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Abstract
How initialization and loss function affect the learning of a deep neural network (DNN), specifically
its generalization error, is an important problem in practice. In this work, by exploiting the linearity
of DNN training dynamics in the NTK regime (Jacot et al., 2018; Lee et al., 2019), we provide an
explicit and quantitative answer to this problem. Focusing on regression problem, we prove that,
in the NTK regime, for any loss in a general class of functions, the DNN finds the same global
minima—the one that is nearest to the initial value in the parameter space, or equivalently, the
one that is closest to the initial DNN output in the corresponding reproducing kernel Hilbert space.
Using these optimization problems, we quantify the impact of initial output and prove that a random
non-zero one increases the generalization error. We further propose an antisymmetrical initialization
(ASI) trick that eliminates this type of error and accelerates the training. To understand whether
the above results hold in general, we also perform experiments for DNNs in the non-NTK regime,
which demonstrate the effectiveness of our theoretical results and the ASI trick in a qualitative sense.
Overall, our work serves as a baseline for the further investigation of the impact of initialization and
loss function on the generalization of DNNs, which can potentially guide and improve the training
of DNNs in practice.
Keywords: Deep neural network; Generalization; Initialization; Kernel regime.

1. Introduction

The wide application of deep learning makes it increasingly urgent to establish quantitative theoretical
understanding of the learning and generalization behaviors of deep neural networks (DNNs). In
this work, we study theoretically the problem of how initialization and loss function quantitatively
affect these behaviors of DNNs. Our study focuses on the regression problem, which plays a key role
in many applications, e.g., simulation of physical systems (Zhang et al., 2018), prediction of time
series (Qiu et al., 2014) and solving differential equations (E and Yu, 2018; Xu et al., 2019). For
theoretical analysis, we consider training dynamics of sufficiently-wide DNNs in the NTK (Neural
Tanget Kernel) regime, where they can be well approximated by linear gradient flows resembling
kernel methods (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b,a). Note that, theoretical
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investigation of such a regime can provide insight into the understanding of general DNNs in practice
by the following facts. Heavy overparameterization is one of the key empirical tricks to overcome
the learning difficulty of DNNs (Zhang et al., 2016). DNNs in the extremely over-parameterized
regime preserve substantive behavior as those in mildly over-parameterized regime. For example,
stochastic gradient descent (SGD) can find global minima of the training objective of DNNs which
generalizes well to the unseen data (Zhang et al., 2016).

In general, the error of DNN can be classified into three general types (Poggio et al., 2018):
approximation error induced by the capacity of the hypothesis set, generalization error induced by
the given training data, and training error induced by the given training algorithm. By the universal
approximation theorem (Cybenko, 1989) and empirical experiments (Zhang et al., 2016), a large
neural network often has the power to express functions of real datasets (small approximation error)
and the gradient-based training often can find global minima (zero training error). Generalization error
is the main source of error in applications. It can be affected by many factors, such as initialization
and loss function as widely observed in experiments. Empirically, a large weight initialization often
leads to a large generalization error (Xu et al., 2018, 2019). However, a too small weight initialization
makes the training extremely slow. Note that zero initialization leads to a saddle point of DNN
which makes the training impossible. Despite above empirically observations, it remains unclear
how initialization is related to the generalization error. Regarding the loss function, it is also unclear
how it affects the behavior of DNNs.

Technically, all our theoretical results are natural consequences of the linearity of NTK dynamics.
Our major contribution lies in exploiting this linearity of DNNs in the NTK regime to answer
explicitly and quantitatively the important question of how loss function and initialization affect
generalization. As demonstrated by experiments, our quantitative results also qualitatively hold for
DNNs in the non-NTK regime, thus shedding light into the interaction between loss, initialization
and generalization for general DNNs.

Our key results are summarized as follows.
i) We prove that, for a general class of loss functions, the NTK gradient flow, despite trajectory

difference, finds the same global minimum.
ii) We prove that the bias induced by a nonzero hini (initial DNN output) equals to the residual of

hini trained by the same DNN on the same training inputs initialized with hini = 0. We also show by
experiments that this equality approximately holds in non-NTK regime.

iii) We prove that a random hini leads to a specific type of generalization error that worsens
generalization.

iv) We propose an AntiSymmetrical Initialization (ASI) trick for general DNNs that can offset
any hini to zero while keeping the NTK at initialization unchanged. Demonstrated by experiments
using general DNNs, this trick accelerates the training and improves generalization.

2. Related works

The impact of loss and initialization for classical linear regression problem has been discussed in
Gunasekar et al. (2018). However, such results for deep neural networks are absent. Based on the
recent discovery of the NTK regime of DNNs, our work provides quantitative results about loss and
initialization, which also sheds light into general DNNs in the non-NTK regime.

There are a series of research on the NTK regime of DNNs (Jacot et al., 2018; Arora et al., 2019a;
Du et al., 2018; Zou et al., 2018; Allen-Zhu et al., 2018; E et al., 2019a,b; Sankararaman et al., 2019;
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Arora et al., 2019b; Cao and Gu, 2019). Previous works found that the learning of DNNs in the NTK
regime is equivalent to kernel ridge regression, such as Mei et al. (2019); Banburski et al. (2019), and
the convergence point in the parameter space of a DNN remains close to the initialization, such as
Chizat and Bach (2018); Oymak and Soltanolkotabi (2018); Jacot et al. (2018). For the completeness
of the paper, we present proofs of the equivalence among problems of NTK gradient flow, minimum
Euclidean norm to initialization in parameter space and minimum kernel norm to initial DNN output
hini in the corresponding reproducing kernel Hilbert space (RKHS), which are the foundation of our
results.

Previous works (Xu et al., 2018; Xu, 2018b,a; Xu et al., 2019; Rahaman et al., 2018) discover a
Frequency-Principle (F-Principle) that DNNs prefer to learn the training data by a low-frequency
function. Based on F-principle, Xu et al. (2018, 2019) postulate that the final output of a DNN tends
to inherit high frequencies of its initial output that can not be well constrained by the training data
(Xu et al., 2018, 2019). Our theoretical and empirical results on initialization provide justification of
this postulate.

