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Maximum entropy principle analysis in network systems with short-time recordings
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In many realistic systems, maximum entropy principle (MEP) analysis provides an effective characterization
of the probability distribution of network states. However, to implement the MEP analysis, a sufficiently
long-time data recording in general is often required, e.g., hours of spiking recordings of neurons in neuronal
networks. The issue of whether the MEP analysis can be successfully applied to network systems with data from
short-time recordings has yet to be fully addressed. In this work, we investigate relationships underlying the
probability distributions, moments, and effective interactions in the MEP analysis and then show that, with
short-time recordings of network dynamics, the MEP analysis can be applied to reconstructing probability
distributions of network states that is much more accurate than the one directly measured from the short-time
recording. Using spike trains obtained from both Hodgkin-Huxley neuronal networks and electrophysiological
experiments, we verify our results and demonstrate that MEP analysis provides a tool to investigate the neuronal
population coding properties for short-time recordings.
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I. INTRODUCTION

Binary-state models have been used to describe the activity
of nodes in many network systems, such as neuronal networks
in neuroscience [1–3]. Understanding the distribution of net-
work binary-state dynamics is important in unveiling underly-
ing network function, especially in neuroscience, where both
theoretical and experimental results indicate that populations
of neurons perform computations probabilistically through
their firing patterns [4,5]. For instance, statistical distributions
of neuronal network firing patterns have been shown to per-
form awake replays of remote experiences in rat hippocampus
[5]. Therefore, studying the characteristics of neuronal firing
pattern distributions will help to understand how neuronal
networks encode information [6]. However, this is a difficult
task, since the number of all possible network states grows
exponentially as the network size increases, i.e., 2n for a
network of n binary-state nodes. This high dimensionality
presents a challenge in directly measuring the distribution of
network states in electrophysiological experiments, especially
for the case of in vivo measurements on awake animals, thus,
the difficulty in understanding coding schemes in neuronal
networks.

The maximum entropy principle (MEP) analysis is a
statistical method used to infer the least-biased probability
distribution of network states by maximizing the Shannon
entropy with given constraints, i.e., moments up to certain
order [7]. The inferred probability distribution is called the
MEP distribution. For example, under constraints of the first
two-order moments, the second-order MEP distribution gives
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rise to an accurate estimate of the statistical distribution of
network states in many scientific fields, e.g., neuroscience
[1–3,8,9], biology [10–12], imaging science [13], economics
[14,15], linguistics [16], anthropology [17], and atmosphere-
ocean science [18]. However, the debate on the sufficiency
of the second-order MEP (pairwise sufficiency) has been on-
going. For example, empirical studies found that the second-
order MEP distribution is no longer sufficient for networks
of large sizes (e.g., ∼100 neurons [19]), networks over fine
scales (i.e., local clusters of neurons within 300 μm [20]),
and ongoing neuronal avalanches in the alert monkey and
evoked visual responses in the anesthetized cat [21]. A series
of studies investigated this pairwise sufficiency [22–26], such
as how the pairwise sufficiency depends on the inputs [23,24].
Meanwhile, methods have also been developed to account for
high-order effective interactions in the MEP analysis when the
pairwise sufficiency fails [19,27–29]. For example, a method
[29] was recently proposed to adaptively identify the specific
pairwise and higher-order moments and it is able to capture
cortical-like distributions of population spiking patterns.

However, a practical and important issue remains unclear:
How well does the second-order MEP analysis perform based
on a short-time recording? This is important because a very
long recording is often required to carry out the MEP analysis,
e.g., hours for a network of 10 neurons [1]. Specifically, to per-
form high-order MEP analysis, an extremely long recording is
required, e.g., 24–30 h [19]. These long recordings are usually
impractical to achieve due to cost or capability. For example,
physiological constraints such as fatigue of neurons makes it
very difficult to record the state of neuronal networks over
a long time, especially in vivo recordings on awake animals.
Meanwhile, data obtained by short-time recordings poorly
captures many activity states, leading to incorrect descriptions
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for the probability distribution of network states. The insuffi-
cient measurements due to short-time recordings could lead to
a misunderstanding of information coding structure embedded
in network activity states [20]. Therefore, it is important to
estimate an accurate probability distribution of network states
from short-time recordings where many network activities are
under-represented.

In this work, we demonstrate that, compared with the
probability distribution directly measured from a short-time
recording, the second-order MEP analysis, performed based
on data measured from a short-time recording, can give rise
to a more accurate estimate of the probability distribution
of network states. To achieve this, we first show that all
moments and all effective interactions can equivalently repre-
sent a probability distribution of network states for a general
network of any size. Next, we use the above equivalent
representations to rationalize that low-order MEP analysis is
capable of giving rise to an accurate estimate of the probability
distribution of network states from a short-time recording.

Although the procedure described in this work can be
applied to any network with binary dynamics, here we use
spike trains obtained from both Hodgkin-Huxley (HH) neu-
ronal network dynamics simulations and electrophysiological
experiments to investigate whether the MEP analysis can ac-
curately estimate the probability distribution of network states
from short-time recordings. We also quantitatively study how
the performance of MEP analysis with short-time recordings
depends on the length of recording time and the number of
neurons. Our results show that in both numerical simulation
data and electrophysiological experimental data, the second-
order MEP distribution and the distribution measured in the
long recording data indeed agree very well with each other,
whereas the probability distribution measured from the short-
time recording deviates significantly from them and cannot
capture many neuronal activity states.

II. METHODS: THE MEP ANALYSIS

In this section, we will introduce the MEP analysis, which
has been applied to estimating the probability distribution of
network states for many network systems [1,2,9,30,31]. The
process of performing the MEP analysis is as follows. Let σ ∈
{0, 1} denote the state of a node in a sampling time bin, where
1 refers to an active state and 0 an inactive state. Then the state
of a network of n nodes in a sampling time bin is denoted
as � = (σ1, σ2, . . . , σn) ∈ {0, 1}n. In principle, to obtain the
probability distribution of �, one has to measure all possible
states of �, i.e., 2n states in total. For the case of a network
of n neurons, σ often represents whether a single neuron fires
in a sampling time bin in the network, where 1 corresponds
to a neuron that is firing and 0 corresponds to a neuron in the
silent state. We choose a typical bin size of 10 ms for the MEP
analysis [2,9]. The state, �, in the neuronal network would
represent the firing pattern of all neurons in the network.

The first-order moment of the state of node i, σi, is given
by

〈σi〉 =
∑
�

P(�)σi(�), (1)

where P(�) is the probability of observing the firing pattern
� in the recording and σi(�) denotes the state of the ith node
in the firing pattern �. The second-order moment of the state
of node i, σi, and node j, σ j , is given by

〈σiσ j〉 =
∑
�

P(�)σi(�)σ j (�), (2)

with higher-order moments obtained similarly. Note that, in
Eqs. (1) and (2), P(�) can be the true probability distribution
of �, in which case one computes the true moments; or P(�)
can be an observed distribution of a finite-time recording, in
which case one then estimates the moments.

