
Laplace-fPINNs: Laplace-based fractional physics-informed neural
networks for solving forward and inverse problems of subdiffusion

Xiong-Bin Yana,d, Zhi-Qin John Xua,b,c,∗, Zheng Maa,b,c,d,∗

aSchool of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
bInstitute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai, China

cQing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai, China
dCMA-Shanghai, Shanghai Jiao Tong University, Shanghai, China

Abstract

The use of Physics-informed neural networks (PINNs) has shown promise in solving forward and
inverse problems of fractional diffusion equations. However, due to the fact that automatic differ-
entiation is not applicable for fractional derivatives, solving fractional diffusion equations using
PINNs requires addressing additional challenges. To address this issue, this paper proposes an
extension to PINNs called Laplace-based fractional physics-informed neural networks (Laplace-
fPINNs), which can effectively solve the forward and inverse problems of fractional diffusion
equations. This approach avoids introducing a mass of auxiliary points and simplifies the loss
function. We validate the effectiveness of the Laplace-fPINNs approach using several examples.
Our numerical results demonstrate that the Laplace-fPINNs method can effectively solve both the
forward and inverse problems of high-dimensional fractional diffusion equations.

Keywords: Physics-informed neural networks, Laplace transform, Numerical inverse Laplace
transform, Subdiffusion

1. Introduction

Fractional diffusion equations have been studied extensively in engineering, physics, and math-
ematical literature owing to their superior capability for modeling anomalous diffusion phenomena.
The model differs from the standard diffusion model in that it follows a basic assumption that the
diffusion obeys the standard Brownian motion and has been applied to animal coat patterns and
nerve cell signals. A distinctive feature of standard Brownian motion is that the mean squared
displacement 〈x2(t)〉 of diffusing species increases linearly with time, i.e., 〈x2(t)〉 ∼ K1t. However,
in anomalous diffusion, the mean squared displacement shows a non-linear power law growth
with time, i.e., 〈x2(t)〉 ∼ Kαtα, where 0 < α < 1 represents subdiffusion, and α > 1 represents

∗Corresponding author
Email addresses: yanxb2015@163.com (Xiong-Bin Yan), xuzhiqin@sjtu.edu.cn (Zhi-Qin John Xu),

zhengma@sjtu.edu.cn (Zheng Ma)

Preprint submitted to Elsevier April 4, 2023

ar
X

iv
:2

30
4.

00
90

9v
1

 [
m

at
h.

N
A

]
 3

 A
pr

 2
02

3

superdiffusion. At the microscopic level, such anomalous diffusion processes can be accurately
described by a continuous-time random walk where the waiting time between successive particle
leaps follows a heavy-tailed distribution with a diverging mean. At the macroscopic level, anoma-
lous diffusion describes the evolution of the probability density function of a particle that appears
at a given spatial location x and time t. A list of successful applications of fractional diffusion
equations are extensive and continually expanding. These applications include, but are not limited
to, solute transport in heterogeneous media [1, 2], thermal diffusion on fractal domains [3], protein
transport within membranes [4, 5], and flow in highly heterogeneous aquifers [6]. Comprehensive
reviews of the physics modeling and a diverse range of applications can be found in [7, 8].

In this paper, we consider the following time-fractional diffusion equation on a bounded domain
Ω ⊂ Rd with homogeneous Dirichlet boundary condition

∂α0+u(x, t) = ∇ · (a(x)∇u(x, t)) + c(x)u(x, t) + f (x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.1)

The left-hand side of the above equation is a Caputo derivative of order α, which is defined by

∂α0+u(x, t) =
1

Γ(1 − α)

∫ t

0
(t − τ)−α

∂u(x, τ)
∂τ

dτ, 0 < α < 1,

where Γ(·) is the gamma function, a(x), c(x), f (x, t) and u0(x) represent the diffusion coefficient,
reaction coefficient, source and initial value, respectively.

Solving partial differential equations numerically is a well-known challenge, and it becomes
even more difficult when dealing with fractional diffusion equations that involve nonlocal opera-
tors. Recently, there has been a growing trend to apply machine learning techniques for solving
forward and inverse problems of partial differential equations. Several examples include the use of
Gaussian process regression [9–11] and deep learning-based methods [12–17] to solve these types
of problems.

This paper focuses on the use of deep learning methods for solving partial differential equations
(PDEs), which can be categorized into two approaches. The first approach utilizes neural networks
to learn the solution operator for a given problem using a large number of input-output pairs ob-
tained from numerical simulation or governing equations. In this case, deep neural networks are
used to approximate a function that maps the input (e.g. coefficients, initial value, source, and
boundary) to the solution of partial differential equations. For more detailed research, see [18–25].
The second approach utilizes deep neural networks to approximate the solution of PDEs due to
their high expressive power. This method takes advantage of recent advances in automatic differ-
entiation, one of the useful techniques in scientific computing, to derive the derivative of neural
networks to obtain the cost function, the trainable parameters of the neural network can be op-

2

timized by minimizing the cost function. This approach is simple yet powerful, and introduces
potentially physics-informed deep learning methods for solving PDEs. Examples of this approach
include Deep Ritz methods [15, 26], Physics-informed neural networks methods [13, 14, 27–31],
weak adversarial networks methods [16, 17], Deep Galerkin methods [32, 33], and multi-scale
DNN [34, 35].