3. Preliminary

3.1. Notations

Ω : a compact domain of Rd; d: dimension of input of DNN; f : target function, f ∈ L∞(Ω);
M : number of parameter of DNN; n: number of training samples; X: inputs of training set
(x1, · · · ,xn)ᵀ ∈ Rn×d; Y : outputs of training set (y1, · · · , yn)ᵀ ∈ Rn; g(X): (g(x1), · · · , g(xn))ᵀ

for any function g on Ω; h(x,θ): output of DNN of parameters θ at x;∇θ(·): (∂θ1(·), · · · , ∂θm(·))ᵀ;
dist: a general differentiable loss function satisfying conditions (i)–(iii) in Section 3.2; k(·, ·): kernel
function defined as∇θh(·,θ0)ᵀ∇θh(·,θ0) if there is no ambiguity; kθ′(·, ·): kernel function defined
as∇θh(·,θ′)ᵀ∇θh(·,θ′); Hk(Ω): reproducing kernel Hilbert space (RKHS) with respect to kernel k
at domain Ω. 〈·, ·〉k: inner product of space Hk(Ω); ‖·‖k: norm of space Hk(Ω); hk(x;hini,X,Y ):
the solution of problem (5) depending on kernel k, initial function hini, inputsX and outputs Y of
training set.

3.2. NTK regime of DNN

In the following, we consider the regression problem of fitting the target function f ∈ C(Ω), where
Ω is a compact domain in Rd. Clearly, f ∈ Lp(Ω) for 1 ≤ p ≤ ∞. Specifically, we use a DNN,
h(x,θ(t)) : Ω × Rm → R, to fit the training dataset {(xi, yi)}ni=1 of n sampling points, where
xi ∈ Ω, yi = f(xi) for each i. For the convenience of notation, we denote X = (x1, · · · ,xn)ᵀ,
Y = (y1, · · · , yn)ᵀ, and g(X) := (g(x1), · · · , g(xn))ᵀ for any function g defined on Ω.

The NTK regime refers to a state of DNN that its NTK defined as

k(·, ·) = ∇θh(·,θ(t))ᵀ∇θh(·,θ(t))

almost does not change throughout the training (Jacot et al., 2018; Chizat and Bach, 2018; Arora
et al., 2019a). Note that, we have the following requirements for h which are easily satisfied
for common DNNs: For any θ ∈ RM , there exists a derivative of h (·,θ) with respect to θ and
∇θh (·,θ) ∈ C(Ω;RM ). In the NTK regime, a DNN can be accurately approximated throughout
the training as

h(x,θ) ≈ h (x,θ0) +∇θh (x,θ0) · (θ − θ0) ,
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which is the Taylor expansion of the DNN output function at initialization θ0 up to first order. Note
that, for convenience, we also use θ0 for θ(0), i.e., the initial parameter set.

We restrict our work in the the NTK regime of DNNs. It has been shown in Jacot et al. (2018);
Chizat and Bach (2018); Lee et al. (2019) that, for any t ≥ 0, by scaling the initial parameters of
layer l of width ml by 1/

√
ml as ml → ∞ for all l, |θ(t) − θ(0)| → 0 indicating a NTK regime.

Moreover, in Arora et al. (2019a), a non-asymptotic proof is provided that relaxes the infinite width
condition to certain sufficiently large width. For simplicity of our analysis, we consider the linearized
DNN, i.e.,

h(x,θ) = h (x,θ0) +∇θh (x,θ0) · (θ − θ0) . (1)

In the following, we refer to DNNs in the NTK regime to the function satisfying the above linearized
condition. For the closeness of the linearied model and the DNN trained by gradient descent, We
refer readers to Arora et al. (2019a). In the NTK regime, for the loss function (also known as the
emprical risk)

RS(θ) = dist (h(X,θ),Y ) ,

where dist is the distance function to be explained in Section 4, the NTK gradient flow, i.e., gradient
flow of the linearized model h(x,θ(t)), in parameter space follows

dθ(t)

dt
= −∇θh(X,θ0)∇h(X,θ(t))dist (h(X,θ(t)),Y ) , (2)

with initial value θ(0) = θ0, where ∇θh(X,θ0) ∈ Rm×n, and (∇θh(X,θ0))ki = ∇θkh(xi,θ0),
and ∇h(X,θ(t))dist (h(X,θ(t)),Y ) ∈ Rn. In function space, the NTK gradient flow yields,

∂th(x, t) = −k(x,X)∇h(X,t)dist (h(X, t),Y ) , (3)

with h(x, t) = h(x,θ(t)), initial value h(·, 0) = h(·,θ0), and kernel k ∈ C(Ω× Ω) defined as

k(·, ·) = ∇θh(·,θ0)ᵀ∇θh(·,θ0),

where ∇θh(·,θ0) = (∂θ1h(·,θ0), · · · , ∂θmh(·,θ0))ᵀ ∈ Rm×1, k(x,X) ∈ R1×n for any x ∈ Ω.
Note that Eq. (3) of h is a closed system. By Jacot et al. (2018), k is symmetric and positive
semi-definite. In the following, we may denote kθ0(·, ·) = ∇θh(·,θ0)ᵀ∇θh(·,θ0) when we need to
differentiate kernels corresponding to different architectures or different initializations of DNNs.

3.3. Reproducing kernel Hilbert space (RKHS)

The kernel k can induce a RKHS as follows. First, we cite the Mercer’s theorem (Mercer (1909)).

Theorem 1 (Mercer’s theorem (Mercer (1909))) Suppose k is a continuous symmetric positive
semi-definite kernel. Then there is an orthonormal basis {φj} of L2(Ω) consisting of eigenfunctions
of Tk defined as [Tkg] (·) =

∫
Ω k(·,x)g(x) dx such that the corresponding sequence of eigenvalues

σj is nonnegative. The eigenfunctions corresponding to non-zero eigenvalues are continuous on Ω
and k has the representation

k(x,x′) =

∞∑
j=1

σjφj(x)φj(x
′),

where the convergence is absolute and uniform.
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Then, we can define the RKHS as Hk(Ω) := {g ∈ L2(Ω) |
∑∞

i=1 σ
−1
i 〈g, φi〉

2
L2(Ω) <∞}, and

the inner product in Hk(Ω) is given by

〈f, g〉k =

∞∑
i=1

σ−1
i 〈f, φi〉L2(Ω) 〈g, φi〉L2(Ω) ,

where 〈g, φi〉L2(Ω) =
∫

Ω g(x)φi(x) dx. Define k−1(x,x′) =
∑∞

i=1 σ
−1
i φi(x)φi(x

′), then the
kernel norm of any g ∈ Hk(Ω) can be expressed as

‖g‖k = 〈g, g〉1/2k =

(∫
Ω×Ω

g(x)g(x′)k−1(x,x′) dx′ dx

) 1
2

.