The Shannon entropy of a probability distribution P(�) is
defined as

S = −
∑
�

P(�) log P(�). (3)

By maximizing this entropy, S, subject to all moments up
to the mth order (m � n), one obtains the mth-order MEP
distribution for a network of n nodes [1,2,9]. Note that the kth-
order moments consist of all the expectations of the product
of any k nodes’ states [e.g., the second-order moments by
Eq. (2) above for any pair of i and j with i �= j] and thus when
considering the constraint of the kth-order moments, there are
Ck

n (the number of combinations of k nodes from n possible
choices) number of constraints of kth-order moments being
considered. Finally, the mth-order probability distribution is
obtained from the following equation,

Pm(�) = 1

Z
exp

(
m∑

k=1

n∑
i1<···<ik

Ji1···ik σi1 · · · σik

)
, (4)

where, following the terminology of statistical physics, Ji1···ik
is called the kth-order effective interaction (2 � k � m), i.e.,
the Lagrange multiplier corresponding to the constraint of the
kth-order moment 〈σi1 · · · σik 〉, and the partition function, Z ,
is a normalization factor. Equation (4) is referred to as the
mth-order MEP distribution. In practice, we utilize a widely
used iterative scaling algorithm (see Appendix A for details)
to numerically solve the above MEP optimization problem
to obtain the effective interactions and thus the probability
distribution in Eq. (4). Here, for a network of size n, Pn(�)
is referred to as the full-order MEP distribution subject to
moments of all orders.

III. RESULTS

The results are organized as follows. We begin by demon-
strating that there is a wide range of neuronal dynami-
cal regimes for Hodgkin-Huxley neuronal network dynam-
ics. Then we show that the probability distribution of net-
work states measured from a short-time recording (data
recorded from the HH network dynamics with short sim-
ulation time) cannot capture many network activity states
because of large fluctuations in the measurement induced
by insufficient sampling and thus differs from the proba-
bility distribution of network states measured from a long-
time recording. Note that we have verified that the HH
network dynamics in a long simulation time of 1.2 × 105 s
reaches the steady state; therefore, the probability distribution

022409-2



MAXIMUM ENTROPY PRINCIPLE ANALYSIS IN NETWORK … PHYSICAL REVIEW E 99, 022409 (2019)

FIG. 1. Raster plots for the HH neuronal network in three different dynamical regimes. Raster plots of 10 randomly selected neurons for
each case are shown. For (a), (b), and (c), consider the statistics of the interspike interval for each neuron; the Fano factor is 14.8 ± 2.9,
10.3 ± 2.3, and 4.8 ± 1, respectively, and the coefficient of variation is 0.63 ± 0.05, 0.58 ± 0.05, and 0.47 ± 0.04, respectively (mean ± std
across all neurons). A short bar indicates that the neuron with certain index fires at certain time. The coupling strength is selected at random
from the uniform distribution of the interval [0, s], where s = 0.071 ms−1 (the corresponding physiological excitatory postsynaptic potential
is ∼1 mV). The Poisson input parameters for in (a), (b), and (c) are (μ = 0.6 ms−1, f = 0.05 ms−1), (μ = 1.1 ms−1, f = 0.04 ms−1) and
(μ = 2.5 ms−1, f = 0.03 ms−1), respectively.

of network states measured from this long recording can
well represent the true probability distribution of network
states.

We next show that there exists a one-to-one mapping
between the probability distribution of network states and the
corresponding moments of the network. Then, we combine
this mapping with the full-order MEP distribution to show
that there exists a one-to-one mapping between all effective
interactions and the probability distribution of network states.
Using these mappings, we further demonstrate that high-order
effective interactions are often small; thus, to accurately esti-
mate the probability distribution of network states, one may
only require accurate estimation of the low-order effective
interactions. Finally, we make use of low-order moments
measured in short-time recordings to estimate low-order ef-
fective interactions and show that the obtained probability
distribution from the low-order MEP analysis agrees well
with the probability distribution of network states. This is
demonstrated by both numerical simulations of HH neuronal
network dynamics and also electrophysiological experiments.

A. Short-time recordings cannot represent all network states

In this section, we first use numerical simulation data from
the HH neuronal network dynamics and show that short-time
recordings are often insufficient to accurately estimate the
probability distribution of network states. Later, we will also
demonstrate this issue using experimental data from electro-
physiological measurements.

We simulate a network of 80 excitatory and 20 inhibitory
HH neurons, with a 20% connection density among neurons
in the network. As physiological experiments can often only
measure a subset of neurons, we randomly select 10% of
the neurons in the network (10 neurons) and demonstrate
differences in the directly measured probability distribution
between the short and the long recording. Note that there are
typically three dynamical regimes for neuronal networks [32]:
(i) a highly fluctuating regime where the input rate, μ, is low
[Fig. 1(a)]; (ii) an intermediate regime where μ is moderately

high [Fig. 1(b)]; and (iii) a low fluctuating or mean-driven
regime where μ is very high [Fig. 1(c)]. We evolve the HH
neuronal network dynamics and record the spike trains of all
neurons for a duration of 1.2 × 105 s, which is sufficiently
long to obtain a stable probability distribution of neuronal fir-
ing patterns. We then compare the probability distribution of
network states directly measured in the short-time recording
of 120 s to that measured in the long recording. As shown in
Fig. 2, the measured probability distribution of firing patterns
in the short-time recording deviates substantially from that in
the long recording for all three dynamical regimes.

The probability distribution of network states is important
for a complete understanding of the underlying function of
networks [4,5] despite the fact that a sufficient long-time
data recording is often impossible or impractical. Thus, it
is essential to obtain an accurate estimate of the probability
distribution of network states from a short-time recording. To
achieve this, we next study relationships among the proba-
bility distribution, the moments, and the effective interactions
in the MEP distribution and show that the second-order MEP
analysis often gives rise to an accurate estimate of the proba-
bility distribution of network states.

B. One-to-one mapping between the probability
distribution and the moments

To demonstrate the relationship between the true prob-
ability distribution of network states, Ptrue(�), and the
corresponding moments, we introduce several notations
for ease of discussion. First, denote the vector P(n) =
[p(n)

1 , p(n)
2 , . . . , p(n)

2n ]T as the vector containing the probability
distribution of the network states for a network of n nodes,
and denote the vector M(n) = [m(n)

1 , m(n)
2 , . . . , m(n)

2n ]T as the
vector containing all moments of the network. We arrange the
entries in P(n) and M(n) as follows. For an example network
of size n = 2, we assign values to the ith entry by expressing
i − 1 using the base-2 number system with total n = 2 digits,
i.e., Ei = e2e1, where Ei represents the combined state of the
two nodes in the network, e1 and e2 (e.g., 00 corresponds to
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FIG. 2. Measured probability distributions for short-time recordings compared with long-time recordings. The frequency of each firing
state measured from the short-time recording of network dynamics (120 s) is plotted against the frequency measured from the long-time
recording of network dynamics (1.2 × 105 s). Data for these three cases are from three dynamical regimes shown (the same 10 selected
neurons in each case) in Fig. 1, respectively.

both nodes being inactive), as shown in the second column
of Table I. Then, for each i, denote the probability of the
network state (σ1 = e1, σ2 = e2) as p(2)

i , as shown in the third
column of Table I. In neuroscience, the vector P00 represents
the probability of finding both two neurons in the quiet state,
P10 (P01) represents the probability of the first (second) neuron
in the active state and the second (first) neuron in the silent
state, and P11 represents the probability of both neurons in
the active state. The entries in the vector M(2) are arranged
similarly, i.e., m(2)

i is the expectation of (σ1)e1 (σ2)e2 , as shown
in the fourth column of Table I.

