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Abstract: Maximum entropy principle (MEP) analysis with few non-zero effective interactions
successfully characterizes the distribution of dynamical states of pulse-coupled networks in many
fields, e.g., in neuroscience. To better understand the underlying mechanism, we found a relation
between the dynamical structure, i.e., effective interactions in MEP analysis, and the anatomical
coupling structure of pulse-coupled networks and it helps to understand how a sparse coupling
structure could lead to a sparse coding by effective interactions. This relation quantitatively displays
how the dynamical structure is closely related to the anatomical coupling structure.
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1. Introduction

Binary-state networks—each node in one sampling time bin is binary-state—arise from many
research fields, e.g., gene regulatory modeling and neural dynamics [1–3]. Statistical distributions of
network states are essential to encode information [4–8]. For example, with statistical distributions of
network states, experimental studies show that rats can perform awake replays of remote experiences
in the hippocampus [9]. The number of network states of n binary-state nodes, 2n, exponentially
grows as the node number, n, increases, which creates a challenge of characterizing the probability
distribution of network states. Many works effectively characterize the distribution of network
states in various systems, e.g., a network of ∼100 neurons [10], with a low-order maximum entropy
principle (MEP) analysis [10–18]—a method with few (far less than 2n) non-zero effective interactions
(see a precise definition in Equation (1)) constrained by low-order statistics. In the MEP analysis,
the dynamical structure of the network, i.e., how nodes interact with each other in the recording of
dynamical data, is characterized by effective interactions. This dynamical structure has been used to
study the functional connectivity of networks [16,19]. For example, experimental studies show that
the second-order effective interaction map of the retina is sparse and dominated by local overlapping
effective interaction modules [19]. In this sense, those effective interactions can be regarded as a sparse
coding of the information that encoded in the state distribution. Here, the sparseness is defined as the
ratio of the number of non-zero effective interactions to 2n (the number of total effective interactions).
Several studies show that high-order effective interactions could be important for characterizing
observed distributions of network states [6,10,20]. Although high-order effective interactions are
required, the number of required non-zero high-order effective interactions are very small in these
experimental studies [10]. What leads to the sparsity of effective interactions remains to be clarified.
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We address how a sparse anatomical coupling structure (In the following, for simplicity, we use
“coupling structure” instead of “anatomical coupling structure”.) could lead to a sparse coding by
effective interactions. Network dynamical structure often closely relates to the underlying coupling
structure [21]. For example, when the input of each node is independent from others, (i) high-order (≥2)
effective interactions are zero in a network of no connections, and (ii) high-order effective interactions
are large in a dense and strong connected excitatory network. To efficiently encode information,
a realistic system often incorporates a coupling structure with certain features [22,23], e.g., sparsity,
small-world, or scale-free. However, it is still unclear how the coupling structure affects the dynamical
structure of effective interactions.

In this work, we consider a general class of pulse-coupled networks. The state of each node
is binary-state, i.e., active when the node sends pulses to its child nodes, otherwise, silent. We first
establish the connection between the coupling structure and the number of non-zero effective
interactions in the full-order MEP analysis (constrained by all moments) through an observed
Fact—which is independent from node dynamics. We then examine the observed Fact by numerical
simulations. Through our analysis, we can estimate the number of non-zero effective interactions for
a given coupling structure when the external input of each node is independent from one another.
Our results show that a sparse network could lead to a lot of vanishing high-order effective interactions.
For illustration, we verify our results by estimating the number of non-zero effective interactions for
each order in a network with Erdos–Renyi connection structure, in which our estimated number is
much smaller than Ck

n, the number of all possible kth-order effective interactions. Our results establish
a connection between the dynamical structure and the network coupling structure. This connection
provides an insight into how a sparse coupling structure can lead to a sparse coding scheme. In this
work, we would mainly use neural networks as examples for illustration, while our results apply to
general binary-state networks.

