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A DYNAMICAL STATE UNDERLYING THE SECOND ORDER
MAXIMUM ENTROPY PRINCIPLE IN NEURONAL NETWORKS∗

ZHI-QIN JOHN XU† , GUOQIANG BI‡ , DOUGLAS ZHOU§ , AND DAVID CAI¶

Abstract. The maximum entropy principle is widely used in diverse fields. We address the issue of
why the second order maximum entropy model, by using only firing rates and second order correlations
of neurons as constraints, can well capture the observed distribution of neuronal firing patterns in many
neuronal networks, thus, conferring its great advantage in that the degree of complexity in the analysis of
neuronal activity data reduces drastically from O(2n) to O(n2), where n is the number of neurons under
consideration. We first derive an expression for the effective interactions of the nth order maximum
entropy model using all orders of correlations of neurons as constraints and show that there exists a
recursive relation among the effective interactions in the model. Then, via a perturbative analysis, we
explore a possible dynamical state in which this recursive relation gives rise to the strengths of higher
order interactions always smaller than the lower orders. Finally, we invoke this hierarchy of effective
interactions to provide a possible mechanism underlying the success of the second order maximum
entropy model and to predict whether such a model can successfully capture the observed distribution
of neuronal firing patterns.
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1. Introduction
In neuroscience, there are various population coding theories and experimental re-

sults suggesting that information encoded in correlated neuronal population responses
is not simply a linear summation of information embedded in individual neurons. How-
ever, how to understand collective behaviors of neuronal populations remains a great
scientific challenge. With the development of new experimental techniques, many lab-
oratories have been able to perform long duration (∼1h) recordings from hundreds of
neurons simultaneously [10]. How to extract information from such high dimensional
data from experimental measurement has become an urgent issue.

There is strong evidence that information is encoded within spike trains (the firing
pattern) of neurons. To decipher the coded information, it is essential to investigate
characteristics of spike patterns [4, 8]. For a fixed sampling time bin, one can use a
binary quantity to describe the two states of each neuron, for example, 1 for the neuron
to be active (firing) and 0 for being silent (not firing). For a group of n neurons, a binary
vector can be used to characterize the state of the firing pattern in each sampling time
bin. To understand how neuronal networks encode information, one needs to study the
relation between a stimulus and its corresponding neuronal firing pattern. There are
2n possible states in each sampling time bin for a network of n neurons. Therefore, the

∗Received: July 1, 2016; accepted: August 9, 2016. Communicated by Shi Jin.
†School of Mathematical Sciences, MOE-LSC and Institute of Natural Sciences, Shanghai Jiao Tong

University, Shanghai, P.R. China and NYUAD Institute, New York University Abu Dhabi, PO Box
129188 Abu Dhabi, United Arab Emirates (xuzhiqin@sjtu.edu.cn).
‡CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of

Science and Technology of China, Anhui, P.R. China (gqbi@ustc.edu.cn).
§Corresponding author, School of Mathematical Sciences, MOE-LSC and Institute of Natural Sci-

ences, Shanghai Jiao Tong University, Shanghai, P.R. China (zdz@sjtu.edu.cn).
¶Corresponding author, School of Mathematical Sciences, MOE-LSC and Institute of Natural Sci-

ences, Shanghai Jiao Tong University, Shanghai, P.R. China, and Courant Institute of Mathemat-
ical Sciences and Center for Neural Sciences, New York University, New York, NY and NYUAD
Institute, New York University Abu Dhabi, PO Box 129188 Abu Dhabi, United Arab Emirates
(cai@cims.nyu.edu).

665



666 A MECHANISM OF THE 2ND MAX ENT MODEL IN NEUROSCIENCE

number of all possible states is exponentially growing with the neuron number. This
presents a theoretical challenge to study a network of a large number of neurons. Any
method that can reduce this exponentially growing complexity would greatly facilitate
our understanding of population behaviors of neurons. To tackle this complexity, the
Maximum Entropy Principle (MEP) has been applied to the analysis of neuronal data.
Using MEP, one can find the desired probability distribution by maximizing the entropy
subject to given constraints [17]. The MEP has been widely used in diverse fields, such
as in neuroscience [11,23,27,43–46], biological network studies [6,22,31,40,42], imaging
science [32], economics [13, 38], linguistics [39], anthropology [15], and atmosphere-
ocean science [18]. The second order maximum entropy (MaxEnt) model, using the
mean and correlation as constraints, is a special case of the MEP. There are recent
works [34, 36] showing that by using the second order MaxEnt model it is possible to
predict 90% to 99% of information (See relevant definitions in Section 3.) encoded
in all orders of correlations of neuronal network dynamics in many areas of the brain
[17] and the reconstructed distribution of the firing pattern using the second order
MaxEnt model can well capture the observed distribution of neuronal firing patterns
in different brain states, such as spontaneous states [36, 41] or the state under visual
drives [34]. The degree of freedom in the second order MaxEnt model is O(n2) since
the highest order of correlations it takes into account is pairwise correlations. If this
model is generally applicable to characterize neuronal network dynamics arising from the
brain, it could drastically simplify the mathematical analysis of how neuronal networks
encode information. A series of works have been initiated to address various aspects
of the second order MaxEnt model, including explorations of fast algorithms [5, 26],
inference of spatial-temporal correlations [23,25,37,41,46], and functional connectivity
[3,9,16,30,45,47]. Despite these investigations and applications of MEP, there are critical
issues also being raised [12,21,24,27–29,48], such as the second order MaxEnt model no
longer sufficient for networks of large sizes (e.g., ∼100 neurons [12]), or networks over
fine-scales, i.e., local clusters of neurons within 300µm [27].

To use the second order MaxEnt model effectively, we need to understand under
what conditions the second order MaxEnt model can well capture the observed distri-
bution of neuronal firing patterns. There are studies that have attempted to address
this issue. It was argued [29] that the success of MaxEnt models requires that the net-
work size be smaller than a critical size, in which the critical size only depends on firing
rates and sampling time bin size. However, there are also studies [35] in which no clear
critical value for network size was found in the sense that the neuronal network sizes are
larger than the critical size yet the distribution of the firing pattern obtained from the
second order MaxEnt model was still in good agreement with the observed distribution
of neuronal firing patterns in neurophysiological experiments. In addition, as often ob-
served, the correlation coefficient between the activity of two neurons typically is weak
(≤10%) [1,7], one may suspect that the weak correlations may be relevant to the success
of the MaxEnt approaches. However, there are theoretical analyses using a perturbation
theory [1] to show that the success is not simply a consequence of weak correlations,
in the sense that even though all pairwise correlations are weak, the entropy of the
distribution of the second order MaxEnt model is not captured in leading orders of the
perturbation theory with respect to weak correlations. Therefore, it remains important
to clarify under what conditions the second order MaxEnt model can well capture the
observed distribution of neuronal firing patterns.

In this work, we aim to explore a possible mechanism underlying the validity of
the second order MaxEnt model in neuronal network dynamics. In our numerical ex-
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periments, we find that weak high order correlations do not guarantee the success of
the second order MaxEnt model. To understand what is underlying the success of the
second order MaxEnt model in the reconstruction of the distribution of neuronal firing
patterns for a network with n neurons, instead of focusing on correlations, we theoreti-
cally analyze the effective interactions in the nth order MaxEnt model using all orders
of correlations of neurons as constraints. We first develop a method to derive an explicit
mathematical form for all the interactions of the nth order MaxEnt model. Then, we
show that the high order (above the second order) interactions of the MaxEnt model
are much smaller in strength than the lower order ones in dynamical states for which
the second order MaxEnt model can well capture the distribution of neuronal firing
patterns. To understand under what conditions the high order interactions in the Max-
Ent model are weak, we develop a theoretical framework using homogeneously coupled
neuronal networks. In our framework, there emerge two important quantities: one is
the conditional probability, p, of one neuron from the silent state to the active state
conditioned on other neurons being silent, the other is the increment, δ, of conditional
probability of the neuron in the active state induced by one of the other active neurons.
We discover a linearity condition involving these two quantities p and δ that plays an
important role in the network dynamical state underlying the success of the MaxEnt
models. Specifically, the linearity condition states that the conditional probability in-
crement of one neuron from the silent state to the active state induced by a group of
neurons is equal to the linear summation of increments induced by each of the individual
neurons in the group. Under this condition, for an asynchronous network, we develop
a perturbation theory to show that the strengths of interactions in the MaxEnt model
form a hierarchy in the power of δ, that is, the second order interactions are dominant
terms which are of order δ, the third order interactions are of order δ2 and so forth.
We show that this hierarchy of order can be used to predict whether the second order
MaxEnt model can characterize well the distribution of neuronal firing patterns. Using
Hodgkin–Huxley (HH) network models, we demonstrate numerically that the linearity
condition persists as long as the neurons are not firing synchronously.

We also investigate other important issues related to the MaxEnt model. We study
whether the sampling time bin affects the applicability of the second order MaxEnt
model. We show that a sampling time bin of very small or very large size can lead
to rather large strengths of high order interactions, thus giving rise to the failure of
the second order MaxEnt model. In addition, we investigate whether weak high order
correlations can explain the success of the second order MaxEnt model. We find that
even when high order correlations are small, the high order interactions in the MaxEnt
model can still be very large in strength, thus leading to the failure of the second order
MaxEnt models. This emphasizes that the success of the second order MaxEnt model
is not simply a consequence of weak correlations.

