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Abstract – The maximum entropy principle (MEP) has been applied to study various problems
in equilibrium and nonequilibrium systems in physics and other disciplines. Through analyses
of numerical and experimental data, we demonstrate that the widely used entropic criteria, an
assessment of the validity of MEP, can be misleading indexes as they can often fail to reflect the
important difference between the observed and the MEP predicted statistical distribution. Our
work demonstrates the importance of high-order statistical structures that cannot be captured by
the entropic criteria and provides a cautionary tale of over-interpretation of results of MEP.

This paper is dedicated to David Cai.
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Many systems in science, engineering and sociology can
be described as complex networks in which each node
is considered to be one of two possible states, e.g., in-
creasing or decreasing of stock prices in market systems,
susceptible or infected in epidemic spreading of a disease
in human society, up or down of spins in ferromagnetic
systems, and firing or quiescence of neurons in neuronal
systems. To characterize the emergence of network col-
lective behavior of these nodes, the ideas from statistical
physics, e.g., the maximum entropy principle (MEP), have
been successfully applied to many disciplines, e.g., com-
plex networks [1], neuroscience [2–7], stock market [8], and
functional magnetic resonance imaging [9]. These applica-
tions [2–4,8–13] have lent credence that the second-order
MEP probability distribution, which is obtained by max-
imizing the entropy subject to the measured constraints
of the means and the second-order correlations, succeeds

(a)E-mail: zhiqinxu@nyu.edu
(b)E-mail: zdz@sjtu.edu.cn

† Deceased.

in capturing 90%–99% of information (as measured by
multi-information fraction (MIF)) in various systems. The
information is defined as follows. Entropy indicates the
uncertainty in knowledge about the state of a system.
Given more constraints, e.g., correlations, the uncertainty
would decrease. Here the information captured by corre-
lations is the decrement of entropy induced by the mea-
sured constraint of correlations under MEP [2–4]. The
MIF is defined as the ratio between the information of the
second-order correlations and all-order correlations (ex-
act definitions can be found in eqs. (2), (3)). Intuitively,
a MIF of 90% indicates that the uncertainty reduced by
correlations higher than the second-order ones is less than
10% of the uncertainty reduced by the second-order corre-
lations. However, as a coarse-grained characterization of
probability distributions, a MIF of 90% does not directly
measure how close is the second-order MEP distribution
to the observed distribution.

The good performance of the second-order MEP model
implies the universal low-dimensional, i.e., up to the
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second-order, statistical correlation structure in these sys-
tems. However, the second-order MEP (pairwise suffi-
ciency) could be insufficient in experimental data. For
example, empirical studies found that the second-order
MEP distribution is no longer sufficient for networks
over fine-scales (i.e., local clusters of neurons within
300 µm [14]). A series of studies investigated this pair-
wise sufficiency [12,15–18], such as how the pairwise suffi-
ciency depends on the inputs [12,16]. Meanwhile, methods
have also been developed to account for high-order effec-
tive interactions in the MEP analysis when the pairwise
sufficiency fails [19–22], such as adaptively identifying the
specific pairwise and higher-order moments in the MEP
model [22] and using generalized entropies to incorporate
correlations [23].

The MIF has been a widely used quantity to assess the
performance of the second-order MEP analysis. For ex-
ample, many experiments show that MIF is more than
90% in many neuronal networks [2–4,10] e.g., vertebrate
retina [2], in the stocks orientation data [8] and fMRI
(functional magnetic resonance imaging) data. In addi-
tion, with MIF, previous works show that the effect of
high-order interactions could be important in MEP anal-
ysis [11,12]. MIF is also used to study the sensitivity of
MEP analysis with respect to various factors, such as com-
mon input [3], sampling bin size [4], and temporal corre-
lation [10]. A perturbation analysis shows how the MIF
depends on the network size in a regime in which the activ-
ities of different neurons in the network are approximately
statistically independent [15].

Despite wide applications of the MEP analysis and the
entropic criteria using MIF, there are several important
issues that remain to be clarified. First, entropy is a
coarse-grained characterization of uncertainty about the
underlying distribution. It is yet to demonstrate how well
the entropy decrement, described by MIF, can measure the
discrepancy of fine structures in the estimated distribu-
tion with respect to the observed one. Second, high-order
structures are often significant to generate synchroniza-
tion dynamics [14,16], which is believed to be important
for information processing in the brain [24]. It is yet to
demonstrate whether high values of MIF can be construed
as irrelevance of high-order structures.

