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Abstract. This paper aims at studying the difference between Ritz-Galerkin (R-G)
method and deep neural network (DNN) method in solving partial differential equa-
tions (PDEs) to better understand deep learning. To this end, we consider solving a
particular Poisson problem, where the information of the right-hand side of the equa-
tion f is only available at n sample points, that is, f is known at finite sample points.
Through both theoretical and numerical studies, we show that solution of the R-G
method converges to a piecewise linear function for the one dimensional problem or
functions of lower regularity for high dimensional problems. With the same setting,
DNNs however learn a relative smooth solution regardless of the dimension, this is,
DNNs implicitly bias towards functions with more low-frequency components among
all functions that can fit the equation at available data points. This bias is explained
by the recent study of frequency principle. In addition to the similarity between the
traditional numerical methods and DNNSs in the approximation perspective, our work
shows that the implicit bias in the learning process, which is different from traditional
numerical methods, could help better understand the characteristics of DNNS.
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1 Introduction

Deep neural networks (DNNs) become increasingly important in scientific computing
fields [5-7,10-13,16,17,22,26,31]. A major potential advantage over traditional numerical
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methods is that DNNs could overcome the curse of dimensionality in high-dimensional
problems. With traditional numerical methods, several studies have made progress on
the understanding of the algorithm characteristics of DNNSs. For example, by exploring
ReLU DNN representation of continuous piecewise linear function in FEM, the work [13]
theoretically establishes that a ReLU DNN can accurately represent any linear finite el-
ement functions. In the aspect of the convergence behavior, the works [32, 33] show a
Frequency Principle (F-Principle) that DNNs often learn low-frequency components first
while most of the conventional methods (e.g., Jacobi method) exhibit the opposite con-
vergence behavior—higher-frequency components are learned faster. These understand-
ings could lead to a better use of DNNs in practice, such as DNN-based algorithms are
proposed based on the F-Principle to fast eliminate high-frequency error [3,17].

As the DNN-based algorithms are increasingly important in solving PDEs, it is im-
portant to study the property of the DNN solution. The aim of this paper is to investigate
the different behaviors between DNNs and Ritz-Galerkin (R-G) method (as a traditional
numerical method). To this end, we utilize an example to show their stark difference,
that is, solving PDEs only with a few given sample points. We denote n by the sample
number and m by the basis number in the Ritz-Galerkin method or the neuron number in
DNNSs. In traditional PDE models, we consider the situation where the source functions
in the equation are completely known, i.e. the sample number n can go to infinity. But
in practical applications, such as signal processing, statistical mechanics, chemical and
biophysical dynamic systems, we often encounter the problems that only a few sample
values can be obtained. It is interesting to ask what effect R-G methods would have on
solving this particular problem, and what the solution would be obtained by the DNN
method. On the other hand, DNN is well-known often over-parameterized in real appli-
cations. For a fair comparison, the R-G method is also set as over-parameterized when
the number of basis functions goes to infinity.

In this paper, we show that R-G method considers the discrete sampling points as
linear combinations of Dirac delta functions, while DNN method always uses a relatively
smooth function to interpolate the discrete sampling points. And we incorporate the
F-Principle to show how DNN method is different from the R-G method, that is, for
all functions that can fit the training data, DNNs implicitly bias towards functions with
more low-frequency components. In addition to the similarity between the traditional
numerical methods and DNNSs in the approximation perspective [13], our work shows
that the implicit bias in the learning process, which is different from traditional numerical
methods, could help better understand the characteristics of DNNS.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the R-
G method and the DNN method. In Sections 3 and 4, we present the difference between
the two methods in solving PDEs numerically, and provide some theoretical analysis. We
end the paper with the conclusion in Section 5.
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2 Preliminary

In this section we take the toy model of Poisson’s equation as an example to investigate
the difference of solution behaviors between R-G method and DNN method.