The article is organized as follows. In Section 2, the HH neuron model used in our
work is recapitulated. In Section 3, we describe the basic setting for the application
of the MaxEnt model in analyzing data of neuronal networks. Section 4 is devoted
to the derivation of an explicit mathematical form for all the interactions of the nth
order MaxEnt model with all orders of correlations as constraints. Here, we establish
an important recursive relation among these different order interactions. In Section
5, we show numerically that the strengths of high order interactions in the nth order
MaxEnt model are much smaller than the two leading order ones in the second order
MaxEnt model in dynamical states for which the second order MaxEnt model can well
approximate the distribution of neuronal firing patterns. In Section 6, we theoretically
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explore a network dynamical state characterized by a linearity condition that underlies
the success of the second order MaxEnt model. In Section 7, we numerically verify
the linearity condition using HH neuronal network models. In Section 8, using our
theoretical framework, we investigate other important issues related to the MaxEnt
model. Finally, we present our conclusion in Section 9.

2. The Hodgkin–Huxley neuron model
In this work, we will use spike trains obtained from simulation of conductance-

based Hodgkin–Huxley (HH) neuronal networks to demonstrate the applicability of the
MEP. We process the simulation data as follows: If the ith neuron fires at least once
during the sampling time bin ∆tk, whose size is usually selected to be 10ms−20ms as
in experiments [34,36,41], the neuronal state σi is set to be 1, otherwise 0. For the total
n recorded neurons, the firing pattern in each sampling time bin can be characterized
by a binary vector V = (σ1, ·· · ,σn)∈{0,1}n.

In the HH neuron model, for neuron i, its membrane potential Vi obeys

C
dVi
dt

=−(Vi−VNa)GNahim
3
i −(Vi−VK)GKn4

i −(Vi−VL)GL +I inputi ,

with

dXi

dt
= (1−Xi)αX(Vi)−XiβX(Vi),

where X ∈{m,n,h} and

αn(Vi) =
0.1−0.01Vi

exp(1−0.1Vi)−1
, βn(Vi) = 0.125exp(−Vi/80),

αm(Vi) =
2.5−0.1Vi

exp(2.5−0.1Vi)−1
, βm(Vi) = 4exp(−Vi/18),

αh(Vi) = 0.07exp(−Vi/20), βh(Vi) =
1

exp(3−0.1Vi)+1
.

The quantities of Vi, mi, ni, hi, I
input
i are functions of time t, and other parameters

are VNa = 115mV, VK =−12mV, VL = 10.6mV (i.e., the resting potential is set to
0mV), GNa = 120mS ·cm−2, GK = 36mS ·cm−2, GL = 0.3mS ·cm−2 and the membrane

capacity C= 1µF ·cm−2. I inputi represents external inputs and interactions between
neurons,

I inputi = IEi +IIi , IEi =−(Vi−V E
G )GE

i , IIi =−(Vi−V I
G)GI

i,

where IEi and IIi are excitatory and inhibitory inputs, respectively, and V E
G and V I

G are

their corresponding reversal potentials. The conductance GQi (Q∈{E,I}) evolves
according to

dGQi
dt

=−G
Q
i

σQG
+HQ

i ,
dHQ

i

dt
=−H

Q
i

σQH
+
∑
k

FQi δ(t−T
F
i,k)+

∑
j 6=i

Sijg(V pre
j )

with

g(V pre
j ) = 1/

(
1+exp(−(V pre

j −85mV)/2)
)
,

where FQi is the magnitude of an external Poisson input to neuron i, TFi,k is the time
of the kth input event described by a Poisson process with rate µi. For all the neurons
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we use FE
i =F , F I

i = 0, µi=µ. Sij is the coupling strength from the jth neuron to the
ith neuron. V pre

j is the membrane potential of the jth neuron (presynaptic to the ith

neuron). V E
G = 65mV, V I

G=−15mV, σEG = 0.5ms, σEH = 3.0ms, σIG= 0.5ms, σIH = 7.0ms.

We use the adjacency matrix A= (Aij) to denote the neuronal network structure,
i.e., Sij =AijS

QiQj , and SQiQj is one of SEE, SEI, SIE, SII, depending on the type of
the corresponding neuron pair (E for excitatory, I for inhibitory). Aij 6= 0 means there is
a direct coupling to the ith neuron from the jth neuron. By homogeneous coupling, we
mean a statistical homogeneous architecture, that is Aij equals either 1 with probability
of p or 0 with probability of 1−p. During one simulation, all the parameters are kept
constant.

In our numerical simulation, we used an explicit fourth order Runge–Kutta method
with time step ∼0.03ms. The voltage time series were obtained with a sampling rate
of 2kHz. The spike train data are constructed from the voltage measurement, xt= 1 if
Vi(t) just passes through the threshold (10mV was used) from below in voltage, xt= 0
otherwise.

3. The MaxEnt model
The basic setting for the application of the MaxEnt method is as follows. For an

underlying large network, a subset of neurons is recorded simultaneously. For the total
n recorded neurons, the firing pattern in each sampling time bin can be characterized by
a binary vector V = (σ1,·· · ,σn). In general, to obtain the distribution of V requires to
know all the possible states of V , i.e., 2n states in total. The distribution of the 2n states
can be determined by correlations of all orders and the normalization of probability. The
expected value of σi is given by σ̄i= 〈σi〉E , where 〈·〉E is defined by

〈g(t)〉E =
1

NT

NT∑
t=1

g(t)

for any function g(t) and NT is the total number of sampling time bins in the recording.
The second order correlation is given by 〈(σi− σ̄i)(σj− σ̄j)〉E for i 6= j. Similarly, higher
order correlations can be evaluated. To obtain correlations up to the mth order requires
to evaluate all 〈σi1 ·· ·σiM 〉E , where i1<i2< ·· ·<iM and 1≤M ≤m.

The entropy of the firing pattern of neurons is defined by

S=−
∑
V

P (V )logP (V ),

where P (V ) is the probability of the state V in all sampling time bins. The MEP is
to find the desired probability distribution for n neurons by maximizing the entropy S
subject to given correlations up to the mth order (m≤n) [34,36,41]. Then, the unique
distribution can be solved as

Pm(V ) =
1

Z
exp(

n∑
i1=1

Ji1σi1 +

n∑
i1<i2

Ji1i2σi1σi2 ·· ·+
n∑

i1<···<im

Ji1···imσi1 ·· ·σim), (3.1)

where, following the terminology of statistical physics, the first order interaction Ji is the
self interaction, Ji1···ik is the kth order interaction (2≤k≤m), the partition function Z
is the normalization factor. Equation (3.1) is referred to as the distribution of the mth
order MaxEnt model. Note that the distribution of the nth order MaxEnt model Pn is
estimated under the constraints of the correlations up to the nth order, it can be shown
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that Pn is identical to P (V ) [41]. For Pm with m<n, we use the same iteration method
as in [41] to numerically solve the above MaxEnt optimization problem to obtain the
interaction parameters and the corresponding distribution (See Appendix for details.).
We denote the entropy corresponding to the mth order MaxEnt Model Pm as

Sm=−
∑
V

Pm(V )logPm(V ). (3.2)

Because increasing number of correlation constraints always reduces entropy, it can
be easily seen that S1≥S2≥···≥Sn=S [36, 41], where S is the entropy that satisfies
all correlation constraints up to the nth order. From information theory [34], multi-
information is defined as In=S1−Sn. The amount of information accounted for by the
second order information is I2 =S1−S2. The multi-information fraction is therefore
defined by

gI =
I2
In
, (3.3)

which is commonly used to index the performance of the second order MaxEnt model
[2, 23, 29, 34, 36, 41, 45, 48]. Another closely related multi-information fraction has also
been used to index the performance of the MaxEnt model [41], that is,

fI =
D1−D2

D1
, (3.4)

where Dm is the Kullback–Leibler (KL) divergence of Pn with respect to Pm given by

Dm=
∑
V

Pn(V )log
Pn(V )

Pm(V )
. (3.5)

The indexes [Equations (3.3) and (3.4)] are unity only when the distribution of the
nth order MaxEnt (the observed distribution), i.e., Pn, is exactly the same as the
distribution of the second order MaxEnt model. Our results show that the conclusions
using fI and gI are similar. For brevity, we only show the results using fI below. The
value of multi-information fraction fI is found to be in the range of 90%−99% for
various states of the brain in experiments, for example, the spontaneous state [36, 41]
or the state under the visual-input drive [34].

We further note that in the following we will use the KL divergence of Pn with
respect to P1, i.e., D1, as a synchronization index. If the activities of neurons are totally
independent, i.e., in the most asynchronous state, D1 = 0 since the joint distribution in
such case is simply the product of the marginal distribution of each neuron.