Recently, solving fractional partial differential equations by neural networks attracts more and
more attention [25, 36, 37]. However, the classical chain rule is not applicable in fractional cal-
culus, which renders automatic differentiation ineffective for fractional derivatives. To overcome
this challenge, Pang et al. [36] propose an extension of Physics-informed neural networks (PINNs)
called fractional physics-informed neural networks, which approximates fractional derivatives by
numerically discretizing fractional operators and employs automatic differentiation to analytically
obtain the integer-order derivatives of neural networks. Similarly, Guo et al. [37] propose a Monte
Carlo sampling-based PINN method that computes the fractional derivatives of neural network out-
put via Monte Carlo sampling. However, both methods require the introduction of auxiliary points
to calculate the fractional derivative, which increases the computational cost of neural network
training.

In this paper, we propose a Laplace-based fractional physics-informed neural network, named
Laplace-fPINNs, for solving forward and inverse problems of subdiffusion. The proposed method
involves transforming the original time-fractional diffusion equation into a restricted equation in
Laplace space using the Laplace transform, which can then be solved using physics-informed
neural networks. The restricted equation in Laplace space does not contain fractional derivatives,
which circumvents the issue of applying automatic differentiation to the time-fractional derivative.
A numerical inverse Laplace transform to convert the PINNs solution from Laplace space to the
time domain. In summary, the main contributions of this paper are listed as follows:

• We provide a novel approach, called Laplace-fPINNs, for solving the time-fractional diffu-
sion equation (1.1). This method substantially reduces the computational cost of the loss
function during neural network training and eliminates the requirement for auxiliary points
used in previous studies [36, 37] to approximate the time-fractional derivative.

• We utilize the proposed Laplace-fPINNs method to tackle the challenging task of identifying
a high-dimensional diffusion coefficient from given measurements. This problem is typically
difficult to solve using traditional inversion methods.

The structure of this paper is as follows. In Section 2, we review the fundamentals of physics-
informed neural networks (PINNs), and summarize some previous research on using PINNs to
solve fractional partial differential equations. In Section 3, we elaborate Laplace-based physics-
informed neural networks for solving the time-fractional diffusion equation (1.1). Section 4 presents
a comprehensive numerical investigation of the performance of the Laplace-fPINNs approach for

3

solving both forward and inverse problems associated with equation (1.1). Finally, we conclude
the paper in Section 5.

2. Prelimilaries

2.1. PINNs

In this part, we first recall the main idea of physics-informed neural networks (PINNs) for
solving the integer-order nonlinear partial differential equations of general form

ut +N[u; λ] = 0, x ∈ Ω, t ∈ [0,T], (2.1)

where u(x, t) denotes the solution of equation (2.1), N[·; λ] is a nonlinear operator parameterized
by λ, Ω is a bounded domain in Rd. The PINNs approach solves the above equation (2.1) by
approximating u(x, t) with a deep neural network, which takes the coordinate (x, t) as input and
outputs a scalar uNN(x, t; θ), where θ represents all trainable parameters of the neural network. The
approximate solution uNN(x, t; θ) is differentiable and can be substituted into equation (2.1) using
the automatic differentiation [38] to obtain

rNN(x, t; θ) := ∂tuNN(x, t; θ) +N[uNN(x, t; θ); λ]. (2.2)

Both neural networks uNN(x, t; θ) and rNN(x, t; θ) share the same trainable parameters which can be
learned by minimizing the following loss

L(θ) := Lbd(θ) + Leq(θ)

=
1

Nu

Nu∑
i=1

|uNN(xi
u, t

i
u; θ) − ui|2 +

1
Nr

Nr∑
i=1

|rNN(xi
r, t

i
r; θ)|

2,

where {xi
u, t

i
u, u

i}
Nu
i=1 represent the initial and boundary training data on u(x, t), {xi

r, t
i
r}

Nr
i=1 specify the

collocation points for rNN(x, t; θ). Figure 1 shows the sketch of the PINNs.

Figure 1: PINNs for solving partial differential equations.

4

2.2. Using PINNs to solve fractional PDEs

PINNs are a new approach to solve partial differential equations (PDEs) using neural networks.
However, when dealing with fractional PDEs, which involve non-integer order derivatives, PINNs
face some challenges. One of the primary challenges is the computation of the fractional Caputo
derivative, which is widely used in physics and engineering. Unlike integer order derivatives,
Caputo derivatives depend on the entire history of the function, which means that the numeri-
cal integration becomes more expensive and memory-intensive as the simulation time progresses.
Moreover, Caputo derivatives do not obey the classical chain rule, which implies that the standard
technique of auto-differentiation in PINNs cannot be directly applied. Therefore, new methods and
algorithms are needed to overcome these difficulties and make PINNs more efficient and robust for
fractional PDEs.

Inspired by the previous PINNs approach for solving the integer-order partial differential equa-
tions, Pang et al. in [36] propose a fractional PINNs (fPINNs) approach for solving fractional
partial differential equations. Specifically, fPINNs employ automatic differentiation to analytically
derive the integer-order derivatives of neural network outputs and use numerical discretization to
approximate the fractional derivatives. Moreover, to reduce the excessive costs of the numerical
discretization for the fPINNs, Guo et al. in [37] propose a Monte Carlo sampling-based PINNs
(MC-fPINNs) approach for solving fractional partial differential equations. This method simpli-
fies the time-fractional derivative as an expectation of a function, which is solved by the Monte
Carlo method by inducing a probability density function. Although both fPINNs and MC-fPINNs
have demonstrated high accuracy in solving forward and inverse problems of fractional partial
differential equations, they require auxiliary points to derive the time-fractional derivative of the
neural network outputs, increasing the computational cost of approximating fractional derivatives
by neural networks.