For illustration, we show that, for a network of n = 2
nodes, there is a full-rank matrix, U(2)

PM, that transforms from
the probability distribution to moments. From Eqs. (1) and
(2), the expectation of σ1, σ2, and σ1σ2 can be obtained by
summing the probabilities in which those nodes are active,
leading to the following system:

⎡
⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

P00

P10

P01

P11

⎤
⎥⎦ =

⎡
⎢⎣

1
〈σ1〉
〈σ2〉

〈σ1σ2〉

⎤
⎥⎦, (5)

i.e., U(2)
PMP(2) = M(2). Clearly, from Eq. (5), U(2)

PM is upper
triangular and of full rank.

The above analysis can be extended to a network of
any size n. For each integer i, 1 � i � 2n, we can sim-
ilarly express i − 1 by the base-2 number system with
n digits, denoted by Ei = enen−1 · · · e2e1. Then write the
probability of the network state (σ1 = e1, σ2 = e2, . . . , σn =
en), denoted as p(n)

i , and the moment, i.e., the expecta-
tion of (σ1)e1 (σ2)e2 · · · (σn−1)en−1 (σn)en , denoted as m(n)

i , as
follows:

P(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P00···0
P10···0
P01···0
P11···0

...
P01···1
P11···1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
〈σ1〉
〈σ2〉

〈σ1σ2〉
...〈∏n

j=2 σ j

〉
〈
σ1

∏n
j=2 σ j

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

We prove that there is a full-rank matrix, U(n)
PM, that trans-

forms from P(n) to M(n) as

U(n)
PMP(n) = M(n), (7)

where U(n)
PM is upper triangular and of full rank (see

Appendix C for details).
Therefore, all moments, which are shown in the entries of

M(n), can be used to describe the probability distribution of
network states for a network of n nodes with binary dynamics.
As the full-order MEP distribution, Pn(�), is subject to all
moments, Pn(�) and Ptrue(�) share the same moments for a
sufficiently long-time recording, i.e., M(n) in Eq. (7). Since
U(n)

PM is of full rank, Pn(�) is identical to Ptrue(�).
By directly substituting Ptrue(�) into the full-order MEP

analysis, we develop a relationship between effective interac-
tions and the probability distribution, as discussed in the next
section.

C. One-to-one mapping between effective interactions
and the probability distribution

To demonstrate the relationship between effective interac-
tions and the true probability distribution of network states,
we substitute all 2n states of � = (σ1, σ2, . . . , σn) and the
probability distribution, Ptrue(�), into Eq. (4) with m = n and
then take the logarithm of both sides. This results in a system
of linear equations in terms of − log Z and all the effective
interactions,

− log Z +
n∑

k=1

n∑
i1<···<ik

Ji1···ik σi1 · · · σik = log Ptrue(�), (8)

where − log Z can be regarded as the zeroth-order effective
interaction, J0. By solving the system of linear equations in

TABLE I. Table of entries for building the vectors P(n) and M(n)

for an example network of n = 2 nodes.

i Ei = e2e1 p(2)
i m(2)

i

1 00 P00 1
2 01 P10 〈σ1〉
3 10 P01 〈σ2〉
4 11 P11 〈σ1σ2〉
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Eq. (8), we can obtain all the 2n effective interactions, J’s,
in terms of the true probability distribution of network states,
Ptrue(�).

We again turn to the small network case of n = 2 nodes
to demonstrate how to obtain a one-to-one mapping from the
linear system described by Eq. (8). First, denote the vector J(2)

as the vector containing all the effective interactions, with the
index of each effective interaction, i. We then express i − 1
by the base-2 number system with total n = 2 digits, denoted
by Ei = e2e1, and the ith entry of J(2) is the coefficient of the
term (σ1)e1 (σ2)e2 in Eq. (8), yielding J(2) = (J0, J1, J2, J12)T .
Since the ordering of the indices for J(2) is the same as that of
P(2), then the right-hand side of Eq. (8) is simply the logarithm
of the vector P(2). Therefore, for a network of n = 2 nodes, we
have the following equation:⎡

⎢⎣
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎦

⎡
⎢⎣

J0

J1

J2

J12

⎤
⎥⎦ =

⎡
⎢⎣

log P00

log P10

log P01

log P11

⎤
⎥⎦. (9)

The above relation can be extended to a network of any size
n and the corresponding linear equations are as follows:

L(n)
JP J(n) = log P(n), (10)

where L(n)
JP is a lower-triangular matrix with dimension

2n × 2n. For 1 � i � 2n, we can similarly express i − 1 by
the base-2 number system with n digits, denoted by Ei =
enen−1 · · · e2e1. Then, the ith entry of J(n) is the coefficient
of the term (σ1)e1 (σ2)e2 · · · (σn−1)en−1 (σn)en in Eq. (8). To
show the linear transform between the effective interactions
in the full-order MEP distribution J(n) and the probability
distribution of network states P(n) is a one-to-one mapping,
one needs to demonstrate that L(n)

JP is a matrix of full rank.
Similarly, as the proof of the one-to-one mapping between the
probability distribution and the moments, we can show that

L(n)
JP is the transpose of U(n)

PM, i.e., L(n)
JP = [U(n)

PM]
T

by math-
ematical induction. Therefore, L(n)

JP is lower triangular and
full-rank, and one can use effective interactions to characterize
the probability distribution of network states for a network of
nodes with binary dynamics.

Note that the transformations among probability, mo-
ment, and effective interaction have been studied previously
[33–35]. Our focus here is to point out that the matrices U(n)

PM

and L(n)
JP are upper and lower triangular, respectively. The

triangular property of the matrices indicates that a lower-order
moment is a summation including probability of network
states that occur frequently, which facilitates a better esti-
mation for the lower-order moment. In addition, a recursive
relation among different-order effective interactions can be
directly obtained from L(n)

JP (see Appendix E), which is useful
for the analysis in the section below.

D. High-order effective interactions are often small

To provide an understanding to the fact that high-order
effective interactions are often small, we show a recursive
relation among different-order effective interactions based on
the one-to-one mapping (see Appendix E). Compared with the
general expression of effective interactions in other studies

[33,36], this recursive relation indicates that high-order effec-
tive interactions can be expressed as increments of low-order
effective interactions induced by the state change of individual
neurons.

For illustration, we first discuss the case of a network with
size n = 2. Based on Eq. (9), we have

J0 = log P00, J1 = log
P10

P00
, J2 = log

P01

P00
,

and

J12 = log
P11

P01
− log

P10

P00
.

Next, we define a new term,

J1
1 � log

P11

P01
,

which describes the case in which the state of the second node
in the network is changed from inactive (state 0) to active
(state 1) (i.e., in J1, P10 → P11, and P00 → P01). Note that with
this notation, we can now express the higher-order effective
interaction, J12, as

J12 = J1
1 − J1.