In this work, we investigate the validity of entropic crite-
ria in assessing the performance of the second-order MEP
model by analyzing data from both constructed model
systems and physiological experiments. We demonstrate
that the widely used MIF [2–4,8–13,15] can be a mislead-
ing index as a high MIF can still often fail to reflect the
important difference between the observed distribution of
network states and the distribution predicted by the MEP
model. The MIF can illude one to overestimate the power
of MEP results because a high MIF has been often erro-
neously construed as irrelevance of high-order structures,
notwithstanding their importance for capturing the true
distribution of network states. Our numerical and exper-
imental analyses indicate that instead of using MIF, it is

better to assess the performance of the MEP analysis by
comparing the probability distribution observed in the ex-
periment to that predicted by the MEP model.

To begin with, we consider a network of n nodes and
record its state in each sampling time bin. The state of
the i-th node σi is either 0 or 1, indicating a silent or an
active state. For all n recorded nodes, the state in each
sampling time bin can be described by a binary vector
Σ = (σ1, · · · , σn) ∈ {0, 1}n. By maximizing the entropy
subject to measured correlations up to the m-th order
(m ≤ n) (see the subsect. “Maximum entropy principle
(MEP) analysis” in the following), the m-th order MEP
probability distribution can be obtained [25] in eq. (1):

Pm(Σ) =
1

Z
exp

⎛

⎝

n
∑

i=1

Jiσi +

n
∑

i<j

Jijσiσj

+ · · · +
n

∑

i1<···<im

Ji1,··· ,im
σi1 · · ·σim

)

, (1)

where Z is the normalization factor and Ji1,··· ,ik
is

the k-th order effective interaction (1 ≤ k ≤ m),
which can be estimated by an iterative scaling algo-
rithm [4,26]. The corresponding entropy for Pm is
Sm = −

∑

Σ Pm(Σ) log Pm(Σ). Note that the highest-
order MEP probability distribution is Pn(Σ), which will
be referred to as the full MEP distribution. One can show
that Pn(Σ) is identical to the experimentally observed
distribution Pobs(Σ) for any recording time [27] because
Pn is subject to all-order moments of Pobs(Σ).

The entropy decreases with the number of constrained
correlations increasing [2,4], i.e., S1 ≥ S2 ≥ · · · ≥ Sn = S,
where S is the entropy of Pobs(Σ). The multi-information
In is defined by In = S1 − Sn, the amount of infor-
mation accounted for by the second-order correlations is
I2 = S1 − S2 and the MIF [2,4] f is defined by

f = I2/In. (2)

Another closely related criterion [3,4] using the Kullback-
Leibler divergence is

g = 1 − D2/D1, (3)

where Dm =
∑

Pn log(Pn/Pm) for m = 1, 2. Our results
show that the conclusions using f and g are similar. For
brevity, we only show the results using f below. Note that
f and g are defined by ratios and not directly related to the
absolute value of entropy or Kullback-Leibler divergence.
The MIF is commonly regarded as the quantification of
how much information is captured by the second-order
correlations. As mentioned above, the MIF is found to
be in the range of 90%–99% for states of various types of
data [2–4,8–13,15].

We now discuss whether the MIF can be used as a crite-
rion to assess the validity of the second-order MEP model.
The following numerical examples of the full MEP dis-
tribution Pn are constructed using eq. (1) under the ho-
mogeneity condition by assuming an identical interaction
strength for interactions of the same order. Therefore,
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there are only n + 1 possible probability intensities for 2n

states of n nodes. We denote J (k) as the effective inter-
action strength of the k-th order, 1 ≤ k ≤ n. Figure 1(a)
illustrates the result that in the representation of {0, 1}
for binary states, the MIF can be very high for a dis-
tribution of 7 nodes with a vanishing interaction of the
first two low orders but with nonvanishing high-order in-
teractions of the third and fourth-order interactions only
—J (1) = 0, J (2) = 0, but J (3) = 0.5, J (4) = −0.2857
while the strength of interaction of any-order higher than
four here is set to zero. The MIF for this case is as high
as 92%, notwithstanding the only nonvanishing orders are
the third and fourth orders. With vanishing interactions of
the first and second orders, the MEP probability distribu-
tion P2 thereby fails to capture the full MEP distribution
Pn for n = 10 (fig. 1(a)). Illustrated in fig. 1(b) is a case
with an almost perfect performance of the second-order
MEP probability to represent the full MEP distribution
but with an extremely low MIF (12%) in a nearly inde-
pendent system —J (1) = −5, J (2) = 0.001, J (3) = 0.1
while the strength of the effective interaction of any order
higher than three is set to zero for n = 5. Despite such a
low MIF, surprisingly, the first- and the second-order MEP
probability distributions are both in excellent agreement
with the full MEP Pn.