4. Analytical solutions to interactions in the nth order MaxEnt model
As mentioned above, if we use the MaxEnt model of less than the nth order to fit

the distribution of neuronal firing patterns of n neurons in a network, we can use an
iteration method to numerically obtain the corresponding interaction strengths. In this
section, we will show that the interaction strengths of the nth order MaxEnt model can
be analytically solved.

For a fixed sampling time bin, we partition the recording time by the bin size
and record the state of neurons at every sampling time bin. A binary vector V =
(σ1,σ2, ·· · ,σn)∈{0,1}n then represents the state of n neurons. We count the occurring
frequency of all possible states as the observed distribution P (V ) of neuronal firing
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patterns. As discussed in the previous section, Pn is identical to P (V ) for the nth
order MaxEnt model. Substituting 2n states of V = (σ1,σ2,·· · ,σn) and the observed
probability P (V ) of the state V of n neurons into the nth order MaxEnt model [Equation
(3.1)], then taking the logarithm of both sides of Equation (3.1), we obtain a system of
linear equations for all the interactions in terms of P (V ),

n∑
i1=1

Ji1σi1 +

n∑
i1<i2

Ji1i2σi1σi2 ·· ·+J12···nσ1σ2 ·· ·σn= logP (V )+logZ, (4.1)

where Ji1···im are the mth order interactions in Pn. Note that the partition function
Z= 1/P (V = (0,0,·· · ,0)). By solving the system of linear equations [Equation (4.1)],
we can obtain all the 2n−1 interactions J ’s for the nth order MaxEnt model in terms
of P (V ).

Using n= 3 as an example, by denoting Pσ1···σn as the probability of state V =
(σ1,·· · ,σn), we have

J1 = log
P100

P000
(4.2)

and the second order interaction is

J12 = log
P110

P010
− log

P100

P000
. (4.3)

Note that J12 can be equivalently obtained by the following procedure: First, in J1 =
log(P100/P000), we switch the state of the second neuron from silence to active to obtain
a new term log(P110/P010). Then, we subtract J1 from the new term to obtain J12. This
procedure can be extended to the case of higher orders:

Theorem 4.1. For a network of n neurons, in the nth order MaxEnt model, the
(k+1)st order interaction J123...(k+1) can be obtained as follows: First, we switch the
state of the (k+1)st neuron in J123...k from silence to active to obtain a new term
J1
123...k. Then, we subtract J123...k from the new term to obtain J123...(k+1), i.e.,

J123...(k+1) =J1
123...k−J123...k. (4.4)

Proof. Defining U lm as

U lm=
∑
V ∈Sl

m

logP (V ), (4.5)

in which Slm={(σ1,σ2, ·· · ,σn)|
∑m
i=1σi= l;σj = 0,m<j≤n}, 0≤ l≤m≤n, we show be-

low that the interaction can be expressed in terms of U lm, specifically, the kth order
interaction J12···k can be written as

J12···k =

k∑
i=0

(−1)k−iU ik. (4.6)

For an arbitrary kth order interaction Ji1···ik , we can use another index order set to
denote the neurons, i.e., {i1,i2, ·· · ,in}, which is a permutation of {1,2, ·· · ,n} by g→ ig
for 1≤g≤n. Therefore, if Equation (4.6) is valid, then we have

Ji1···ik =

k∑
i=0

(−1)k−iU iAk
(4.7)
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where Ak ={i1, ·· · ,ik},

U lAk
=
∑

V ∈Sl
Ak

logP (V )

and SlAk
={(σi1 ,σi2 , ·· · ,σin)|

∑
ig∈Ak

σig = l;σig = 0,k<g≤n}. Note that Slk is a special

case of SlAk
.

Equation (4.6) can be proven by mathematical induction. For k= 1, substituting
the state V = (1,0,0,·· · ,0) and P100···0 into the nth order MaxEnt model (4.1), we have

J1 = logP100···0− logP000···0

=U1
1 −U0

1 .

Therefore, Equation (4.6) holds for k= 1. Assuming Equation (4.6) holds for all integers
no larger than k and substituting V = (1,1, ·· · ,1,0,·· · ,0) (neurons from 1 to k+1 are
active and neurons from k+2 to n are silent) into the nth order MaxEnt model (3.1),
we obtain

J1···(k+1) +

k∑
g=1

k+1∑
i1<···<ig

Ji1···ig =Uk+1
k+1 −U

0
k+1. (4.8)

The reason of why there are no terms of order higher than k+1 is that there are only
k+1 neurons firing. For g≤k, from Equations (4.6) and (4.7), by induction assumption
we have

k+1∑
i1<···<ig

Ji1···ig =

g∑
i=0

(−1)g−iCg−ik+1−iU
i
k+1, (4.9)

where Cg−ik+1−i comes from the selection of g− i terms from all the possible k+1− i
choices for a given i. Since Ji1···ig is the gth order interaction, as is in Equation (4.7),
the sign of the logarithm probability of a state in which there are i neurons firing is
(−1)g−i. For a pair of given g and i, we want to count how many times of (−1)g−iU ik+1

occurring on the left hand side of Equation (4.9). Every state V of Sik+1 occurs once in
the summation terms of U ik+1 in Equation (4.5). To count the number of occurrence of
(−1)g−iU ik+1, we can count the number of occurrence of an element of Sik+1, denoted
by Vc, in which the state of a neuron is active if its index belongs to Qs={j1,j2, ·· · ,ji}.
For the given g, we would select a subset D of g elements from {1,2, ·· · ,k+1} for the
indexes {i1,·· · ,ig} for every summation term on the left hand side of Equation (4.9). If
Qs⊆D, then, from Equation (4.7), logP (Vc) would occur once in Ji1···ig . To count the
number of occurrence of logP (Vc), we need to count how many subsets D containing
Qs. Since there are i elements of D belonging to Qs, we still need to select g− i elements
from k+1− i elements for D. This number of selection is Cg−ik+1−i. Hence, the coefficient

of (−1)g−iU ik+1 is Cg−ik+1−i. Then, we have

J1···(k+1) =Uk+1
k+1 −U

0
k+1−

k∑
g=1

g∑
i=0

(−1)g−iCg−ik+1−iU
i
k+1. (4.10)

The coefficient of U0
k+1 is

−1−
k∑
g=1

(−1)gCgk+1 = (−1)k+1. (4.11)



ZHI-QIN JOHN XU, GUOQIANG BI, DOUGLAS ZHOU, AND DAVID CAI 673

For k+1>l>0, the coefficient of U lk+1 is

−
k∑
g=l

(−1)g−lCg−lk+1−l= (−1)k+1−l. (4.12)

Combining Equations (4.10), (4.11) and (4.12), we arrive at

J1···(k+1) =

k+1∑
i=0

(−1)k+1−iU ik+1, (4.13)

i.e., Equation (4.6) is valid by induction for 1≤k≤n.
Based on Equation (4.6), we now show the validity of Equation (4.4). For 1≤ i≤k,

there are i neurons out of k+1 neurons firing in the states described by U ik+1 of S
i

k+1.
For i<k+1, we can split U ik+1 into two terms, one is U ik, where the (k+1)st neuron

is silent, the other term is V i−1k ≡U ik+1−U ik, where the (k+1)st neuron is active. By

defining V kk ≡U
k+1
k+1 , from Equation (4.13), we have

J1···(k+1) =Uk+1
k+1 −U

k
k+1 +Uk−1k+1 + ·· · .

=V kk −(V k−1k +Ukk )+(V k−2k +Uk−1k )+ ·· ·
= [V kk + ·· ·+(−1)k−iV k−ik + ·· ·+(−1)kV 0

k ]

− [Ukk + ·· ·+(−1)k−iUk−ik + ·· ·+(−1)kU0
k ]

=J1
12···k−J12···k,

where J1
12···k is a new quantity which switches the state of the (k+1)st neuron from

silence to active in J123...k. This is the conclusion in Equation (4.4).

To illustrate, for example, for n= 4, we have

J12 = log
P1100

P0100
− log

P1000

P0000

and

J123 =

(
log

P1110

P0110
− log

P1010

P0010

)
−
(

log
P1100

P0100
− log

P1000

P0000

)
. (4.14)

Using this method, J123...k for any k≤n can be decomposed into 2k−1 terms, where
every term can be interpreted as the logarithmic probability ratio of the active to the
inactive state of the first neuron while keeping the state of other neurons unchanged.
In the following, we will refer to such a term as a fundamental term as the following

A fundamental term: log
P1,σ2,σ3,···,σn

P0,σ2,σ3,···,σn

, (4.15)

where P1,σ2,σ3,···,σn
and P0,σ2,σ3,···,σn

are the probabilities that neuron 1 is spiking and
silent, respectively, while the states of other neurons are σ2,σ3,·· · ,σn, respectively. For
example, in J123, a fundamental term of the first neuron is log(P1010/P0010) as shown in
Equation (4.14), which is the logarithmic probability ratio of the active to the inactive
state of the first neuron under the condition that the second and the fourth neuron stay
silent and the third neuron is active.
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5. Weak high order interactions

For a network of n neurons, there are 2n possible firing states. To obtain the distri-
bution of the firing patterns, one way is to measure the probabilities of 2n firing states
from recorded data. Another way is to acquire all correlations of all the orders (There
are 2n−1 such correlations including the mean values of σi for 1≤ i≤n.). Combining
with the normalization of the probability, we have 2n conditions (constraints). The
distribution Pn produced by the nth order MaxEnt model is estimated under the con-
straints of the correlations up to the nth order, one can show that the distribution Pn
is identical to the observed distribution of neuronal firing patterns [41]. When not all
order correlations are constrained, we need to address the question of why a low order
(less than nth order) MaxEnt model can well approximate the observed distribution
of neuronal firing patterns. For example, the second order MaxEnt model has been
commonly used. A possible underlying reason may be that high order interactions of
the nth order MaxEnt model Pn are much smaller than the two leading order ones.