For a network of any size n, based on Eq. (10), we obtain an
expression for the first-order effective interaction

J1 = log
P10···0
P00···0

(11)

and for the second-order effective interaction

J12 = log
P110···0
P010···0

− log
P10···0
P00···0

. (12)

Then, the second-order effective interaction, J12, can be equiv-
alently obtained by the following procedure: First, in J1 =
log(P10···0/P00···0), we switch the state of the second node from
0 to 1 to obtain a new term J1

1 = log(P110···0/P010···0). Then,
note that if we subtract J1 from J1

1 , then we arrive at J12 as
described in Eq. (12). As shown in Appendix E, with the
one-to-one mapping, the above notation can be extended to the
case of high-order effective interactions (or see Appendix D
for a general proof):

J12···(k+1) = J1
12···k − J12···k, (13)

where 1 � k � n − 1 and J1
12···k is obtained by switching the

state of the (k + 1)st node in J12···k from 0 to 1. We refer to this
recursive relation as J-relation. Next, we intuitively explain
that the J-relation [Eq. (13)] leads to the hierarchy of effective
interactions, i.e., high-order effective interactions are often
much smaller than low-order ones. J12···k describes the effec-
tive interaction of the subnetwork of neurons {1, 2, 3, . . . , k}
when the state of the (k + 1)st neuron and states of neurons
with indices {k + 2, k + 3, . . . , n} are inactive. The term J1

12···k
describes the case in which the (k + 1)st neuron becomes ac-
tive and states of all other neurons are not changed. Therefore,
compared with the general expression of effective interactions
in other studies [33,36], this recursive relation reveals that
high-order effective interactions can be understood as incre-
ments of low-order effective interactions. In many neuronal
networks, the influence on the whole network induced by the
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state change of an individual neuron is often small. In other
words, the value difference between the effective interaction
of the subnetwork where the (k + 1)st neuron is inactive,
J12···k , and the effective interaction when the (k + 1)st neuron
is active, J1

12···k , should be small, and thus the higher-order
effective interaction, J12···(k+1), is often much smaller than the
low-order effective interaction, J12···k . Note that more strict
mathematical proof of the hierarchy of effective interactions
can be seen in our previous work [3]. Therefore, the J-relation
in Eq. (13) leads to a hierarchy of effective interactions,
i.e., low-order effective interactions dominate higher-order
effective interactions in the MEP analysis.

Note that the solution of Eq. (10) was used in Ref. [19] to
obtain the approximate effective interactions in the MEP anal-
ysis. As criticized by Ref. [29], the final estimated distribution
in Ref. [19] is not a normalized probability distribution. Here
we focus more on the inner structure of the solution of Eq. (10)
to obtain the J-relation in Eq. (13). We use this relation to
rationalize that most high-order effective interactions are often
small, but do not use it for direct estimation of effective
interactions as in Ref. [19].

Next we investigate the HH neuronal network dynamics
to confirm that the first two-order effective interactions in the
full-order MEP distribution dominate higher-order effective
interactions. We evolve HH networks in a long-time simula-
tion of 1.2 × 105 s and measure the probability distribution
of network states. We have verified that the HH network
dynamics in such a long simulation time reaches the steady
state, and, therefore, the measured probability distribution
of network states can well represent the true probability
distribution of network states. We then calculate effective
interactions in the full-order MEP distribution by Eq. (10)
from the measured probability distribution of network states.
In the first row of Fig. 3, the average strength of the kth-order
effective interactions is computed as the mean of the absolute
value of the kth-order effective interactions. It can clearly be
seen that for three different dynamical regimes, the average
strength of effective interactions of high-orders (�3) are at
least one order of magnitude smaller (in the absolute value)
than that of the first-order and the second-order effective
interactions. The number of high-order effective interaction
can overwhelm the number of low-order ones. To show that
high-order effective interactions do not accumulate to produce
a significant effect on the characterization of the probability
distribution of network states, we compute the summation
of all same-order effective interactions. As shown in the
second row of Fig. 3, we found that the low-order effective
interactions still dominate high-order effective interactions.

E. Low-order MEP analysis with short-time recordings

Using the mappings described in the previous sections, we
show that the low-order MEP analysis can provide an accurate
estimate of the probability distribution of network states with
a short-time recording.

First, note that in a short-time recording, the network
states with small probability usually cannot be measured
accurately (e.g., shown in Fig. 2). The mapping between
the probability distribution and effective interactions, i.e.,
the lower-triangular matrix L(n)

JP , suggests that the probability

of a network state consists of the summation of effective
interactions with indices concerning those active nodes. For
example, in a small network of n = 2 nodes, P(σ1 = 1, σ2 = 1)
can be obtained from Eq. (9) by log P11 = J0 + J1 + J2 + J12.
Therefore, to obtain an accurate probability estimation of
network states, it is important to obtain an accurate estimation
of the summation of the effective interactions.

For many neuronal networks, since high-order effective
interactions are often small (e.g., shown in Fig. 3), the sum-
mation in the probability of a network state will be dom-
inated by low-order effective interactions. Note that low-
order effective interactions can be derived from low-order
moments through a commonly used iterative scaling algo-
rithm (see Appendix A for details) in the MEP analysis,
and thus an accurate estimation of low-order moments is
essential. The mapping between the probability distribution
of network states and corresponding moments of the network,
i.e., the upper-triangular matrix U(n)

PM [Eq. (5)], shows that
low-order moments consist of the summation of probabilities
of many network activity states. For example, in a network of
n nodes, the first-order moment of node 1 is the summation
of network state probabilities where node 1 is active (2n−1

states in total), that is, 〈σ1〉 = P10···0 + P11···0 + · · · + P11···1.
The estimation error in low-order moments can be reduced
due to linear summations of many terms regarding network
state probabilities. Therefore, one can accurately estimate the
low-order moments and perform the low-order MEP analysis
in a short-time data recording of network dynamics. It is
expected that the low-order MEP distribution provides a good
estimate of the probability distribution of network states.

In summary, the low-order MEP distribution can be ob-
tained by the following procedure: First, calculate low-order
moments from the experimental short-time recording using
Eqs. (1) and (2) for the first-order and the second-order
moments, respectively. Second, the low-order MEP analysis
(with constraints of low-order moments) is carried out using
the widely used iterative scaling algorithm (see Appendix A
for details) to derive the low-order effective interactions
with all higher-order effective interactions set to zero. This
determines J(n) in Eq. (10), except for J0. Third, express
the probability distribution, P(n), as a function of J0 using
Eq. (10). Finally, determine J0 by constraining the summation
of all probabilities to equal 1. Once all the low-order effective
interactions are determined, Eq (4) is used to determine the
low-order MEP distribution, e.g., P1(�) and P2(�) represents
for the first-order and the second-order MEP distribution,
respectively.

F. Verification for the MEP analysis with short-time
recordings by HH neuronal network model

In this section, we use data from the HH neuronal network
model to verify that low-order MEP analysis can accurately
estimate the probability distribution of network states from
short-time recordings using the procedure described in the
previous section.

We first evolve the HH neuronal network model with a
short simulation time of 120 s and record the spike trains
of the network. Then we estimate the first-order and the
second-order moments from this short-time recording and
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FIG. 3. Hierarchy of effective interactions in the MEP analysis in three dynamical regimes. In the first row, mean absolute values of
effective interactions from the first order to the fourth order for three different dynamical regimes (shown in Fig. 1) are plotted, with the
standard deviation indicated by the error bar. In the second row, the absolute value of the summation of all same-order effective interactions
from the first order to the fourth order is plotted. Data for these three cases are collected from the three experiments (the same 10 selected
neurons in each case) in Fig. 1, respectively, with a long recording time of 1.2 × 105 s.

use these two-order moments to estimate both the first-order
and the second-order MEP distributions [Eq. (4)]. Finally,
we compare the MEP distributions to the probability distri-
bution of network states measured from the long recording
of 1.2 × 105 s. As shown in Fig. 4, for all three dynamical
regimes, the probability distribution of the first-order MEP
analysis, P1 (green), deviates substantially from the measured
probability distribution of network states in the long record-
ing. The probability distribution of the second-order MEP
analysis, P2 (blue), however, is in excellent agreement with
the measured probability distribution of network states in the
long recording.