We further study the functional dependence of MIF on
the effective interaction strength. It turns out that it
exhibits a rather complex behavior. An example is dis-
played in fig. 1(c), which shows the MIF as a function of
the third-order interaction J (3) in the MEP distribution
of seven nodes with J (1) = 0, J (2) = 0.05, J (k) ≡ 0 for
4 ≤ k ≤ 7. Clearly, the behavior of MIF is not a simple
function of J (3), neither monotonically increasing nor de-
creasing, with its value varying widely from nearly 0 to 1.
As J (3) becomes dominating over the low-order interac-
tions by more than one order of magnitude in strength, it
results in a poor characterization of Pn by P2 but still with
a relatively high MIF (greater than 90%). For example,
J (3) = −1.9 (fig. 1(d)), the MIF is 91.5%, whereas P2 is
not close to the full MEP distribution Pn at all. The above
examples demonstrate that the entropic difference as char-
acterized by MIF is unable to quantify the discrepancy be-
tween the second-order MEP probability distribution and
the full MEP distribution as observed in the experiment.

Note that in the first case in fig. 1(a), if we represent
the binary states by {−1, 1}, then, the strength for inter-
actions of the same order is still the same with the first
order as 0.75, the second order as 0, the third order as
−0.0625 and the fourth order as −0.0179. Therefore, al-
though there is no pairwise interaction in both representa-
tions of {0, 1} and {−1, 1}, we still have a high MIF, 0.92.
In addition, to emphasize the similarity between indexes
f in eq. (2) and g in eq. (3), we list their values for the
first two examples. For fig. 1(a), f = g = 0.920253. For
fig. 1(b), f = 0.119343 and g = 0.119519.

Next, we use data from our physiological experiments
with calcium imaging [28] (see the subsect. “Calcium

Fig. 1: MEP analysis using numerically constructed probability
distribution. As in the text, J

(1), J
(2), J

(3), J
(4) are the first-,

second-, third- and fourth-order effective interaction strength,
respectively. For (a), (b) and (d), the MEP probability P2

(green), and P1 (magenta) of firing states is shown against the
full MEP distribution Pn. Each data point here corresponds to
a particular network state. The case in (a) has the MIF of 92%
for 10 nodes. J

(1) = 0, J
(2) = 0, J

(3) = 0.5, J
(4) = −0.2857,

J
(k)

≡ 0 for 5 ≤ k ≤ 10. Points with probability smaller than
10−20 are not plotted. The case in (b) has the MIF of 12%
for 5 nodes. J

(1) = −5, J
(2) = 0.001, J

(3) = 0.1, J
(k)

≡ 0
for 4 ≤ k ≤ 5. The constructed MEP probabilities P1 and P2

using these J ’s overlap each other rather well. (c) MIF vs. the
third-order effective interaction. Here we use 7 nodes, J

(1) = 0,
J

(2) = 0.05, J
(k)

≡ 0 for 4 ≤ k ≤ 7. The case in (d) is one
of cases in (c) for J

(3) = −1.9. The MIF is 91.5%. Points
with probability smaller than 10−10 are not plotted. The inset
zooms in to a region of the comparison between the full MEP
distribution Pn and P2.

Imaging experiment” in the following) to show that high-
order structures can be crucial to determine the distri-
bution of network states even if the MIF is greater than
90%. The sampling time of spike trains maintains the tol-
erance ǫ in our entropy estimation within 2.5%. For any
recorded neuron, e.g., the i-th neuron, if it fires at least
once during the sampling time bin, the neuronal state σi

