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On the Exact Computation of Linear Frequency Principle Dynamics and Its
Generalization∗
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Abstract. Recent works show the intriguing phenomenon of the frequency principle (F-Principle) that deep
neural networks (DNNs) fit the target function from low to high frequency during training, which
provides insight into the training and generalization behavior of DNNs in complex tasks. In this
paper, through analysis of an infinite-width two-layer NN in the neural tangent kernel regime, we
derive the exact differential equation, namely the linear frequency-principle (LFP) model, governing
the evolution of NN output function in the frequency domain during training. Our exact computa-
tion applies for general activation functions with no assumption on size and distribution of training
data. This LFP model unravels that higher frequencies evolve polynomially or exponentially slower
than lower frequencies depending on the smoothness/regularity of the activation function. We fur-
ther bridge the gap between training dynamics and generalization by proving that the LFP model
implicitly minimizes a frequency-principle norm (FP-norm) of the learned function, by which higher
frequencies are more severely penalized depending on the inverse of their evolution rate. Finally,
we derive an a priori generalization error bound controlled by the FP-norm of the target function,
which provides a theoretical justification for the empirical results that DNNs often generalize well
for low-frequency functions.
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1. Introduction. Recently, an intriguing phenomenon, known as the frequency principle
(F-Principle), has shed light on understanding the success and failure of deep neural networks
(DNNs). It was discovered that, in various settings, DNNs fit the target function from low
to high frequency during training [20, 25, 27]. The F-Principle implies that DNNs are biased
toward a low-frequency fitting of the training data, which provides hints to the generalization
of DNNs in practice [16, 25]. The F-Principle has provided valuable guidance in designing
DNN-based algorithms [5, 7, 13, 14]. The convergence behavior from low to high frequency
is also consistent with other empirical studies showing that DNNs increase the complexity of
the output function during the training process quantified by various complexity measures [2,
17, 19, 22]. An overview of the F-Principle can be found in [24].

Despite the rich practical implications of the F-Principle, the gap between F-Principle
training dynamics and success or failure of DNNs (i.e., generalization performance) remains
a key theoretical challenge. Bridging this gap requires an exact characterization of the F-
Principle accounting for the conditions of overparameterization and finite training data in
practice, which is not provided by existing theories [4, 6, 8, 12].

In this work, based on mean-field analysis of an infinite-width two-layer NN in the neural
tangent kernel (NTK) regime, we derive the exact differential equation, namely the linear
frequency-principle (LFP) model, governing the evolution of the NN output function in the
frequency domain during training. Our exact computation applies for general activation func-
tions with no assumption on size and distribution of training data. Our LFP model rigorously
characterizes the F-Principle and unravels that higher frequencies evolve polynomially or
exponentially slower than lower frequencies depending on the smoothness/regularity of the
activation function. We further prove that LFP dynamics implicitly minimizes a frequency-
principle norm (FP-norm), by which higher frequencies are more severely penalized depending
on the inverse of their evolution rate. Specifically, for one-dimensional (1-d) regression prob-
lems, this optimization yields a linear spline, a cubic spline, or their combination depending
on parameter initialization for ReLU activation. Finally, we derive an a priori generalization
error bound controlled by the FP-norm of the target function, which provides a unified qual-
itative explanation to the success and failure of DNNs. These three results are demonstrated
by Theorems 1, 2 , and 3, respectively. For a better understanding of how we arrive at the
three theorems, we depict a sketch of the proof for each theorem in Figure 1 and all proofs
can be found in the supplementary materials (supplement.pdf [local/web 585KB]).

The structure of the paper is as follows. We review related works in section 2. Before we
present our results, we introduce some preliminaries in section 3. Then, we show the exact
computation of the LFP model in section 4. In section 5, we explicitize the implicit bias of the
F-Principle by proving the equivalence between the LFP model and an optimization problem
with an explicit penalty function. Further, we estimate an a priori generalization error bound
for the LFP model in section 6. In section 7, we use experiments to validate the effectiveness
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Lemma 1
 Delta-like function

Lemma 2
Fourier transform of networks

Lemma 3
LFP dynamics

Theorem 1
Explicit expression of LFP operator

Corollary 1
Application to ReLU

Corollary 2
Application to Tanh

Lemma 4
Properties of linear operator

Theorem 2
Gradient
descent Optimization

Corollary 3,4,5,6,7
Applications to different settings

Lemma 5
Rademacher complexity

Lemma 6, 7
Existence of regularized model

Theorem 3
a priori generalization error

bound

Sketch of proofs for theorems

Figure 1. Main theoretical results and sketch of proofs.

of the LFP model for ReLU and tanh activation functions. Finally, we present conclusions
and a discussion in section 8.

2. Related works. A series of works have been devoted to revealing underlying mecha-
nisms of the F-Principle. [23] and [25] show that the gradient of low-frequency loss expo-
nentially dominates that of high-frequency ones when parameters are small for DNNs with
tanh activation. A key mechanism of the F-Principle has pointed out that the low-frequency-
dominant gradient is a consequence of the smoothness of the activation function. [20] later
extended the framework of the tanh activation function to the ReLU activation function. [15]
estimate the dynamics of different frequency components of the loss function for arbitrary
data distribution with mild regularity assumption and sufficiently large size of training data.

At the same time as our work, several parallel works have also analyzed the F-Principle
(or spectral bias) in the NTK regime. [4] and [8] estimate the convergence speed of each
frequency for two-layer wide ReLU networks in the NTK regime with the assumption of a
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LINEAR FREQUENCY PRINCIPLE 1275

sufficiently large size of training data uniformly distributed on a hyper-sphere. [3] relax the
assumption on data distribution to a nonuniform one, which is restricted to a 2-d sphere, and
they derive a similar frequency bias for two-layer wide ReLU networks in the NTK regime. [6]
study the dependence of the spectral bias on the sample size. Several other works also focus
on studying the spectral of the Gram matrix in the NTK regime [1, 28].