Next, we use Kullback-Leibler (KL) divergence to quantify
the distance between the probability distribution measured
from the long recording (denoted by Ptrue) and the one esti-
mated by the second-order MEP analysis based on a short-
time recording (denoted by P2), that is,

D(Ptrue, P2) =
∑
�

Ptrue(�) log Ptrue(�)/P2(�).

Similarly, D(Ptrue, Pshort ) can be defined, where Pshort stands
for the probability distribution directly measured from the
short-time recording. As shown in the second row of Fig. 4,
the KL divergence decreases following an approximate power
law as the recording length increases. This indicates the KL
divergence decreases very fast at the beginning and then very
slowly at latter stages. In addition, D(Ptrue, Pshort ) is always
one order of magnitude larger than D(Ptrue, P2) across differ-
ent dynamical regimes. These results indicate that the low-
order, i.e., second-order, MEP analysis provides an efficient

method to obtain the probability distribution of network states
with short-time recordings.

G. Verification for the MEP analysis with short-time recordings
by electrophysiological experiments

In general, it is difficult to obtain a stationary long-time
recording of spike trains from the brain of an awake animal in
vivo. To verify the validity of the MEP analysis on short-time
recordings, we use the electrophysiological experimental data
recorded by multielectrode array from V1 in anesthetized
macaque monkeys in multiple trials. For each trial, an image
stimulus was shown on the screen for 100 ms, followed by a
200-ms uniform gray screen [37,38]. The number of different
images is 956 in total and images are presented in pseudoran-
dom order with each presented 20 times. Experimental details
can be found in Appendix F. Here we focus on the issue of
whether the second-order MEP analysis from a short-time
recording can accurately estimate the probability distribution
of neuronal firing patterns in a long recording. Note that
the presenting duration for each image is only 2 s, which
is too short for the recorded spike trains to have a stable
probability distribution. As an alternative, we put the spike
trains recorded during the uniform gray screen (200 ms in
each trial) altogether to obtain a long recording of 3824 s. We
have verified that the spike trains in such a long recording has
a stable probability distribution. For a short-time recording,
we randomly select 5% length of the long recording, i.e.,
191.2 s, and also verified that the probability distribution in
such a short-time recording is quite different from that in the
long recording. To perform the MEP analysis, we randomly
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FIG. 4. First-order and second-order MEP distribution in comparison with the probability distribution of network states. In the first row, the
frequency of each firing state from the distribution of the MEP analysis, P2 (blue) and P1 (green), is plotted against the frequency measured from
the long recording (1.2 × 105 s). Data for three different dynamical regimes (shown in Fig. 1) are collected from the three experiments (the
same 10 selected neurons in each case) in Fig. 1, respectively. Here the MEP analysis is performed with a short-time recording (1.2 × 102 s).
In the second row, for each dynamical regime, each red circle is one trial of D(Ptrue, P2) against the short-recording length. The blue line is the
mean of 10 trials for each recording length. The green circles and the cyan line are for the distribution directly measured from the short-time
recording, i.e., D(Ptrue, Pshort ). Some circles are missing because the KL divergence cannot be computed due to some firing patterns (zero
probability in the measurement) not present in the short-time recording.

selected eight neurons’ spike train data from experimental
measurements. The raster plot of these eight neurons are
shown in Fig. 5(a).

We then calculate effective interactions in the full-order
MEP distribution by Eq. (10) using the measured probability
distribution of network states from the long recording of
3824 s. In Fig. 5(b), the average strength of the kth-order
effective interactions is computed as the mean of the absolute
value of the kth-order effective interactions. It can be seen
clearly that the average strength of effective interactions of
high orders (�3) are almost one order of magnitude smaller
(in the absolute value) than that of the first-order and the
second-order effective interactions. To show that high-order
effective interactions do not accumulate to produce a signif-
icant effect in the characterization of the probability distri-
bution of network states, we compute the summation of all
same-order effective interactions. As shown in Fig. 5(c), we
found that the low-order effective interactions still dominate
high-order effective interactions. Next, we consider a short-
time recording of 191.2 s and estimate the first-order and
the second-order moments from this short-time recording
and use these moments to estimate the second-order MEP
distributions [Eq. (4)]. As shown in Fig. 5(d), the probability
distribution estimated by the second-order MEP analysis is
in excellent agreement with the measured probability distri-
bution of network states in the long recording. However, the

probability distribution measured in the short-time recording
clearly deviates from the probability distribution measured in
the long recording.

Next, we similarly use KL divergence to quantify the dis-
tance between probability distributions. When the recording
length is short, D(Ptrue, Pshort ) often cannot be computed due
to some firing patterns (zero probability in the measurement)
not present in the short-time recording. Here we use an
approximate KL divergence for such cases, that is, we only
consider states observed in the short-time recording,

Dapprox(Ptrue, Pshort )

=
∑

�:Pshort (�)>0

Ptrue(�) log Ptrue(�)/Pshort (�).

As shown in Fig. 5(e), when the recording length is less
than 400 s, the second-order MEP distribution based on the
short-time recording, P2, is more accurate than the one directly
measured from the short-time recording, Pshort. When the
recording time is larger than 400 s, Pshort becomes closer to
Ptrue than P2. Since high-order effective interactions do not
totally vanish, the accuracy of P2 will saturate when the
recording time gets long, while the accuracy of Pshort can
keep increasing as the recording time increases. The impact
of high-order effective interactions on the insufficiency of the
second-order MEP analysis is also consistent with previous
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FIG. 5. Electrophysiological verification for the second-order MEP analysis with short-time recordings. Spike trains of randomly selected
eight neurons are recorded from V1 in anesthetized macaque monkeys (see Appendix F). (a) A short bar indicates that the neuron with certain
index fires at certain time. The Fano factor and the coefficient of variation for the interspike interval is 6.1 ± 2.8 and 1.3 ± 0.2, respectively
(mean ± std across all neurons). (b) Mean absolute values of effective interactions from the first order to the fourth order are plotted, with
the standard deviation indicated by the error bar, computed by the long recording of 3824 s. (c) The absolute value of the summation of all
same-order effective interactions from the first order to the fourth order is plotted, computed by the long recording of 3824 s. (d) The frequency
of each firing state from the distribution measured in the short-time recording of 191.2 s (magenta) and the distribution of the second-order MEP
analysis, P2 (blue), is plotted against the frequency measured from the long recording of 3824 s. (e) Each red circle is one trial of D(Ptrue, P2)
against the short-recording length. The blue line is the mean of 10 trials for each recording length. The green circles and the cyan line are
KL divergence for the distribution directly measured from the short-time recording, i.e., D(Ptrue, Pshort ). Some circles are missing because the
KL divergence cannot be computed due to some firing patterns (zero probability in the measurement) not present in the short-time recording.
The magenta circles and the black line are approximate KL divergence for the distribution directly measured from the short-time recording,
i.e., Dapprox(Ptrue, Pshort ). (f) The plot is similar to (e), except that the abscissa is the number of considered neurons. In each trial, neurons are
randomly selected and the recording length is 100 s.

studies [19,25,27,29]. Figure 5(e) also indicates that although
there exist nonvanishing high-order effective interactions, the
second-order MEP analysis is still an effective tool to charac-
terize the probability distribution of network states for short-
time recordings, e.g., dozens of seconds, compared with the
direct measurement from the short-time recordings.