is set to be 1, otherwise it is set to 0. To avoid multi-
ple firing in a time bin, the bin size is often chosen to be
∼10 ms in experiments [2–4]. We perform the MEP anal-
ysis for five selected neurons recorded in experiment using
different bin sizes ranging from 4 ms to 27 ms. The MIF
for all the bin sizes is greater than 89%, and can be even
greater than 95% for a broad range of the bin size, as is
displayed by the solid black line in fig. 2(a). In addition,
we discover that the MIF depends sensitively on the size
of the neuronal group analyzed. Figure 2(a) displays the
MIF of a group of three neurons chosen from the above
five neurons. For all bin sizes, the MIF decreases in gen-
eral as the group size increases. The effect of the group
size is consistent with the theoretical study in ref. [15]
and the empirical study in ref. [20] that the performance
of the second-order MEP analysis in a small-size network
could be very different from that in a large-size network.
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Fig. 2: MEP analysis using experimental data measured by cal-
cium imaging (see the subsect. “Calcium Imaging experiment”
in the following). Data from five neurons are collected to per-
form the MEP analysis. The firing rates are 2.8 Hz, 3.0 Hz,
3.9 Hz, 6.0 Hz, 7.2Hz for these neurons, respectively. The total
recording time is 45 s. (a) The MIFs for the neuronal group of
size N = 3 and N = 5. The black dashed and solid lines are
the MIFs for N = 3 and N = 5, respectively. (b) The predicted
MEP probability distribution P4 (blue), P3 (red) P2 (black),
and P1 (magenta) of each firing state against the probabil-
ity directly measured from experiment. Each data point here
corresponds to a particular neuronal firing pattern. Plotted
is the data of all bin sizes aggregated. The inset is for the
case of bin size 13 ms, for which the MIF is 94%. (c) Corre-
lation strength vs. sampling time bin size. The data point is
the mean absolute value of correlation strengths of the corre-
sponding order for these five neurons, means (magenta), the
second-order correlations (black), the third-order correlations
(red) and the fourth-order correlations (blue). The standard
deviation is indicated by the error bar. (d) Effective inter-
action strength vs. sampling time bin size. The data point is
the mean absolute value of effective interaction strengths of the
corresponding order for different sampling time bin sizes, the
first order (magenta), the second order (black), the third order
(red), and the fourth order (blue). The standard deviation is
indicated by the error bar.

Therefore, great care should be taken to extrapolate MEP
results from a small group of neurons to a large group [2].
Illustrated in fig. 2(b) is the MEP probability of each firing
pattern predicted from the MEP analysis P4, P3, P2, and
P1 of all bin sizes plotted against the probability Pobs(Σ)
measured from the experiment. The second-order MEP
probability P2 deviates significantly from Pobs(Σ) for all
bin sizes. The case in the inset of fig. 2(b), which displays
only data of the bin size of 13 ms, emphasizes the fact that
a P2 of a MIF as high as 94% can still strongly deviate
from the observed distribution.

As observed in experiments [2,29], most pairs of neu-
rons are weakly correlated while the neuronal population
as a whole is strongly correlated. To understand the rela-
tion between the correlation and the performance of the
second-order MEP model, we next examine the role of the
correlation strengths in the MEP probability reconstruc-
tion. Here, the k-th–order correlation is the expectation of

(σi1−σ̄i1) · · · (σik
−σ̄ik

) for neurons with respect to Pobs(Σ)
of neuronal firing patterns, with σ̄ij

being the mean
value of σij

. Even though the high-order correlations are
nearly one order of magnitude smaller than the first- and
the second-order correlations (fig. 2(c)), the second-order
MEP probability distribution can be in drastic disagree-
ment with the experimental measurement (fig. 2(b)). The
case of the bin size of 13 ms, which has high-order correla-
tions nearly one order of magnitude weaker than the first-
and the second-order correlations, exemplifies the failure
of the second-order MEP probability P2 (black in the in-
set of fig. 2(b) to capture the observed distribution. Con-
sequently, weak high-order correlations do not underpin
the success of low-order MEP probabilities to represent
the observed probability Pobs(Σ). We can use the follow-
ing example to intuitively understand the effect of weak
high-order correlation. Consider a high-synchronization
network with high firing rates. The mean of a neuron’s
state, σ̄i1 , is close to 1. Then, (σi1 − σ̄i1) is close to
zero. The k-th–order correlation is close to (σi1 − σ̄i1)

k. In
such case, higher-order correlations would be much smaller
than low-order correlations. However, the high-order ef-
fective interactions could be comparable to low-order ones.
Thus, a low-order MEP analysis cannot capture the ob-
served probability distribution. A more rigorous study
of this correlation effect can be found in ref. [5]. There-
fore, an over-interpretation of a high MIF as a signifier to
downplay the importance of high-order correlations (even
though they can be weak) can cause an underestimation of
the significant impact of high-order structures in neuronal
coding.