2.1 Poisson problem

We consider the d-dimensional Poisson problem posed on the bounded domain Q C R?
with Dirichlet boundary condition as

u(x)=f(x), x€Q,
{ u(x)=0, x€0Q), @1

where A represents the Laplace operator, x=(x1,x2,---,%;) is a d-dimensional vector. It is
known that the problem (2.1) admits a unique solution for f € L2(Q)), and its regularity
can be raised to C;"%(Q) if f € C;(Q) for some s > 0. In the literature, there are a number
of effective numerical methods to solve problem (2.1) in general case. Here we consider
a special situation: we only have the information of f(x) at the n sample points x; (i=
1,---,n). In practical applications, we may imagine that we only have finite experimental
data, i.e., the value of f(x;) (i=1,---,n), and have no more information of f(x) at other
points. Through solving such a particular Poisson problem (2.1) with R-G method and
deep learning method, we aim to find the bias of these two methods in solving PDEs.

2.2 R-G method

In this subsection, we briefly introduce the R-G method [2]. For problem (2.1), we con-
struct a functional

Ju) = 5a(ie) — (f0), @2)

(1,v) /Vu x)Vo(x) /f

The variational form of problem (2.1) is the following:

where

Find u€ H}(Q), s.t. J(u)= min J(0v). (2.3)
vEHL(Q)

The weak form of (2.3) is to find u € H} (Q) such that

a(u,0)=(f,v), YoeHi(Q). (24)
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Figure 1: The finite element basis function in 1d and 2d.

The problem (2.1) is the strong form if the solution u € Hg(ﬂ) To numerically solve (2.4),
we now introduce the finite dimensional space Uj to approximate the infinite dimen-
sional space H}(Q). Let U, C H}(Q) be a subspace with a sequence of basis functions
{¢1,¢2,---,¢m }. The numerical solution uj, € Uy, that we will find can be represented as

up= Z CkPrs (2.5)
k=1

where the coefficients {c} are the unknown values that we need to solve. Replacing
Hé(Q) by Uy, both problems (2.3) and (2.4) can be transformed to solve the following
system:

kZ:Ck“((Pk/‘P]‘) =(f.¢;), j=12,--,m. (2.6)
=1

From (2.6), we can calculate c;, and then obtain the numerical solution u;. We usually
call (2.6) R-G equation.

For different types of basis functions, the R-G method can be divided into finite ele-
ment method (FEM) and spectral method (SM) and so on. If the basis functions {¢x(x)}
are local, i.e., they are compactly supported, this method is usually taken as the FEM.
Assume that () is a polygon, and we divide it into finite element grid 7, by simplex,
h=max.c7,diam(7). A typical finite element basis is the linear hat basis function, satis-

fying
Px(xj) =0, x €N, 2.7)

where N, stands for the set of the nodes of grid 7. The schematic diagram of the basis
functions in 1-D and 2-D is shown in Fig. 1. On the other hand, if we choose the global
basis function such as Fourier basis or Legendre basis [25], we call R-G method spectral
method.

The error estimate theory of R-G method has been well established. Under suitable
assumption on the regularity of solution, the linear finite element solution u; has the
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following error estimate
|| —uplls <Cihlula,

where the constant C; is independent of grid size & and |- |, is the H2-seminorm [2, 28].
The spectral method has the following error estimate

G
ms’

[ =y || <

where C; is a constant and the exponent s depends only on the regularity (smoothness)
of the solution u. If u is smooth enough and satisfies certain boundary conditions, the
spectral method has the spectral accuracy [25].

In this paper, we use the R-G method to solve the Poisson problem (2.1) in a special
setting, i.e. we only have the information of f(x) at the n sample points x; (i=1,---,n). In
this situation, the integral on the right hand side (r.h.s.) of R-G equation (2.6) is hard to
be computed exactly, so we need to compute it with the proper numerical method. For
higher dimensional case, it is known the Monte Carlo (MC) integration [23] may be the
only viable approach. Then replacing the integral on the r.h.s. of (2.6) with the form of
MC integral formula, we obtain

m 1 n ]
kzcka(¢k/¢j) :EZf(xl)¢](xl)/ ]:1/2/"'/m- (28)
=1 i=1

In fact, if we use the Gaussian quadrature rule to compute the integral on the r.h.s. of
Eq. (2.6), we still have the similar form as (2.8), except that 1/n is replaced by the corre-
sponding Gaussian quadrature weights w;. Because of the inaccuracy of the right-hand
side integral, Eq. (2.8) is actually different from the traditional R-G method. However, we
can see clearly the bias of the R-G method under this special setting in the later numerical
experiments.