The above analysis can also be applied to study how the
performance of the second-order MEP analysis depends on
the number of considered neurons. As shown in Fig. 5(f), the
KL divergence gap between D(Ptrue, P2) and D(Ptrue, Pshort ), or
Dapprox(Ptrue, Pshort ), increases significantly as the number of
considered neurons increases. This indicates that for a large
population of neurons, it is expected that P2 is much more
accurate than Pshort for short-time recordings.

IV. DISCUSSION

The second-order MEP analysis has been used to infer
the probability distribution of network states under various

conditions, such as under spontaneous activity of neuronal
networks [2,9] or visual input [1]. Since the second-order
MEP distribution can be obtained by maximizing the Shannon
entropy with measured constraints of only the first-order and
the second-order moments, the curse of dimensionality is
circumvented and an accurate estimation of the probability
distribution of network states is provided. A series of works
have been initiated to address various aspects of this ap-
proach, including explorations of fast algorithms [39,40], the
inference of spatial-temporal correlations [9,41–44], and the
characterization of network functional connectivity [45–50].

In addition to spiking neuronal networks [1], the MEP
analysis has been applied to analyzing various types of binary
data. These applications include, for example, functional mag-
netic resonance imaging data [48], in which each brain region
is considered to be either active or silent, and stock market
data [30], in which the price of each stock is considered to be
increasing or not. However, for all these binary data, long-time
recordings are often impractical to be obtained.
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In this work, we begin by showing that there exist invert-
ible linear transforms among the probability distribution of
network states, the moments, and the effective interactions
in the MEP analysis for a general network of nodes with
binary dynamics. Based on these transforms, we show that the
second-order MEP analysis gives rise to a better estimate of
the probability distribution of network states with a short-time
recording than the one directly measured from the short-time
recording. To intuitively understand the mechanism under-
lying the above conclusion, one may consider the case of
estimating a Gaussian distribution through a set of samples.
The mean and the variance (resembling the first two-order mo-
ments) can be accurately estimated, which can determine the
full distribution with the prior knowledge that the distribution
is a Gaussian (resembling the second-order MEP distribution).
Then the small-probability states—which are very noisy in
the sampling set—can also be accurately retrieved. To verify
our conclusion, we use data from both the simulated HH
neuronal network model and the electrophysiological exper-
iment to demonstrate the good performance of the second-
order MEP analysis with short-time recordings. Note that the
insufficiency of the second-order MEP distribution becomes
significant when the recording time is long, and this is consis-
tent with results discussed in the literature [22–26]. However,
our results here show that the MEP analysis with short-time
recording gives rise to a better estimation of the probability
distribution of network states than the one directly measured
from the short-time recording. Therefore, the applicability of
the second-order MEP analysis in practical situations could be
significantly improved.

Finally, we point out that there are also some limitations
on low-order MEP analysis. First, low-order MEP analysis
could fail to describe the probability distribution of certain
network states, e.g., multiple firing events [51,52]. It re-
quires more investigation of the short-time MEP analysis in
which high-order effective interactions are important [19,29].
Second, as both the order of moment constraints and the
network size, n, increase, the existing algorithms to estimate
effective interactions for a large network become very slow
[39,53]. Because the number of all network states, i.e., 2n, is
too large when n is a large number, the existing algorithms
estimate moments of the MEP distribution using Monte Carlo
sampling from the MEP distribution, which are often very
slow when the dimension of the distribution is high [39,53].
Third, the impact of high-order effective interactions may
become more and more significant as the number of neu-
rons grows. As an illustration, we perform an analysis for
small populations on how the strength of high-order effective
interactions grows with the number of neurons. We study
the absolute value of the summation of all same-order effec-
tive interactions computed from the electrophysiological data
(the same procedure as that in Fig. 5). As shown in Fig. 6, the
amplitude of summation of high-order effective interactions
grows faster than low-order ones as the number of neurons
increases. This is consistent with results in Ref. [27] that the
second-order MEP analysis might not perform well in a large
network of sensory neurons. Therefore, how to efficiently
characterize the statistical properties of strongly correlated
network dynamics and how to develop fast numerical algo-
rithms for the application of the MEP analysis in large-scale
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FIG. 6. The strength of summation of effective interactions vs.
the number of neurons. The plot is the absolute value of the sum-
mation of all same-order effective interactions computed from the
electrophysiological data (the same procedure as that in Fig. 5) for
the first (red), second (green), third (blue), and fourth order (black).
For each considered neuron number M, we analyze 20 different sub-
networks of randomly selected M neurons from the recording data.
Each star is the result of one subnetwork consisting of M neurons
with different colors for different-order effective interactions. The
solid line corresponds to the mean value of summation from all 20
different subnetworks consisting of M neurons.

networks remain interesting and challenging issues for future
studies.
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APPENDIX A: THE ITERATIVE SCALING ALGORITHM

We briefly describe the widely used numerical algorithm
for the estimation of effective interactions from moments.
More details about this algorithm can be found in Ref. [9].
For illustration, we present the procedure to obtain the second-
order MEP distribution, P2(�). The interactions are initialized
by Ji = 〈σi〉P(�) and Ji j = 〈σiσ j〉P(�), where 〈·〉P(�) denotes
the expectation with respect to the measured probability
distribution of network states in data recording, P(�). The
expected values of the individual means 〈σi〉P2(�) and pairwise
correlations 〈σiσ j〉P2(�) with respect to the second-order MEP
distribution P2(�) can be determined by

〈σi〉P2(�) ≡
2n∑

l=1

σi(�l )P2(�l ),

〈σiσ j〉P2(�) ≡
2n∑

l=1

σi(�l )σ j (�l )P2(�l ),

where σi(�l ) is the state of the ith node in the network state
�l . To improve the agreement between 〈σi〉P2(�), 〈σiσ j〉P2(�)
and 〈σi〉P(�), 〈σiσ j〉P(�), the values of Ji and Ji j are adjusted
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by an iterative procedure:

Jnew
i = Jold

i + αsgn[〈σi〉P(�)] log
〈σi〉P(�)

〈σi〉P2(�)
,

Jnew
i j = Jold

i j + αsgn[〈σiσ j〉P(�)] log
〈σiσ j〉P(�)

〈σiσ j〉P2(�)
,

where the constant α is used to maintain the stability of the
iteration. We use α = 0.75 as in Ref. [9].

APPENDIX B: THE HODGKIN-HUXLEY NEURON MODEL

The HH model is described as follows. The dynamics of
the membrane potential of the ith neuron, Vi, is governed by
[54,55]

C
dVi

dt
= INa + IK + IL + I input

i ,

INa = −(Vi − VNa)GNahim
3
i ,

IK = −(Vi − VK )GK n4
i ,

IL = −(Vi − VL )GL,

with

dXi

dt
= (1 − Xi )αX (Vi ) − XiβX (Vi), (B1)

where the gating variable X = m, n, h and

αn(Vi ) = 0.1 − 0.01Vi

exp(1 − 0.1Vi ) − 1
, βn(Vi ) = 5

40
exp(−Vi/80),

αm(Vi ) = 2.5 − 0.1Vi

exp(2.5 − 0.1Vi ) − 1
, βm(Vi ) = 4 exp (−Vi/18),

αh(Vi ) = 0.07 exp(−Vi/20), βh(Vi ) = 1

exp(3 − 0.1Vi ) + 1
.