3. Laplace-fPINNs

To tackle the above problems, we propose a novel method called Laplace-based fractional
physics-informed neural networks (L-fPINNs) that leverages the Laplace transform to compute
the time-fractional derivative of the neural network outputs analytically. This method avoids the
need for auxiliary points and numerical discretization, and reduces the computational cost and
complexity of solving fractional partial differential equations by neural networks. The proposed
method consists of three ingredients: firstly, the Laplace transform of the fractional PDE; secondly,
the PINNs method in Laplace domain and finally, the numerical inversion to get the final solution.
We show that by applying the Laplace transform, we can reduce the fractional PDE to an ordinary
PDE in Laplace domain, which can be solved efficiently by PINNs. Then, we use a numerical
inversion technique to recover the solution in the original domain.

5

3.1. Laplace transform
First, we present a definition of the one-dimensional Laplace transform which converts a func-

tion from a time domain to a Laplace space domain. Let f (t) be a dependent on time variable t ≥ 0
function, f̃ (s) represents its image in Laplace space, which defined by

f̃ (s) = L[f (t)](s) =

∫ ∞

0
e−st f (t)dt, (s ∈ C). (3.1)

If the integral (3.1) is convergent at a point s0 ∈ C, then it converges absolutely for any s ∈ C
such that <(s) > <(s0), where <(s) represents the real part of complex variable s. The Laplace
transform of time-fractional Caputo derivative ∂α0+

f (t) can be written as

L[∂α0+ f](s) = sαL[f (t)](s) − sα−1 f (0)

= sα f̃ (s) − sα−1 f (0), t ≥ 0, 0 < α < 1.

Based on the above introduction, we apply the Laplace transform on both sides of equation
(1.1), leading tosαũ(x, s) − ∇ · (a(x)∇ũ(x, s)) − c(x)ũ(x, s) = sα−1u0(x) + f̃ (x, s), x ∈ Ω, s ∈ C,

ũ(x, s) = 0, x ∈ ∂Ω, s ∈ C,
(3.2)

where f̃ (x, s) = L[f (x, t)](x, s) =
∫ ∞

0
e−st f (x, t)dt. It is worth noting that the time-fractional

diffusion equation in Laplace space no longer contains the time-fractional derivative ∂α0+
u(x, t),

as opposed to the original fractional diffusion equation (1.1). This implies that if we solve the
numerical solution u directly via equation (3.2), we can substantially reduce the computational
expense associated with discretization of the time-fractional derivative.

3.2. PINNs in Laplace domain
Next, we propose a Lapalce-based physics-informed neural networks approach to solve equa-

tion (3.2) approximately. We reformulate equation (3.2) as follows:A[ũ](x, s) = F(x, s), x ∈ Ω, s ∈ C,

ũ(x, s) = 0, x ∈ ∂Ω, s ∈ C,
(3.3)

whereA[ũ] = sαũ(x, s) − ∇ · (a(x)∇ũ(x, s)) − c(x)ũ(x, s), F(x, s) = sα−1u0(x) + f̃ (x, s). We employ
a deep neural network ũNN(x, s; θ) to approximate the solution ũ in equation (3.3), where θ repre-
sents all trainable parameters of the neural network. Subsequently, we substitute ũNN(x, s; θ) into
equation (3.3) to obtain the corresponding residual

rNN(x, s; θ) := A[ũNN](x, s) − F(x, s).

6

The Laplace-based physics-informed neural network can be trained by minimizing the following
composite loss function

Llp(θ) := wbdLlp
bd(θ) + weqLlp

eq(θ), (3.4)

where

Llp
eq(θ) =

1
Nr

Nr∑
i=1

|rNN(xi
r, s

i
r; θ)|

2,

Llp
bd(θ) =

1
Nbd

Nbd∑
i=1

|ũNN(xi
bd, s

i
bd; θ)|2.

The batch sizes Nr and Nbd are used to denote the number of collocation points for the residual
rNN(x, s; θ), x ∈ Ω and the boundary ũNN(x, s; θ), x ∈ ∂Ω, respectively. At each iteration of the
stochastic descent algorithm, these collocation points are randomly sampled within the computa-
tional domain and boundary. Furthermore, the weight coefficients weq, wbd in the loss function
Llp(θ) can balance the different learning rates of each loss term. The specific value of the weight
coefficients weq, wbd and the batch sizes Nr, Nbd will be provided in the experiments.

It is noteworthy that the loss function presented in (3.4) excludes the time-fractional Caputo
derivative ∂α0+

, and only contains the term sαũNN(x, s; θ) − sα−1u0(x). This implies that there is no
need to discretize the time-fractional derivative ∂α0+

during the training process for minimizing the
loss function in (3.4). Consequently, there is no requirement for auxiliary points, as suggested in
previous studies [36, 37].

3.3. Numerical inverse of Laplace transform

By minimizing the loss function (3.4) using the random gradient descent algorithm, we ob-
tain an approximate solution of equation (3.3) denoted by ũNN(x, s; θ∗). Next, we discuss how to
convert the approximate solution ũNN(x, s; θ∗) in Laplace space domain to the solution u of the orig-
inal problem (1.1), which requires the use of the numerical inverse Laplace transform (NILT). The
Laplace transform inversion is a well-known problem that is notoriously ill-conditioned. Numeri-
cal inversion can be an unstable process, with difficulties arising from high sensitivity to round-off

errors. To address this challenge, researchers have proposed various algorithms for numerically
inverting the Laplace transform, such as the Fourier series method [39], the Talbot algorithm [40],
and the Gaver-Stehfest algorithm [41]. In this study, we have opted to use the Gaver-Stehfest
NILT algorithm, which is a well-established technique that is easy to implement. Moreover, the
summation weights and nodes of the inversion algorithm do not depend on complex numbers. By
leveraging this algorithm, we are able to transform the approximate solution ũNN(x, s; θ∗) from the
Laplace space domain to the time-dependent solution u in equation (1.1). An approximate solution

7

uNN(x, t; θ∗) in the equation (1.1) at a specific time t from the Stehfest NILT algorithm is given by

uNN(x, t; θ∗) =
ln 2

t

M∑
i=1

µiũNN(x,
ln 2

t
i; θ∗), (3.5)

where the coefficients µi given by

µi = (−1)
M
2 +i

min(i,M
2)∑

k=[i+1
2]

k
M
2 (2k)!