Since we are able to obtain the interaction strengths of the nth order MaxEnt
model from the observed distribution as discussed in Section 4, we first examine the
magnitude of interaction strengths in numerical experiments to see whether the above
supposition is true. Figure 5.1A displays an example of interactions of various orders
versus the sampling time bin size. The data is from a homogeneously coupled HH
neuronal network of 5 neurons driven by a Poisson input. The mean interspike interval
of each neuron is 47ms. We record the spike trains of all five neurons for the duration of
1.4×106 s, which is sufficiently long to reliably obtain a stable distribution of neuronal
firing patterns. The interaction strengths are obtained from the observed distribution
using Equations (4.6) and (4.7). For the given sampling time bin size, the average
kth order interaction strength is computed as the mean absolute value of interaction
strengths of the corresponding order. We examine different bin sizes, ranging from 9ms
to 81ms, to make sure the robustness of our analysis. In Figure 5.1A, the magenta line
is for the interactions of the self interaction (first order), green for the second order, red
for the third order, blue for the fourth order, cyan for the fifth order interactions and
the black solid line is for the multi-information fraction fI . It can be seen clearly that
the average strength of interactions of higher order is at least one order of magnitude
smaller (in the absolute value) than the two leading orders, and the multi-information
fraction fI is ∼99.8%. As shown in Figure 5.1B, for all the bin sizes, the predicted
distributions of the second order MaxEnt model P2 (blue) are in excellent agreement
with the observed distributions while the distribution of the first order MaxEnt model
P1 (green) deviates substantially from the observed distributions.

From our numerical results, we can conclude that the strengths of high order inter-
actions are much smaller than the first and second order interactions when the second
order MaxEnt model can well approximate the distribution of neuronal firing patterns.
Therefore, the weak high order interactions in MaxEnt models may underly the fact
that the second order MaxEnt model can be a good effective description as signified
by fI being very close to unity. In the following, we will theoretically analyze under
what condition strengths of high order interactions of the nth order MaxEnt model can
be significantly smaller than the low order ones and whether under this condition one
can theoretically show that a second order MaxEnt model can well approximate the
observed distributions.

6. A dynamical network state underlying the second order MaxEnt
Model

In this section, we address the question of under what condition the strengths of
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Fig. 5.1. Numerical results of neuronal networks. The simulation is for a network of
five excitatory HH neurons with all-to-all connections. The coupling strength is s= 0.0714ms−1 (The
corresponding physiological excitatory postsynaptic potential is ∼1mV). The input parameters are
chosen as µ= 1ms−1 (Poisson input rate) and f = 0.035ms−1 (Poisson input magnitude). The mean
interspike interval is 47ms. The total recording time is 1.4×106 s. All 5 neurons are selected to
carry out the MaxEnt model analysis. (A) The black line (the right ordinate) is the multi-information
fraction; Colored lines (the left ordinate) correspond to different orders of interactions. The data point
is the mean absolute value of interaction strengths of the corresponding order for different sampling
time bin sizes, the first order (magenta), the second order (green), the third order (red), the fourth
order (blue), and the fifth order (cyan). The standard deviation is also indicated by the error bar
around the mean and it is generally rather small. (B) The rate of occurrence of each firing state
predicted from the distribution of the second order MaxEnt model P2 (blue) and the distribution of
the first order MaxEnt model P1 (green) is plotted against the measured occurrence rate generated
from the numerical simulation, the data of all bin sizes are plotted. (C) The solid blue line (the left
ordinate) is the conditional probability p of neuron 1 in the active state conditioned on other neurons
being silent for different sampling time bins. Blue asterisks, plus signs, circles, and squares (the
left ordinate) are the values of the probability increment of neuron 1 in the active state caused by
neuron with index i= 2,3,4,5 (δi), respectively. δi for i= 2,3,4,5 overlaps one another well, which is a
consequence of homogeneity. The dashed and solid black lines (the right ordinate) are the mean values
of RT [Equation (6.9)] for all subsets T with size N(T ) =2,3, respectively. The standard deviation is
also indicated around the mean and it is rather small with the error bars below the line width (The
maximum value of all standard deviations is less than 0.03).

high order (above second order) interactions in the MaxEnt model can be much smaller
than the low order ones. For illustration, we first consider a homogeneously coupled
network of three neurons with all-to-all connections (no self connections). By symmetry,
without loss of generality, we can select neuron 1 and consider the following quantities:

p=P (σ1 = 1|σ2 = 0,σ3 = 0), (6.1)

δ2 =P (σ1 = 1|σ2 = 1,σ3 = 0)−p, (6.2)

δ3 =P (σ1 = 1|σ2 = 0,σ3 = 1)−p, (6.3)

p+δ2 +aδ3 =P (σ1 = 1|σ2 = 1,σ3 = 1), (6.4)

where p is the conditional probability that neuron 1 is spiking while other neurons are
silent, δi is the increment of conditional probability of the first neuron in the active
state induced by the ith neuron on spiking while others are silent, where i= 2,3. For
example, p+δ2 is the probability that the first neuron spikes conditioned on the second
neuron’s firing while the third neuron being silent. By homogeneity, we have δi= δ. The
parameter a in Equation (6.4) is used to characterize how linear the neuronal system
is in the following sense: If a= 1, the conditional probability increment of the first
neuron in the active state induced by neurons 2 and 3 is equal to the sum of increments
separately induced by each individual neuron, i.e.,

P (σ1 = 1|σ2 = 1,σ3 = 1) =p+δ2 +δ3.
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When this condition holds, we refer to the network dynamical state of the system as
being linear. In numerical simulation, we observe that, when the neuronal dynamics is
not too synchronized, δ is very small compared to the value of the conditional probability
p. As shown in Equation (6.2), δi can be computed from conditional probabilities of
the observed distribution. For example, in the numerical example as shown in Figure
5.1C, when the sampling time bin size is larger than 30ms, δi (blue asterisks, plus
signs, circles and squares for i= 2,3,4,5, respectively.) are one order of magnitude
smaller than the conditional probability p (blue line). Incidentally, we note that as a
consequence of homogeneity, δi induced by different neuron i overlaps one another well
in Figure 5.1C. In the following, we assume that δ is sufficiently small and perform a
perturbative analysis of interactions with respect to δ. As discussed above, we can write
the interaction J12 in terms of conditional probabilities

J12 = log
P (σ1 = 1|σ2 = 1,σ3 = 0)

P (σ1 = 0|σ2 = 1,σ3 = 0)
− log

P (σ1 = 1|σ2 = 0,σ3 = 0)

P (σ1 = 0|σ2 = 0,σ3 = 0)
. (6.5)

For δ�p, by using Equations (6.1) and (6.2), and performing a Taylor expansion,
Equation (6.5) becomes

J12 =
1

(1−p)p
δ+o(δ), (6.6)

in which o(·) symbol stands for higher order terms. Similarly, using Equations (6.1)–
(6.4), we have

J123 =
2−(1+a)

(p−1)p
δ+

[2−(1+a)2](1−2p)

2(p−1)2p2
δ2 +o(δ2). (6.7)

Under the condition of linearity, i.e., a= 1, Equation (6.7) simplifies to

J123∼
2p−1

(1−p)2p2
δ2. (6.8)

For this three neuron case, therefore, we have J12 =O(δ) and J123 =O(δ2) under the
linearity condition. We will show below that this ordering can be extended to high order
interactions. First, we extend the linearity condition a= 1 to a neuronal group of large
size. We denote

p=P (σ1 = 1|σj = 0,j∈S),

δi=P (σ1 = 1|σi= 1,σj = 0,j∈S\{i})−p,

in which S={2,3,·· · ,n}. We use the following index to characterize how linear the
system is:

RT =
P (σ1 = 1|σj = 1,j∈T ;σk = 0,k∈S\T )

p+
∑
i∈T δi

, (6.9)

where n is the number of neurons in the selected group, T is any subset of S. If RT
is unity for any subset T , we say that the linearity condition holds for the neuronal
network dynamics. Based on the linearity condition, we analyze the interactions and
multi-information fraction as follows.
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6.1. Perturbative analysis of interactions. Now we are ready to demon-
strate that in general the interaction strengths of the nth order MaxEnt model form a
hierarchy in the power of δ under the linearity condition. In a homogeneous network of n
neurons with all-to-all connections, under the linearity condition, as defined in Equation
(6.9), for the first neuron, a fundamental term (4.15) of m other neurons that fire (Here,
we refer the other neurons as the neurons whose indexes belong to S={2,3, ·· · ,n}.) is

Gp(m)≡ log
p+mδ

1−(p+mδ)
. (6.10)

For example, m= 1, n= 3, we have

log
P110

P010
= log

P (σ1 = 1|σ2 = 1,σ3 = 0)

P (σ1 = 0|σ2 = 1,σ3 = 0)

= log
p+δ

1−(p+δ)

=Gp(1).