The current I input
i describes inputs to the ith neuron coming

from the external drive of the network, as well as interac-
tions between neurons in the network, I input

i = IE
i + II

i with
IE
i = −(Vi − V E

G )GE
i and II

i = −(Vi − V I
G)GI

i , where IE
i and

II
i are excitatory and inhibitory input currents, respectively,

and V E
G and V I

G are their corresponding reversal potentials. The
dynamics of the conductance, GQ

i , for Q = E , I are described
as follows:

dGQ
i

dt
= −GQ

i

σ
Q
G

+ HQ
i ,

dHQ
i

dt
= −HQ

i

σ
Q
H

+
∑

k

F Q
i δ

(
t − T F

i,k

) +
∑
j �=i

Ci jg
(
V pre

j

)
,

with g(V pre
j ) = 1/{1 + exp[−(V pre

j − 85)/2]}, where F Q
i is

the strength of the external Poisson input of rate μi to neuron
i with T F

i,k being the time of the kth input event. We use
F E

i = f , F I
i = 0, μi = μ for all the neurons in our simula-

tion. The parameter Ci j describes the coupling strength from
the jth presynaptic neuron to the ith neuron, and V pre

j is
the membrane potential of the jth presynaptic neuron. The
adjacency matrix, W = (wi j ), describes the neuronal network
connectivity structure and Ci j = wi jCQiQ j , where Qi, Qj is
chosen as E or I , indicating the neuron type of the ith neuron

and the jth neuron (CQiQ j is one of CEE, CEI, CIE, CII). The
value wi j = 1 if there is a directed coupling from the jth
presynaptic neuron to the ith postsynaptic neuron and wi j = 0
otherwise.

In this study, the values of parameters in the above
conductance equations are chosen as VNa = 115 mV, VK =
−12 mV, VL = 10.6 mV (the resting potential of a neuron is
set to 0 mV), GNa = 120 mS cm−2, GK = 36 mS cm−2, GL =
0.3 mS cm−2, the membrane capacity C = 1 μF cm−2, V E

G =
65 mV, V I

G = −15 mV, σ E
G = 0.5 ms, σ E

H = 3.0 ms, σ I
G =

0.5 ms, and σ I
H = 7.0 ms. We keep the Poisson input parame-

ters fixed during each single simulation.
In our numerical simulation, an explicit fourth-order

Runge-Kutta method is used [54,55] with time step ∼0.03 ms.
The spike train data were obtained with a sufficiently high
sampling rate, e.g., 2 kHz.

APPENDIX C: PROOF OF ONE-TO-ONE MAPPING
BETWEEN THE PROBABILITY DISTRIBUTION

AND MOMENTS

We prove that there exists a full-rank matrix U(n)
PM that

transforms from P(n) to M(n), i.e.,

U(n)
PMP(n) = M(n), (C1)

for a network of any size n. As an illustration with a network
of n = 2 nodes, the expectation of σ1, σ2, σ1σ2 can be obtained
by

⎡
⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

P00

P10

P01

P11

⎤
⎥⎦ =

⎡
⎢⎣

1
〈σ1〉
〈σ2〉

〈σ1σ2〉

⎤
⎥⎦, (C2)

i.e., U(2)
PMP(2) = M(2). Clearly, from Eq. (C2), U(2)

PM is of full
rank. We now prove the above result for any n by mathemat-
ical induction. Suppose U(k)

PM is of full rank. Then P(k+1) and
M(k+1) can be decomposed into two parts with equal length of
2k and U(k+1)

PM can be decomposed into four submatrices with
the dimension of each submatrix being 2k × 2k as follows:

[
U(k+1)

11 U(k+1)
12

U(k+1)
21 U(k+1)

22

][
P(k+1)

1

P(k+1)
2

]
=

[
M(k+1)

1

M(k+1)
2

]
,

where

P(k+1)
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

P000···000

P100···000

P010···000

P110···000
...

P111···110

⎤
⎥⎥⎥⎥⎥⎥⎦

, P(k+1)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

P000···001

P100···001

P010···001

P110···001
...

P111···111

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The expression of M(k+1)
1 is the same as the expression of M(k)

in Eq. (6), i.e., M(k+1)
1 = M(k), and M(k+1)

2 can be expressed
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as follows:

M(k+1)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1 · σk+1〉
〈σ1σk+1〉
〈σ2σk+1〉

〈σ1σ2σk+1〉
...〈

σ2
∏k

j=3 σ jσk+1

〉
〈
σ1σ2

∏k
j=3 σ jσk+1

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the representation of the base-2 number system of k + 1
digits, the first digit of the representation of i − 1, indicating
the state of node k + 1, is 0 for 1 � i � 2k and 1 for 2k +
1 � i � 2k+1. For any i with 1 � i � 2k , suppose p(k)

i is the
probability of state (σ1, σ2, . . . , σk ), i.e., Pσ1σ2··· ,σk , and then
the ith entry of P(k+1)

1 and P(k+1)
2 are Pσ1σ2··· ,σk ,0 and Pσ1σ2··· ,σk ,1,

respectively. Thus, the states of nodes from the first to the 2kth
are all the same for P(k), P(k+1)

1 , and P(k+1)
2 . Since M(k+1)

1 is
the same as M(k), i.e., their expressions only consider nodes
from the first to the 2kth, the contribution from both P(k+1)

1 and
P(k+1)

2 to M(k+1)
1 is the same as the contribution from P(k) to

M(k),i.e., U(k+1)
11 = U(k)

PM and U(k+1)
12 = U(k)

PM. Since the state of
node k + 1 is 0 in all entries of P(k+1)

1 , there is no contribution
of P(k+1)

1 to M(k+1)
2 , i.e., U(k+1)

21 = 0.
Similarly, since the state of node k + 1 is 1 in all entries of

P(k+1)
2 , the contribution from P(k+1)

2 to M(k+1)
2 only depends on

the states of nodes from the first to the 2kth—there is a one-to-
one correspondence of each entry between P(k+1)

2 and P(k) and
between M(k+1)

2 and M(k) as mentioned. Thus, U(k+1)
22 = U(k)

PM
and we can obtain a recursive relation, that is,

U(k+1)
PM =

[
U(k)

PM U(k)
PM

0(k) U(k)
PM

]
, (C3)

where 0(k) is the zero matrix with dimension 2k × 2k . Thus,
U(k+1)

PM is also a matrix of full rank. By induction, U(n)
PM is of

full rank for any n.

APPENDIX D: PROOF OF THE RECURSIVE RELATION
AMONG EFFECTIVE INTERACTIONS

For a network of n nodes, we prove the following recursive
relation in the full-order MEP analysis using mathematical
induction:

J12···(k+1) = J1
12···k − J12···k, (D1)

where the term J1
12...k is obtained from the kth-order effective

interaction J12...k by changing the state of the (k + 1)st node
in it.