2.3 DNN method
We now introduce the DNN method. The L-layer neural network is denoted by
ug(x) =W oo (W—2go (.. Wx4pl0)...) 4 plL-2)) 4 plE-1]) (2.9)

where Wl ¢ Rm=xmi plll = R™Mi+1 g =d, m; =1, ¢ is a scalar function and “o” means
entry-wise operation. We denote the set of parameters by

0= (w[O],w[lll...,w[Lfl],b[o],b[l],,_,,b[uu)/

and an entry of W by WZ-E-I].
Particularly, the one-hidden layer DNN with activation function ¢ is given as

m
ug(x) =Y cxo(wy-x+by)+a, (2.10)
k=1
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where w; € R?, ¢, by, 0 €R are parameters. If we denote o (wy-x+by) =¢i(x) and set a =0,
then we obtain the similar form to R-G solution (2.5), i.e.,

up(x) = chgbk(x). (2.11)
k=1

The difference between the expressions of the solutions of these two methods is that the
basis functions of the R-G solution are known, while the bases of the DNN solution are
unknown, and need to be obtained together with the coefficients through the gradient
descent algorithm with a loss function.

The loss function corresponding to problem (2.1) is given by

1 n
Lofu f) =, 1 (o) (x0)*+ | uo(x)?as, (2.12)
or a variation form [10]
L(ug, =2y (1 IV ettp () |2—f<xi>ue<xi>) B [ o), (2.13)
ni—\2 00

where the last term is for the boundary condition and B is a hyper-parameter.

2.4 The connection between R-G method and DNN method

Here we further discuss the connection between R-G method and DNN method. If the
DNN solution space is U, =span{¢$1,¢2,- -+ ,¢m }, i.e., (2.11) holds on, then the loss function
(2.13) can be written as

2
Li(c,B)= 12 (%’ chvx(l’k(xi)’z—f(xi) ch(l)k(xi)) +,3/m (chq)k(x)) ds. (2.14)
k=1 k=1 k=1

ni3

The minimum point of L1 (c, ) satisfies the first-order necessary condition

a—L(c, )=0, j=1,---,m,

%j (2.15)
oL (p)=0 |
ap\“P)=

After simple calculations, one has
1 n m
- ) ( ckVadr(xi) - V(i) _f(xi)‘l’j(xi))
i=1 \k=1
+B fon2 (TiL ok (%)) (x)ds =0, j=1,--,m,

2
/an (;ckgbk(x)) ds=0.
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Since the basis functions in R-G method belong to space H{(Q), ie., ¢x(x)50 =0, one
obtains following algebraic system

:Z;Ck (%ivxq)k(xi)'vxﬁbj(xi)) =%if(x0¢j(xi), j=1,--,m.

It is obvious that the above system is the system (2.8) except that the integral in the left-
hand side of Eq. (2.8) is approximated by MC integration using the given n sample points.
Therefore, the minimizing of the loss function (2.13) is equivalent to solving the approxi-
mated (2.8) where the integral in left hand is replaced by MC integration.

2.5 Frequency Principle

In this section, we illustrate and introduce a rigorous definition of the F-Principle.
We begin with considering a two-layer neural network, following [19,34],

m
u(x,0)=)Y ajc (’ijx— ]w]-]c]-> , (2.16)
=1

where w),x € RY, 6= (aT,w], -, w},c")T, a,c c R" and W = (wy,--- ,wy,)T € R™*4 and
0(z)=max(z,0) (z€R) is the activation function of ReLU. Note that this two-layer model
is slightly different from the model in (2.11) for easy calculation in [19, 34]. The target
function is denoted by U(x). The network is trained by mean-squared error (MSE) loss
function

=/ L, 0) — U (%) [2o(x) dx, (217)
R? 2
where p(x) is a probability density. Considering finite samples, we have
1 n
p(x):EZ(S(x—xi). (2.18)

i=1

For any function ¢ defined on IR?, we use the following convention of the Fourier trans-
form and its inverse:

FI)(@) = Jrag(x)e 28y, g(x)= [ Flg) (@) ez,

where & € R? denotes the frequency.