Finally, we address the role of effective interactions in
the MEP probability reconstruction. First, we note that
strengths of all effective interactions in the full MEP dis-
tribution can be obtained using the observed distribution
Pobs(Σ) (see the subsect. “The interactions in the n-th
order MEP analysis” in the following). We display in
fig. 2(d) the mean of the absolute values of effective in-
teraction strengths of different orders in the full MEP dis-
tribution against different bin sizes for the five selected
analyzed neurons above. For all bin sizes, it can be clearly
seen that the third- and the fourth-order effective inter-
actions are comparable to the first- and the second-order
interactions. Note that the second-order MEP analysis
takes into account the first two order effective interactions
only while ignoring high-order structures. A theoretical
analysis of the difference between the correlation and ef-
fective interaction can be found in ref. [5]. Therefore, a
high MIF (as demonstrated in fig. 2(a)) or weak high-
order correlation (as demonstrated in fig. 2(c)) entails
neither a second-order MEP probability P2 that can well
capture the experimentally observed distribution nor neg-
ligible high-order effective interactions, as commonly as-
sumed [2–4].

For information transmission, entropy is introduced to
characterize the uncertainty associated with a distribu-
tion instead of the precise form of the distribution [30].
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However, as a coarse-grained description of a distribution,
an entropic criterion, e.g., MIF, is often insufficient to
characterize whether an estimated distribution can rep-
resent the experimentally observed distribution and often
becomes problematic in assessing the performance of an
MEP analysis. Note that the state variables of nodes in
our study are chosen as 1 for active and 0 for inactive,
the same as discussed in previous works [2,3,31]. How-
ever, we point out that our conclusion is also valid for
other choices of binary-state variables, e.g., 1 for active
and −1 for inactive. In summary, the MIF may lead to an
incorrect characterization of the distribution of neuronal
firing patterns and thereby neuronal information coding.
Considering that the MEP analysis has been widely used
in diverse fields to infer the statistical distribution of sys-
tem states, our results provide a cautionary tale of the
over-interpretation of MEP results.

Methods. –

Maximum entropy principle (MEP) analysis. The
MEP analysis has been described in detail in the previous
works [3,4,25]. Given the expectation values of functions

fr(x) for r = 1, 2, · · ·m, i.e., 〈fr(x)〉 =
∑L

i=1 pifr(xi),

and the normalization constraint
∑L

i=1 pi = 1, where
pi is the probability of xi, the quantity x is assumed
to take the discrete values xi (i = 1, 2, · · · , L). x can
be a scalar or a vector. The corresponding entropy is
S = −

∑L

i=1 pi ln pi. Maximizing the entropy S subject
to the given constraints yields the MEP probability dis-
tribution pi = exp{−λ0 −

∑m

k=1 λkfk(xi)}, where λk for
k = 0, 1, · · · , m are the Lagrangian multipliers.

For an ensemble of n nodes, its state in each sampling
time bin can be denoted by Σ = (σ1, · · · , σn) ∈ {0, 1}n.
Here, the k-th–order correlation is the expectation of
(σi1 − σ̄i1 ) · · · (σik

− σ̄ik
) for nodes with respect to the

observed distribution Pobs(Σ) of network states, with σ̄ij

being the mean value of σij
. To obtain correlations up

to the m-th order requires to evaluate all expectations
of σi1σi2 · · ·σiM

for nodes with respect to Pobs(Σ), where
i1 < i2 < · · · < iM and 1 ≤ M ≤ m. The m-th–order
MEP probability is the distribution by maximizing the
entropy subject to measured correlations up to the m-th
order as in eq. (1) in the main text. Numerically, we use
an iterative scaling algorithm [4,26] to estimate the pa-
rameters of the MEP model in eq. (1) in the main text for
m less than n.

For the numerical examples in the MEP analysis, first,
Pn is obtained using eq. (1) in the main text with given
strengths of effective interactions. Then, the mean val-
ues and the second-order correlations are computed with
respect to Pn and are used as constraints of the entropy
maximization for obtaining P2. Finally, we estimate pa-
rameters for P2 as above.

Calcium Imaging experiment. Cell culture: Low-
density co-cultures of dissociated hippocampal neurons
and glial cells from E18 rat embryos were prepared as

previously described [28]. Briefly, glass coverslips were
evenly pre-coated with poly-L-lysine (PLL) and then cov-
ered with ∼ 200 µm thick membranes made of PDMS
(Sylgard 184, Dow Corning). An array of 1 mm diameter
holes were pre-made on the membrane following standard
soft photolithographic procedures, forming wells on the
PLL-coated coverslip. Dissociated hippocampal cells were
evenly plated onto the coverslips. Each well supported
the growth of 50 to 100 neurons into interconnected net-
works with glial cells usually forming a monolayer under-
neath. Cultures were used at 12 to 14 days in vitro when
evoked reverberatory neuronal activity was frequently ob-
served. All animal experiments were performed according
to guidelines and protocols approved by the Animal Care
and Use Committee of University of Science and Technol-
ogy of China.

