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We study the reconstruction of structural connectivity for a general class of pulse-coupled nonlinear

networks and show that the reconstruction can be successfully achieved through linear Granger causality

(GC) analysis. Using spike-triggered correlation of whitened signals, we obtain a quadratic relationship

between GC and the network couplings, thus establishing a direct link between the causal connectivity and

the structural connectivity within these networks. Our work may provide insight into the applicability of

GC in the study of the function of general nonlinear networks.
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For networks in scientific and engineering fields, e.g.,
genetic regulatory systems, the circuitry in the brain, and
social communications, signals are often collected in the
form of a time series of dynamical activity at individual
nodes. In order to understand how these nodes cooperate to
generate specific network functions, a fundamental issue is
to identify causal interactions among the nodes [1]. The
Granger causality (GC), based on linear predictions, has
proven to be an effective method for the analysis of causal
interactions among nodes by distinguishing the driver from
the recipient [2]. The idea of GC is that the driver, being
earlier than the recipient, contains information about the
future of the recipient; thus, the prediction error for the
recipient is reduced when the information of the driver is
incorporated. Because of its simplicity and easy implemen-
tation, the GC theory has been widely applied to many
scientific problems in, e.g., neuroscience, systems biology,
medical engineering, geophysics, economics, and the
social sciences [3].

Despite widespread applications of GC theory, there are
several important issues that remain to be clarified. First,
GC theory is based on linear models and assumes that the
causal information can be well captured by the low order
statistics (up to the variance) of signals. For Gaussian time
series, GC is equivalent to the transfer entropy [4].
However, many experimental time series are nonlinear
and non-Gaussian. For example, there is an extensive appli-
cation of GC analysis to functional magnetic resonance
imaging data, which, however, are known to be nonlinear
functions of physiological processes [5]. The GC analysis
can yield highly significant false detections for data with a
mixed source, e.g., electroencephalogram data [6]. Second,
the causal connectivity revealed in GC is statistical rather
than structural. Strong GC connections may exist between
brain regions with no direct structural connections [7], or a
network may possess different GC connectivity in different
dynamical states [8]. To understand how the causal con-
nectivity is mapped onto the anatomical, i.e., structural,

connectivity in the brain remains one of the major chal-
lenges in neuroscience [9]. In addition, it has been shown
that theGC analysis for some nonlinear systemsmay lead to
an incorrect inference of the structural connectivity [10].
Therefore, it is important to study the applicability of GC
theory for nonlinear network systems [11] and to investigate
the relationship between the structural connectivity and the
GC connectivity.
In this Letter, we consider a general class of pulse-

coupled nonlinear networks. These systems arise from
many research fields, e.g., image processing, path optimi-
zation, speech recognition, gene regulatory modeling, and
neuronal dynamics [12]. Using nonlinear and non-Gaussian
time series generated by such networks, we show that the
GC connectivity is highly coincident with the structural
connectivity over a wide range of dynamical regimes.
Namely, the network topology, which is usually not easy
to assess in experiment, can be accurately reconstructed
from time series recorded at individual nodes. Our theoreti-
cal analysis reveals why the linear GC framework is appli-
cable to such a nonlinear network and how the causal
interaction is quantitatively related to the coupling strength
of the network. We also point out that the spike-triggered
correlation (STC), a classical technique to detect dynamical
interactions between nodes, may incorrectly infer connec-
tions if the signals are not white. Our work provides a
theoretical framework for understanding the validity of
GC theory in nonlinear networks and may provide insight
into how information is propagated over a network and how
the structural and functional properties are related.
The system we consider is an integrate-and-fire (I&F)

network with both excitatory and inhibitory nodes. The
dynamics of the ith node is governed by

_xi ¼ � xi
�
� ðgbgi þ gexi Þðxi � xexÞ � gini ðxi � xinÞ; (1)

where xi is a state variable with time scale �, and xex and xin
are the reversal values of excitation (ex) and inhibition (in),
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respectively. g
bg
i ¼ f