The study in [19,34] shows that when the neuron number m is sufficient large, training
the network in (2.16) with gradient flow dynamics at training time t is described by the
following differential equation

O F[ul(§) =—T (&) Fl(u—-U)p](Z) (2.19)
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with initial F[uini](&). This dynamics characterizes the evolution of each frequency. The
convergence rate w.r.t. frequency depends on I'(¢) and also affected by other frequencies
due to the discrete sample distribution p. Consist with the supervised learning, the steady
state of this dynamics is that DNN output equals to the target function at samples points.

The long time solution of (2.19) is equivalent to solve the following optimization prob-
lem

, min Rdf’1(€)|}"[u—uini](§)lzdé, (2.20)
s.t. u(xi):ll(xi) for i=1,---,n, (2.21)

where
LY (Jwy(0) 2 aj(0)2)  4m2E I (I (0)]2ai(0)2)
@)= REE R :

here ||-|| represents the L2-norm, w;(0) and a;(0) represent initial parameters before train-
ing, and

(2.22)

F={ul [ T @@ Pag <o . @2)

Since I'(¢) monotonically decreases with ¢, the gradient flow in (2.19) rigorously defines
the F-Principle, i.e., low frequency converges faster. The minimization in (2.20) clearly
shows that the DNN has an implicit bias in addition to the sample constraint in (2.21).
As (T'(&)) ! monotonically increases with &, the optimization problem prefers to choose
a function that has less high frequency components, which explicates the implicit bias of
the F-Principle — DNN prefers low frequency [32,33].

Therefore, general DNN-based algorithms often encounter a high-frequency curse
of slowly learning high-frequency information, for example, in solving multi-scale PDEs.
Then, a series of algorithms, inspired by F-Principle, are developed to overcome the high-
frequency curse of general DNN framework [1, 3, 4,14,15,17,27,29,30, 32].

3 Main results

3.1 R-G method in solving PDE

In the classical case, f(x) is a given function, so we can compute exactly the integral on
the rh.s. of R-G equation (2.6). As the number of basis functions m approaches infinity,
the numerical solution obtained by R-G method (2.6) approximates the exact solution of
problem (2.1). It is interesting to ask if we only have the information of f at the finite n
points, what could happen to numerical solution obtained by (2.8) when m — 00?

Fixing the number of sample points 1, we study the property of the solution of the
numerical method (2.8). We have the following theorem.
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Theorem 3.1. When m — oo, the numerical method (2.8) is solving the problem

1 n
—Au(x)—E;(S(X—xz)f(xl)r x€Q, (3.1)

u(x)=0, x €0Q),
in the sense of generalized function, where 6(x) represents the Dirac delta function.

Proof. According to the filtering property of delta function, the formula for the integral
on the right hand side (r.h.s.) of Eq. (2.8) is the exact integral between the function of the
rh.s. of Eq. (3.1) and the basis function ¢;(x), i.e.,

Y f )= [ Y flesle—xa(x)dx, =12,
i=1 i=1

Note that §(x):RY—R is a continuous linear functional. According to the error estimation
theory [2,25], the finite dimensional system (2.8) evidently approximates the problem
(3.1) when m — oo. O

Remark 3.1. For the 1-D case, the analytic solution to problem (3.1) defined in [4,b] can
be given as a piecewise linear function, namely

1¢ x—a 1
u(x) =3 (i) (b—xi)g— =} f(xi) (x—xi) H(x—xy), (32)
i3 -4 5
where H(x) is the Heaviside step function
H(x):{ 0, x<0,
1, x>0.
For the 2-D case, [21] gives the exact solution in [0,4] X [0,b] by Green’s function
4 & & & sin(prx)sin sin(prx;)sin(g;y;
u(y)= YA Y (pxx) (quz) 2(pk )sin(qiy:) (3.3)
s s P4

where f; = f(x;,y;), px = 7k/a, g, =ml/b. We can prove that this series diverge at the
sampling point (x;,y;) (i=1,2,---,n) and converge at other points. Therefore, the 2-D
exact solution u(x,y) is highly singular.