Hk(Ω) satisfies Berlinet and Thomas-Agnan (2004): (i) ∀x ∈ Ω,k(·,x) ∈ Hk(Ω); (ii) ∀x ∈ Ω,
∀f ∈ Hk, 〈f(·), k(·,x)〉k = f(x); (iii) ∀x,x′ ∈ Ω, 〈k(·,x), k(·,x′)〉k = k(x,x′).

4. Equivalent optimization problems in the NTK regime

For the completeness, we introduce the optimization problems equivalent to the training of DNNs
in NTK regime, which appears explicitly or implicitly in previous works (Chizat and Bach, 2018;
Oymak and Soltanolkotabi, 2018; Jacot et al., 2018; Mei et al., 2019; Banburski et al., 2019). As
introduced in Section 3.2, for the analysis of gradient flow of hDNN(·,θDNN(t)) in the kernel regime,
we focus on the gradient flow of its linearized model h(·,θ(t)), i.e., Eqs. ((2), (3)).

We consider the gradient flow under any loss RS(θ) = dist (h(X,θ),Y ), where dist is con-
tinuously differentiable and satisfies, for any z ∈ Rn, (i) dist(z, z) = 0; (ii) dist(z′, z) attains
minimum if and only if z′ = z. (iii) z′ = z if and only if ∇z′dist(z′, z) = 0. For example,
dist (h(X,θ),Y ) = 1

n

∑n
i=1 |h(xi,θ)− yi|p for any 1 < p < ∞. By Theorem 5 in Appendix 9,

the long time solution θ(∞) = limt→∞ θ(t) of dynamics (2) is equivalent to the solution of the
optimization problem

min
θ
‖θ − θ0‖2, s.t., h(X,θ) = Y . (4)

By Theorem 6 in Appendix 9, h(x,θ(∞)) uniquely solves the optimization problem

min
h−hini∈Hk(Ω)

‖h− hini‖k, s.t., h(X) = Y , (5)

where hini(x) = h(x,θ0) and the constraints h(X) = Y are in the sense of trace (Evans (2010),
pp. 257–261). The above results hold for any initial value θ0. We refer to kernel-norm minimization
framework as using the optimization problem (4) or (5) to analyze the long time solution of gradient
flow dynamics in (2) or (3), respectively.

With this framework, we emphasize the following results. First, for a finite set of training data,
given θ0, because dist is absent in problems (4) and (5), the output function of a well-trained DNN
in the NTK regime is invariant to different choices of loss functions. Note that this result is surprising
in the sense that different dist clearly leads to different trajectories of θ(t) and h(·,θ(t)). Based
on this result, it is not necessary to stick to commonly used MSE loss for regression problems. For
example, in practice, one can use dist (h(X,θ),Y ) = 1

n

∑n
i=1 |h(xi,θ)− yi|p of 1 < p < 2 to

accelerate the training of DNN near convergence or 2 < p < ∞ to accelerate the training near
initialization. One can even mixing different loss functions to further boost the training speed.
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Second, among all sets of parameters that fit the training data, a DNN in the NTK regime always
finds the one closest to the initialization in the parameter space with respect to the L2 norm. Third,
in the functional space, this framework shows that DNNs always seek to learn a function that has a
shortest distance (with respect to the kernel norm) to the initial output function. In the following, we
denote hk(x;hini,X,Y ) as the solution of problem (5) depending on k, hini, X and Y . Remark
that, for losses used in classification problems, e.g., cross-entropy, the global minimum is reached as
θ → ∞, resulting a nonlinear training dynamics that cannot be captured by NTK. Therefore, our
above results does not extend to these cases.

5. Impact of non-zero initial output

Problems (4) and (5) explicitly incorporate the effect of initialization, thus enabling us to study
quantitatively its impact to the learning of DNNs. In this section, we use the above framework to
show that a random non-zero initial DNN output leads to a specific type of generalization error. We
begin with a relation between the solution with zero initial output and that with non-zero initial
output. Proofs of the following theorems can be found in Appendix 10.

Theorem 2 For a fixed kernel function k ∈ C(Ω × Ω), and training set {X;Y }, for any initial
function hini ∈ C(Ω), hk(·;hini,X,Y ) can be decomposed as

hk(·;hini,X,Y ) = hk(·; 0,X,Y ) + hini − hk(·; 0,X, hini(X)). (6)

This theorem unravels quantitatively the impact of a nonzero initialization, i.e., hini 6= 0, to the
output function of a well-trained DNN in the NTK regime. Comparing the dynamics in (3) of zero
and non-zero initialization, at the beginning, the difference of DNN output is hini, whereas, at the
end of the training, that difference shrinks to hini − hk(·; 0,X, hini(X)), which is the residual of
fitting hini sampled atX by the same DNN. Note that Geiger et al. (2019) figures out qualitatively
that hini, which does not vanish as the width of DNN tends to infinity, decreases during the training.
However, they do not arrive at a quantitative relation as revealed by Theorem 2.

The expected generalization error of DNN with a random non-zero initial output can be estimated
as follows.

Theorem 3 For a target function f ∈ C(Ω), if hini is generated from an unbiased distribution of
random functions µ such that Ehini∼µhini = 0, then the generalization error of hk(·;hini,X, f(X))
can be decomposed as follows

Ehini∼µRS (hk(·;hini,X, f(X)), f) = RS (hk(·; 0,X, f(X)), f)

+ Ehini∼µRS (hk(·; 0,X, hini(X)), hini) ,

where RS(hk(·;hini,X, f(X)), f) = ‖hk(·;hini,X, f(X))− f‖2L2(Ω).

By the above theorem, Ehini∼µRS (hk(·; 0,X, hini(X)), hini) ≥ 0 is a specific type of gener-
alization error induced by hini. Clearly, this error decreases as the sample size n increases and as
n→∞, hini−hk(·; 0,X, hini(X))→ 0, which conforms with our intuition that if the optimization
is sufficiently constrained by the training data, then the effect of initialization can be ignored. For real
datasets of a limited number of training samples, this error is in general non-zero. By F-Principle (Xu
et al., 2018, 2019), DNNs tend to fit training data by low frequency functions. Therefore, qualitatively,
hini − hk(·; 0,X, hini(X)) consists mainly of the high frequencies of hini which cannot be well
constrained atX .
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6. AntiSymmetrical Initialization trick (ASI)

In general, from the Bayesian inference perspective, for fixed k, a random hini introduces a prior
to the inference that is irrelevant to the target function, thus should lower the accuracy of inference.
Specifically, the scaling of 1/

