the above Poisson’s equation.

4.1 Central differencing scheme and Jacobi method

[−1,1] is uniformly discretized into n+1 points with step ∆x = 2/n, i.e., x0,x1, · · · ,xn. The Poisson’s
equation in Eq. (21) can be solved by central differencing scheme:

−4ui =−
ui+1−2ui +ui−1

(4x)2 = g(xi), i = 1,2, · · · ,n. (22)

Write the above in the matrix form:
Au = g, (23)

where

A =


2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

... · · ·
...

0 0 · · · 0 −1 2


(n−1)×(n−1)

, (24)

u =


u1
u2
...

un−2
un−1

 , g = (4x)2


g1
g2
...

gn−2
gn−1

 , xi = 2
i
n
. (25)

If n is not a large number, Eq. (23) can be solved by performing the inverse of A. When n is a very
large number, this problem can be solved by iterative schemes. For example, we illustrate the Jacobi
method. Let A = D−L−U , where D is diagonal, and L and U are the strictly lower and upper parts
of −A, respectively. Then, we can obtain

u = D−1(L+U)u+D−1g. (26)

5



The Jacobi iteration is
ul+1 = D−1(L+U)ul +D−1g. (27)

We perform error analysis of the above iteration process. Denote u∗ as the true value obtained by
directly performing inverse of A in Eq. (23). The error at step l + 1 is el+1 = ul+1− u∗. Then,
el+1 = RJel , where RJ = D−1(L+U). The converging speed of el is determined by the eigenvalues
of RJ , that is,

λk = λk(RJ) = cos
kπ

n
, k = 1,2, · · · ,n−1, (28)

and the corresponding eigenvector vk is

vk, j = sin
jkπ

n
, j = 1,2, · · · ,n−1. (29)

Write

el =
n−1

∑
k=1

α
l
kvk, (30)

where α l
k can be understood as the magnitude of el in the direction of vk. Then,

el+1 =
n−1

∑
k=1

α
l
kRJvk =

n−1

∑
k=1

α
l
kλkvk. (31)

α
l+1
k = λkα

l
k.

Therefore, the converging speed of el in the direction of vk is controlled by λk. Since

cos
kπ

n
=−cos

(n− k)π
n

, (32)

the frequencies k and (n− k) are closely related and converge with the same speed. Consider the
frequency k < n/2, λk is larger for lower frequency. Therefor, lower frequency converges slower in
the Jacobi method.

4.2 DNN approach

Similar as the loss function in Ref [11], we consider the following loss function (energy method)

I(u) =
∫

Ω

(
1
2
|∇xu(x)|2−g(x)u(x)

)
dx+β

∫
∂Ω

u(x)2ds. (33)

It is equivalent to solve Poisson’s equation by finding the function that minimizes I(u) (Dirichlet’s
principle) [17]. The last term in I(u) is a penalty in order to satisfy the boundary condition. The DNN
structure is 1-d input (i.e., x) and 1-d output (denoted as ϒ(x)) for solving Eq. (21). β is a constant.

The procedure is similar. We discretized [−1,1] into n+1 even-space points. In each training step,
we compute ϒ(xi) for i = 0,1,2, · · ·n. The gradient of I(ϒ) with respect to parameter Θ is

dI(ϒ)
dΘ

=
n

∑
i=0

dI(ϒ(xi))

dΘ
. (34)

At each training step, we compare ϒ(x) and u∗(x) in the Fourier domain. Note that u∗(x) is the one
obtained by directly performing inverse of A in Eq. (23).

4.3 Experiment

Consider
g(x) = sin(x)+4sin(4x)−8sin(8x)+16sin(24x). (35)

As shown in Fig. 3a, after training, the DNN output can well fit the solution u∗ obtained by directly
performing inverse of A in Eq. (23). As shown in Fig. 3b, there are three peaks of u∗ in the Fourier
domain.
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(a) (b)

(c) DNN (d) Jacobi

Figure 3: Frequency domain analysis of the Poisson’s equation in Eq. (21) with g(x) = sin(x)+
4sin(4x)− 8sin(8x)+ 16sin(24x). (a) u(x). The true value is computed by central differencing
scheme with directly compute the inverse of coefficient matrix. (b) |F [u∗]| (red solid line) as a
function of frequency index. Frequency peaks are marked by black dots. (c, d) Relative difference at
different recording steps for different selected frequency indexes. The training data and the test data
are evenly sampled in [−1,1] with sample size 51 and 401, respectively. We use a DNN with width
4000-800 with full batch training. The learning rate is 5×10−6 at beginning and halved every 10000
training epochs. β is 10. Each step consists of four epochs. (d) is the result of Jacobi iteration. The
parameters of the DNN are initialized following a Gaussian distribution with mean 0 and standard
deviation 0.05.