Theorem 6.1. For a network of n neurons, assuming δi= δ, under the linearity
condition, the kth order interaction J123...k of the nth order MaxEnt model (3.1) satisfies
the following relation,

J12···k =O(δk−1). (6.11)

Proof. As seen in Equations (6.6) and (6.8), under the linearity condition, J12∼
O(δ) and J123∼O(δ2), i.e., Equation (6.11) holds for k= 1,2. Next, we assume that
Equation (6.11) holds for some k, where n>k≥1. Just like J123 in Equation (4.14),
the kth order interaction can be expressed by a linear combination of the fundamental
terms. Since under the linearity condition, a fundamental term of m other neurons firing
is the same as Gp(m) in Equation (6.10) , which is an elementary function of p and δ,
J12···k can be expressed as a combination of elementary functions of p and δ. By the
induction assumption, J123...k is O(δk−1), then, we can denote J12···k with respect to δ
as J12···k =Wk(p)δk−1 +O(δk), where Wk(p) is a differentiable function with respect to
p∈ (0,1).

Through Theorem (4.1), to compute J123...(k+1), we first need to compute a new
quantity J1

123...k, which switches the state of the (k+1)st neuron from silence to active in
J123...k. Under the linearity condition, after we switch the state of the (k+1)st neuron,
the fundamental term, where there are m other neurons firing, becomes a fundamental
term of m+1 other neurons firing, that is,

Gp(m) = log
p+mδ

1−(p+mδ)
→ log

p+(m+1)δ

1− [p+(m+1)δ]
(6.12)

= log
(p+δ)+mδ

1− [(p+δ)+mδ]
(6.13)

=Gp+δ(m), (6.14)

which is also equivalent to switching p in the fundamental terms of J123...k to p+δ while
keeping m other neurons in the firing state. For δ�p, the leading term of J1

123...k is as
follows

Wk(p+δ)δk−1 =Wk(p)δk−1 +
dWk

dp
δk+O(δk+1).
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Hence, the leading order terms of J1
123...k and J123...k have exactly the same form. From

Theorem (4.1), we can see that J123...(k+1) is at least one order higher than J123...k with
respect to δ. Therefore, by induction, Equation (6.11) holds for interactions of any
order.

Remark 6.1. For a nonhomogeneous case, under the linearity condition, after we
switch the state of the (k+1)st neuron, a fundamental term in J123...k in which there are
m other spiking neurons, whose indexes are denoted as ij , where j= 1,2, ·· ·m, 2≤ ij≤k
and ij1 6= ij2 for j1 6= j2, is changed as follows,

log
p+
∑m
j=1 cijδmax

1−(p+
∑m
j=1 cijδmax)

→ log
(p+δk+1)+

∑m
j=1 cijδmax

1− [(p+δk+1)+
∑m
j=1 cijδmax]

,

where δmax= max1≤i≤n δi, ci is defined by δi= ciδmax for 1≤ i≤n. Hence, this is also
equivalent to switching p in the fundamental terms of J123...k to p+ck+1δmax while
keeping m other neurons in the firing state. If δmax�p, we can obtain similar results,
i.e., the strengths of interactions also form a hierarchy in the power of δmax.

From Theorem (6.1), we can derive the exact form of the leading order terms of
J123...k with respect to δ. To see this, we first introduce the following lemma:

Lemma 6.1. For a network of n neurons, assuming δi= δ, under the linearity condi-
tion, the kth order interaction J123...k of the nth order MaxEnt model (3.1) satisfies the
following relation,

J123...k =

k−1∑
m=0

(−1)k−m−1Cmk−1Gp(m), (6.15)

where k≤n.

Proof. For any fixed n, when k= 1,

J1 = log
P10···0

P00···0

= log
p

1−p
=Gp(0),

which demonstrates that Equation (6.15) is valid for k= 1. We assume that Equation
(6.15) holds for some k, n>k≥1. If we switch the state of the (k+1)st neuron from
silence to active, Gp(m) would turn to be Gp(m+1). From Equation (4.4) in Theorem
(4.1) and also Equation (6.15), we have

J123...(k+1) =

k−1∑
m=0

(−1)k−m−1Cmk−1Gp(m+1)−J123...k

=

k−2∑
m=0

Gp(m+1)
[
Cmk−1(−1)k−m−1−Cm+1

k−1 (−1)k−m−2
]

−Gp(0)(−1)k−1 +Gp(k).

Using Cmk−1 +Cm+1
k−1 =Cm+1

k , we can obtain

J123...(k+1) =

k−2∑
m=0

(−1)k−m−1Gp(m+1)Cm+1
k −(−1)k−1Gp(0)+Gp(k)
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=

k∑
m=0

(−1)k−mCmk Gp(m).

Therefore, Equation (6.15) holds for k+1. By induction, Equation (6.15) is valid for
any k≤n.

Now we can consider the leading order term of J12···k with respect to δ. When there
are m other neurons firing, the fundamental term can be easily written as

Gp(m) = logλ+gp(m,δ), (6.16)

where λ=p/(1−p) and

gp(m,δ)≡ log
p+mδ

p−mλδ
.

We note that

gp(m,δ) =

∞∑
i=1

mi

i
[(−1)i+1 +λi]

(
δ

p

)i
.

From Equation (6.15) in Lemma (6.1), we have

J123...k =

k−1∑
m=0

(−1)k−m−1Cmk−1 [logλ+gp(m,δ)],

since gp(0,δ) = 0 and
∑k−1
m=0(−1)k−m−1Cmk−1 = 0 for k>1, we can obtain

J123...k =

k−1∑
m=1

(−1)k−m−1Cmk−1gp(m,δ) for k>1.

By Theorem (6.1), J123...k is O(δk−1). To obtain the exact form of the leading
order term of J123...k, we only need to consider the terms that are of O(δk−1) in the
fundamental terms of J123...k, this yields

J123...k =Bk[(−1)k+λk−1]

(
δ

p

)k−1
+o
(
δk−1

)
, (6.17)

where k>1 and

Bk =
1

k−1

k−1∑
m=1

(−1)k−m−1Cmk−1m
k−1.

Note that J123...k in Equation (6.17) is independent of n.

6.2. Perturbative analysis of the multi-information fraction. We can
also use the same framework to perform a perturbative analysis of the multi-information
fraction.

Theorem 6.2. For a network of n neurons, under the linearity condition, if δmax�p,
where δmax= maxiδi, we have

1−fI ∼O(δ2max).
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Proof. For the state of n neurons V = (σ1,σ2, ·· · ,σn) within a network, the corre-
sponding KL divergence of Pn(V ) with respect to Pm(V ) in Equation (3.5) is

DKL(Pn|Pm) =
∑
V

Pn(V )log
Pn(V )

Pm(V )
.

From Equation (3.4), we have

fI = 1−DKL(Pn|P2)

DKL(Pn|P1)
. (6.18)

Our proof is based on a perturbation expansion of the distribution Pn(V ) in Equa-
tion (3.1) [29]. For n neurons in a network, as discussed previously, the observed distri-
bution Pobs(V ) is identical to the distribution of the nth order MaxEnt model subject to
all 2n−1 correlation constraints, i.e., Pobs(V ) =Pn(V ). When the interaction strengths
from the second to the nth order in Equation (3.1) are small quantities comparing to
the first order, we can perform a perturbative analysis with respect to those small com-
ponents by Sarmanov–Lancaster expansion [19, 20, 33]. Under the linearity condition,
when δmax�p, through Theorem (6.1), we know the strengths of high order interac-
tions are at least one order of magnitude smaller than the first order interaction. We
therefore follow the procedure of the Sarmanov–Lancaster expansion for Pobs as in [29]:

Pobs(V ) = (1+ξp(V ))Pind(V ), (6.19)

where

Pind(V ) =
exp(

∑
j J

p
j σj)

Πj [1+exp(Jpj )]
, (6.20)

ξp≡
n∑
i<j

Jpij∆σi∆σj+

n∑
i<j<k

Jpijk∆σi∆σj∆σk+h.o.t.,

where ∆σj =σj−〈σj〉ind, 〈·〉ind is the average with respect to Pind(V ), h.o.t. stands
for high order terms of interactions. The superscript p represents the fact that the
parameters are those from the observed distribution Pobs(V ) as written in the form of
Equation (3.1).