√
ml for NTK leads to a random initial function hini ∼ O(1), which

cannot be neglected for the analysis. To eliminate the negative impact of non-zero initial DNN output,
a naive way is to set the initial parameters sufficiently small. However, because θ = 0 is a high
order saddle point of RS(θ), too small initial parameters can lead to a nonlinear training dynamics
that cannot be captured by NTK. In practice, small initial parameters can also results in a different
initial kernel of DNN with a vanishing magnitude, which slows down the training and changes the
learning result. Based on our above theoretical results, we design an AntiSymmetrical Initialization
trick (ASI) which can fix the initial output to zero but also keep the kernel invariant. Suppose that the
activation function σ is C1(R). Let h[l]

i be the output of the i-th node of the l-th layer of a L layer
DNN. Then, h[l]

i (x) = σ
[l]
i (W

[l]
i · h[l−1](x) + b

[l]
i ), for i = 1, · · · ,ml. For the i-th neuron of the

output layer of DNN, h[L]
i (x) = W

[L]
i · h[L−1] + b

[L]
i . After initializing the DNN by any method,

we obtain h[L](x,θ(0)), where

θ(0) = (W [L](0), b[L](0),W [L−1](0), b[L−1](0), · · · , b[1](0)).

The ASI for general loss functions is to consider a new DNN expressed as hASI(x,Θ(t)) =√
2

2 h
[L](x,θ(t)) −

√
2

2 h
[L](x,θ′(t)) where Θ = (θ,θ′), Θ is initialized such that θ′(0) = θ(0).

In the following, we prove a theorem that ASI trick eliminates the nonzero random prior without
changing the kernel k (Proof can be found in Appendix 11).

Theorem 4 For any general loss function dist satisfying the conditions in Sec. 4, in the NTK
regime, i.e., h(x,θ) = h(x, θ0) +∇θh(x,θ0) · (θ − θ0), the gradient flow of both h(x,θ(t)) and
hASI(x,Θ(t)) follows the kernel dynamics

∂th
′ = −k(·,X)∇h(X,t)dist

(
h′(X, t),Y

)
, (7)

with initial value h′(·, 0) = hini = h(x,θ(0)) and h′(·, 0) = 0, respectively, where {X;Y } is the
training set, k(x,x′) = kθ0(x,x′) = ∇θh(x,θ0)ᵀ∇θh(x′,θ0).

Note that Chizat and Bach (2018) proposes a “doubling trick” to offset the initial DNN output,
that is, neurons in the last layer are duplicated, with the new neurons having the same input weights
but opposite output weights. By applying the “doubling trick”, h′(·, 0) = 0. However, the kernel
of layers L− 1 and L doubles, whereas the kernel of layers m ≤ L− 2 completely vanishes (See
Appendix 12 for the proof), which could have large impact on the training dynamics as well as the
generalization performance of DNNs.

7. Experiments

Our above theoretical results are obtained using the linearized model of DNN in Eq. (1) that
well approximates the behavior of DNN in the NTK regime. In this section, we will demonstrate
experimentally the accuracy of these results for very wide DNNs and the effectiveness of these
results for general DNNs. First, using synthetic data, we verify the invariance of DNN output after
training to different loss functions as studied in Sec. 4. Then, we verify the linear relation in Eq. (6).
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Figure 1: Invariance of DNN output to loss functions. Black stars indicate training data. Blue solid
curve and the black curve indicate the outputs on the test samples of the DNN well-trained by L2

loss and L4 loss, respectively. The size of DNN is 1-500-500-1. vstd = 5. The training and test data
are randomly sampled from sin(4x) in [−1, 1] with sample size 4 and 500, respectively.

Moreover, we demonstrate the effectiveness of the ASI trick on both synthetic data and the MNIST
dataset. Here is a summary of the settings of DNNs in our experiments. The activation function
is ReLU, parameters are initialized by a Gaussian distribution with mean 0 and standard deviation
vstd

√
2/(min +mout), where min and mout are for the input and the output dimension of the neuron,

respectively. For Figs. (1, 2, 3), networks are trained by full gradient descent with MSE loss and the
learning rate is 10−5.

7.1. Invariance of DNN output to loss functions

For a DNN h(x,θ(t)) with initialization fixed at certain θ(0) = θ0, we consider its gradient descent
training for two loss functions: the L2 (MSE) loss dist(h(X,θ),Y ) = 1

n

∑n
i=1(h(xi,θ)−yi)2 and

the L4 loss dist(h(X,θ),Y ) = 1
n

∑n
i=1(h(xi,θ)− yi)4. In Fig. 1, as Theorems 5 and 6 predict,

the well-trained DNN outputs for these two losses overlap very well not only at 4 training points, but
also at all the test points.

7.2. Linear relation and the effectiveness of ASI trick

7.2.1. 1-D SYNTHETIC DATA

In this sub-section, we use 1-d data, which is convenient for visualization, to train DNNs of a large
width. As shown in Fig. 2(a), without applying any trick, the original DNN initialized with a large
weight learns/interpolates the training data in a fluctuating manner (blue solid). Both the ASI trick
(cyan dashed dot) and the “doubling trick” (green dashed) enable the DNN to interpolate the training
data in a more “flat” way. As shown by the red dashed curve, the output computed by the right hand
side (RHS) of Eq. (6) accurately predicts the final output of the original DNN on test points. In our
experiments hk(x; 0,X, hini(X)) , hk(x; 0,X,Y ), hk(x;hini,X,Y ) are always obtained using
very wide DNNs with or without the ASI trick applied. From Eq. (6), a non-zero initialization adds

151



GENERALIZATION ERROR INDUCED BY INITIALIZATION IN DNN

1.0 0.5 0.0 0.5 1.0
x

0

5

10

15

20

y

1.0 0.5 0.0 0.5 1.0
x

1

0

1
y

100 101 102 103

epoch

10 5

10 3

10 1

101

lo
ss

training loss

(a) (b) (c)

Figure 2: Synthetic data. (a) Black stars indicate the training data. Other curves indicate final
outputs of different DNNs evaluated at the test points. Blue solid: the original DNN (without
tricks); cyan dashed dot: DNN with ASI trick applied; green dashed: DNN with “doubling trick”
applied; red dashed: the RHS of Eq. (6). (b) Blue: hk(x; 0,X, hini(X)); red: hini; cyan: 20|hini −
hk(x; 0,X, hini(X))|. (c) Evolution of loss functions of different DNNs during the training. Blue:
the original DNN; red: DNN with ASI trick applied; black: DNN with RND applied; yellow: DNN
with the “doubling trick” applied. The width of the original DNN is 1-5000-5000-1. vstd = 10. We
sample training and test data randomly from sin(4x) in [−1, 1] with size 10 and 500, respectively.

a prior hini − hk(x; 0,X, hini(X)) to the final DNN output. As shown by the cyan dashed curve
in Fig. 2(b), this prior fluctuates a lot, thus, leading to an oscillatory output of DNN after training.
Note that this experiment also support the prediction of F-Principle (Xu et al., 2018, 2019) that it
is the high frequencies of hini (red dashed) that remains in the final output of DNN. Concerning
the training speed, as shown in Fig. 2(c), the loss function of the DNN with the ASI trick applied
decreases much faster than that of the original DNN or the one with the “doubling trick” applied.
For a reference, we double the original network similar to the ASI trick, then initialize it randomly
following the same distribution as the original. We refer to this trick as RND. As shown by the black
curve in Fig. 2(c), the loss function of the DNN with the RND trick applied also decreases much
slower than the one with the ASI trick applied.