To examine the convergence behavior of different frequency components during the DNN training,
we compute the relative difference of the DNN output ϒ(x) and u∗(x) in frequency domain at each
recording step, i.e.,

∆F(γ) =
|F [u∗](γ)−F [ϒ](γ)|

|F [u∗](γ)|
. (36)

As shown in Fig. 3c, F-Principle holds well in solving Poisson’s equation [3, 4]. For comparison,
we also show that low frequency converges much slower than high frequency in Jacobi method, as
shown in Fig. 3d.

5 Combination of DNN and convention methods

In light of the above numerical simulations, it is natural to consider if we can combine DNN and
Jacobi method to solve the Poisson’s equation. For simplicity, we call the combination method
D-Jacobi method.

In the first part of D-Jacobi method, we solve the Poisson’s equation by DNN with M steps. In the
second part, we use the DNN output at step M as the initial value for the Jacobi method.

We solve the problem in Fig. 3 by a laptop (Dell, Precision 5510). As shown in Fig.4a, the DNN loss
fluctuates after some running time. We use Jacobi method to solve the problem after some time points,
which are indicated by vertical dashed lines. As shown in Fig.4b (Fig.4c), green stars indicates the
|ϒ−u∗|∞ of the DNN output at different steps. Dashed lines indicates the evolution of the Jacobi
(Gauss-Seidel) method. As we can see, if the selected timing is too early, it would still take long
time to converge to a small error, because the low frequencies are not converged, yet. If the selected
timing is too late, much time would be waste because the DNN is hard to capture high frequencies
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(a) Loss (b) Jacobi: |u−u∗|∞ (c) GS: |u−u∗|∞

Figure 4: Combination methods for solving the Poisson’s equation in Eq. (21) with g(x) = sin(x)+
4sin(4x)−8sin(8x)+16sin(24x). The abscissa is the computer running time. (a) Loss is the form
in Eq. (33). We use Jacobi method to solve the problem after several time points, which are indicated
by vertical dashed lines. (b) Green stars indicates the |ϒ− u∗|∞ at different steps. Dashed lines
indicates the evolution of the Jacobi method. (c) Gauss-Seidel method. The training data are evenly
sampled in [−1,1] with sample size 1001. u∗ is computed by central differencing scheme with
directly computing the inverse of coefficient matrix. We use a DNN with width 4000-500-400 with
full batch training, and learning rate is 5×10−4. β is 10. The parameters of the DNN are initialized
following a Gaussian distribution with mean 0 and standard deviation 0.02.

and fluctuates a lot. The selected timing of the green or the red one is a better choice. In practice, a
better way to select the timing is when the loss gets flat and fluctuated for a short while.

6 Discussion

In this work, we have shown that F-Principle holds well in the DNN training with a general loss
function, extending the study of F-Principle in the loss function of mean square error in previous
works [3, 4, 5]. Along with the previous study that F-Principle holds in both DNN and convolutional
neural networks with the activation function of either tanh or Relu [3, 4], these works implicate that
the F-Principle may provide understandings to the generalization ability of general DNNs.

We also show that the generality of F-Principle in the DNN training could potentially be useful in
designing algorithms for solving practical problems. To be specific, we apply DNN to solve 1-d
Poisson’s equation. Compared with conventional numerical schemes, DNN could potentially work
better in rather high dimensions [11]. In addition, it does not requires discretization for the DNN
method, which would be much easier to be implemented. In future, it would be interested to use
DNN’s F-Principle to develop numerical schemes for solving various problems which would benefit
from a fast converging of low frequency.
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