3.2 Numerical experiments

Although R-G method and DNN method can be equivalent to each other in the sense
of approximation, in this section, we present three examples to investigate the difference



308 J. Wang et al. / CSIAM Trans. Appl. Math., 3 (2022), pp. 299-317

between the solution obtained by the R-G method and the one obtained by the DNN with
gradient descent optimization. We first consider the following 1-D Poisson problem

{ —u'(x)=f(x), xe(=1,1),
u(—1)=u(1)=0,

where we only know what the value of f(x) is at n points, i.e. f(x;) (i=1,2,---,n). In
experiments, f(x;) are sampled from the function

(3.4)

fx)=—(4x® —6x)exp(—x?). (3.5)

Note that there are infinite possible functions that can have the same values at the selected
n positions as f(x), therefore, there is not an exact solution, thus, we do not plot exact
solutions for comparison in the following.

Example 3.1. Fixing the number of sampling points n =5, we use R-G method and DNN
method to solve the problem (3.4), respectively. The reason why we choose fewer sample
points here is that in this situation we can investigate the property of the solution more
clearly. The results are shown as follows.

R-G method. First, we use R-G method to solve the problem (3.4), specially the spectral
method with the Fourier basis function given as

¢r(x)=sin(kmrx), k=1,2,---,m.

We set the number of basis functions m=5,10,50,500, respectively. Fig. 2 plots the numeri-
cal solutions obtained by R-G method. The solutions (3.2) of problem (3.1) with boundary
conditions and f(x) given in (3.4) and (3.5) are presented in Fig. 2. One can see that the
R-G solution approximates the piecewise linear function (3.2) when m — co. This result is
consistent with the property of solution analyzed in Theorem 3.1.

DNN method. For a better comparison with R-G method, we choose the activation func-
tion by sin(x) in DNN with one hidden layer. And the number of neurons are taken as
m=5,10,50,500. The loss function (2.12) is selected with the parameter f =10. We reduce
the loss to an order of 1e-4, and take learning rate by le-4. And 1000 test points are used
to plot the figures. The DNN solutions are shown in Fig. 3, in which we observe that the
DNN solutions are always smooth even when m is very large.

Example 3.2. In this example, we use the ReLU function as the basis function in R-G
method and the activation function in DNN method to repeat the experiments in Exam-
ple 1. Here we randomly choose another 10 sampling points.
Since the linear finite element function ¢;(x) can be expressed by ReLU functions for
one dimensional case, namely,
1

1 1 1
¢i(x) = hj—_lReLU(x— Xj1)— (E + h_]> ReLU(x—x;)+ h—jReLU(x— Xj+1),
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SM:m=5,n=>5 SM:m=10,n=5
0.06 " i 0.06 . )
—Numerical Sol. —Numerical Sol.
004t~ ExactlSoI. of (3.1) 004t~ ExactlSoI. of (3.1)
© Location of samples © Location of samples

0.02 0.02
3 0 3 0
-0.02 ¢ -0.02 ¢
-0.04 -0.04
-0.06 ' ' ' -0.06 ' ' '
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
T T
SM:m=50,n=>5 SM:m=500,n=>5
0.06 i i 0.06 i i i
—Numerical Sol. —Numerical Sol.
004t~ ExactlSoI. of (3.1) 004t~ ExactlSoI. of (3.1)
© Location of samples © Location of samples

0.02 0.02
S 0 S 0
-0.02 | -0.02 |
-0.04 ¢ -0.04 ¢
-0.06 ' ' ' -0.06 ' ' '
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
T T

Figure 2: (Example 3.1): Numerical solutions in SM with 5 sampling points.

where hj = x;,1—x;, we can use ReLU as the basis function for R-G method. For conve-
nience, we just use the linear finite element function ¢;(x) instead of ReLU function as
the basis function. Fig. 4 shows that the FEM solution undoubtedly approximates the
piecewise linear solution (3.2).

In DNN method, we choose the number of neurons m = 5,10,50,500, respectively.
And we use the variational form of the loss function (2.13) because of the second order
derivative of ReLU function is always zero. Fig. 5 shows that the DNN learns the data as
a relatively smoother function than the R-G method.