(M
2 − k)!(k)!(k − 1)!(i − k)!(2k − i)!

,

in which [C] denotes the nearest integers less than or equal to C, M in (3.5) is a even number.
According to (3.5), we can obtain the approximate solution uNN(x, t; θ∗) for a given t by taking

a linear combination of the sequence {ũNN(x, si; θ∗)}Mi=1, where si = ln 2
t i for i = 1, . . . ,M. The

sequence {ũNN(x, si; θ∗)}Mi=1 is obtained by inputting the collocation points {(x, si)}Mi=1 into the neural
network approximate solution ũNN(x, s; θ∗), which is a function of variables x and s.

It is worth noting that, according to the definition of the Laplace transform (3.1), the neural
network output ũNN(x, s; θ∗) needs to approximate the solution ũ(x, s), x ∈ Ω, s ∈ C in equation
(3.3). However, the choice of training points s ∈ C is not necessary for the neural network training
process. Actually, to obtain the approximate solution uNN(x, t; θ∗) using the Stehfest NILT method
in (3.5), we only need to evaluate the neural network output ũNN(x, si; θ∗) at si = ln 2

t i, for i =

1, . . . ,M. Therefore, during neural network training, we choose the training points s ∈ S ⊂ R+,
which is a bounded closed interval in R+ that will be specified in the following section.

4. Experiments

In this section, we aim to verify the effectiveness of the proposed Laplace-fPINNs method
through several numerical examples. Firstly, we evaluate the performance of the Laplace-fPINNs
method in solving the forward problem of subdiffusion (1.1) in both two-dimensional and three-
dimensional cases. Then, we demonstrate the efficiency of the Laplace-fPINNs method in solving
an inverse problem of identifying a diffusion coefficient in a three-dimensional subdiffusion prob-
lem. To quantify the accuracy of the Laplace-fPINNs method, we consider a relative l2 error, which
is given by

Relative l2 error =
‖u(x, t) − uNN(x, t)‖2

‖u(x, t)‖2
,

where u and uNN represent the exact and approximate solutions, respectively.
Throughout all experiments, we use a fully connected neural network with the Swish activation

function to approximate the solution ũ(x, s) of equation (3.3). The initial values of the trainable
parameters of the neural network are set to default values in all numerical experiments. The neural

8

network is trained using the Adam optimizer with a learning rate of 1×10−4. The hyperparameters
of the optimizer are chosen based on default recommendations.

4.1. 2D forward problem

4.1.1. 2D forward problem with T = 1

To study the performance of the Laplace-fPINNs approximation, we consider solving a forward
problem of equation (1.1) in two-dimensional case. Without loss of generality, we take the domain
Ω = [0, 1]2, T = 1. The diffusion coefficient and reaction coefficient are assumed to be a(x, y) = 1
and c(x, y) = 0, respectively. The initial value and the source are given by

u0(x, y) = sin(πx) sin(πy),

f (x, y) = 5 sin(2πx) sin(3πy).

We obtain a reference solution u using a L1-type finite difference method [42]. The grid resolutions
of time and space variables in the numerical method are taken as 101 and 101 × 101, respectively.

In this experiment, we set the number of residual points and bound points used to compute the
equation loss Llp

eq(θ) and the bound loss Llp
bd(θ) for each mini-batch as 1000 and 1600, respectively.

For each iteration, the residual points and bound points of the spatial variable are sampled from the
uniform distribution on Ω and ∂Ω, respectively. The training point s is sampled from the interval
S = [smin, smax], where smin = ln 2

T , smax = ln 2
t1

M, t1 = 0.01. The weights weq and wbd in (3.4) are
hyper-parameters that can be manually or automatically tuned during training. The magnitude of
weq and wbd significantly impacts the convergence rate of the neural network training. However,
discussing how the weights weq and wbd affect the convergence rate of the Laplace-fPINNs is
beyond the scope of this paper. Thus, in this example, we set the weights weq = 1 and wbd = 2000
heuristically.

We first discuss how the parameter M in (3.5), which is used in the Stehfest NILT algorithm,
affects the accuracy of the Laplace-fPINNs method. To this end, we fix the number of hidden layers
and the number of neurons in each hidden layer of the neural network as 5 and 256, respectively,
and set the iteration number to 1.2 × 105. To reduce the influence of random initialization of
the neural network’s parameters on the numerical accuracy, we run the Laplace-fPINNs code five
times and report the mean and standard deviation of the relative l2 errors, which are presented in
Table 1.

As shown in Table 1, our results indicate that the optimal value of M for achieving the best
numerical accuracy is 4, and increasing M does not reduce the relative l2 error. This phenomenon
can be attributed to the fact that the approximate solution ũNN(x, s; θ) is not accurate enough to the
true solution of equation (3.3), and the numerical inverse Laplace transform process may introduce
additional errors. Similar observations have been reported in prior studies, such as [43, 44].

9

To verify the sensitivity of the Laplace-fPINNs method to the depth and width of the neural
network, we calculate the relative l2 error between the approximate solution uNN(x, t; θ∗) and the
reference solution u(x, t) obtained using the L1-type finite difference method. The value of M is
set to the optimal value of 4, as determined in the previous analysis. For each neural network
architecture, we run the Laplace-fPINNs code five times. The corresponding numerical results are
shown in Table 2, which includes the mean and standard derivation of the relative l2 error. It can be
observed from the table that the width of the neural network has a greater impact on the solution
accuracy than the depth. Increasing the width of the neural network results in a slightly higher
accuracy.