For any j, we denote σ̄j as the expected value of σj with respect to Pobs(V ),

σ̄j = 〈σj〉n=
∑
V

(1+ξp(V ))Pind(V )σj

= 〈σj〉ind+〈ξp(V )σj〉ind, (6.21)

where 〈·〉m is the average with respect to Pm(V ) and we have Pn(V ) =Pobs(V ). Since
σi and σj , i 6= j, are independent under Pind and

〈∆σk〉ind= 0 for k= 1,2, ·· ·n. (6.22)

To consider 〈ξp(V )σj〉ind, we can first take a look at an example, 〈Jpil∆σi∆σlσj〉ind for
i 6= l. Since at least one of the indexes i or l is not equal to index j, say, j 6= i, then we
have

〈Jpil∆σi∆σlσj〉ind= 〈Jpil∆σlσj〉ind〈∆σi〉ind= 0.
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Similarly for other terms in ξp(V ), a direct calculation yields 〈ξp(V )σj〉ind= 0. From
Equation (6.21), we have

σ̄j = 〈σj〉n= 〈σj〉ind ,

which can also be seen as follows: Pobs(V ) is a perturbation of Pind(V ) in Equation
(6.19); The perturbation ξp(V ) has mean zero with respect to Pind(V ) because∑

V

ξp(V )Pind(V ) =
∑
V

[1+ξp(V )]Pind(V )−1

=
∑
V

Pobs(V )−1

= 0.

Therefore, the mean value of σj is the same with respect to Pind(V ) or Pobs(V ).
From Equation (6.20), we can obtain

σ̄j = 〈σj〉n= 〈σj〉ind= (1+exp(−Jpj ))−1. (6.23)

For i 6= j, the correlation between the ith and the jth neurons is defined as

Cij≡〈∆σi∆σj〉n ,

then,

Cij =
∑
V

(1+ξp(V ))Pind(V )∆σi∆σj

= 〈∆σi∆σj〉ind+〈ξp(V )∆σi∆σj〉ind.

Since σi and σj for i 6= j are independent under Pind, we have 〈∆σi∆σj〉ind= 0. From
the expression of ξp and the above procedure of computing 〈ξp(V )σj〉ind, we have

〈ξp(V )∆σi∆σj〉ind=
〈
Jpij(∆σi)

2(∆σj)
2
〉
ind

.

Since
〈
(∆σi)

2
〉
ind

= σ̄i(1− σ̄i), we arrive at

Cij = σ̄i(1− σ̄i)σ̄j(1− σ̄j)Jpij . (6.24)

For i 6= j, j 6=k, i 6=k, the correlation among neurons i, j, k is defined as

Cijk≡〈∆σi∆σj∆σk〉n .

Similarly, we have

Cijk = σ̄i(1− σ̄i)σ̄j(1− σ̄j)σ̄k(1− σ̄k)Jpijk. (6.25)

As we can see from Equations (6.24) and (6.25), the correlations are determined
by the same order interactions of the distribution. Following [29], to construct a dis-
tribution q(V ) with the same form in Equation (3.1) whose correlations match those
of Pobs(V ) up to a certain order, one simply needs to ensure that the parameters of
the constructed distribution, Ji, Jij , Jijk, etc., are identical to those of the observed
distributions, as seen in Equations (6.24) and (6.25). Since q(V ) is an approximation
of Pobs(V ), we therefore can also assume that the strengths of high order interactions
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of q(V ) are much smaller than the first order interaction. In particular, for any distri-
bution q(V ), whose first order correlation matches that of the distribution Pobs(V ) and
has the MaxEnt form as in Equation (3.1), following the procedure in [29], we have

q(V ) =Pind(V )(1+ξq(V )),

where Pind(V ) is defined in Equation (6.20) and

ξq≡
∑
i<j

Jqij∆σi∆σj+
∑
i<j<k

Jqijk∆σi∆σj∆σk+h.o.t..

If we want to use the first order MaxEnt model to fit the distribution Pobs(V ), we only
need to match the first order correlation (mean value) and simply let ξq = 0. Similarly,
if we want to use the second order MaxEnt model to fit the distribution Pobs(V ) with
identical second order correlations, we can set Jqij =Jpij and other high order interactions
to zero. The KL divergence of Pobs(V ) with respect to q(V ) can be written as

DKL(Pobs||q) = 〈T (ξp(V ),ξq(V ))〉n, (6.26)

where

T (x,y) = log(1+x)− log(1+y).

If x=y+β and β is a small number, Taylor expansion yields

T (x,y) =
β

1+y
+o(β).

By letting x= ξp(V ), y= ξq(V ), if q(V ) is the first order MaxEnt model, which will be
denoted as q1(V ), then

β=

n∑
i<j

Jpij∆σi∆σj+

n∑
i<j<k

Jpijk∆σi∆σj∆σk+h.o.t.,

and ξq(V ) equals 0 as discussed above. Therefore,

DKL(Pobs||q1) = 〈β〉n. (6.27)

For the sake of illustration, we consider n neurons within an all-to-all connected homo-
geneous network and assume that the linearity condition (6.9) holds. The conditional
probability p is defined as follows

p=P (σ1 = 1|σi= 0 for 2≤ i≤n), (6.28)

through the nth order MaxEnt model (3.1), we have

p= (1+exp(−J1))−1. (6.29)

Since Jp1 in Equation (6.23) is from the observed distribution Pobs(V ) which is the
same as the distribution obtained by the nth order MaxEnt model, then Jp1 =J1. By
Equations (6.23) and (6.29), we have

p= σ̄1.
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By homogeneity, i.e., δi= δ and p= σ̄i for i= 1,2, ·· ·n, where δ is the probability incre-
ment caused by one of the other neurons, from Equation (6.24), we can obtain

〈
∑
i<j

Jpij∆σi∆σj〉n=C2
nJ

p
12〈∆σi∆σj〉n

=C2
n(Jp12)2p2(1−p)2 (6.30)

=C2
nδ

2, (6.31)

in which the last equality is obtained by substituting J12 in Equation (6.6) into Equation
(6.30). Similarly, we have

〈
∑
i<j<k

Jpijk∆σi∆σj∆σk〉n=C3
n

(2p−1)2

p(1−p)
δ4. (6.32)

Substituting Equation (6.31) into Equation (6.27), to order O(δ2), we obtain

DKL(Pobs||q1) =C2
nδ

2 +O(δ4), (6.33)

If q2(V ) is the second order MaxEnt model, then

β=

n∑
i<j<k

Jpijk∆σi∆σj∆σk+h.o.t.,

ξq(V ) =
∑
i<j

Jpij∆σi∆σj ,

then, to order O(δ4),

DKL(Pobs||q2) =C3
n

(2p−1)2

p(1−p)
δ4 +O(δ6). (6.34)

Therefore, by substituting Equations (6.33) and (6.34) into the definition of fI in Equa-
tion (6.18), we arrive at

fI = 1− C
3
n

C2
n

(2p−1)2

p(1−p)
δ2 +O(δ4). (6.35)

For the nonhomogeneous case, if δmax�p, where δmax= maxiδi, since the interaction
strengths also form a hierarchy in the power of δmax, we still have 1−fI ∼O(δ2max).

Remark 6.2. Note that there is one-to-one correspondence between the correlations
and the interactions, e.g., in Equations (6.24) and (6.25). Therefore, the correlations
also form a hierarchy in the power of δ, that is, the second order correlations have the
dominate order δ while the third order correlations are of order δ2 and so forth.

We use a network of three excitatory HH neurons with all-to-all connections to
show the validity of Equation (6.35). The coupling strength is s= 0.014ms−1 (The
corresponding physiological excitatory postsynaptic potential is ∼0.2mV). The input
parameters are chosen as µ= 0.9ms−1 (Poisson input rate) and f = 0.056ms−1 (Poisson
input magnitude). The mean interspike interval is 27ms. We recorded the neuronal
activity for a long time of 5.4×106 s in the simulation. All three neurons are selected to
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carry out the MaxEnt model analysis with a sampling time bin size of 10ms. Through
the fitting process, i.e., the interaction strengths of the first and the second order Max-
Ent model are estimated by an iterative method (See Appendix for details.), the value
of 1−fI in Equation (6.18) is 2.9×10−5. We can also derive p in Equation (6.28) and
δ (Here we use the mean value of δ2 and δ3 for δ.) from the observed distribution, then
the approximate value of 1−fI is 2.7×10−5. These two results are rather close.

As we have mentioned above, the probability increment δ is rather small in an
asynchronously firing network. Under the linearity condition, a sufficiently small δ leads
to two facts: One is that high order interactions are weak compared to the low order
ones as shown in Equation (6.11); The other is that, as shown in Equation (6.35), the
multi-information fraction fI is very close to 1. As demonstrated above, fI ≥99% for
our model networks. It ranges from 90% to 99% in reported experiments [34,36,41]. The
multi-information fraction fI near unity signifies that the second order MaxEnt model
can well capture the observed distribution of neuronal spiking patterns. Therefore, it is
crucial to verify the linearity condition in neuronal networks. This will be discussed in
detail in the following section.

7. Numerical verification

In the perturbative analysis discussed above, we can conclude that, under the lin-
earity condition, the interaction strengths of the MaxEnt model form a hierarchy in
the power of the probability increment δ. We now verify numerically that this linearity
condition holds well in most dynamical regimes of neuronal networks as long as the
network is asynchronous. We will use the spike trains generated from a full simulation
of HH neuronal networks to carry out this verification.