Example 3.3. We consider the 2-D case

{ —Au(x)=f(x), x€(0,1)?
u(x)=0, x€9(0,1)?,

where x=(x,y) and the values of f at n points sampled from the function f(x):=f(x,y)=
27%sin(7tx)sin(7ty). We fix the number of sample points 7 =5?. The sampling points
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DNN:m=5,n=5 DNN:m=10,n=5
0104 — Numerical Sol. 0104 — Numerical Sol.
® Location of samples ® Location of samples
0.05 0.05
3 0.00 3> 0.00
—0.05 | —0.05 |
-0.10 1 —0.101
-1.0 -0.5 0.0 05 10 -1.0 -0.5 0.0 05 10
X X
DNN:m=50,n=5 DNN:m=500,n=5
o010 — Numgrical Sol. 0104 — Numgrical Sol.
e Location of samples e Location of samples
0.05 | 0.05
3> 0.00 3> 0.00
—0.05 —0.05 |
—0.10 —0.10 1
-1.0 -0.5 0.0 05 10 -1.0 -0.5 0.0 05 10
X X

Figure 3: (Example 3.1): Numerical solutions in DNN method with 5 sampling points.

in the x direction and the y direction are both at xj, =[0.1,0.25,0.5,0.8,0.9]. We test the
solution with the number of basis m = 5,50,100,200, respectively. Fig. 6 plots the R-G
solutions with Legendre basis and piecewise linear basis function. It can be seen that
the numerical solution is a function with strong singularity. Fig. 7 shows the profile of
R-G solutions at y = 0.5 for various m, in which we can see that the values of numerical
solutions at the sampling points get larger and larger with the increase of m. However,
Fig. 8 shows the DNN solutions are stable without singularity for large m.

4 Discussion of DNN method in solving PDE

4.1 Frequency principle

DNNs are widely used in solving PDEs, especially for high-dimensional problems. The
optimizing the loss functions in Egs. (2.12) and (2.13) are equivalent to solving (2.6) ex-
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FEM:m=5,n=10 FEM:m=10,n=10

0.1

0.1

— Numerical Sol. 0~ "°\\ — Numerical Sol. 2
— — Exact Sol. of (3.1) N — — Exact Sol. of (3.1)
© |ocation of samples © |ocation of samples
0.05} P 0.05} P

-0.05 -0.05

7

01 e : : 01 e ‘ ‘
1 0.5 0 0.5 1 1 0.5 0 0.5 1

x x
FEM:m=50,n=10 FEM:m=500,n=10

0.1 0.1
—Numerical Sol. —Numerical Sol.
— — Exact Sol. of (3.1) — — Exact Sol. of (3.1)
0.05! © Location of samples 0.05! © Location of samples

-0.05 -0.05

-0.1 : : : : : :
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

T

Figure 4: (Example 3.2): Numerical solutions in FEM with 10 sampling points.

cept that the bases in (2.12) and (2.13) are adaptive. In addition, the DNN problem is
optimized by (stochastic) gradient descent. The experiments in the previous section have
shown that when the number of bases goes to infinity, DNN methods solve (2.1) by a
relatively smooth and stable function compared with the one obtained by Theorem 3.1.
We now utilize the F-Principle to understand what leads to the smoothness.

For two-layer wide DNNss with d=1, the two terms of I'(¢) in the minimization prob-
lem of (2.20) yield different fitting results. Note that min [, ||Z]| 72| F[h](Z)|*dZ leads to a
piecewise linear function, while min [, ||Z||~*|F[h](Z)|*d¢ leads to a cubic spline. Since
the DNN is a combination of both terms, therefore, the DNN would yield to a much
smoother function than the piecewise linear function. For a general DNN, the coefficient
I'(¢) in (2.19) cannot be obtained exactly, however, the monotonically decreasing prop-
erty of I'(¢) with respect to ¢ can be postulated based on the F-Principle. Theoretical
works [19,20,24,32,34] have shown that the regularity of DNN converts into the decay
rate of a loss function in the frequency domain. As the commonly used activation func-
tions decay with a certain rate in the frequency domain due to their regularity, DNNSs,
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Figure 5: (Example 3.2): Numerical solutions in DNN method with ReLU activation function and 10 sampling

points.