In this work, our exact derivation of LFP dynamics makes no assumption about the
distribution and size of training data. It is the first NN-derived quantitative model that not
only shows the origin of the F-Principle but also can be used to analyze both its training and
generalization consequence.1

3. Preliminaries. We provide some preliminary results in this section.

3.1. Fourier transforms. The Fourier transform of a function g is denoted by ĝ or F [g].
The 1-d Fourier transform and its inverse transform are defined by

F [g](ξ) = Fx→ξ[g](ξ) =

∫
R
g(x)e−2πiξxdx,(3.1)

F−1[g](x) = F−1
ξ→x[g](x) =

∫
R
g(ξ)e2πiξxdξ.(3.2)

Based on these, we define the high-dimensional Fourier transform and its inverse transform:

F [g](ξ) = Fx→ξ[g](ξ) =

∫
Rd
g(x)e−2πiξ·xdx,(3.3)

F−1[g](x) = F−1
ξ→x[g](x) =

∫
Rd
g(ξ)e2πiξ·xdξ.(3.4)

Here and later, the vector x ∈ Rd and x⊥ = x− (x · ŵ)ŵ for a given w ∈ Rd\{0} with ŵ =
w/‖w‖. We list some useful and well-known results for 1-d as well as high-dimensional Fourier
transforms in Appendix SM1. To compute rigorously, we work in the theory of tempered
distributions. Let S(Rd) be the Schwartz space on Rd and S ′(Rd) := (S(Rd))′ is the space of
tempered distributions. For any Schwartz function φ ∈ S(Rd) and any tempered distribution
ψ ∈ S ′(Rd), we write the pairing 〈ψ, φ〉 := 〈ψ, φ〉S′(Rd),S(Rd)

= ψ(φ), and then the Fourier

transform of ψ is defined by

〈F [ψ], φ〉 = 〈ψ,F [φ]〉.(3.5)

3.2. High-dimensional delta-like function. Here we introduce a delta-like function, which
is essential for the calculation of the Fourier transform of the NNs due to the affine struc-
ture. In particular, to calculate Fx→ξ[g(νᵀx)](ξ), a delta-like function emerges naturally,
i.e., Fx→ξ[g(νᵀx)](ξ) = δν(ξ)F [g](ξᵀν). In the following, we give a rigorous definition and
provide two lemmas, which are essential to the proof of Lemma 3.

1A previous incomplete version of this work was released at arXiv [30].
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Definition 1. Given a nonzero vector w ∈ Rd, we define the delta-like function δw :
S(Rd)→ R such that for any φ ∈ S(Rd),

〈δw, φ〉 =

∫
R
φ(yw)dy.(3.6)

Lemma 1 (scaling property of delta-like function). Given any nonzero vector w ∈ Rd with
ŵ = w

‖w‖ , we have

1

‖w‖d
δŵ

(
x

‖w‖

)
= δw(x).(3.7)

Lemma 2 (Fourier transforms of network functions). For any unit vector ν ∈ Rd, any nonzero
vector w ∈ Rd with ŵ = w

‖w‖ , and g ∈ S ′(R) with F [g] ∈ C(R), we have, in the sense of
distribution,

(a) Fx→ξ[g(νᵀx)](ξ) = δν(ξ)F [g](ξᵀν),(3.8)

(b) Fx→ξ[g(wᵀx+ b)](ξ) = δw(ξ)F [g]

(
ξᵀŵ

‖w‖

)
e

2πi b

‖w‖ξ
ᵀŵ
,(3.9)

(c) Fx→ξ[xg(wᵀx+ b)](ξ) =
i

2π
∇ξ
[
δw(ξ)F [g]

(
ξᵀŵ

‖w‖

)
e

2πi b

‖w‖ξ
ᵀŵ
]
.(3.10)

4. Exact derivation of LFP model. In this section, we first present the general form
of the LFP model for two-layer NNs. Then, we exactly compute the LFP model in the
Fourier domain and derive the expressions for two commonly used activation functions, i.e.,
ReLU(x) := max(x, 0) and tanh(x).

For any positive integer N , we denote the set {1, 2, . . . , N} by [N ]. The training dataset
S = {(xi, yi)})ni=1, where {xi}ni=1 are independent and identically distributed sampled from
unknown distribution D on a domain Ω ⊂ Rd and yi = f(xi), i ∈ [n], for some unknown
function f .

4.1. Mean-field kernel dynamics in frequency domain. We suppose that f ∈ C(Rd) ∩
L2(Rd) and that the activation function is locally H1 and grows polynomially, i.e., |σ(z)| ≤
C|z|p for some p > 0.

We consider the following gradient descent dynamics of the empirical risk RS of a network
function f(·,θ) parameterized by θ: {

θ̇ = −∇θRS(θ),

θ(0) = θ0,
(4.1)

where

RS(θ) =
1

2

n∑
i=1

(f(xi,θ)− yi)2.(4.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LINEAR FREQUENCY PRINCIPLE 1277

Then the training dynamics of output function f(·,θ) is

d

dt
f(x,θ) = ∇θf(x,θ) · θ̇

= −∇θf(x,θ) · ∇θRS(θ)

= −∇θf(x,θ) ·
n∑
i=1

∇θf(xi,θ)(f(xi,θ)− yi)

= −
n∑
i=1

Km(x,xi)(f(xi,θ)− yi),

where for time t the NTK evaluated at (x,x′) ∈ Ω× Ω reads as

Km(x,x′)(t) = ∇θf(x,θ(t)) · ∇θf(x′,θ(t)).(4.3)

The gradient descent of the model thus becomes

d

dt
(f(x,θ(t))− f(x)) = −

n∑
i=1

Km(x,xi)(t) (f(xi,θ(t))− f(xi)) .(4.4)