In the following, we provide a visual demonstration of the accuracy of the Laplace-fPINNs
method in solving the 2D forward problem of equation (1.1). Based on the previous numerical
results provided in Table 1 and Table 2, we select a 7-layer fully-connected neural network with
512 neurons per hidden layer for the approximate solution and set M = 4. Figure 2 displays the
exact solution u, the approximate solution uNN , and their corresponding residual u − uNN . From
the residual as shown in Figure 2 (c), (f), we see that the approximate solution obtained by the
Laplace-fPINNs method is in excellent agreement with the ground truth.

M 2 4 6

relative l2 error 0.0845±0.0158 0.0348±0.0103 0.5212±0.1770

Table 1: Mean and standard deviation of relative l2 error of the approximate solution uNN(x, t; θ∗) in 2D forward
problem with different M. The depth and width of the neural network is 5 and 256, respectively.

Depth
Width

128 256 512

5 0.0822±0.0261 0.0348±0.0103 0.0349±0.0084
6 0.0994±0.0388 0.0358±0.0051 0.0261±0.0053
7 0.1055±0.0186 0.0375±0.0129 0.0204±0.0062

Table 2: Mean and standard derivation of relative l2 error between the approximate solution uNN(x, t; θ∗) and the
reference solution u for different neural network architectures. Here, we fix the M = 4.

10

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a) The reference solution u.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

(b) The approximate solution uNN .

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.010

0.005

0.000

0.005

0.010

(c) u − uNN .

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(d) The reference solution u.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(e) The approximate solution uNN .

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

(f) u − uNN .

Figure 2: Comparison between the reference solution u(x, y, t) and the approximate solution uNN(x, y, t; θ∗) of 2D
forward problem with T = 1. The top panel shows the reference solution u(x, y, 0.02), the approximate solution
uNN(x, y, 0.02; θ∗), and the errors u(x, y, 0.02)− uNN(x, y, 0.02; θ∗), respectively. The bottom panel shows the reference
solution u(x, y, 1), the approximate solution uNN(x, y, 1; θ∗), and the errors u(x, y, 1) − uNN(x, y, 1; θ∗), respectively.

4.1.2. 2D forward problem with T = 10

In this part, we consider another example of using the Laplace-fPINNs method to solve two-
dimensional forward problem. Similarly, the diffusion and reaction coefficients are a(x, y) = 1,
c(x, y) = 0, respectively. The initial value and source are given by

u0(x, y) = 3 sin(πx) sin(πy),

f (x, y) = 3 sin(πx) sin(2πy).

In this example, we consider the domain Ω = [0, 1]2 and T = 10. The neural network architec-
ture, optimizer, and sample point settings are kept the same as those employed in the previous
example. As the process of minimizing the loss function for the fPINNs method [36], which ap-
proximates the time-fractional derivative via the L1-type finite difference scheme, requires more
auxiliary points for large T , it can lead to a significant increase in computational cost. However,
with the Laplace-fPINNs approach proposed in this work, each iteration’s computing cost does
not increase with larger T . The numerical results, as presented in Figure 3, illustrate that the
Laplace-fPINNs method can accurately solve the forward problem of subdiffusion (1.1) even for
large T .

11

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(a) The reference solution u.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(b) The approximate solution uNN .

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

(c) u − uNN .

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.04

0.02

0.00

0.02

0.04

0.06

0.08

(d) The reference solution u.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.04

0.02

0.00

0.02

0.04

0.06

(e) The approximate solution uNN .

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

(f) u − uNN .

Figure 3: Comparison between the reference solution u(x, y, t) and the approximate solution uNN(x, y, t; θ∗) of 2D
forward problem with T = 10. The top panel shows the reference solution u(x, y, 0.05), the approximate solution
uNN(x, y, 0.05; θ∗), and the errors u(x, y, 0.05)− uNN(x, y, 0.05; θ∗), respectively. The bottom panel shows the reference
solution u(x, y, 10), the approximate solution uNN(x, y, 10; θ∗), and the errors u(x, y, 10)−uNN(x, y, 10; θ∗), respectively.

4.2. 3D forward problem

In this part, we study the accuracy of using the Laplace-fPINNs method to solve a 3D forward
problem in equation (1.1). We take the domain Ω = [0, 1]3, T = 1, the diffusion coefficient
a(x, y, z) = 1, and the reaction coefficient c(x, y, z) = 0. A manufactured solution is taken as
u(x, y, z, t) = (2t + 5) sin(πx) sin(πy) sin(πz), and the corresponding initial value and source are
given by

u0(x, y, z) = 5 sin(πx) sin(πy) sin(πz),

f (x, y, z, t) = [
2

Γ(2 − α)
t1−α + (2t + 5)(3π2a(x, y, z) − c(x, y, z))] sin(πx) sin(πy) sin(πz).

We choose a fully-connected neural network with 5 layers and 256 neurons per layer and set the
iteration number to 1.5×105. The numerical results obtained from the trained model are illustrated
in Figure 4. The top panel of Figure 4 displays the comparison between the exact solution u and
the approximate solution uNN , with fixed t = 1, z = 0.5. Similarly, the bottom panel of Figure 4
shows the comparision between the exact solution u and the approximate solution uNN , where we
fix t = 0.5, y = 0.5. From Figure 4, we can find that the Laplace-fPINNs method can achieve the
higher accuracy even for the 3D forward problem in equation (1.1).