First, we select a neuron, labeled as Neuron 1, to examine the linearity index RT
defined in Equation (6.9) for the numerical results of the neuronal network as shown
in Figure 5.1. For a given sampling time bin size and a given subset size N(T ) = 2,3,
we select all subsets T , with size N(T ), of all neurons excluding Neuron 1. Then, we
compute the mean and standard deviation of all RT over the selected subsets. The
results are shown in Figure 5.1C, in which the dashed and solid black lines stand for the
case of N(T ) = 2 and N(T ) = 3, respectively. It can be seen clearly that the linearity
index RT in this network is nearly unity. As is shown in our perturbative analysis of
the MaxEnt model, P2 can then provide a good approximation to the spiking pattern
distribution for the group of selected neurons. It is worthwhile to point out that the
third, fourth, and fifth order interactions are of the same order as seen in Figure 5.1A.
The reason why there is no order of magnitude difference among these higher order
interactions is as follows: Under the strict linearity condition, the kth order interaction
has the leading order term of O(δk−1); However, the linearity condition in general does
not hold exactly. As is shown in Equation (6.7), there are terms of δ order less than
k−1 appearing in the kth order interaction. To see this effect in a concrete example,
we assume the linearity condition does not hold strictly in a homogeneous network and
pick probability increments, say, as follows:

P (σ1 = 1|σ2 = 1,σ3 = 1,σ4 = 0) =p+1.97δ, (7.1)

P (σ1 = 1|σ2 = 1,σ3 = 1,σ4 = 1) =p+3.05δ. (7.2)

Note that the numerical values of 1.97 and 3.05 in the coefficient of δ are chosen ar-
bitrarily, for which the linearity condition does not hold exactly. We further choose
p= 0.2, δ= 0.03, then, the interaction strengths can be estimated to be J1 =−1.3863,
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J12 = 0.1770, J123 =−0.0255, J1234 = 0.0193 through the analytic solution of interac-
tions, such as Equation (4.14). In this numerical example, J123 and J1234 are of the
same order, whereas both are one order of magnitude smaller than J12. Incidentally,
we compute a fundamental term in Equation (4.14) as an illustration. By homogene-
ity, neurons are equivalent, then we have logP (σ1 = 1|σ2 = 0,σ3 = 1,σ4 = 1) =p+1.97δ
as Equation (7.1). As mentioned above, we can write a fundamental term in terms of
conditional probabilities

log
P1011

P0011
= log

P (σ1 = 1|σ2 = 0,σ3 = 1,σ4 = 1)

P (σ1 = 0|σ2 = 0,σ3 = 1,σ4 = 1)

= log
p+1.97δ

1−(p+1.97δ)
.

We further examine whether the linearity condition and reconstruction of the dis-
tribution of neuronal firing patterns are dependent of a particular dynamical regime.
Dynamical regimes are often realized by a particular choice of network system param-
eters. We investigate this issue by scanning the magnitude f and the rate µ in the
Poisson drive of HH neuronal networks. The scanned range of these parameters pro-
duces network dynamics with the range of firing rates (3Hz−50Hz) of real neurons.
Note that there are typically three dynamical regimes for the HH neuronal network
with fixed input magnitude f [49, 50]: (i) a highly fluctuating regime when the input
rate µ is low; (ii) an intermediate regime when µ is moderately high; (iii) a low fluc-
tuating or mean driven regime when µ is very high. The HH network which we use
consists of 80 excitatory and 20 inhibitory neurons. We select 10 neurons at random
from the network to perform the MaxEnt model analysis. The sampling time bin size is
selected as in common experimental settings, such as 10ms [14, 21, 26, 27, 36, 48]. Since
the time duration of spike width and refractory period are on the order of 3ms, 10ms
is sufficiently short to avoid more than one spike in a bin. As is shown in the first
and the second rows in Figure 7.1, we select two kinds of network coupling to perform
the MaxEnt model analysis. In addition to the coupling topology described by random
connections, we also choose a band adjacency matrix to further investigate whether our
analysis can provide insights into networks dynamics with other topologies. The un-
derlying coupling structure for the first row (A-C) of Figure 7.1 is described by a band
adjacency matrix, i.e., each neuron is connected to its neighboring 20 postsynaptic neu-
rons. For the second row (D-F) of Figure 7.1, it is a network of homogeneous random
connections with connection probability 0.2. For both coupling structures, the coupling
strength between two connected neurons is selected at random based on the uniform
distribution between 0 and 1mV. We examine the linearity index RT in Equation (6.9)
on the subsets excluding neuron 1 with size N(T ) = 2. For a given parameter pair of
µ (ordinate) and fµ (abscissa) at the lower left corner of each box in Figure 7.1A and
D, most mean values of RT are very close to unity. For both network structures, an
example of reconstructed distribution for the input of µ= 0.9ms−1 and f = 0.033ms−1

(green box in Figure 7.1A and D) is shown in Figure 7.1B and E, respectively, the
reconstructed distribution of the second order MaxEnt model P2 is in good agreement
with the direct measurement of the distribution from the numerical simulation.

For a dynamical state to be linear in the sense of RT ≈1, the firing dynamics of
the network cannot be too synchronized. As exemplified in one of cases in Figure 7.1A
and D, for which µ= 0.9ms−1 and f = 0.033ms−1 (green box in Figure 7.1A and D),
the corresponding raster plot is shown in Figure 7.1C and F, in which neurons are in an
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Fig. 7.1. Linearity index and MaxEnt model peformance in different dynamical
regimes of HH neuronal networks. The network consists of 100 HH neurons (80 Excitatory
and 20 Inhibitory) driven by Poisson inputs. The underlying coupling structure for the first row (A-C)
is described by a band adjacency matrix, i.e., each neuron is connected to its neighboring 20 postsynap-
tic neurons. For the second and the third rows (D-I), these are networks with random connections with
connection probability 0.2. The coupling strength is selected at random from the uniform distribution
of the interval [0,s], where s= 0.0714ms−1 for (A-F) and s= 0.429ms−1 for (G-I) (The corresponding
physiological excitatory/inhibitory postsynaptic potential is ∼1mV and ∼6mV for s= 0.0714ms−1 and
0.429ms−1, respectively.). The scanning parameters produce a network with firing rates 3Hz−50Hz
for (A-F) and 30Hz−50Hz for (G-I). 10 neurons are selected at random to perform the MaxEnt model
analysis. The sampling time bin size is selected to be 10ms. The total recording time is 2×104 s. (A,
D, G) The number in each box is the mean value of the linearity index RT [Equation (6.9)] of all
subsets excluding neuron 1 with size N(T ) =2 for a given parameter pair of µ (ordinate) and fµ (ab-
scissa) at the lower left corner of each box. For A and D, the standard deviation of RT for each
input is less than 0.03, except for the input of fµ= 0.025 and fµ= 0.03 with µ= 1.3 (The left two
boxes of the first row in A and D), where their standard deviations of RT are less than 0.08 and their
corresponding firing rates are less than 5Hz. (B, E, H) For the inputs of the green boxes in the left
column (A, D, G), the corresponding rate of occurrence of each firing state predicted from the MaxEnt
model distribution of the second order P2 (blue) and the distribution of the first order MaxEnt model
P1 (green) is plotted against the measured occurrence rate generated from the numerical simulation.
We perform the linear fitting in the log-log plot for data points in (B), (E) and (H). The slopes of the
linear fitting (dashed red line) are 0.97 and 0.98 for (B) and (E), respectively. Since the points of P2

in (H) have two distinct regions with different slopes, we perform a linear fitting in the log-log plot
in both regions. The slope of the linear fitting (dashed red lines) is 0.56 and 1.28 for the upper and
lower regions, respectively. (C, F, I) For the inputs of the green boxes in left column (A, D, G), the
corresponding raster plot for inhibitory and excitatory neurons in the network is shown by the red and
blue dots, respectively.

asynchronously firing state. We also show a numerical case in the third row in Figure 7.1
with Poisson inputs, for which the dynamics of the network is rather synchronized. The
network in the third row (G-I) of Figure 7.1 has random connections with connection
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probability 0.2, and the coupling strength is uniformly selected at random between 0
and 6mV—a stronger coupling strength than the first two rows in Figure 7.1. To see
how well neurons are synchronized, we show a raster plot of this synchronous network
in Figure 7.1I, for which µ= 0.9ms−1 and f = 0.033ms−1 (green box in Figure 7.1G). To
characterize the degree of synchronization of the dynamics, as discussed in Section 3,
we use the KL divergence D1 as a synchronization index. The synchronization indexes
for the state in Figure 7.1A and D are smaller than 0.2 whereas all the synchronization
indexes of the selected 10 neurons in Figure 7.1G are more than 3.1. For this synchronous
subnetwork, most of the mean values of RT of all subsets excluding neuron 1 with size
N(T ) = 2 exhibit a significant deviation from unity. For example, the mean value of
RT of the green box in Figure 7.1G is 1.15±0.04 (mean ± SEM (Standard Error of
the Mean)). Meanwhile, as is shown in Figure 7.1H, the reconstructed distribution of
the second order MaxEnt model is not consistent with the direct measurement of the
distribution from the numerical simulation. The data points exhibit a clear deviation
from the line y=x in Figure 7.1H. Since the points of P2 in Figure 7.1H have two
distinct regions with different slopes, we perform a linear fitting in the log-log plot for
each region. The slope of the linear fitting for the upper (lower) region in Figure 7.1H
is 0.56 (1.28) while the slopes of the linear fitting are 0.97 and 0.98 for Figure 7.1B
and E, respectively. These slopes give a simple assessment of how well P2 approximates
the observed distribution. Clearly, P2 fails to capture the observed distribution in
synchronous networks, in which the linearity condition is no longer valid.