Define the residual u(x, t) = f(x,θ(t))−f(x) and the empirical density ρ(x) =
∑n

i=1 δ(x−xi).
We further denote uρ(x) = u(x)ρ(x). Therefore the dynamics for u becomes

d

dt
u(x, t) = −

∫
Rd
Km(x,x′)(t)uρ(x

′, t)dx′.(4.5)

From now on, we consider the two-layer NN

f(x,θ) =
1√
m

m∑
j=1

ajσ(wᵀ
jx+ bj)(4.6)

=
1√
m

m∑
j=1

σ∗(x, qj),(4.7)

where the vector of all parameters θ = vec({qj}mj=1) is formed of the parameters for each

neuron qj = (aj ,w
ᵀ
j , bj)

ᵀ ∈ Rd+2 and σ∗(x, qj) = ajσ(wᵀ
jx + bj) for j ∈ [m]. We consider

the kernel regime that m � 1 and assume that b ∼ N (0, σ2
b ) with σb � 1. For the two-layer

network, its NTK can be calculated as follows:

Km(x,x′)(t) =
1

m

m∑
j=1

∇qjσ
∗(x, qj(t)) · σ∗(x′, qj(t)),(4.8)

where the parameters qj are evaluated at time t. Under some weak condition and for suffi-
ciently large m, [11] proved that the dynamics (4.5), with a high probability, converges to the
following dynamics for any t ∈ R:

d

dt
u(x, t) = −

∫
Rd
K(x,x′)uρ(x

′, t)dx′,(4.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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where the kernel only depends on the initial distribution of parameters and reads as

K(x,x′) = Eq∇qσ∗(x, q) · σ∗(x′, q)(4.10)

= Eq(σ(wᵀx+ b)σ(wᵀx′ + b) + a2σ′(wᵀx+ b)σ′(wᵀx′ + b)xᵀx′

+ a2σ′(wᵀx+ b)σ′(wᵀx′ + b)).
(4.11)

Intuitively, this is because Km(x,x′)(t) = K(x,x′) + O( 1√
m

) according to the law of large

numbers. In the following, we analyze (4.9) and calculate its formulation in the frequency
domain.

We start with the following lemma.

Lemma 3 (LFP dynamics for general DNNs). The dynamics (4.9) has the following expres-
sion in the frequency domain for all φ ∈ S(Rd):

〈∂tF [u], φ〉 = −〈L[F [uρ]], φ〉,(4.12)

where L[·] is the LFP operator given by

L[F [uρ]] =

∫
Rd
K̂(ξ, ξ′)F [uρ](ξ

′)dξ′,

and

K̂(ξ, ξ′) := EqK̂q(ξ, ξ′) := EqFx→ξ[∇qσ∗(x, q)] · F
x′→ξ′ [∇qσ

∗(x′, q)].(4.13)

The expectation Eq is taken w.r.t. initial distribution of parameters.

4.2. LFP dynamics derived for two-layer networks. In this section, we derive the LFP
dynamics for two-layer networks with general activation function. The key difficulty comes
from the repeated integral representation of the operator. By using the Laplace method in a
proper way, we overcome this difficulty and arrive at a simpler expression for the dynamics.

To simplify the notation, we define g1(z) := (σ(z), aσ′(z))ᵀ and g2(z) := aσ′(z) for z ∈ R.
Then

g1(wᵀx+ b) =

(
σ(wᵀx+ b)

aσ′(wᵀx+ b)

)
=

(
∂a[aσ(wᵀx+ b)]

∂b[aσ(wᵀx+ b)]

)
,(4.14)

g2(wᵀx+ b)x = ∇w[aσ(wᵀx+ b)] = aσ′(wᵀx+ b)x.(4.15)

The following theorem is the key to the exact expression of LFP dynamics for two-layer
networks.

Assumption 1. We assume that the initial distribution of q = (a,wᵀ, b)ᵀ satisfies the
following conditions:

(i) independence of a,w, b: ρq(q) = ρa(a)ρw(w)ρb(b);
(ii) zero mean and finite variance of b: Ebb = 0 and Ebb2 = σ2

b <∞;
(iii) radial symmetry of w : ρw(w) = ρw(‖w‖e1) where e1 = (1, 0, . . . , 0)ᵀ.
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LINEAR FREQUENCY PRINCIPLE 1279

Theorem 1 (main result: explicit expression of LFP operator for two-layer networks). Suppose
that Assumption 1 holds. If σb � 1, then the dynamics (4.9) has the following expression:

〈∂tF [u], φ〉 = −〈L[F [uρ]], φ〉+O(σ−3
b ),(4.16)

where φ ∈ S(Rd) is a test function and the LFP operator is given by

L[F [uρ]] =
Γ(d/2)

2
√

2π(d+1)/2σb‖ξ‖d−1
Ea,r

[
1

r
F [g1]

(
‖ξ‖
r

)
· F [g1]

(
−‖ξ‖
r

)]
F [uρ](ξ)

− Γ(d/2)

2
√

2π(d+1)/2σb
∇ ·
(
Ea,r

[
1

r‖ξ‖d−1
F [g2]

(
‖ξ‖
r

)
F [g2]

(
−‖ξ‖

r

)]
∇F [uρ](ξ)

)
,

(4.17)

where Γ(·) is the gamma function. The expectations are taken w.r.t. initial parameter dis-
tribution. Here r = ‖w‖ with the probability density ρr(r) := 2πd/2

Γ(d/2)ρw(re1)rd−1, e1 =

(1, 0, . . . , 0)ᵀ.

Remark 1. The operator L presents a unified framework for general activation functions.

Remark 2. The derivatives of most activation functions decay in the Fourier domain, e.g.,
ReLU, tanh, and sigmoid. Hence, the dynamics in (4.16) for a higher-frequency component is
slower, i.e., the F-Principle.