P
kHðt� TF

i;kÞ exp½�ðt� TF
i;kÞ=�ex�

is the background input with magnitude f and time scale
�ex, TF

i;k is a Poisson process with rate �, Hð�Þ is the

Heaviside function, gexi ¼ P
j

P
k S

ex
ij Hðt� Tex

j;kÞ exp½�ðt�
Tex
j;kÞ=�ex� is the excitatory pulse interaction from other jth

excitatory nodes, and gini ¼
P

j

P
kS

in
ijHðt�Tin

j;kÞexp½�ðt�
Tin
j;kÞ=�in� is the inhibitory pulse interaction from other jth

inhibitory nodes. The jth excitatory (inhibitory) node xj
evolves continuously according to Eq. (1) until it reaches a
firing threshold xth. That moment in time is referred to as a
firing event (say, the kth spike) and denoted by Tex

j;k (T
in
j;k).

Then, xj is reset to the reset value xr (xin < xr < xth < xex)

and held at xr for an absolute refractory period of �ref . Each
spike emerging from the jth excitatory (inhibitory) node
gives rise to an instantaneous increase Sexij (S

in
ij) in g

ex
i (gini ),

where Sexij and S
in
ij are the excitatory and inhibitory coupling

strengths, respectively. The model (1) describes a general
class of physical networks [12,13]. In the limit �ex ! 0,
� ! 1 and gini � 0, �f ¼ const, it reduces to Mirollo-
Strogatz oscillators which are widely used in the study of
synchronization phenomena [12]. The model is also com-
monly used as a conductance-based neuronal unit [13].
[For ease of discussion, we will call a node here a neuron,
xi the voltage, and gexi (gini ) the excitatory (inhibitory)
conductance.]

We address the issue of whether the linear GC framework
can be used to reconstruct the connectivity matrices Sexij and

Sinij of the I&Fnetwork (1). For simplicity, we first consider a

homogeneously coupled network with only excitatory
nodes, i.e., gini � 0 and Sexij ¼ SexAij, where Sex is the

coupling strength and A ¼ ðAijÞ is the adjacency matrix

characterizing the directed graph among the nodes. For the
system of two neurons (x1 and x2), we record the time series
fxiðnÞg1n¼1 (i ¼ 1, 2) from their trajectories obtained by
evolving system (1) numerically. The autoregressions
(AR) for xiðnÞ are represented by x1ðnÞ ¼

P
ka

A
k x1ðn�

kÞ þ �An and x2ðnÞ ¼
P

kd
A
k x2ðn� kÞ þ �A

n , whereas the
joint regressions (JR) can be expressed as x1ðnÞ ¼P

ka
J
kx1ðn� kÞ þP

kb
J
kx2ðn� kÞ þ �Jn and x2ðnÞ ¼P

kc
J
kx1ðn� kÞ þP

kd
J
kx2ðn� kÞ þ �J

n. Here, (�An , �A
n )

and (�Jn,�
J
n) are residuals in the AR and JR models, respec-

tively [14]. The GC from x1 to x2 is defined as Fx1!x2
¼

lnðVarð�AÞ=Varð�JÞÞ and theGC fromx2 tox1 asFx2!x1
¼

lnðVarð�AÞ=Varð�JÞÞ [2]. For the directed network shown in
Fig. 1(a), we obtain that Fx1!x2

� Fx2!x1
(Fx1!x2

¼
2:0� 10�4 and Fx2!x1

¼ 2:0� 10�6 within statistical

error). According to the large-sample distribution theory,
the sample statistic L � Fxi!xj

is asymptotically �2 distrib-

uted [2,14], where L is the length of the time series.
Therefore, we can use statistical tests (e.g., p ¼ 0:001) to
determine a GC threshold FT [2] for constructing an effec-