12

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

0

1

2

3

4

5

6

7

(a) Exact solution at t = 1, z = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0

1

2

3

4

5

6

(b) Approximate solution at t =

1, z = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

(c) Errors at t = 1, z = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

z

0

1

2

3

4

5

6

(d) Exact solution at t = 0.5, y = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
z

0

1

2

3

4

5

6

(e) Approximate solution at t =

0.5, y = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

z

0.15

0.10

0.05

0.00

0.05

(f) Errors at t = 0.5, y = 0.5

Figure 4: Comparison between the reference solution u and the approximate solution uNN(x, y, z, t; θ∗) of 3D forward
problem. The top panel shows the reference solution u(x, y, 0.5, 1), the approximate solution uNN(x, y, 0.5, 1; θ∗),
and the errors u(x, y, 0.5, 1) − uNN(x, y, 0.5, 1; θ∗), respectively. The bottom panel shows the reference solution
u(x, 0.5, z, 0.5), the approximate solution uNN(x, 0.5, z, 0.5; θ∗), and the errors u(x, 0.5, z, 0.5) − uNN(x, 0.5, z, 0.5; θ∗),
respectively.

4.3. Inverse problem

In this part, we study the performance of using the Laplace-fPINNs to solve an inverse problem
of the time-fractional diffusion equation (1.1). We consider a fabricated solution u(x, y, z, t) =

(3t + 5) sin(2πx) sin(πy) sin(πz) and choose domain Ω = [0, 1]3, T = 1, respectively. According
to the definition of Caputo derivative, the time-fractional derivative can be computed analytically,
and thus the initial value and source are given by

u0(x, y, z) = 5 sin(2πx) sin(πy) sin(πz),

f (x, y, z, t) = [
3

Γ(2 − α)
t1−α + (3t + 5)(6π2a(x, y, z) − c(x, y, z))] sin(2πx) sin(πy) sin(πz),

where the diffusion coefficient a(x, y, z) = 0.5 + e−(x+y+z), the reaction coefficient c(x, y, z) = 0. In
this paper, we consider the inverse problem of identifying the diffusion coefficient a and solution
u from additional measurements of u, given that the initial value u0, source f , fractional order α,

13

and reaction coefficient c = 0 are known. Specifically, the extra measurements are given by

h(x, y, z, t) = u(x, y, z, t) + εu(x, y, z, t), (x, y, z) ∈ ω ⊂ Ω, t ∈ (0,T),

where we take ε = 0.001, ω = [0.3, 0.7]3.
To cope with the inverse problem considered in this paper, we use neural networks to parame-

terize both the solution u and the diffusion coefficient a. Specifically, we parameterize the solution
ũ in equation (3.3) using a 5-layer fully-connected neural network with 256 neurons per layer,
denoted as ũNN(x, y, z, s; θ1). Additionally, we represent the unknown diffusion coefficient a as a
fully-connected neural network with 4 layers and 64 neurons per layer, denoted as aNN(x, y, z; θ2).
In addition, we assume that the boundary of the diffusion coefficient is known. The parame-
ters (θ1, θ2) of the approximate solution ũNN(x, y, z, s; θ1) and the approximate diffusion coefficient
aNN(x, y, z; θ2) are optimized by minimizing the following loss function

(θ∗1, θ
∗
2) = arg min Llp(θ1, θ2) (4.1)

= arg min {weqLlp
eq(θ1, θ2) + wbdLlp

bd(θ1) + wobsL
lp
obs(θ1) + wpriorL

lp
prior(θ2)},

where

Llp
eq(θ1, θ2) =

1
Nr

Nr∑
i=1

|rip
NN(xi

r, y
i
r, z

i
r, s

i
r; θ1, θ2)|2,

Llp
obs(θ1) =

1
Nobs

Nobs∑
i=1

|ũNN(xi
obs, y

i
obs, z

i
obs, s

i
obs; θ1) − h(xi

obs, y
i
obs, z

i
obs, s

i
obs)|

2,

Llp
prior(θ2) =

1
Nprior

Nprior∑
i=1

|aNN(xi
prior, y

i
prior, z

i
prior) − a(xi

prior, y
i
prior, z

i
prior)|

2.

The Llp
bd(θ1) defined by (3.4) and the rip

NN(xr, yr, zr, sr; θ1, θ2) given by

rip
NN(x, y, z, s; θ1, θ2) := sαũNN(x, y, z, s; θ1) − ∇ · (aNN(x, y, z; θ2)∇ũNN(x, y, z, s; θ1))

− c(x, y, z)ũNN(x, y, z, s; θ1) − sα−1u0(x, y, z) − f̃ (x, y, z, s).

The Nobs and Nprior represent the batch sizes of the observation points corresponding to the mea-
surement data, and the known boundary points for the diffusion coefficient a(x, y, z), respectively.
For each iteration, we randomly generate 1000 residual points and 4003 boundary points from the
uniform distribution on Ω and ∂Ω, respectively. Furthermore, during training, we fix the observa-
tion points Nobs = 313 and the prior points Nprior = 513. The weight coefficients in (4.1) are taken
as weq = 1, wbd = 2000, wobs = 1000, wprior = 100.

After 1.5 × 105 epochs of training, the numerical results obtained from the trained model are

14

shown in Figure 5. Specifically, Figure 5 (b) displays the reconstructed diffusion coefficient at z =

0.8, which agrees with the exact diffusion coefficient shown in Figure 5 (a). Additionally, Figure 5
(c) presents the difference between the reconstructed diffusion coefficient aNN(x, y, z; θ∗2) and the
exact diffusion coefficient a(x, y, z) at z = 0.8. The small errors signify the effectiveness of the
Laplace-fPINNs method in identifying the three-dimensional diffusion coefficient. The second line
of Figure 5 compares the exact solution u(x, y, z, t) with the approximate solution uNN(x, y, z, t; θ∗1)
at z = 0.8, t = 1. The results indicate that the Laplace-fPINNs method can reconstruct the diffusion
coefficient a and predict the solution u concurrently by incorporating additional measurement data
h(x, y, z, t).