Remark 3. The last term in (4.17) arising from the evolution of w is much more compli-
cated, without which our experiments show that the LFP model can still predict the learning
results of two-layer wide NNs.

4.3. Exact LFP model for common activation functions. Based on (4.17), we derive the
exact LFP dynamics for the cases where the activation function is ReLU or tanh.

Corollary 1 (LFP operator for ReLU activation function). Suppose that Assumption 1 holds.
If σb � 1 and σ = ReLU, then the dynamics (4.9) has the following expression:

〈∂tF [u], φ〉 = −〈L[F [uρ]], φ〉+O(σ−3
b ),(4.18)

where φ ∈ S(Rd) is a test function and the LFP operator reads as

L[F [uρ]] =
Γ(d/2)

2
√

2π(d+1)/2σb
Ea,r

[
r3

16π4‖ξ‖d+3
+

a2r

4π2‖ξ‖d+1

]
F [uρ](ξ)

− Γ(d/2)

2
√

2π(d+1)/2σb
∇ ·
(
Ea,r

[
a2r

4π2‖ξ‖d+1

]
∇F [uρ](ξ)

)
.

(4.19)

The expectations are taken w.r.t. initial parameter distribution. Here r = ‖w‖ with the
probability density ρr(r) := 2πd/2

Γ(d/2)ρw(re1)rd−1, e1 = (1, 0, . . . , 0)ᵀ.

Corollary 2 (LFP operator for tanh activation function). Suppose that Assumption 1 holds.
If σb � 1 and σ = tanh, then the dynamics (4.9) has the following expression:

〈∂tF [u], φ〉 = −〈L[F [uρ]], φ〉+O(σ−3
b ),(4.20)
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1280 TAO LUO, ZHENG MA, ZHI-QIN J. XU, AND YAOYU ZHANG

where φ ∈ S(Rd) is a test function and the LFP operator reads as

L[F [uρ]] =
Γ(d/2)

2
√

2π
d+1

2 σb‖ξ‖d−1
Ea,r

[
π2

r
csch2

(
π2‖ξ‖
r

)
+

4π4a2‖ξ‖2

r3
csch2

(
π2‖ξ‖
r

)]
F [uρ](ξ)

− Γ(d/2)

2
√

2π
d+1

2 σb
∇ ·
(
Ea,r

[
4π4a2

r3‖ξ‖d−3
csch2

(
π2‖ξ‖
r

)]
∇F [uρ](ξ)

)
.

(4.21)
The expectations are taken w.r.t. initial parameter distribution. Here r = ‖w‖ with the
probability density ρr(r) := 2πd/2

Γ(d/2)ρw(re1)rd−1, e1 = (1, 0, . . . , 0)ᵀ.

5. Explicitizing the implicit bias of the F-Principle. For overparameterized NNs, it has
been widely observed in experiments that a gradient descent dynamics with proper initializa-
tion implicitly biases the training toward a low-frequency interpolation among infinite mini-
mizers achieving 0 training loss [25, 27]. To understand this implicit bias quantitatively, one
approach, namely explicitizing the implicit bias, is to find an explicit penalty function, the
minimizer of which exactly recovers the solution of the gradient descent/flow dynamics. In
this section, we prove that the implicit bias of the F-Principle indeed can be explicitized for
the LFP dynamics, based on which we provide a quantitative analysis of the consequence of
the F-Principle.

We first analyze a simplified LFP model with ReLU activation function in (4.19) as follows:

∂tF [u] = −Ea,r
[

r3

16π4‖ξ‖d+3
+

a2r

4π2‖ξ‖d+1

]
F [uρ](ξ).(5.1)

We discard the last term in (4.19) arising from the evolution of w. The reason is twofold.
First, experiments show that (5.1) is accurate enough to predict the wide two-layer NN output
after training. Second, the last term in (4.19) is too complicated to analyze for now.

In the LFP model, the solution is implicitly regularized by a decaying coefficient for
different frequencies of F [u] throughout the training. For a quantitative analysis of this
solution, we explicitize such an implicit dynamical regularization by a constrained optimization
problem as follows.

5.1. An equivalent optimization problem to the gradient flow dynamics. First, we
present a general theorem that the long-time limit solution of a gradient flow dynamics is
equivalent to the solution of a constrained optimization problem.

Let H1 and H2 be two separable Hilbert spaces and P : H1 → H2 be a bounded linear
operator. Let P∗ : H2 → H1 be the adjoint operator of P, defined by

〈Pφ1, φ2〉H2
= 〈φ1,P∗φ2〉H1

for all φ1 ∈ H1, φ2 ∈ H2.(5.2)

Lemma 4. Suppose that H1 and H2 are two separable Hilbert spaces and P : H1 → H2 and
P∗ : H2 → H1 is the adjoint of P. Then all eigenvalues of P∗P and PP∗ are nonnegative.
Moreover, they have the same positive spectrum. If in particular we assume that the operator
PP∗ is surjective, then the operator PP∗ is invertible.

Remark 4. For the finite dimensional case H2 = Rn, conditions for the operator P in
Lemma 4 are reduced to that the matrix P has rank n (full rank).
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LINEAR FREQUENCY PRINCIPLE 1281

Given g ∈ H2, we consider the following two problems.
(i) The initial value problem 

dφ

dt
= P∗(g − Pφ),

φ(0) = φini.

Since this equation is linear and with nonpositive eigenvalues on the right-hand side, there
exists a unique global-in-time solution φ(t) for all t ∈ [0,+∞) satisfying the initial condition.
Moreover, the long-time limit limt→+∞ φ(t) exists and will be denoted as φ∞.

(ii) The minimization problem

min
φ−φini∈H1

‖φ− φini‖H1

s.t. Pφ = g.