8. Discussions
As described above, in a neuronal network whose dynamics is not too synchro-

nized, the linearity condition holds rather well, therefore, the strengths of high order
interactions are much smaller than the low orders. However, the fact that the linearity
condition does not hold exactly in the neuronal data leads to a result that the strengths
of high order interactions (above the third order) in the nth order MaxEnt model are
comparable to those of the third order. In addition, for a group of n neurons selected
for a MaxEnt model analysis, the number of interactions of all orders is 2n−1 whereas
the number of the first order and the second order interactions in total is n(n+1)/2.
As the group size grows, i.e., n increases, the percentage of interactions of low orders
[n(n+1)/2]/(2n−1) decreases exponentially. Therefore, even in an asynchronous neu-
ronal network, as the selected neuronal group size increases, the percentage of high order
interactions whose strengths are comparable to those of the third order becomes large.
Therefore, the effect of high order interactions may become important. This could be
the reason underlying the phenomenon observed in experiments that the second order
MaxEnt model is no longer sufficient for a large group of selected neurons [12].

Using our theoretical framework, we investigate some other important issues related
to the MaxEnt model: (i) How the sampling time bin size affects the results above? (ii)
Why the success of the MaxEnt model is not simply a consequence of weak correlations?

8.1. Bin size. Experimental works have shown that the second order MaxEnt
model performs better for the case of larger bin sizes (∼20ms) than smaller bin sizes
(≤4ms) [36, 41]. It is natural to ask the question of how the bin size affects our above
results. For a homogeneous network with all-to-all connections, under the linearity
condition, the leading order term of the ratio J123/J12 is

J123
J12

≈
(2p−1)

p(1−p)
δ. (8.1)
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Fig. 8.1. Sensitivity to bin size and dependence on correlations. The simulation is for a network of
eight excitatory HH neurons with all-to-all connections. The coupling strength is s= 0.143ms−1 (The
corresponding physiological excitatory postsynaptic potential is ∼2mV). The input parameters are
chosen as µ= 1ms−1 and f = 0.035ms−1. The mean interspike interval is 42ms. The total recording
time is 1.2×107s. All 8 neurons are selected to carry out the MaxEnt model analysis. (A) Colored lines
correspond to different orders of interactions. The data point is the mean absolute value of interaction
strengths of the corresponding order for different sampling time bin sizes, the first order (magenta),
the second order (green), the third order (red), the fourth order (blue), and the fifth order (cyan). (B)
The rate of occurrence of each firing state predicted from the distribution of the second order MaxEnt
model P2 (The red points are for bin size of 1ms−4ms and 55ms−79ms whereas the blue points are
for bin size of 7ms−52ms.) and the distribution of the first order MaxEnt model P1 (green) is plotted
against the measured occurrence rate generated from the numerical simulation. (C) Dots and circles
correspond to different orders of correlations. The data point is the mean absolute value of correlation
strengths of the corresponding order for different sampling time bin sizes, mean (magenta), the second
order (blue), the third order (red), the fourth order (green), and the fifth order (black).

When p is close to 1 or 0, the denominator of Equation (8.1) becomes very small
and J123 is no longer much smaller than J12. Statistically, it is easier to find a neuron
firing in a larger bin size than in a smaller bin size. Hence, the conditional probability
p increases as the sampling time bin size increases. J123 is no longer smaller than J12
for a sampling time bin of very small or very large size. Figure 8.1 displays a sensitivity
analysis result for a homogeneously coupled HH neuronal network of 8 neurons driven
by Poisson inputs. The mean interspike interval of each neuron is 42ms. We record
the spike trains of all eight neurons for 1.2×107 s, which is sufficiently long to reliably
obtain a stable distribution of neuronal firing patterns. We perform the MaxEnt model
analysis for all eight neurons using different bin sizes, ranging from 1ms to 79ms. As is
shown in Figure 8.1A, a sampling time bin of very small (1ms−4ms) or very large size
(67ms−79ms) would render the mean strengths of high order interactions no longer
much smaller (in the absolute value) than the lower order ones. For the small bin size of
1ms−4ms and large bin size of 55ms−79ms, as is shown by the red dots in Figure 8.1B,
some firing events occur very rarely. Without high order interactions, the probabilities
of these rare events cannot be well approximated by the second order MaxEnt model.
When the bin size is in 7ms−52ms, the mean strengths of high order interactions are
nearly one order of magnitude smaller than those of the first two orders (as shown in
Figure 8.1A), the reconstructed distribution of the second order MaxEnt model is in
good agreement with observed distributions (blue dots in Figure 8.1B). From Figure
8.1A, we can see that a sampling time bin of very small or very large size would lead
to rather large strengths of high order interactions, thus giving rise to the failure of the
second order MaxEnt model.

8.2. Correlation. As often observed, the correlation coefficient between the
activity of two neurons is typically weak (≤10%) [1,7], one may suspect that the weak
correlations might underpin the success of the second order MaxEnt model. However, as
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discussed in Section 1, there are theoretical analyses [1] using a perturbation theory to
show that the success of the second order MaxEnt model is not directly related to weak
correlations. Instead of focusing on weak correlations, we perform the perturbation
theory with respect to the probability increment δ. Our analysis can be applied to
understand more specifically why the success of the second order MaxEnt model is
not simply a consequence of weak correlations. We examine an example of n neurons
with homogeneous connections under the linearity condition. For correlations, from
Equations (6.24) and (6.25), we can obtain the leading order term of the ratio C123/C12

as follows

C123

C12
≈ (2p−1)δ. (8.2)

For p close to 1 or 0 , from Equations (8.1) and (8.2), we can see that the high order
interaction J123 can be much larger than the low order interaction J12, meanwhile,
the high order correlation C123 is much smaller than C12. This situation can also be
observed in our numerical simulations. In Figure 8.1C, at the sampling time bin size of
79ms, the high order correlations are at least one order of magnitude smaller than those
of the first two orders. However, the strengths of high order interactions are comparable
to those of the low order ones (as shown in Figure 8.1A). Therefore, the success of a
second order MaxEnt model is not simply a consequence of weak correlations of higher
orders.

9. Conclusion
To understand the validity of the second order MaxEnt model for neuronal networks,

we have explored network dynamical states in which the linearity condition persists. We
have developed a perturbative analysis to show that, under such dynamical state, the
strengths of high order interactions are much smaller than those of the lower order
ones, thus, giving rise to the fact that a second order MaxEnt model can capture well
the observed distribution of neuronal firing patterns. We have verified that the linearity
condition holds rather well in asynchronous neuronal networks. Based on our theoretical
framework, we have rationalized why the second order MaxEnt model is not sufficient
for a recorded neuron group of large size as a consequence of the cumulative effect
of high order interactions of the nth order MaxEnt model. We have also discussed
that a sampling time bin of very small or very large size would lead to rather large
strengths of high order interactions, thus, giving rise to the failure of the second order
MaxEnt model. We have further shown that even when high order correlations are
weak, high order interactions in the MaxEnt model can still be very large. This leads
to the conclusion that the success of the second order MaxEnt model is not simply a
consequence of weak correlations.
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Appendix A.

A.1. Iterative methods for obtaining interaction strengths in MaxEnt
models. Numerically, we use the same iteration method as in [41] to estimate the
parameters of the MaxEnt model in Equation (3.1) for m less than n. For completeness,
we use the second order MaxEnt model as an example to briefly illustrate the iteration
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method. At the first level of approximation, the values of the interactions are given
as follows: Ji= 〈σi〉E and Jij = 〈σiσj〉E . This initializes the distribution P2(V ) of the
second order MaxEnt model. The expected values of the individual mean values 〈σi〉2
and pairwise correlations 〈σiσj〉2 with respect to the distribution P2(V ) can now be
determined by

〈σi〉2≡
∑
V

σi(V )P2(V ),

〈σiσj〉2≡
∑
V

σi(V )σj(V )P2(V ),

where σi(V ) is the activity of the ith neuron in the state V . To improve the agreement
between 〈σi〉2 , 〈σiσj〉2 and 〈σi〉E , 〈σiσj〉E , the values of Ji and Jij are adjusted by an
iterative procedure:

Jnewi =Joldi +αsign(〈σi〉E)log
〈σi〉E
〈σi〉2

,

Jnewij =Joldij +αsign
(
〈σiσj〉E

)
log
〈σiσj〉E
〈σiσj〉2

,

in which the constant α is used to maintain the stability of the iteration, sign(x) is the
sign of the number x. We use α= 0.75 as in [41]. Adjustments are performed for 5×104

iterations for each ensemble until the Ji and Jij were within 0.1% of tolerance. It usually
takes less than 5×104 iterations to reach this desired accuracy for each ensemble. We
note that the above iterative method can be easily extended to estimate higher orders
of interactions in the MaxEnt model.
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