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

(a) Exact a(x, y, z) at z = 0.8

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.60

0.65

0.70

0.75

0.80

0.85

0.90

(b) Approximate aNN(x, y, z; θ∗2) at
z = 0.8

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.02

0.01

0.00

0.01

0.02

0.03

(c) a(x, y, 0.8) − aNN(x, y, 0.8; θ∗2)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

4

2

0

2

4

(d) Exact u(x, y, z, t) at z = 0.8, t = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

4

2

0

2

4

(e) uNN(x, y, z, t; θ∗1) at z = 0.8, t = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.2

0.1

0.0

0.1

(f) u(x, y, 0.8, 1)−uNN(x, y, 0.8, 1; θ∗1)

Figure 5: The top panel shows the comparison between the exact diffusion coefficient a(x, y, z) and the approximate
diffusion coefficient aNN(x, y, z; θ∗2) at z = 0.8. The bottom panel shows comparison between the reference solution
u(x, y, z, t) and the approximate solution uNN(x, y, z, t; θ∗1) at z = 0.8, t = 1.

5. Conclusion

In this paper, a deep learning method for solving forward and inverse problems in subdiffusion
is provided. Using the Laplace transform of time-fractional derivative, physics-informed neural
networks, and numerical inverse Laplace transform, we propose a Laplace-fPINNs method that can
infer a solution from the time-fractional diffusion equation (1.1). The resulting method essentially
avoids the use of auxiliary points, which were introduced in [36] to discretize the time-fractional
Caputo derivative. A series of numerical results demonstrate the feasibility of this method for solv-
ing the forward problem of the subdiffusion. Additionally, we apply this method to solve an inverse

15

problem that aims to determine the three-dimensional diffusion coefficient, which is challenging to
solve using traditional inversion techniques due to the problem’s high dimensionality. Finally, we
remark that the idea of the Laplace-fPINNs method can be easily extended to the physics-informed
operator learning methods for solving the subdiffusion equation (1.1).

Acknowledgments This work is sponsored by the National Key R&D Program of China Grant
No. 2022YFA1008200 (Z. X.) and No. 2020YFA0712000 (Z. M.), the Shanghai Sailing Program
(Z. X.), the Natural Science Foundation of Shanghai Grant No. 20ZR1429000 (Z. X.), the Na-
tional Natural Science Foundation of China Grant No. 62002221 (Z. X.), the National Natural
Science Foundation of China Grant No. 12101401 (Z. M.), the National Natural Science Foun-
dation of China Grant No. 12031013 (Z. M.), Shanghai Municipal of Science and Technology
Major Project No. 2021SHZDZX0102, and the HPC of School of Mathematical Sciences and the
Student Innovation Center, and the Siyuan-1 cluster supported by the Center for High Performance
Computing at Shanghai Jiao Tong University.

References

[1] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher. Modeling non-fickian transport in geologi-
cal formations as a continuous time random walk. Rev. Geophys., 44(2), 2006.

[2] M. Dentz, A. Cortis, H. Scher, and B. Berkowitz. Time behavior of solute transport in
heterogeneous media: transition from anomalous to normal transport. Adv. Water. Resour.,
27(2):155–173, 2004.

[3] R. R. Nigmatullin. The realization of the generalized transfer equation in a medium with
fractal geometry. Physica Status. Solidi. (B), 133(1):425–430, 1986.

[4] S. C. Kou. Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Ann.
Appl. Stat., 2(2):501–535, 2008.

[5] K. Ritchie, X. Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, and A. Kusumi. Detection of non-
brownian diffusion in the cell membrane in single molecule tracking. Biophys J., 88(3):2266–
2277, 2005.

[6] B. Berkowitz, J. Klafter, R. Metzler, and H. Scher. Physical pictures of transport in hetero-
geneous media: Advection-dispersion, random-walk, and fractional derivative formulations.
Water Resour. Res., 38(10):9–1–9–12, 2002.

[7] J. P. Bouchaud and A. Georges. Anomalous diffusion in disordered media: Statistical mech-
anisms, models and physical applications. Phys. Rep., 195(4):127–293, 1990.

16

[8] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional
dynamics approach. Phys. Rep., 339(1):1–77, 2000.

[9] T. Graepel. Solving noisy linear operator equations by gaussian processes: Application to
ordinary and partial differential equations. In Proceedings of the Twentieth International
Conference on International Conference on Machine Learning, page 234–241, 2003.

[10] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Numerical gaussian processes for time-
dependent and nonlinear partial differential equations. SIAM J. Sci. Comput., 40(1):A172–
A198, 2018.

[11] T. Lee, I. Bilionis, and A. B. Tepole. Propagation of uncertainty in the mechanical and bio-
logical response of growing tissues using multi-fidelity gaussian process regression. Comput.
Methods Appl. Mech. Engrg., 359:112724, 2020.

[12] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998.

[13] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys., 378:686–707, 2019.

[14] L. Lu, X. H. Meng, Z. P. Mao, and G. E. Karniadakis. DeepXDE: a deep learning library for
solving differential equations. SIAM Rev., 63(1):208–228, 2021.

[15] W. E and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for
solving variational problems. Commun. Math. Stat., 6(1):1–12, 2018.

[16] Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional partial
differential equations. J. Comput. Phys., 411:109409, 14, 2020.

[17] G. Bao, X. Ye, Y. Zang, and H. Zhou. Numerical solution of inverse problems by weak
adversarial networks. Inverse Problems, 36(11):115003, 31, 2020.