In the following, we will show it has a unique minimizer which is denoted as hmin.
Now we show the following equivalent theorem. We remark that, in the NTK regime,

the equivalence between the optimization problem and the gradient flow dynamics is known
because of the linearized dynamics. For completeness, we present a unified and general result
(see Theorem 2), as well as its weighted version (see Corollary 4), for this kind of equivalence.
Then we apply Theorem 2 to the linearized DNN dynamics in the parameter space (see
Corollary 3). We also apply Corollary 4 to the linearized DNN dynamics in the frequency
domain (see Corollary 5) and its discretized version (see Corollary 6).

Theorem 2 (equivalence between gradient descent and optimization problems). Suppose that
PP∗ is surjective. The above problems (i) and (ii) are equivalent in the sense that φ∞ = φmin.
More precisely, we have

φ∞ = hmin = P∗(PP∗)−1(g − Pφini) + φini.(5.3)

The following corollaries are obtained directly from Theorem 2.

Corollary 3. Let φ be the parameter vector θ in H1 = Rm, g be the outputs of the training
data Y , and P be a full rank matrix in the linear DNN model. Then the following two problems
are equivalent in the sense that θ∞ = θmin.

(A1) The initial value problem
dθ

dt
= P ∗(Y − Pθ),

θ(0) = θini.

(A2) The minimization problem

min
θ−θini∈Rm

‖θ − θini‖2

s.t. Pθ = Y .

The next corollary is a weighted version of Theorem 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1282 TAO LUO, ZHENG MA, ZHI-QIN J. XU, AND YAOYU ZHANG

Corollary 4. Let H1 and H2 be two separable Hilbert spaces and Γ : H1 → H1 be an injective
operator. Define the Hilbert space HΓ := Im(Γ). Let g ∈ H2 and P : HΓ → H2 be an operator
such that PP∗ : H2 → H2 is surjective. Then Γ−1 : HΓ → H1 exists and HΓ is a Hilbert
space with norm ‖φ‖HΓ

:= ‖Γ−1φ‖H1
. Moreover, the following two problems are equivalent in

the sense that φ∞ = φmin.

(B1) The initial value problem
dφ

dt
= ΓΓ∗P∗(g − Pφ),

φ(0) = φini.

(B2) The minimization problem

min
φ−φ0∈HΓ

‖φ− φini‖HΓ

s.t. Pφ = g.

Corollary 5. Let γ : Rd → R+ be a positive function, h be a function in L2(Rd), and
φ = F [h]. The operator Γ : L2(Rd)→ L2(Rd) is defined by [Γφ](ξ) = γ(ξ)φ(ξ), ξ ∈ Rd. Define
the Hilbert space HΓ := Im(Γ). Let X = (x1, . . . ,xn)ᵀ ∈ Rn×d, Y = (y1, . . . , yn)ᵀ ∈ Rn, and
P : HΓ → Rn be a surjective operator

P : φ 7→
(∫

Rd
φ(ξ)e2πixᵀ

1 ξdξ, . . . ,

∫
Rd
φ(ξ)e2πixᵀ

nξdξ

)ᵀ

= (h(x1), . . . , h(xn))ᵀ.(5.4)

Then the following two problems are equivalent in the sense that φ∞ = φmin.

(C1) The initial value problem
dφ(ξ)

dt
= (γ(ξ))2

∑n
i=1

(
yie
−2πixᵀ

i ξ −
[
φ ∗ e−2πixᵀ

i (·)
]

(ξ)
)
,

φ(0) = φini.

(C2) The minimization problem

min
φ−φini∈HΓ

∫
Rd

(γ(ξ))−2|φ(ξ)− φini(ξ)|2dξ

s.t. h(xi) = yi, i = 1, . . . , n.

We remark that P∗Pφ =
∑n

i=1F [hδxi ], where δxi(·) = δ(· − xi), i = 1, . . . , n. Therefore
problem (C1) can also be written as

dF [h]

dt
= γ2

∑n
i=1(yiF [δxi ]−F [hδxi ]),

F [h](0) = F [h]ini.
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LINEAR FREQUENCY PRINCIPLE 1283

In the following, we study the discretized version of this dynamics-optimization problem ((C1)
and (C2)).

Corollary 6. Let γ : Zd → R+ be a positive function defined on lattice Zd and φ = F [h].
The operator Γ : `2(Zd) → `2(Zd) is defined by [Γφ](k) = γ(k)φ(k), k ∈ Zd. Here `2(Zd) is
set of square summable functions on the lattice Zd. Define the Hilbert space HΓ := Im(Γ).
Let X = (x1, . . . ,xn)ᵀ ∈ Tn×d, Y = (y1, . . . , yn)ᵀ ∈ Rn, and P : HΓ → Rn be a surjective
operator such as

P : φ 7→

(∑
k∈Zd

φ(k)e2πixᵀ
1k, . . . ,

∑
k∈Zd

φ(k)e2πixᵀ
nk

)ᵀ

.(5.5)

Then the following two problems are equivalent in the sense that φ∞ = φmin.

(D1) The initial value problem
dφ(k)

dt
= (γ(k))2

∑n
i=1

(
yie
−2πixᵀ

i k −
[
φ ∗ e−2πixᵀ

i (·)
]

(k)
)
,

φ(0) = φini.

(D2) The minimization problem

min
φ−φini∈HΓ

∑
k∈Zd

(γ(k))−2|φ(k)− φini(k)|2

s.t. h(xi) = yi, i = 1, . . . , n.