In summary, for 1-d problem, the linear relation holds well and the ASI trick is effective in
removing the artificial prior induced by hini and accelerating the training speed. In the following, we
further investigate the generalization performance of DNN with the ASI trick for real datasets.

7.2.2. BOSTON HOUSE PRICE DATASET

We verify our theoretical results for high dimensional regression problems using Boston house price
dataset (Harrison Jr and Rubinfeld, 1978), in which we normalize the value of each property and the
price to [−0.5, 0.5]. We choose 400 samples as the training data, and the other 106 samples as the
test data. As illustrated by the red dots concentrating near the black line of an identity relation in Fig.
3a, the RHS of Eq. (6) well predicts the final output of the original DNN without any trick, which is
significant different from the final output of DNN with the ASI trick applied as shown by the blue
dots deviating from the black line. As shown in 3b, similar to the experiments on 1-d synthetic data,
the ASI trick accelerates the training. In addition, conforming with Theorem 3, the generalization
error of the DNN with ASI trick applied is much smaller than that of the original DNN.
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Figure 3: Boston house price dataset. (a) Each dot represents outputs evaluated at one test point.
The abscissa is hk(·;hini,X,Y ) obtained using the original DNN. The ordinate for each blue dot is
hk(x; 0,X,Y ) obtained using DNN with the ASI trick applied, whereas for each red dot is the RHS
of Eq. (6). The black line indicates the identity function y = x. (b) The evolution of training loss
(blue solid) and test loss (red dashed) of the original DNN, and the training loss (black solid) and test
loss (yellow dashed) of DNN with ASI trick applied. The width of DNN is 13-100000-1. vstd = 5.
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Figure 4: Effectiveness of ASI trick for MNIST dataset in the non-NTK regime of DNN. (a) Evolution
of loss functions with the same legend as in Fig. 3(b). (b) Evolution of the corresponding accuracy.
The learning rate is 2× 10−7. See main text for other settings.

7.2.3. MNIST DATASET AND THE NON-NTK REGIME OF DNN

Next, we use the MNIST dataset to examine the effectiveness of ASI trick in the non-NTK regime of
DNNs. We use a DNN with a more realistic setting of width 784-400-400-400-400-10, cross-entropy
loss, batch size 512, and Adam optimizer (Kingma and Ba, 2014). In such a case, as shown in
Fig. 4, the ASI trick still effectively eliminate hini, accelerate the training speed and improve the
generalization. In Fig. 4(b), with the ASI trick applied, both training and test accuracy exceeds 90%
after only 1 epoch of training. This phenomenon further demonstrate that, without the interference of
hini, DNNs can capture very efficiently and accurately the behavior of the training data.
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8. Discussion

In this work, focusing on the regression problem, we propose using a kernel-norm minimization
framework to study theoretically the role of loss function and initialization for DNNs in the NTK
regime. We prove that, given initialization, DNNs of different loss functions in a general class find
the same global minimum. Regarding initialization, we find that a non-zero initial output of DNN
leads to a specific type of generalization error. We then propose the ASI trick to eliminate this error
without changing the neural tangent kernel. Experimentally, we find that ASI trick significantly
accelerates the training and improves the generalization performance. Moreover, ASI trick remains
effective for classification problems as well as for DNNs in the non-NTK regime. Because the error
of DNN output induced by random initialization shrinks during the training, the advantage of ASI
trick is much more significant at the early stage of the training. Based on above results, we suggest
incorporating ASI trick in the design of controlled experiments for the quantitative study of DNNs.

From the perspective of training flexibility, ASI trick can alleviate the sensitivity of generalization
and training speed to different random initializations of DNNs, thus expand the range of well-
generalized initializations. This property could be especially helpful for finding a well-generalized
solution of a new problem when empirical guidance is not available. We also remarks that, from Eq.
(6), a particular prior of hini, such as the one from meta learning (Rabinowitz, 2019), could decrease
the generalization error. However, when meta learning is not available, a zero hini is in general the
best choice for generalization.

Cross-entropy loss is commonly used in classification problems, for which the DNN outputs are
often transformed by a softmax function to stay in (0, 1). Theoretically, to obtain a zero cross-entropy
loss given that labels of the training data take 1 or 0, weights of the DNN should approach infinity. In
such a case, it is impossible for a DNN to stay in the NTK regime, which requires a small variation
of weights throughout the training. However, in practice, training of a DNN often stops by meeting
certain criteria of training accuracy or validation accuracy. Therefore, it is possible that weights of
a sufficiently wide DNN stay in a small neighborhood of the initialization during the training. By
setting a proper tolerance for the cross-entropy loss, we will analyze in the future the behavior of
DNNs in kernel regime for classification problems with cross-entropy loss.
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Appendix
9. Theorems for the kernel-norm minimization framework

Theorem 5 Let θ(t) be the solution of gradient flow dynamics

d

dt
θ(t) = −∇θh(X,θ0)∇h(X,θ(t))dist (h(X,θ(t)),Y ) (8)

with initial value θ(0) = θ0, where ∇θh(X,θ0) is a full rank (rank n) matrix of size m× n with
m > n. Suppose that the limit θ(∞) = limt→∞ θ(t) exists. Then θ(∞) solves the constrained
optimization problem

min
θ
‖θ − θ0‖2, s.t., h(X,θ) = Y . (9)

Remark Compared with the nonlinear gradient flow of DNN, the linearization in Eq. (8) is only
performed on the hypothesis function h but not on the loss function or the gradient flow.

Proof Because∇θh(X,θ0) is a full rank matrix,

lim
t→∞
∇h(X,θ(t))dist (h(X,θ(t)),Y ) = 0.