[18] L. Lu, P. Jin, and G. E. Karniadakis. DeepONet: Learning nonlinear operators for identify-
ing differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

[19] P. Jin, S. Meng, and L. Lu. MIONet: Learning multiple-input operators via tensor product.
arXiv preprint arXiv:2202.06137, 2022.

[20] Y. Zhu and N. Zabaras. Bayesian deep convolutional encoder-decoder networks for surrogate
modeling and uncertainty quantification. J. Comput. Phys., 366:415–447, 2018.

17

[21] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. In International
Conference on Learning Representations, 2021.

[22] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Neural operator: Graph kernel network for partial differential equations. arXiv
preprint arXiv:2003.03485, 2020.

[23] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Multipole graph neural operator for parametric partial differential equations. In Pro-
ceedings of the 34th International Conference on Neural Information Processing Systems,
2020.

[24] L. Zhang, T. Luo, Y. Zhang, W. E, Z. J. Xu, and Z. Ma. Mod-net: A machine learning ap-
proach via model-operator-data network for solving pdes. Communications in Computational
Physics, 32(2):299–335, 2022.

[25] X. Yan, Z. J. Xu, and Z. Ma. Bayesian inversion with neural operator (bino) for modeling
subdiffusion: Forward and inverse problems. arXiv:2211.11981, 2022.

[26] Y. Liao and P. Ming. Deep Nitsche method: deep Ritz method with essential boundary
conditions. Commun. Comput. Phys., 29(5):1365–1384, 2021.

[27] Q. Lou, X. Meng, and G. E. Karniadakis. Physics-informed neural networks for solving
forward and inverse flow problems via the Boltzmann-BGK formulation. J. Comput. Phys.,
447:Paper No. 110676, 20, 2021.

[28] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. hp-VPINNs: variational physics-informed
neural networks with domain decomposition. Comput. Methods Appl. Mech. Engrg., 374:Pa-
per No. 113547, 25, 2021.

[29] L. Yang, X. Meng, and G. E. Karniadakis. B-PINNs: Bayesian physics-informed neural
networks for forward and inverse PDE problems with noisy data. J. Comput. Phys., 425:Paper
No. 109913, 23, 2021.

[30] K. Shukla, A. D. Jagtap, and G. E. Karniadakis. Parallel physics-informed neural networks
via domain decomposition. J. Comput. Phys., 447:Paper No. 110683, 19, 2021.

[31] Z. Mao, L. Lu, O. Marxen, T. A. Zaki, and G. E. Karniadakis. DeepM&Mnet for hypersonics:
predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-
network approximation of operators. J. Comput. Phys., 447:Paper No. 110698, 24, 2021.

18

[32] J. Sirignano and K. Spiliopoulos. DGM: a deep learning algorithm for solving partial differ-
ential equations. J. Comput. Phys., 375:1339–1364, 2018.

[33] Y. Shang, F. Wang, and J. Sun. Deep petrov-galerkin method for solving partial differential
equations. arXiv preprint arXiv:2201.12995, 2022.

[34] Z. Liu, W. Cai, and Z. J. Xu. Multi-scale deep neural network (mscalednn) for solv-
ing poisson-boltzmann equation in complex domains. Communications in Computational
Physics, 28(5):1970–2001, 2020.

[35] X. Li, Z. J. Xu, and L. Zhang. A multi-scale dnn algorithm for nonlinear elliptic equations
with multiple scales. Communications in Computational Physics, 28(5):1886–1906, 2020.

[36] G. Pang, L. Lu, and G. E. Karniadakis. fPINNs: fractional physics-informed neural networks.
SIAM J. Sci. Comput., 41(4):A2603–A2626, 2019.

[37] L. Guo, H. Wu, X. Yu, and T. Zhou. Monte Carlo fPINNs: deep learning method for for-
ward and inverse problems involving high dimensional fractional partial differential equa-
tions. Comput. Methods Appl. Mech. Engrg., 400:Paper No. 115523, 17, 2022.

[38] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation
in machine learning: A survey. J. Mach. Learn. Res., 18(1):5595–5637, 2017.

[39] B. Davies and B. Martin. Numerical inversion of the laplace transform: a survey and com-
parison of methods. J. Comput. Phys., 33(1):1–32, 1979.

[40] J. Abate and W. Whitt. A unified framework for numerically inverting laplace transforms.
INFORMS Journal on Computing, 18(4):408–421, 2006.

[41] D. P. Gaver. Observing stochastic processes, and approximate transform inversion. Opera-
tions Res., 14(3):444–459, 1966.

[42] Z. Z. Sun and X. Wu. A fully discrete difference scheme for a diffusion-wave system. Appl.
Numer. Math., 56(2):193–209, 2006.

[43] Z. J. Fu, W. Chen, and H. T. Yang. Boundary particle method for Laplace transformed time
fractional diffusion equations. J. Comput. Phys., 235:52–66, 2013.

[44] C. S. Chen, Y. F. Rashed, and M. A. Golberg. A mesh free method for linear diffusion
equation. Numer. Heat. Tr., Part B:469–486, 06 1998.

19

	1 Introduction
	2 Prelimilaries
	2.1 PINNs
	2.2 Using PINNs to solve fractional PDEs

	3 Laplace-fPINNs
	3.1 Laplace transform
	3.2 PINNs in Laplace domain
	3.3 Numerical inverse of Laplace transform

	4 Experiments
	4.1 2D forward problem
	4.1.1 2D forward problem with T=1
	4.1.2 2D forward problem with T=10

	4.2 3D forward problem
	4.3 Inverse problem

	5 Conclusion