5.2. Example: Explicitizing the implicit bias for two-layer ReLU NNs. As an example,
by Corollary 5, we derive the following constrained optimization problem explicitly minimizing
an FP-norm (see the next section), whose solution is the same as the long-time limit solution
of the simplified LFP model (5.1), that is,

min
h−hini∈Fγ

∫
Rd

(
Ea,r

[
r3

16π4‖ξ‖d+3
+

a2r

4π2‖ξ‖d+1

])−1

|F [h](ξ)−F [hini](ξ)|2dξ,(5.6)

subject to constraints h(xi) = yi for i = 1, . . . , n. The Fγ is defined in the next section. This
explicit penalty indicates that the learning of DNN is biased toward functions with more power
at low frequencies, which was speculated in previous works [25, 27]. For 1-d problems (d = 1),
when the 1/ξ2 term dominates, the minimization of the FP-norm is equivalent to the spatial
domain minimization problem minh(x)

∫
R |h

′(x)−hini
′(x)|2dx subject to constraints h(xi) = yi

for i = 1, . . . , n, which yields a linear spline interpolation for hini(x) = 0 [9]. Similarly,
when 1/ξ4 dominates, the minimization of the FP-norm is equivalent to the spatial domain
minimization problem minh(x)

∫
R |h

′′(x) − hini
′′(x)|2dx subject to constraints h(xi) = yi for

i = 1, . . . , n, which yields a cubic spline interpolation for hini(x) = 0 [9]. In general, the two
power laws of frequency usually coexist, thus, leading to a specific mixture of linear and cubic
splines. For high dimensional problems, the minimization problem is difficult to interpret by
a specific interpolation because the order of differentiation depends on d and can be fractal.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1284 TAO LUO, ZHENG MA, ZHI-QIN J. XU, AND YAOYU ZHANG

6. FP-norm and an a priori generalization error bound. The equivalent explicit optimiza-
tion problem (5.6) provides a way to analyze the generalization of sufficiently wide two-layer
NNs. We consider the Fourier domain with discretized frequencies. Then, we begin with
the definition of an FP-norm, which naturally induces an FP-space containing all possible
solutions of a target NN, whose Rademacher complexity can be controlled by the FP-norm
of the target function. Thus we obtain an a priori estimate of the generalization error of
NN by the theory of Rademacher complexity. Our a priori estimate follows the Monte Carlo
error rates with respect to the sample size. Importantly, our estimate unravels how frequency
components of the target function affect the generalization performance of DNNs.

6.1. Problem setup. We focus on the regression problem. Assume the target function
f : Ω := [0, 1]d → R. Let the training set be S = {(xi, yi)}ni=1, where xi’s are independently
sampled from an underlying distribution D(x) and yi = f(xi). We consider the square loss

`(h,x, y) = |h(x)− y|2(6.1)

with population risk

RD(h) = Ex∼D`(h,x, f(x))(6.2)

and empirical risk

RS(h) =
1

n

n∑
i=1

`(h,xi, yi).(6.3)

6.2. FP-space. The quantity in the minimization problem motivates a definition of FP-
norm. This FP-norm then leads to the definition of the function space where the solution of
the minimization problem lies. We denote Zd∗ := Zd\{0}. Given a frequency weight function
γ : Zd → R+ or γ : Zd∗ → R+ satisfying

‖γ‖`2 =

(∑
k∈Zd

(γ(k))2

) 1

2

< +∞ or ‖γ‖`2 =

( ∑
k∈Zd∗

(γ(k))2

) 1

2

< +∞,(6.4)

we define the FP-norm for all functions h ∈ L2(Ω):

‖h‖γ := ‖F [h]‖HΓ
=

(∑
k∈Zd

(γ(k))−2|F [h](k)|2
) 1

2

.(6.5)

If γ : Zd∗ → R+ is not defined at ξ = 0, we set (γ(0))−1 := 0 in the above definition and ‖ · ‖γ
is only a seminorm of h.

Then we define the FP-space

Fγ(Ω) = {h ∈ L2(Ω) : ‖h‖γ <∞}.(6.6)

Clearly, for any γ, the FP-space is a subspace of L2(Ω). In addition, if γ : k 7→ ‖k‖−r for
k ∈ Zd∗, then functions in the FP-space with F [h](0) =

∫
Ω h(x)dx = 0 form the Sobolev space

Hr(Ω). Note that in the case of DNN, according to the F-Principle, (γ(k))−2 increases with
the frequency. Thus, the contribution of high frequency to the FP-norm is more significant
than that of low frequency.
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LINEAR FREQUENCY PRINCIPLE 1285

6.3. A priori generalization error bound. Next, we show the upper bound of the FP-
norm of a function leads to an upper bound of the Rademacher complexity of the function
space. The Rademacher complexity is defined as

RadS(H) =
1

n
Eτ

[
sup
h∈H

n∑
i=1

τih(xi)

]
(6.7)

for the function space H and dataset S = {xi, h(xi)}ni=1.

Lemma 5. (i) For HQ = {h : ‖h‖γ ≤ Q} with γ : Zd → R+, we have

RadS(HQ) ≤ 1√
n
Q‖γ‖`2 .(6.8)

(ii) For HQ′ = {h : ‖h‖γ ≤ Q, |F [h](0)| ≤ c0} with γ : Zd∗ → R+ and γ−1(0) := 0, we have

RadS(HQ′) ≤
c0√
n

+
1√
n
Q‖γ‖`2 .(6.9)

Then, we prove that the target function can be used to bound the FP-norm of the solution
of the minimization problem.

Lemma 6. Suppose that the real-valued target function f ∈ Fγ(Ω) and that the training
dataset {(xi, yi)}ni=1 satisfies yi = f(xi), i = 1, . . . , n. If γ : Zd → R+, then there exists a
unique solution hn to the regularized model

min
h−hini∈Fγ(Ω)

‖h− hini‖γ s.t. h(xi) = yi, i = 1, . . . , n.(6.10)

Moreover, we have

‖hn − hini‖γ ≤ ‖f − hini‖γ .(6.11)

Lemma 7. Suppose that the real-valued target function f ∈ Fγ(Ω) and that the training
dataset {(xi, yi)}ni=1 satisfies yi = f(xi), i = 1, . . . , n. If γ : Zd∗ → R+ with γ−1(0) := 0, then
there exists a solution hn to the regularized model

min
h−hini∈Fγ(Ω)

‖h− hini‖γ s.t. h(xi) = yi, i = 1, . . . , n.(6.12)

Moreover, we have

|F [hn − hini](0)| ≤ ‖f − hini‖∞ + ‖f − hini‖γ‖γ‖`2 .(6.13)

Based on the above analysis, we derive an a priori generalization error bound of the minimiza-
tion problem.