2. Results

In the following analysis, we use binary vector V(l) = (σ1, · · · , σn) ∈ {0, 1}n to represent the
state of n nodes within the sampling time bin labeled by l. To obtain correlations up to the mth-order
requires to evaluate all

〈
σi1 · · · σiM

〉
E, where 1 ≤ i1 < i2 < · · · < iM ≤ n, 1 ≤ M ≤ m, and 〈·〉E

is defined by〈g(l)〉E = ∑NT
l=1 g(l)/NT for any function g(l) and NT is the total number of sampling

time bins in the recording. The mth-order MEP analysis is to find the desired probability distribution
P(V) for n nodes by maximizing the entropy S ≡ −∑V P(V) log P(V) subject to correlations up to the
mth-order (m ≤ n). To solve this optimization problem [24], one introduces Lagrangian multipliers
for each constraint, that is, −Ji1···ik for the constraint of

〈
σi1 · · · σik

〉
E and (Z− 1) for the constraint of

∑V P(V) = 1. The optimization problem is

Pm(V) = arg max
P(V)
−∑

V
P(V) log P(V)−

m

∑
k=1

n

∑
i1<···<ik

Fi1···ik − F0,

where
F0 = (Z− 1)(∑

V
P(V)− 1),

Fi1···ik = −Ji1···ik

(
∑
V

P(V)
k

∏
j=1

σij(V)−
〈
σi1 · · · σik

〉
E

)
,

and σij(V) is the state of the ijth node in the network state V. Since the entropy S is a convex function
of P(V), the unique distribution can be solved by taking a derivative of the above objective function
with respect to each P(V) as follows:
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Pm(V) =
1
Z

exp(
m

∑
k=1

n

∑
i1<···<ik

Ji1···ik σi1 · · · σik ), (1)

where, following the terminology of statistical physics, we call Ji1···ik a kth-order effective interaction
(1 ≤ k ≤ m), the partition function Z is the normalization factor. Equation (1) is referred to as the
mth-order MEP distribution. When m < n, the constants Ji1···ik can be determined by all constraints
through a commonly used iteration method [13]. When m = n, all order moments of the experimentally
observed distribution are used as constraints; thus, the above optimization problem has only one
feasible solution, that is, the experimentally observed distribution [25,26].

First, we discuss the relationship between effective interactions and the statistical distribution
of network states. By taking the logarithm of both sides of Equation (1) for Pn(V), we can
get a set of linear equations of all-order effective interactions for all states V. Since Pn is the
same as the experimentally observed distribution [25], we can obtain the effective interactions
in Pn in terms of the experimentally observed distribution [27]. For example, n = 3, we can
obtain J1 = log(P100/P000) and J12 = log(P110/P010)− J1, where Pσ1σ2σ3 represents the probability
of the network state (σ1, σ2, σ3). By applying P(σ1, σ2, σ3) = P(σ1|σ2, σ3)P(σ2, σ3), we have
J1 = log P(σ1=1|σ2=0,σ3=0)

P(σ1=0|σ2=0,σ3=0) and J12 = log P(σ1=1|σ2=1,σ3=0)
P(σ1=0|σ2=1,σ3=0) − J1 , J1

1 − J1. Our earlier study has shown
a recursive structure among effective interactions, that is, the (k + 1)st-order effective interaction
J123...(k+1) can be obtained as follows [27]: first, we switch the state of the (k + 1)st node in J123...k from
silent to active to obtain a new term J1

123...k, e.g., from J1 to J1
1 ; then, we subtract J123...k from the new

term to obtain J123...(k+1), i.e.,
J123...(k+1) = J1

123...k − J123...k. (2)

Without loss of generality, we randomly select two nodes labeled by 1 and 2. By the recursive
relation, any kth-order effective interaction that includes node 1 and 2 can be expressed as the
summation of terms with the following basic form:

Jb
12(σ3, · · · , σn) = log P(σ1=1|σ2=1,σ3,··· ,σn)

P(σ1=0|σ2=1,σ3,··· ,σn)

− log P(σ1=1|σ2=0,σ3,··· ,σn)
P(σ1=0|σ2=0,σ3,··· ,σn)

.
(3)

Note that we use superscript b to denote “basic”. For any i and j (i 6= j), the states of node l (l 6= i, j)
in Jij is silent. Jb

ij is a function of states of nodes σl’s (l 6= i, j) by replacing the silent state of every

node l (l 6= i, j) in Jij with variable σl ∈ {0, 1}. For example, J123 = Jb
12(1, 0, · · · , 0)− Jb

12(0, 0, · · · , 0)
and J1234 = [Jb

12(1, 1, 0, · · · , 0)− Jb
12(0, 1, 0, · · · , 0)]− J123. We can observe that if nodes 1 and 2 are

independent conditioned on all other nodes, i.e., P(σ1|σ2 = 1, σ3, · · · , σn) = P(σ1|σ2 = 0, σ3, · · · , σn),
any effective interaction containing these two nodes is zero.