SM:m=5%n=>5 SM:m=50° n=>5

SM:m=100°,n=5"

SM:m=200°,n=>5"

FEM:m=>5%n=>5 FEM:m=50%n=5

FEM:m=100 n=5

Figure 6: (Example 3.3): R-G solutions with different m. The basis functions for the first and the second row
are Legendre basis function and piecewise linear basis function, respectively.
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Figure 7: (Example 3.3): Profile of R-G solutions with different m.
DNN:m=25,n=52 DNN:m=2500,n=>52 DNN:m=10000,n=52 DNN:m=40000,n=52

DNN:m=25,n=5? DNN:m=2500,n=5% DNN:m=10000,n=52 DNN:m=40000,n=52

Figure 8: (Example 3.3): DNN solutions with different m. The activation functions for the first and the second
row are ReLU(x) and sin(x), respectively.

with common loss functions, often show a low-frequency bias in the learning.

The key to F-Principle is the regularity of the activation function. Imposing high
priority on high frequency can alleviate the effect of the F-Principle and sometimes an
anti-F-Principle can be observed. For example, consider a loss function, containing the
gradient of the DNN output w.r.t. the input

Ls(8)= Y (Vu(6,x)—VU(x))> (4.1)

x€eS

The Fourier transform of Vu(6,x) is {F[u(6,x)](), that is, a higher frequency would
have a higher weight in the loss function. Then, the convergence of different frequencies
depends on the competition between the activation regularity and the loss function. If
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the loss function endorses more priority for the high frequency to compensate the low-
priority induced by the activation function, a high frequency may converges faster. Some
analysis and numerical experiments can also be found in [9,18].

Taken together, the above analysis qualitatively explains the DNN with sinusoidal
activation function learns smoother function than that with ReLU activation function.

4.2 Spectral collocation method

Finally, we briefly compare the spectral collocation method and DNN method in solving
PDEs. The spectral collocation method is similar to a random feature model but with
orthogonal polynomials as basis functions. A DNN with infinite width and proper initial
scaling is also similar to a random feature model [8] but with activation functions (e.g.,
ReLU or tanh) as basis functions.

We resolve the Example 3.1 in Section 3.2 using the spectral collocation method with
the Legendre basis. Given any set of distinct collocation points {x;} ; on [—1,1] in as-
cending order with x; = —1 and x, =1. Let uy =Y’ w;p;(x). The basis function {¢;}
satisfies boundary conditions. The spectral collocation is essentially minimizing the loss
function (2.12) with =0, i.e.,

n

min 1Z(Aum (x:)+ f(x:))2. (4.2)

{wi}ita ni 5

Fig. 9 shows the numerical solutions with different m. When m = n, the spectral collo-
cation method performs well since the problem is well-posed. When m > n (the over-
parameterized case), the problem has infinite solutions. To make a fair comparison with
the DNN method, the gradient descent method is used to solve problem (4.2). One can
see that the collocation solution has the low regularity like the Ritz-Galerkin solution.
The underlying mechanism of the spectral collocation method in the over-parameterized
regime is yet to be clarified in the future work. These empirical studies indicate that the
DNN method possesses special implicit bias towards low frequencies compared to the
traditional numerical method.

5 Conclusion

This paper compares the different behaviors of Ritz-Galerkin method and DNN method
through solving PDEs to better understand the working principle of DNNs. We consider
a particular Poisson problem (2.1), where the rh.s. term f is a discrete function. We an-
alyze why the two numerical methods behave differently in theory. R-G method deals
with the discrete f as the linear combination of Dirac delta functions, while DNN meth-
ods implicitly bias towards functions with more low-frequency components to interpo-
late the discrete sampling points due to the F-Principle. Furthermore, from the numerical
experiments, as the number of bases increases, one can see that the solutions obtained
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Figure 9: Numerical solutions obtained by spectral collocation method when m > n.

by R-G method approximate piecewise linear functions for 1d case and singular func-
tion for the 2d case, regardless of the basis function, but the solutions obtained by DNN
method are smoother for 1d case and stable for the 2d case. In conclusion, based on the
theoretical and numerical study in comparison to traditional methods in solving PDEs,
DNN method possesses special implicit bias towards low frequencies, which leads to a
well-behaved solution even in a heavily over-parameterized setting.
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