Recall that∇z′dist(z′, z) = 0 if and only if z′ = z. Thus

lim
t→∞

h(X,θ(t)) = Y .

By applying singular value decomposition to ∇θh(X,θ0), we obtain ∇θh(X,θ0) = V ΣUᵀ,

where V and U are orthonormal matrix of size m ×m and n × n respectively, Σ =

[
Σ1

0

]
of

size m× n, where Σ1 is a full rank diagonal matrix of size n× n. V can be split into two part as
V = [V1,V2], where V1 takes the first n columns and V2 takes the last m− n columns of V . Then

∇θh(X,θ0) = V ΣUᵀ = [V1,V2]

[
Σ1

0

]
Uᵀ = V1Σ1U

ᵀ,

V ᵀ
2 ∇θh(X,θ0) = V ᵀ

2 V1Σ1U
ᵀ = 0.

Therefore

d

dt
V ᵀ

2 θ(t) = −V ᵀ
2 ∇θh(X,θ0)ᵀ∇h(X,θ(t))dist (h(X,θ(t)),Y ) = 0,

which leads to
V ᵀ

2 (θ(t)− θ0) = 0, for any t ≥ 0. (10)
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By Eq. (1), limt→∞ h(X,θ(t)) = Y yields

lim
t→∞
∇θh(X,θ0)ᵀ (θ(t)− θ0) = Y − h(X,θ0),

which can be written as

lim
t→∞

UΣ1V
ᵀ

1 (θ(t)− θ0) = Y − h(X,θ0)

hence
lim
t→∞

V ᵀ
1 (θ(t)− θ0) = Σ−1

1 Uᵀ [Y − h(X,θ0)] . (11)

Combining Eq. (10) and (11), θ(∞) = limt→∞ θ(t) is uniquely determined as

V ᵀ (θ(∞)− θ0) =

[
V ᵀ

1

V ᵀ
2

]
(θ(∞)− θ0)

=

[
Σ−1

1 Uᵀ [Y − h(X,θ0)]
0

]
,

θ(∞)− θ0 = V

[
Σ−1

1 Uᵀ [Y − h(X,θ0)]
0

]
= V1Σ

−1
1 Uᵀ [Y − h(X,θ0)] ,

which leads to
θ(∞) = V1Σ

−1
1 Uᵀ [Y − h(X,θ0)] + θ0.

On the other hand, by the above analysis, problem (9) can be formulated as

min
θ
‖θ − θ0‖2 s.t. V ᵀ

1 (θ − θ0) = Σ−1
1 Uᵀ [Y − h(X,θ0)] .

Any θ satisfies above constraint can be expressed as

θ = V1Σ
−1
1 Uᵀ [Y − h(X,θ0)] + V2ξ + θ0,

where ξ ∈ Rm−n. Then

‖θ − θ0‖22 = ‖V1Σ
−1
1 Uᵀ [Y − h(X,θ0)]‖22 + ‖V2ξ‖22.

Clearly, ‖θ−θ0‖2 attains minimum if and only if ξ = 0. Therefore θ(∞) = V1Σ
−1
1 Uᵀ [Y − h(X,θ0)]+

θ0 uniquely solves problem (9).

For the proof of Theorem 6, we first introduce the following two lemmas.

Lemma 1 For any h′ ∈ Hk(Ω), there exist θ′ = 〈h′(·),∇θh(·,θ0)〉k such that h′ = ∇θh(x,θ0)ᵀθ′.

Proof For any h′ ∈ Hk(Ω),〈
h′(·), k(·, z)

〉
k

=
〈
h′(·),∇θh(·,θ0)ᵀ∇θh(z,θ0)

〉
k

=
〈
h′(·),∇θh(·,θ0)

〉ᵀ
k
∇θh(z,θ0).

For θ′ = 〈h′(·),∇θh(·,θ0)〉k, by the property of reproducing kernel k,

h′(x) =
〈
h′(·), k(·,x)

〉
k

= ∇θh(x,θ0)ᵀθ′.
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Lemma 2 For any θ′ ∈ Rm,∇θh(·,θ0)ᵀθ′ ∈ Hk(Ω).

Proof By the Mercer’s theorem,

k(x,x′) =
∞∑
j=1

σjφj(x)φj(x
′),

where {φj}∞j=1 are orthonormal basis of L2(Ω). Suppose that∇θh(·,θ0)ᵀθ′ /∈ Hk(Ω).
If for all positive integer j, σj 6= 0, then

∑∞
i=1 σ

−1
i 〈φj , φi〉2L2(Ω) = σ−1

j <∞. Thus φj ∈ Hk(Ω)

for all j. Therefore Hk(Ω) = L2(Ω). This implies that∇θh(·,θ0)ᵀθ′ ∈ Hk(Ω).
If for some positive integer j1, σj1 = 0 and 〈∇θh(·,θ0)ᵀθ′, φj1〉L2(Ω) 6= 0. Then there exists j2

such that
〈
∇θj2h(·,θ0), φj1

〉
L2(Ω)

6= 0, where θj2 is the j2-th component of θ. Then∫
Ω
φj1(x)k(x,x′)φj1(x′) dxdx′ =

∫
Ω
φj1(x)

(
∇θh(x,θ0)ᵀ∇θh(x′,θ0)

)
φj1(x′) dxdx′

=
∑
i

〈∂θih(·,θ0), φj1〉
2
L2(Ω)

≥
〈
∂θj2h(·,θ0), φj1

〉2

L2(Ω)
> 0.

However, on the other hand,∫
Ω
φj1(x)k(x,x′)φj1(x′) dxdx′ =

∫
Ω
φj1(x)

∞∑
j=1

σjφj(x)φj(x
′)φj1(x′) dx dx′

=
∑
j

σj 〈φj , φj1〉
2
L2(Ω) = σj1 = 0,

which leads to an contradiction. Therefore,∇θh(·,θ0)ᵀθ′ ∈ Hk(Ω).

Theorem 6 Let θ be the solution of problem (9), then h(x,θ) uniquely solves the optimization
problem

min
h−hini∈Hk(Ω)

‖h− hini‖k s.t. h(X) = Y , (12)

where hini = h(x,θ0) and the constraints h(X) = Y are in the sense of trace (Evans, 2010) if the
Hilbert space Hk(Ω) is good enough for the existence of trace of h atX .