Next, we would show what kind of coupling structure could entail the conditional independence
of two nodes. Here, we define some notations. In any sampling time bin [0, ∆) with state
V = (σ1, · · · , σn), ∀t ∈ [0, ∆), we denote Ii,t as node i’s input from the outside of the network,
denote wij(t) as the input from the node i to node j, denote C(i) as the set of all child nodes of node i,
denote Ui = C(i) ∪ {i}, denote P(e) as the probability of event e, denote U0 = {1, 2, · · · , n}.

Fact 1. For n pulse-coupled nodes with binary-state dynamics on a network with a coupling structure G0,
in any sampling time bin [0, ∆), ∀t ∈ [0, ∆), ∀i1, j1 ∈ U0, we assume that: (a) the external inputs of each node
are independent from one another, i.e., P(Ii1,t, Ij1,t) = P(Ii1,t)P(Ij1,t); (b) whether a parent node sends spikes
to its child nodes only depends on its state, i.e., P(wi1 j1(t), V) = W(σi1 , i1, j1, t), where W(·, ·, ·, ·) is a real
function. ∀i, j ∈ U0, if they neither are connected nor share any common child node, i.e., Ui ∩Uj = φ, then,
node i and j are independent conditioned on the state of all other nodes, i.e.,

P(σi, σj|H) = P(σi|H)P(σj|H), (4)
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where H is a possible state of nodes in U0\{i, j}.

We justify our two assumptions as follows: to avoid the influence of correlation in external
inputs when we are studying the relation between the dynamical structure and the coupling structure,
we assume that the external input of each node is independent from one another, i.e., assumption (a).
The second assumption implicates a Markov-like property; that is, for a connected pair of pulse-coupled
nodes in an equilibrium state, the pulse from the parent node to the child node only depends on the
state of the parent node but is independent from inputs imposed on the parent node. For example,
in neural networks, a neuron sends out spikes only when this neuron is active, regardless of what
inputs are imposed on the neuron.

The argument for the conclusion in Equation (4) is as follows. By assumption (a), node i and node
j can be dependent only through the coupling structure G0. When we are considering how node i and
node j affect each other by changing their states through the coupling structure G0, we can consider
a simplified coupling structure, G1, which ignores those connections that are independent from states
of node i and node j, i.e., σi and σj. ∀k ∈ Uo\{i, j}, i.e., any other node k, its state σk is fixed when we
are considering the conditional probability in Equation (4). By assumption (b), for node k’s any child
node l, the input from node k to node l is independent from σi and σj. Thus, the connections started
from those nodes in Uo\{i, j} are fixed for different states of σi and σj. Therefore, G1 is a simplified
coupling structure that only keeps those connections that originated from node i and node j in G0.
In G1, any connection only exists in either sub-network Ui or sub-network Uj. Under the condition
Ui ∩Uj = φ, i.e., they neither are connected nor share any common child node, sub-network Ui and
sub-network Uj are two isolated sub-networks. σi and σj cannot affect each other by changing their
states through the coupling structure G1, that is, node i and j are independent conditioned on the states
of all other nodes.

Figure 1 displays an example to illustrate our observed Fact. The coupling structure G0 is shown
in Figure 1a. We focus on node 1 and node 2, where they neither are connected nor share any child
node. When the state of other nodes (black) are fixed, all outputs from black nodes can be ignored in
the simplified coupling structure G1, as shown in Figure 1b. Node 1 and node 2 respectively belong to
two separate sub-networks. Therefore, nodes 1 and node 2 are independent conditioned on the state of
all other nodes.

(a) (b)

Figure 1. Structure vs. simplified structure.

Based on the recursive structure of effective interactions and the observed Fact, we reach
the following conclusion: with the two assumptions in the observed Fact, for a group of nodes
{i1, i2, · · · , ik}, if there exists at least one pair of nodes that neither are connected nor share any child
node, effective interaction Ji1,i2,··· ,ik is zero.