tive adjacencymatrix Â ¼ ðÂijÞ; i.e., ifFxi!xj
> FT , we set

Âji ¼ 1, and otherwise, Âji ¼ 0. For our two-neuron

network, the adjacencymatrix is successfully reconstructed
in this way, as shown in Fig. 1(b). We further examine how
robust this reconstruction is by scanning f and �, which
control the dynamical regimes, with the range over the
realistic firing rates (5–150 Hz) of real neurons [15]. As
shown in Fig. 1(c), the GC connectivity and the structural
connectivity are highly coincident with each other. For a
network of multiple neurons, we compute conditional GC
(Fxi!xjjxk) from xi to xjwhen the information of other nodes

xk (k � i, j) is given [2,14]. By using a significance test, Â
can also be constructed. For a five-neuron network in

Fig. 1(d), the constructed Â as shown in Fig. 1(e) is identical
to A. This method is also successfully tested to reconstruct
A with 98% accuracy for a network of 100 excitatory
neurons with random connectivity. Incidentally, we point
out an interesting phenomenon for large excitatory-neuron
networks: often, there is a gap in the GC ranked by magni-
tude for all possible directed connections between neurons,
as shown in Fig. 1(f), and this gap clearly divides the GC
values into two groups. Surprisingly, using this criterion
[with the gray (red) horizontal line in Fig. 1(f) as the

threshold], Â is also identical to A.
We now turn to the question of why the linear GC frame-

work is effective in uncovering the structural connectivity
of nonlinear I&F networks. From the theoretical basis of
GC analysis, one may suspect that an I&F system, albeit
nonlinear, might be well described by a Gaussian linear
regression process; i.e., the residuals in the above regression
modelmight beGaussian. Figure 2(a) shows the trajectories
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FIG. 1 (color online). (a) A network with two excitatory
neurons and a directed connection from x1 to x2. (b) Effective
adjacency matrix Â constructed by GC, which captures the
structural connectivity in (a). (c) The coincidence between Â
and A in (a) as a function of rate � and magnitude f in the
Poisson drive. The white color indicates that Â � A and the
black color for Â ¼ A. (d) A network with five excitatory
neurons. (e) Â constructed by GC, which captures the topology
in (d). (f) Ranked GC in order of magnitude for a network of 100
excitatory neurons with random connectivity (the number of
nonzero Aij is �2000). The gray (red) line indicates the thresh-

old in the gap of the ranked GC. As for the excitatory neuron
case, parameters are chosen as xex ¼ 14=3, �ex ¼ 2 ms, � ¼
20 ms, xth ¼ 1, xr ¼ 0, and �ref ¼ 2 ms [13]. Here, � ¼
1 ms�1, f ¼ 0:007 ms�1, and Sex ¼ 0:01 ms�1.
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of x1 and x2 from which we constructed regression pro-
cesses to obtain the residuals �A and �A. Figure 2(b) dis-
plays the probability density of �A and�A, which are clearly
not Gaussian. Note that, as shown in Fig. 2(a), the time
series ~x1ðtÞ and ~x2ðtÞ (mean zero), which are reconstructed
via the regressionmodel of x1 and x2with residuals replaced
by Gaussian variables, are rather different from the original
voltage series. Clearly, they have lost firing-reset signa-
tures. However, it is important to point out that GC com-
puted using ~xi can be shown to be identical to those GC
obtained directly from xi. In this sense, the I&F dynamics
can be linearized statistically as captured by the regression
process.

For pulse-coupled dynamical systems (e.g., I&F net-
works), the spike-triggered correlation is often used to infer
connections in such systems [16]. The STC from x1 to x2 is
defined as x2j1ð�Þ ¼ hx2ð�x1;k þ �Þi, where �x1;k is the kth

spike time for x1 and h�i is the average over all spikes. Note
that (i) the STC contains information about both the statis-
tics of the spike drive from x1 and the response properties of
x2, and (ii) such drive-response (causal) scenarios rely on
the existence of a connection from x1 to x2; i.e., A21 ¼ 1.
Thus, it appears that STC could be used to relate the
structural connectivity to the GC connectivity. Figure 3(a)