Theorem 3 (a priori generalization error bound). Suppose that the real-valued target function
f ∈ Fγ(Ω), the training dataset {(xi, yi)}ni=1 satisfies yi = f(xi), i = 1, . . . , n, and hn is the
solution of the regularized model

min
h−hini∈Fγ(Ω)

‖h− hini‖γ s.t. h(xi) = yi, i = 1, . . . , n.(6.14)
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1286 TAO LUO, ZHENG MA, ZHI-QIN J. XU, AND YAOYU ZHANG

Then we have
(i) given γ : Zd → R+, for any δ ∈ (0, 1), with probability at least 1 − δ over the random

training sample, the population risk has the bound

RD(hn) ≤ ‖f − hini‖γ‖γ‖`2
(

2√
n

+ 4

√
2 log(4/δ)

n

)
,(6.15)

(ii) given γ : Zd∗ → R+ with γ(0)−1 := 0, for any δ ∈ (0, 1), with probability at least 1 − δ
over the random training sample, the population risk has the bound

RD(hn) ≤ (‖f − hini‖∞ + 2‖f − hini‖γ‖γ‖`2)

(
2√
n

+ 4

√
2 log(4/δ)

n

)
.(6.16)

Remark 5. By the assumption in the theorem, the target function f belongs to Fγ(Ω),
which is a subspace of L2(Ω). In most applications, f is also a continuous function. In any
case, f can be well approximated by a large NN due to the universal approximation theory
[10].

Our a priori generalization error bound in Theorem 3 is large if the target function pos-
sesses significant high-frequency components. Thus, it explains the failure of DNNs in gener-
alization for learning the parity function [21], whose power concentrates at high frequencies.
In the following, We use experiments to illustrate that, as predicted by our a priori general-
ization error bound, a larger FP-norm of the target function indicates a larger generalization
error.

7. Numerical experiments. In this section, we conduct numerical experiments to validate
the effectiveness of the LFP model for two-layer ReLU and tanh networks. In addition, we
show that, with sufficient samples, the test error still increases as the frequency of the target
function increases.

7.1. Numerically solve the LFP optimization problem. Numerically, we solve the LFP
model (D2) by solving the following problem:2

min
an,bn

M∑
i=1

∑
j∈I

[
aj sin

(
2π

j

L′
xi

)
+ bj cos

(
2π

j

L′
xi

)]
− yi

2

+ε
∑
j∈I

γ

(
2π

j

L′

)−2 (
a2
j + b2j

)
,

(7.1)

where we set I =
{

0, . . . , L
′
LK − 1

}
, L′ = 10L, L is the range of the training inputs, K = 200

which is much larger than the number of training samples, and ε = 10−6. Denote MI =
L′
LK − 1. We can rewrite the above problem into the vector form

min
a

(Ea− Y )ᵀ (Ea− Y ) + εaᵀW−1a,(7.2)

2The code can be found at https://github.com/xuzhiqin1990/LFP.
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LINEAR FREQUENCY PRINCIPLE 1287

where

a = [a0, . . . , aMI
, b0, . . . , bMI

]ᵀ,

E =

[
sin

(
2π

0

L′
X

)
, . . . , sin

(
2π

L′
MIX

)
, cos

(
2π

0

L′
X

)
, . . . , cos

(
2π

L′
MIX

)]
,

X = [x1, . . . , xM ]ᵀ, Y = [y1, . . . , yM ]ᵀ,

W−1 = diag

{
γ

(
2π

0

L′

)−2

, . . . , γ

(
2π

1

L′

(
L′

L
K − 1

))−2
}
.

The solution of the above problem satisfies

Eᵀ (Ea− Y ) + εW−1a = 0.(7.3)

Then a is solved as

a =
[
EᵀE + εW−1

]−1
EᵀY .(7.4)

7.2. The effectiveness of LFP model. Without the last term in (4.19) arising from the
evolution of w, we show that the simplified LFP model in (5.1) can still predict the learning
results of two-layer wide NNs, trained by full-batch gradient descent with learning rate 10−5.

For the 1-d input example, we use a ReLU NN with 10000 hidden neurons and different
initializations. Three data points are used as the training dataset, shown in Figure 2(a).
The initialization of all parameters is sampled from uniform distributions with zero mean.
Denote the sampling interval by [−U,U ]. To make the term of 1/ξ4 dominate, we set U for
initializing w as 3, for initializing a as 0.01, and for initializing the bias term as 3. Note
that the bias terms are not initialized by too large values. As shown in Figure 2(a), the NN

0.0 0.2 0.4
x

0

1

y

(a)

0.0 0.2 0.4
x

0

1

y

(b)

Figure 2. fNN (red solid) versus fLFP (blue dashed dot) versus splines (gray dashed, cubic spline for (a)
and linear spline for (b)) for a 1-d problem. All curves nearly overlap with one other. Two-layer ReLU NN of
10000 hidden neurons is initialized with (a) 〈r2〉r � 〈a2〉a, and (b) 〈r2〉r � 〈a2〉a. Black stars indicate training
data.
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interpolates training data by a smooth function (denoted by fNN , red solid), which nearly
overlaps with the prediction of the LFP model (denoted by fLFP , blue dashed) and the cubic
spline interpolation (gray dashed). On the contrary, to make the term of 1/ξ2 dominate, we
set U for initializing w as 0.1, for initializing a as 2, and for initializing the bias term as 2. As
shown in Figure 2(b), the NN interpolates training data by a function, which nearly overlaps
with the prediction of the LFP model and the linear spline interpolation.