The system we would use to examine our conclusion is an integrate-and-fire (I&F) network,
a general pulse-coupled network, with both excitatory and inhibitory nodes [21]. For the ith node,
the dynamics of its state variable xi with time scales τ are governed by

ẋi = −
xi
τ
− (gbg

i + gex)(xi − xex)− gin
i (xi − xin), (5)
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where xex and xin are the reversal values of excitation (ex) and inhibition (in), respectively.
gbg

i = f ∑k H(t− TF
i,k) exp[−(t− TF

i,k)/σex] is the background input with magnitude f and
time scale σex, TF

i,k is a Poisson process with rate µ, H(·) is the Heaviside function,
gex

i = ∑j ∑k Sex
ij H(t− Tex

j,k ) exp[−(t− Tex
j,k )/σex] is the excitatory input from other jth excitatory nodes,

and gin
i = ∑j ∑k Sin

ij H(t− Tin
j,k) exp[−(t− Tin

j,k)/σin] is the inhibitory input from other jth inhibitory
nodes. The jth excitatory (inhibitory) node xj evolves continuously according to Equation (5) until
it reaches a firing threshold xth. That moment in time is referred to as a firing event (say, the kth
spike) and denoted by Tex

j,k (Tin
j,k). Then, xj is reset to the reset value xr (xin < xr < xth < xex) and held

xr for an absolute refractory period of τref. Each spike emerging from the jth excitatory (inhibitory)
node causes an instantaneous increase Sex

ij (Sin
ij ) in gex

i (gin
i ), where Sex

ij and Sin
ij are the excitatory

and inhibitory coupling strengths, respectively. The model (5) describes a general class of physical
networks [1,3,21,28,29]. To be intuitive, the I&F model described in Equation (5) can be understood
through a resistor–capacitor circuit. Each neuron is a leaky circuit, which consists of a capacitor with
dimensionless capacitance as 1 in parallel with two resistors. xi is the voltage. ẋi on the left-hand side
is the current which passes through the capacitor. On the right-hand side, −xi/τ is the leaky current.
The first resistor has a reversal potential xex with conductance (gbg

i + gex). Therefore, the second term
on the right-hand side obtained by the Ohm’s law is the current that passes through the first resistor.
Note that the conductance is affected by inputs. It is similar for the third term on the right-hand side,
i.e., the current that passes through the second resistor.

In the first example, two excitatory and two inhibitory I&F nodes form a ring coupling structure
(Figure 2a). For any pair of nodes, say, node i and j, we compute ∆ij(H) = |P(σi = 1|σj = 1, H)−
P(σi = 1|σj = 0, H)|, where H is a state vector of other two nodes. By our observed Fact, the conditional
independent pairs are (neuron 1, neuron 3) and (neuron 2, neuron 4), and other pairs are categorized
as dependent pairs. In Figure 2b, the strengths of ∆ij(H) of independent pairs (green) are almost two
orders of magnitude smaller than those of dependent pairs (red). We then shuffle spike trains of each
node. We similarly compute ∆ij(H) for 10 different pieces of shuffled data. Blue dots and cyan dots
in Figure 2b are results of all shuffled data of dependent pairs and independent pairs, respectively.
The strength of ∆ij(H) of independent pairs (green)—computed from the observed data—are within
the statistical error of shuffled data. We then solve effective interactions in the full-order MEP analysis
Pn for this ring network. As shown in Figure 2c, the effective interaction strengths of independent
pairs (J24 and J13) are within the statistical error of shuffled results (red). Since every high-order (≥3)
effective interaction includes at least one independent pair of nodes, as predicted, the strengths of all
high-order effective interactions are within the statistical error of shuffled results as shown in Figure 2d.