displays the STCs x1j2ð�Þ and x2j1ð�Þ (background sub-
tracted), both of which exhibit significant deviations from
zero when � is small and naturally vanish when � is suffi-
ciently large. This might indicate bidirectional connections
between the two neurons [16], however, which are incon-
sistent with the true structural connectivity (A12 ¼ 0).
The nonzero feature of x1j2ð�Þ for � > 0 in Fig. 3(a),

which gives rise to an incorrect inference of A12, can be
intuitively understood as follows. Because the signal x1ðtÞ
is not white, i.e., having finite correlation time, the future
of x1 is correlated with its own history. Further, x2ðtÞ is also
correlated with the history of x1 (driven by its spikes).
Therefore, x2ðtÞ would likely be correlated with the future
of x1, hence the incorrect inference of the connection from
x2 to x1.
Note that after regression, �AðtÞ and �AðtÞ are whitened

signals [2], i.e., with only instantaneous correlation. Using
STCs on �A and �A, we have �Ajx2ð�Þ ¼ 0 for � > 0, as

shown in Fig. 3(b), whereas �Ajx1ð�Þ � 0 [similar features

to x2j1ð�Þ]. Therefore, the STC on whitened signals indi-
cates the correct unidirectional connection between two
neurons. This motivates us to study the relation between
STC and GC on whitened signals. In the following,
we show that the residual cross correlation r�, r� ¼
E½�AðtÞ�Aðtþ �Þ�, links STC to GC.
First, we note that due to the firing-reset dynamics, the

magnitude of �A at time �x1;k is much larger in an absolute

value than that at other times, as can be seen from the inset
of Fig. 2(b), which resembles a Dirac delta function, i.e.,
�AðtÞ � �h

P
k�ðt� �x1;kÞ, where h is a normalizing fac-

tor. Under this approximation, we obtain the relation
between r� and the STC on �A,

�Ajx1ð�Þ ¼ h�Að�x1;k þ �Þi � � r�
h�

; (2)

where � is the spike rate of neuron 1.
Next, from AR models, we can construct the moving

average of x1 and x2 in terms of �A and �A [14] to obtain
the JR models with respect to �A and �A as follows:

�An ¼ X

k

âJk�
A
n�k þ

X

k

b̂Jk�
A
n�k þ �Jn;

�A
n ¼ X

k

ĉJk�
A
n�k þ

X

k

d̂Jk�
A
n�k þ �J

n;

(3)

where (�An ,�
A
n ) and (�

J
n, �

J
n) are the residuals in the original

AR and JR models of xi, respectively [17]. Note that the
transformations between x1, x2 and �A, �A are linear. By
the invariance of GC under an invertible linear transforma-
tion [2], we haveF�A!�A ¼ Fx1!x2

; i.e., GC connectivity is

indeed embedded in the whitened signals.
Finally, from Eq. (3), we can construct and solve the

Yule-Walker equations [14] and arrive at Fx1!x2
¼

� lnð1� riGijrjÞ [18]. Here, rk ¼ Eð�An�A
nþkÞ and

ðG�1Þij ¼ Varð�AÞVarð�AÞ�ij � RikRjk, with Rij ¼
Eð�An�A

nþi�jÞ. For small residual cross correlation between

0 50 100
−0.5

0.0

1.0(a) (b)

t (ms)
−1.0 0 0.5

0

3

5

P
ro

b.
 D

en
si

ty

0 50 100
−1

0

1

t (ms)

FIG. 2 (color online). (a) Trajectories of x1 [thin dark line
(red)] and x2 [dark line (black)] generated by model (1) and of
~x1 [thick gray line (green)] and ~x2 [thick light gray line (cyan)]
generated by regression models. (b) Probability density of �A