Proof By Eq. (1) h(x,θ)−hini = ∇θh(x,θ0)·(θ − θ0). By Lemma 2, h(·,θ)−hini ∈ Hk(Ω). For
any h− hini ∈ Hk(Ω), by Lemma 1, for θ′ = 〈h− hini,∇θh(·,θ0)〉k, h− hini = ∇θh(x,θ0)ᵀθ′.
Then

‖h− hini‖k = ‖∇θh(·,θ0)ᵀθ′‖k

=
√
〈h− hini,∇θh(·,θ0)ᵀθ′〉k

=
√
〈h− hini,∇θh(·,θ0)〉ᵀk θ′

=
√
θ′ᵀθ′ = ‖θ′‖2.
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By Problem (9), for any θ1 6= θ − θ0 that satisfies h(X,θ1 + θ0) = Y , we have

‖θ1‖2 > ‖θ − θ0‖2.

Then, for problem (12), for any h1 satisfying h1−hini ∈ Hk(Ω), h1(X) = Y and h1(x) 6= h(x,θ),
let θ1 = 〈h1 − hini,∇θh(·,θ0)〉k. Clearly, θ1 6= θ − θ0, which leads to

‖h1 − hini‖k = ‖θ1‖2 > ‖θ − θ0‖2 = ‖h(x,θ)− hini‖k.

Therefore h(x,θ) uniquely solves problem (12).

Now, we obtain the equivalence between the long time solution of dynamics (13) and the solution
of optimization problem (14) as follows.

Corollary 1 Let h(x, t) be the solution of dynamics

d

dt
h(x, t) = −k(x,X)∇h(X,t)dist (h(X, t),Y ) , (13)

with h(x, 0) = h(x,θ0) for certain θ0. Then h(x,∞) uniquely solves optimization problem

min
h−hini∈Hk(Ω)

‖h− hini‖k, s.t., h(X) = Y . (14)

Proof Notice that dynamics (13) is the same as dynamics (3) obtained from (2). Therefore, for
h(x, 0) = h(x,θ0), h(x, t) = h(x,θ(t)) where θ(t) is the solution of dynamics (2) with θ(0) = θ0.
By Theorem 5 and 6, h(x,∞) = h(x,θ(∞)) uniquely solves dynamics (14).

10. Impact of non-zero initial output

In this section, we use the above framework to show that a random non-zero initial DNN output leads
to a specific type of generalization error. We begin with a lemma showing the linear composition
property of the final DNN outputs in the NTK regime.

Lemma 3 For a fixed kernel function k ∈ L2(Ω × Ω), for any two training sets {X;Y1} and
{X;Y2}, where Y1 = (y

(1)
1 , · · · , y(1)

n )ᵀ and Y2 = (y
(2)
1 , · · · , y(2)

n )ᵀ, the following linear relation
holds

hk(·; 0,X,Y1 + Y2) = hk(·; 0,X,Y1) + hk(·; 0,X,Y2). (15)

Proof Let h1(x, t), h2(x, t) be the solutions of the gradient flow dynamics with respect to a MSE
loss dist (h(X, t),Y ) = 1

2

∑n
i=1(h(xi, t)− yi)2

∂

∂t
h(x, t) = −k(x,X) (h(X, t)− Y ) (16)

with training labels Y = Y1 and Y = Y2, respectively, and h1(x, 0) = h2(x, 0) = hini = 0. Then

∂t (h1 + h2) = −k(·,X) (h1(X,θ(t))− Y1)− k(·,X) (h2(X,θ(t))− Y2) .

= −k(·,X) [(h1 + h2) (X,θ(t))− (Y1 + Y2)]
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with initial value (h1 + h2) (·, 0) = 0. Therefore h1 + h2 solves dynamics (16) for Y = Y1 + Y2

and hini = 0. Then, by Corollary 1, we obtain

hk(·; 0,X,Y1 + Y2) = h1(·,∞) + h2(·,∞) = hk(·; 0,X,Y1) + hk(·; 0,X,Y2).

Using Lemma (3), we obtain the following quantitative relation between the solution with zero
initial output and that with non-zero initial output.

Theorem 7 (Theorem 2 in main text) For a fixed kernel function k ∈ C(Ω× Ω), and training set
{X;Y }, for any initial function hini ∈ C(Ω), hk(·;hini,X,Y ) can be decomposed as

hk(·;hini,X,Y ) = hk(·; 0,X,Y ) + hini − hk(·; 0,X, hini(X)). (17)

Proof Because hk(·;hini,X,Y ) is the solution of problem (5). Then hk(·;hini,X,Y )− hini is the
solution of problem

min
h∈Hk(Ω)

‖h‖k, s.t., h(X) = Y − hini(X),

whose solution is denoted as hk(·; 0,X,Y − hini(X)). By Lemma 3,

hk(·; 0,X,Y − hini(X)) = hk(·; 0,X,Y )− hk(·; 0,X, hini(X)). (18)

Therefore

hk(·;hini,X,Y ) = hk(·; 0,X,Y − hini(X)) + hini

= hk(·; 0,X,Y ) + hini − hk(·; 0,X, hini(X)). (19)

The generalization error of DNN contributed by a random initial output can be estimated as
follows.

Theorem 8 (Theorem 3 in main text) For a target function f ∈ C(Ω), if hini is generated from an
unbiased distribution of random functions µ such that Ehini∼µhini = 0, then the generalization error
of hk(·;hini,X, f(X)) can be decomposed as follows

Ehini∼µRS (hk(·;hini,X, f(X)), f) = RS (hk(·; 0,X, f(X)), f)

+ Ehini∼µRS (hk(·; 0,X, hini(X)), hini) ,

where RS(hk(·;hini,X, f(X)), f) = ‖hk(·;hini,X, f(X))− f‖2L2(Ω).

Proof By Theorem 7,

‖hk(·;hini,X, f(X))− f‖2L2(Ω)

= ‖[hk(·; 0,X, f(X))− f ] + [hini − hk(·; 0,X, hini(X))]‖2L2(Ω)

= ‖hk(·; 0,X, f(X))− f‖2L2(Ω) + ‖hini − hk(·; 0,X, hini(X))‖2L2(Ω)

+ 2 〈hk(·; 0,X, f(X))− f, hini − hk(·; 0,X, hini(X))〉L2(Ω) . (20)
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Because Ehini∼µhini = 0, by Lemma 3, Ehini∼µ [hk(·; 0,X, hini(X))] = [hk(·; 0,X,Ehini∼µhini(X))] =
0,

Ehini∼µ 〈hk(·; 0,X, f(X))− f, hini − hk(·; 0,X, hini(X))〉L2(Ω)

= 〈hk(·; 0,X, f(X))− f,Ehini∼µ [hini − hk(·; 0,X, hini(X))]〉L2(Ω) = 0. (21)

Then we obtain

Ehini∼µRS (hk(·;hini,X, f(X)), f) = RS (hk(·; 0,X, f(X)), f)

+ Ehini∼µRS (hk(·; 0,X, hini(X)), hini)

11. AntiSymmetrical Initialization trick (ASI)

We design an AntiSymmetrical Initialization trick (ASI) which can make the initial output zero but
also keep the kernel invariant. Let h[l]

i be the output of the ith node of the lth layer of a L layer DNN.
Then, h[l]

i (x) = σ
[l]
i (W

[l]
i · h[l−1](x) + b

[l]
i ), for i = 1, · · · ,ml. For the ith neuron of the output

layer of DNN h
[L]
i (x) = W

[L]
i · h[L−1] + b

[L]
i . After initializing the network with any conventional

method, we obtain h[L](x,θ(0)), where

θ(0) = (W [L](0), b[L](0),W [L−1](0), b[L−1](0), · · · , b[1](0)).