In the second example in the second row in Figure 2, results are similar in that dependent pairs
and independent pairs can be identified through our observed Fact, and the strength of any effective
interaction that includes the independent pair of nodes (node 1 and node 3) is within the statistical
error of shuffled data. In this example, as shown in Figure 2h, J124 is very small, i.e., within the
statistical error of shuffled results. However, J124 does not include the independent pair of nodes
(node 1 and node 3); thus, the theoretical estimation of zero-strength effective interactions misses
J124. This example indicates that our theoretical estimation result may give rise to an upper bound of
the number of non-zero effective interactions. In contrast, for a network of all excitatory nodes with
the same coupling structure as the one in Figure 1e, J124 is significantly larger than zero (not shown).
Since the estimation of the strength of high-order effective interactions involves the estimation of high
dimensional joint probability distribution, a very long recording due to the curse of dimensionality
constrains us from examining ∆ij(H) for a large network.
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Figure 2. Anatomical structure vs. effective interactions of integrate-and-fire networks. Each row shows a numerical case. In the first column, black arrows and
red arrows represent excitatory and inhibitory connections, respectively. In the second column, red and green dots are the strengths of ∆ij(H) of dependent and
independent pairs, respectively. Blue dots and cyan dots are the strengths of ∆ij(H) of dependent and independent pairs from ten shuffled spike trains, respectively.
Each dot is for one ∆ij(H). The third and fourth columns display absolute effective interaction strengths (blue bars). The corresponding node indexes for each effective
interaction are shown in the abscissa. The mean and standard deviation of absolute strengths of each effective interaction of ten shuffled spike trains are also displayed
by garnet bars. The simulation time for each network is 1.2× 108 ms. The time bin size for analysis is 10 ms [12,13]. Independent Poisson inputs for each network are
µ = 0.1 ms−1 and f = 0.1 ms−1. The firing rate of each node is about 50 Hz. Parameters are chosen [28] as xex = 14/3, xin = −2/3, σex = 2 ms, σin = 5 ms, τ = 20 ms,
xth = 1, xr = 0, and τref = 2 ms, Sex

ij = Sin
ij = 0.02.
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Based on the relation between the coupling structure and effective interactions, the number of
non-zero high-order effective interactions can be small in a sparsely connected network compared with
Ck

n, which is the number of all possible kth-order interactions. For example, we estimate the number
of each-order non-zero effective interactions in a network with an Erdos–Renyi connection structure.
We generate 1000 Erdos-Renyi random networks of 100 nodes (the same connection probability
but different random samples). In each network, for any pair of node i and node j, we assign the
connection from node i to node j by the following rule: we generate a random number from the
uniform distribution on [0, 1]; if the number is smaller than 0.05, we assign a connection from node i to
node j. As shown in Figure 3, the number of non-zero kth-order (k > 1) effective interactions is much
smaller than Ck

100 (too large to be shown). The number of high-order effective interactions (order higher
than 11th) almost vanishes (order higher than 20th not shown). In this example, the sparseness, i.e.,
the ratio of the number of non-zero effective interactions to 2n, is less than 10−24.

Figure 3. Non-zero effective interactions in the Erdos-Renyi random networks. We generate 1000
Erdos-Renyi random networks of 100 nodes (the same connection probability but different random
samples). The connection probability between two nodes is 0.05. The number of non-zero effective
interaction is plotted against effective interaction order. The mean and standard deviation are
respectively shown by the black line and shaded area.

3. Conclusions and Discussion

In summary, we have established a relation between effective interactions in MEP analysis and the
anatomical coupling structure (“coupling structure” for simplicity in the following) of pulse-coupled
networks to understand how a sparse coupling structure could lead to a sparse coding by effective
interactions. For example, the sparseness of the case in Figure 3 is less than 10−24. Since effective
interactions characterize how nodes interact with each other in the recording of dynamical data,
i.e., network dynamical structure, our study quantitatively displays how the dynamical structure
closely relates to the coupling structure.

Even though high-order effective interactions are often much smaller compared with low-order
ones [27], it is still unclear why small high-order effective interactions do not accumulate to have
a significant effect in a large network [10,30]. For example, it has been shown that MEP distribution with
sparse low-order effective interactions—non-zero effective interactions are sparse and vanish when
the order is higher than the eighth-order—can well capture the state distribution of 99 ganglion cells in
the salamander retina responding to a natural movie clip or natural pixel [10]. In this study, we show
that a large amount of effective interactions vanish in a sparse coupling structure, thus rationalizing
the absence of the accumulation of high-order interactions for a large network.

Finally, we point out that some important issues remain to be elucidated in the future. First,
we have ignored correlations in external inputs when estimating the number of non-zero effective
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interactions. Correlated inputs can induce non-zero high-order effective interactions [31]. It still
needs to be considered how the statistics of inputs affect the sparsity of effective interactions. Second,
current algorithms for estimating non-zero effective interactions (not limited to the second-order)
for a large network (e.g., ∼100 nodes) are very slow, e.g., Monte Carlo based methods [30,32].
Our undergoing work is developing a fast algorithm that exploits the sparsity of effective interactions.
We have seen an indication that the algorithm can work well for an I&F network with sparse coupling
structure; however, that work has yet to be fully verified to be conclusive.
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