From the mapping between effective interactions and the
probability distribution [Eq. (10)], it can be seen that the effec-
tive interactions is simply a linear combination of logarithm of
the probability distribution. To express this explicitly, we first
introduce the notation Hl

m as

Hl
m =

∑
�∈�l

m

log P(�), (D2)

where �l
m = {(σ1, σ2, . . . , σn)| ∑m

i=1 σi = l; σ j = 0, m <

j � n}, 0 � l � m � n.
We then show that if the kth-order (1 � k � n) effective

interaction, J12···k , can be expressed as

J12···k =
k∑

i=0

(−1)k−iH i
k, (D3)

then, Eq. (D1) is also valid as follows. For 1 � i � k, there
are i nodes of k + 1 nodes active in the states described by
Hi

k+1 of �
i

k+1. For 0 < i < k + 1, we can split Hi
k+1 into two

terms; one is Hi
k , where the (k + 1)st node is inactive, and the

other term is W i−1
k ≡ Hi

k+1 − Hi
k , where the (k + 1)st node is

active. We also define W k
k ≡ Hk+1

k+1 . If Eq. (D3) can be proved,
then we have

J12···(k+1) =
k+1∑
i=0

(−1)k+1−iH i
k+1.

By using Hi
k+1 = W i−1

k + Hi
k and H0

k+1 = H0
k , we finally

obtain

J12···(k+1) = Hk+1
k+1 +

k∑
i=1

(−1)k+1−i
(
W i−1

k + Hi
k

) − (−1)kH0
k+1

= W k
k +

k∑
i=1

(−1)k+1−iW i−1
k − (−1)kH0

k+1

−
k∑

i=1

(−1)k−iH i
k

=
k∑

i=0

(−1)k−iW i
k −

k∑
i=0

(−1)k−iH i
k

= J1
12···k − J12···k,

where J1
12···k is the quantity which switches the state of the

(k + 1)st node in the kth-order effective interaction J12...k from
inactive to active. Therefore, the recursive relation [Eq. (D1)]
is proved if Eq. (D3) is valid for 1 � k � n.

We next prove the validity of Eq. (D3) by mathematical
induction as follows. For k = 1, as shown in Eq. (11) in the
main text, we have

J1 = log
P10···0
P00···0

= H1
1 − H0

1 .

Therefore, Eq. (D3) is valid when k = 1. Now we assume
Eq. (D3) is valid for k � K .

We next want to prove that Eq. (D3) holds for k = K + 1.
We begin by showing that an arbitrary gth-order (g � K)
effective interaction Ji1···ig can be expressed as follows:

Ji1···ig =
g∑

i=0

(−1)g−iH i
Ag

, g � K, (D4)

where Ag = {i1, . . . , ig},
Hl

Ag
=

∑
�∈�l

Ag

log P(�),
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and �l
Ag

= {(σi1 , σi2 , . . . , σin )| ∑i j∈Ag
σi j = l; σi j = 0, g <

j � n}. To show the validity of Eq. (D4), we can permute the
neuronal indexes from {1, 2, . . . , n} to {i1, i2, . . . , in} by the
mapping j → i j for 1 � j � n. Since Eq. (D3) is valid for
g � K by assumption, Eq. (D4) is also valid.

Next, we study the relation between J12···(K+1) and the
effective interactions whose orders are smaller than K + 1.
By substituting � = (1, 1, . . . , 1, 0, . . . , 0) (nodes from 1 to
K + 1 are active and nodes from K + 2 to n are inactive) into
the full-order MEP analysis, we obtain

J12···(K+1) +
K∑

g=1

K+1∑
i1<···<ig

Ji1···ig = HK+1
K+1 − H0

K+1. (D5)

For g � K , from Eq (D4), by the induction assumption, we
have

K+1∑
i1<···<ig

Ji1···ig =
g∑

i=0

(−1)g−iCg−i
K+1−iH

i
K+1, (D6)

where Cg−i
K+1−i is the number of the selection of g − i terms

from all the possible K + 1 − i choices. Since Ji1···ig is the
gth-order effective interaction, as in Eq. (D4), the sign of the
logarithm probability of a state in which there are i nodes
active is (−1)g−i. To consider the coefficient of Hi

K+1 in the
right-hand side of Eq. (D6), we can consider that for each
group of i nodes, how many groups of g nodes in the left-hand
side of Eq. (D6) containing these considered i nodes, where
g � i. If there are g nodes containing the considered i nodes,
then there are only g − i nodes unknown. These g − i nodes
can be chosen from the group of nodes which belongs to the
total K + 1 nodes but not the considered i nodes. Therefore,
the choice number of these g − i nodes is Cg−i

K+1−i. Then we
have

J12···(K+1) = HK+1
K+1 − H0

K+1 −
K∑

g=1

g∑
i=0

(−1)g−iCg−i
K+1−iH

i
K+1.

(D7)

For K + 1 > l > 0, the coefficient of Hl
K+1 is

−
K∑

g=l

(−1)g−lCg−l
K+1−l = (−1)K+1−l . (D8)

The coefficient of H0
K+1 is

−1 −
K∑

g=1

(−1)gCg
K+1 = (−1)K+1. (D9)

Through Eqs. (D7), (D9), and (D8), we obtain

J12···(K+1) =
K+1∑
i=0

(−1)K+1−iH i
K+1. (D10)

That is, Eq. (D3) is valid for k = K + 1. By induction, we
obtain that Eq. (D3) holds for any integer k with 1 � k � n.
Therefore, we prove the validity of Eq. (D1).

APPENDIX E: THE RECURSIVE RELATION OBTAINED
DIRECTLY FROM THE ONE-TO-ONE MAPPING

With the one-to-one mapping, the recursive relation can
also be obtained. Similarly as the proof of the one-to-one map-
ping between the probability distribution and the moments, we
have

L(k+1)
JP J(k+1) = log P(k+1),

with

L(k+1)
JP =

[
L(k)

JP 0(k)

L(k)
JP L(k)

JP

]
,

J(k+1) =
[

J(k)

J(k)′

]
,

P(k+1) =
[

P(k)

P(k)′

]
,

where the ith element in J(k)′ includes the (k + 1)st neuron
compared with the ith element in J(k), similarly to the situation
discussed in Appendix C, e.g., the second element in J(k) is
J1 and in J(k)′ is J1,k+1; the ith element in P(k)′ includes the
(k + 1)st neuron’s firing compared with the ith element in
P(k), e.g., the second element in P(k) is P010···00 while that in
P(k)′ is P010···01. Then

J(k+1) =
[

J(k)

J(k)′

]
=

[ (
L(k)

JP

)−1
0(k)

−(
L(k)

JP

)−1 (
L(k)

JP

)−1

][
log P(k)

log P(k)′

]
.

Denote

J(k)
1 �

(
L(k)

JP

)−1
log P(k)′ ,

and we have

J(k)′ = J(k)
1 − J(k), (E1)

which corresponds to the relation in Eq. (13). Therefore, we
have proved the recursive relation of Eq. (13).

APPENDIX F: ELECTROPHYSIOLOGICAL
EXPERIMENTS

The data were collected in the Laboratory of Adam Kohn
at the Albert Einstein College of Medicine and downloaded
[38]. These data consist of multielectrode recordings from
V1 in anesthetized macaque monkeys, while natural images
and gratings were flashed on the screen as visual stimuli.
Recordings were performed using the “Utah” electrode array
and spike-sorting algorithm was used to determine spike
trains corresponding to each single neuron. Natural images
were presented at two sizes, 3◦–6.7◦ and windowed to 1◦,
to quantify surround modulation. All stimuli (956 in total)
were displayed in pseudorandom order for 100 ms each, fol-
lowed by a 200-ms uniform gray screen. Each stimulus was
presented 20 times. Experimental procedures and stimuli are
fully described in Ref. [37].
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