[thick solid light gray line (cyan)] and �A [thin dark dashed line
(black)] in the AR model. Inset: Trajectories of �A [thick light
gray line (cyan)] and �A [thin dark line (black)]. Here, � ¼
0:24 ms�1, f ¼ 0:02 ms�1, and Sex ¼ 0:01 ms�1.
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FIG. 3 (color online). (a) Spike-triggered correlation (back-
ground subtracted): x1j2ð�Þ [thick light gray line (cyan)] and
x2j1ð�Þ [thin dark line (black)]. (b) Spike-triggered correlation:
�Ajx2 ð�Þ [thick light gray line (cyan)] and �Ajx1 ð�Þ [thin dark line
(black)]. (c) GC (‘‘dot’’ symbols) as a function of coupling
strength Sex; the thick gray line (cyan) is a quadratic fit.
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�A and �A, which is consistent with the result in our
numerical simulation of the I&F systems, Fx1!x2

becomes

Fx1!x2
� rkrk

Varð�AÞVarð�AÞ ; (4)

which links GC to STC quadratically through Eq. (2).
Therefore, we can obtain that Fx1!x2

� 0 is equivalent to

�Ajx1ð�Þ � 0 for � > 0.

Note that �Ajx1ð�Þ corresponds to the spike-induced

change which is asymptotically proportional (when � is
small) to the coupling strength Sex by Eq. (1). Therefore,
from Eqs. (2) and (4), we can make a final connection that
GC is quadratically related to the coupling strength
Fx1!x2

/ ðSexÞ2, which is verified in Fig. 3(c). We point

out that it is the �-like noise structure of residuals, induced
by the firing-reset dynamics, that links STC with the cross
correlation [Eq. (2)]. This is a crucial feature in the I&F
dynamics that underlies why the GC connectivity can be
captured by the STC on whitened signals. The quadratic
relationship between GC and Sex [Fig. 3(c)] ultimately
underlies the coincidence between the causal and the
structural connectivities for the I&F networks.

Finally, we turn to the discussion of networks with both
excitatory and inhibitory neurons. Figure 4 shows that in
such cases, the GC connectivity is also highly coincident
with the structural connectivity. For inhibitory connection,
say, from the jth neuron to the ith neuron, although the
voltage of the ith neuron will decrease after receiving
the jth neuron’s spike, both the �-like noise structure and
the firing-reset voltage dynamics are still preserved.
Therefore, our theoretical analysis is also valid for net-
works with both excitatory and inhibitory connections.

In summary, we have shown that the linear GC frame-
work can indeed be applied to the pulse-coupled nonlinear
network whose GC connectivity directly corresponds to its
structural connectivity. We have also established a quanti-
tative relationship among the GC, the STC, and the cou-
pling strength. Our results are robust, provided that the
time series are reasonably long (� 20 min ) [10] to reduce
statistical errors. Our additional simulations show that a
directed connection from one neuron to a subnetwork, or
from one subnetwork to another subnetwork, can also be
accurately detected by GC. Here, the recorded time series
of a subnetwork is represented by the response (including
spikes) averaged over its population, which can be viewed
as a model for the local field potential in experiments [15].
We point out that if the averaged response is processed by a
low-pass filter, our construction is still valid as long as the
filter is causal. In addition, we have found that the struc-
tural connectivity can also be obtained via GC if we use
spike trains (digital signals). Therefore, the GC tool can be
directly applied to point-process data [3] for the pulse-
coupled nonlinear networks. For networks with more real-
istic neuron models, e.g., the exponential I&F model, we
find that our conclusions also remain valid. The above
analysis of the mechanism for two nodes can naturally be
extended to the case of multiple nodes, the digital signals,
as well as the exponential I&F model. It is expected that
this analysis can also be extended to a wide class of pulse-
coupled networks with a broad type of firing-reset dynam-
ics, e.g., Hodgkin-Huxley neuronal networks. Finally, we
point out that other important issues remain to be eluci-
dated in the future, e.g., correlated inputs and the synchro-
nization. Our study here shows that (i) highly accurate
reconstruction can be achieved (>70%) if the correlation
coefficient in inputs is less than 10% [19], and (ii) for a
nearly synchronized regime, the reconstruction can be
achieved by refining sampling.
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