The ASI for general loss functions is to consider a new DNN with output hASI(x,Θ(t)) =√
2

2 h
[L](x,θ(t))−

√
2

2 h
[L](x,θ′(t)) where Θ = (θ,θ′), Θ is initialized such that θ′(0) = θ(0). We

will prove that ASI trick eliminates the nonzero prior without changing the kernel k.

Theorem 9 (Theorem 4 in main text) By applying trick ASI to any DNN h(x,θ(t)) initialized by
θ(0) = θ0 such that hini = h(x,θ0) 6= 0, we obtain a new DNN hASI(x,Θ(t)) =

√
2

2 h(x,θ1(t))−
√

2
2 h(x,θ2(t)) (Θ = (θ1,θ2)) with initial value θ1(0) = θ2(0) = θ0. Then, for any general loss

function dist, in the NTK regime, i.e., h(x,θ) = h(x, θ0) +∇θh(x,θ0) · (θ − θ0), the evolution of
both h(x,θ(t)) and hASI(x,Θ(t)) under gradient flow of both DNNs follows kernel dynamics

∂th
′ = −k(·,X)∇h(X,t)dist

(
h′(X, t),Y

)
, (22)

with initial value h′(·, 0) = hini and h′(·, 0) = 0, respectively, where {X;Y } is the training set,
k(x,x′) = kθ0(x,x′) = ∇θh(x,θ0)ᵀ∇θh(x′,θ0).

Proof Clearly, h(·,θ(t)) under gradient flow follows dynamics (22) with initial function h′(·, 0) =
hini. For the evolution of hASI(x,Θ(t)), it is easy to see that it follows dynamics (22) with initial
function h′(·, 0) = 0 if and only if hASI(·,Θ(0)) = 0 and kΘ0 = kθ0 . By the definition of kΘ(0),

kΘ0(x,x′) = ∇ΘhASI(x,Θ(0)) · ∇ΘhASI(x
′,Θ(0))

=
1

2
∇θ1h(x,θ1(0)) · ∇θ1h(x′,θ1(0)) +

1

2
∇θ2h(x,θ2(0)) · ∇θ2h(x′,θ2(0))

=
1

2
∇θh(x,θ0) · ∇θh(x′,θ0) +

1

2
∇θh(x,θ0) · ∇θh(x′,θ0)

= ∇θh(x,θ0) · ∇θh(x′,θ0) = kθ(0).
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Moreover,

hASI(x,Θ(0)) =

√
2

2
h(x,θ1(0))−

√
2

2
h(x,θ2(0))

=

√
2

2
h(x,θ0)−

√
2

2
h(x,θ0) = 0.

This completes the proof.

12. “doubling trick”

By applying the “doubling trick” (Note that, in Chizat and Bach (2018), there is no bias term in the last
layer), we obtain a new network with network parameters θ′ = (W ′[L],W ′[L−1], b′[L−1], · · · , b′[1])
initialized asW ′[L](0) = (W [L](0),−W [L](0)),W ′[L−1](0) = (W [L−1](0),W [L−1](0)), b′[L−1](0) =
(b[L−1](0), b[L−1](0)) andW ′[l](0) = W [l](0), b′[l](0) = b[l](0) for any l = 1, · · · , L− 2.

In general, the kernel can be decomposed as the summation of kernels with respect the tangent
space of parameters of the neural network in each layer, that is

kθ(x,x′) = ∇θh(x,θ) · ∇θh(x′,θ)

=

L∑
l=1

[∇W [l]h(x,θ) · ∇W [l]h(x,θ) +∇b[l]h(x,θ) · ∇b[l]h(x,θ)] .

Theorem 10 For the DNN initialized by θ′, by applying the “doubling trick”, for any m ≤ L− 2,

kW ′[m](x,x′) = 0, kb′[m](x,x′) = 0.

For m = L− 1, L, and Θ = W [L−1], b[L−1],W [L],

kΘ′(x,x
′) = 2kΘ(x,x′),

Proof For any m ≤ L− 2,

∇
W
′[m]
i,j

h′(x,θ′(0)) =

(
L−1∏
l=m+1

W ′[l+1](0)s′[l](x, 0)

)
W ′[m+1]

j (0)s′
[m]
j (x, 0)h′

[m−1]
i (x, 0),

∇
b′

[m]
j

h′(x,θ′(0)) =

(
L−1∏
l=m+1

W ′[l+1](0)s′[l](x, 0)

)
W ′[m+1]

j (0)s′
[m]
j (x, 0),

where s′[l]i (x, t) = s(W
[l]
i (t) · h[l−1](x) + b

[l]
i (t)), for i = 1, · · · ,ml, s(x) = dσ(x)

dx . Because

W ′[L](0)s′[L−1](x, 0) = W [L](0)s[L−1](x, 0)−W [L](0)s[L−1](x, 0) = 0,

for any m ≤ L− 2, we obtain∇
W
′[m]
i,j

h′(x,θ′(0)) = 0 and∇
b′

[m]
j

h′(x,θ′(0)) = 0, which leads to

kW ′[m](x,x′) = 0 and kb′[m](x,x′) = 0. For layer L− 1 and L, similarly, we have

kW ′[L−1](x,x′) = 2kW [L−1](x,x′),
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kb′[L−1](x,x′) = 2kb[L−1](x,x′),

kW ′[L](x,x′) = 2kW [L](x,x′).

Therefore, by applying the “doubling trick”, h′(x,θ(0)) is offset to 0. However, the kernel of
layers L− 1 and L doubles, whereas the kernel of layers m ≤ L− 2 completely vanishes, which
could have large impact on the training dynamics as well as the generalization performance of DNN
output.
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