Theorem 1 shows that the two-layer wide NN in the linear regime can be characterized by
an LFP dynamics, whose long-time solution is equivalent to the solution of an LFP optimiza-
tion problem. These numerical experiments show that solutions obtained by the long-time
training NN are very close to the ones obtained by numerically solving the LFP optimiza-
tion problem. Therefore, these results are consistent with the above analysis. To show the
numerical results are rather general, we show another eight examples in Figure SM1 in the
supplement, where the parameters and labels are randomly generated. These results show
that the solutions obtained by the LFP model are very consistent with the ones obtained by
training two-layer NNs. We then perform numerical experiments for 2-d input and the tanh
activation function.

For the 2-d input example, we use a ReLU NN of 8000 hidden neurons to solve the XOR
problem, which cannot be solved by one-layer NNs [18]. The training samples consist of four
points represented by black stars in Figure 3(a). Similarly, we use uniform distribution for
initialization and set U for initializing w as 0.8, for initializing a as 0.2, and for initializing the
bias term as 1. The NN output, which can fit the training data well, over [−1, 1]2 is shown
in Figure 3(a). Our LFP model accurately predicts outputs of the well-trained NN over the
input domain [−1, 1]2 as shown in Figure 3(b).

For the two-layer tanh NN, we use the same setting as the cases in Figure 2 except for the
tanh activation function. In this case, the weight coefficient decays exponentially w.r.t. the
frequency no matter which part dominates; thus, the NN always learns the training data by
a smooth function, as shown in Figure 4.

1 0 1
x1

1

0

1

x 2

1

0

1

(a)

1 0 1
fNN

1

0

1

f L
FP

(b)

Figure 3. 2-d XOR problem with four training data indicated by black stars learned by a two-layer ReLU NN
of 8000 hidden neurons. (a) fNN illustrated in color scale. (b) fLFP (ordinate) versus fNN (abscissa) represented
by red dots evaluated over whole input domain [−1, 1]2. The black line indicates the identity function.
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(a)
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Figure 4. fNN (red solid) versus fLFP (blue dashed dot) for a 1-d problem. Two-layer tanh NN of 10000
hidden neurons is initialized with (a) 〈r2〉r � 〈a2〉a, and (b) 〈r2〉r � 〈a2〉a. Black stars indicates training data.

7.3. Generalization error. In this subsection, we use NNs to fit a series of target functions
with different frequencies in different trials to see how the generalization error of the NN
depends on the frequency of the target function. Note that we train all NNs to a stage where
the training loss is sufficiently small and we compare their generalization error only on test
samples but not their training speeds in this subsection. The generalization error bound in
Theorem 3 is larger as the FP-norm increases, which implies that the generalization error
would increase as the frequency of the target function increases. The following experiments
of fitting 1-d sinusoidal functions is consistent with this implication.

In each trial, by full-batch gradient descent training, we train a ReLU-NN of width 1-
5000-1 to fit 20 uniform samples of f(x) = sin(2πvx) on [0, 1] until the training mean square
error loss is smaller than 10−6, where v is the frequency. In each trial, the target function has
only a single frequency. The number of training samples is sufficient to recover the frequency
of the target function by the Nyquist sampling theorem. We then use 500 uniform samples to
test the NN. As the frequency of the target function increases, the FP-norm would increase,
thus leading to a looser bound of the generalization error. As shown in Figure 5, the test error
increases as the frequency of the target function increases.

8. Discussion. In this work, inspired by the F-Principle, we derive an LFP model for
two-layer wide NNs—a model that quantitatively well predicts the output of two-layer ReLU
or tanh NNs in an extremely overparameterized regime. We explicitize the implicit bias of
the F-Principle by a constrained optimization problem equivalent to the LFP model. This
explicitization leads to an a priori estimate of the generalization error bound, which depends
on the FP-norm of the target function. Note that our LFP model for other transfer functions
can also be derived similarly.

The LFP model advances our qualitative/empirical understandings of the F-Principle to
a quantitative level. (i) With the ASI trick [30] offsetting the initial DNN output to zero, the
LFP model indicates that the F-Principle also holds for DNNs initialized with large weights.
Therefore, “initialized with small parameters” [25, 27] is not a necessary condition for the
F-Principle. (ii) Based on the training behavior of the F-Principle, previous works [25, 27]
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Figure 5. Test loss plotted as a function of frequency v of the target function sin(2πvx).

speculated that DNNs prefer to learn the training data by a low frequency function. With an
equivalent optimization problem explicitizing the F-Principle, this speculation is demonstrated
theoretically by the LFP model.

Our a priori generalization error bound increases as the FP-norm of the target function
increases. This explains several important phenomena. First, DNNs fail to generalize well
for the parity function [21]. [25] shows that this is due to the inconsistency between the
high-frequency-dominant property of the parity function and the low-frequency preference
of DNNs. In this work, by our a priori generalization error bound, the dominant high fre-
quency of the parity function quantitatively results in a large FP-norm and, thus, a large
generalization error. Second, because randomly labeled data possesses large high-frequency
components, which induces a large FP-norm of any function that well matches the training
data and test data, we expect a very large generalization error, e.g., no generalization, as
observed in experiments. Intuitively, our estimate indicates good generalization of NNs for a
well-structured low-frequency-dominant real dataset as well as bad generalization of NNs for
randomly labeled data, thus providing insight into the well-known puzzle of generalization of
DNNs [29].

The F-Principle, a widely observed implicit bias of DNNs, is also a natural bias for humans.
Empirically, when humans see several points of training data, without a specific prior, they
tend to interpolate these points by a low-frequency-dominant function. Therefore, the success
of DNN may partly result from its adoption of a similar interpolation bias as a human’s. In
general, there could be multiple types of implicit biases underlying the training dynamics of
a DNN. Inspired by the LFP model, discovering and explicitizing these implicit biases could
be a key step toward a thorough quantitative understanding of deep learning.
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