Electrophysiology: Perforated whole-cell recordings
were carried out at room temperature using patch-clamp
amplifiers (MultiClamp 700 B, Molecular Devices), as pre-
viously described [28]. Patch-clamp data were acquired
using customized IGOR Pro (WaveMetrics) programs. In-
tracellular pipette solution (pH 7.3) contained: 136.5 mM
potassium gluconate, 17.5 mM KCl, 9 mM NaCl, 1 mM
MgCl2, 10 mM Hepes, 0.2 mM EGTA, and ∼ 200 µg/ml
amphotericin B. The external bath solution (pH 7.3) con-
tained: 150 mM NaCl, 3 mM KCl, 3 mM CaCl2, 2 mM
MgCl2, 10 mM Hepes, and 5 mM Glucose. Stock solutions
of 10 mM BMI were prepared in water and used after di-
lution in external bath solution.

Fluorescent imaging: Cells were loaded with membrane
permeable calcium indicator Fluo-8 AM (TEFLabs) for
15 min at room temperature. Stock solution of the in-
dicator was prepared in DMSO with 20% pluronic F-127
(Invitrogen) and then diluted in bath solution to a final
concentration of 1 or 2 µM. Calcium imaging of network
activity was performed on an inverted microscope (Olym-
pus IX71) with a 20× (NA 0.7) objective. Image series
were acquired using an sCMOS camera (Andor Neo) at
200 frames per second. The camera and the light source
were both synchronized with electrophysiological stimula-
tion via custom-built hardware triggering circuits. After
an experiment, high K+ solution (same as that used in the
patch pipette without amphotericin B) was perfused to the
culture to activate all neurons in the network in order to
obtain high-brightness fluorescence images of all neurons.

Image analysis: Offline analyses of fluorescence im-
age series were carried out using ImageJ (NIH, http://
imagej.nih.gov) and custom programs based on Matlab
(MathWorks). After morphological segmentation based
on high-contrast images acquired in high K+ solution, the
relative calcium fluorescence signal (ΔF/F ) of each neu-
ron was measured. At the relatively high spiking rate dur-
ing reverberation, neuronal calcium signals in response to
each spike increases in a stepwise fashion. This is due to
the relatively slow clearance of calcium that has a typical
timescale of a few hundred milliseconds. To obtain the
spike train of each neuron, we first detected the inflection
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time points (T0) of each step, and performed local single-
exponential fitting in a time window (50 ms) before the
points T0 and linear fitting in 20 ms after T0. The cross-
ing timings of the exponential and linear fitting pairs were
identified as spike timings.

The time duration in experimental recording: The toler-
ance ǫ in our entropy estimation is set to be 2.5%, the time
duration in experimental recording for the full MEP anal-
ysis can be estimated as [32] Tmin ≥ 2n/(2nǫν̄), where ν̄
is the mean firing rate. In our data recorded by Calcium
Imaging, the minimum firing rate of neurons (fig. 2) is
2.8 Hz. The minimum experimental time scales can be es-
timated as Tmin ≥ 45 s. We recorded the neuronal spike
trains for 45 s in our experiment.

The interactions in the n-th order MEP analysis.
Since Pn is identical to Pobs(Σ), effective interactions in
the n-th–order MEP analysis can be computed by Pobs(Σ).
For a fixed sampling time bin, we partition the recording
time by the bin size and record the state of nodes at ev-
ery sampling time bin. We count the occurring frequency
of all possible states of n nodes as the observed distri-
bution Pobs(Σ) of network states. Substituting 2n states
of Σ = (σ1, σ2, · · · , σn) and Pobs(Σ) into the n-th–order
MEP analysisas shown in eq. (1) in the main text, then
taking the logarithm of both sides of eq. (1) in the main
text, we obtain a system of linear equations for all the
effective interactions in terms of Pobs(Σ),

n
∑

k=1

n
∑

i1<···<ik

Ji1,··· ,ik
σi1 · · ·σik

= log Pobs(Σ) + log Z, (4)

where Z = 1/Pobs(Σ = (0, 0, · · · , 0)). By solving the sys-
tem of linear equations (4), we can obtain all the 2n − 1
effective interactions J ’s for the n-th–order MEP analysis
in terms of Pobs(Σ).
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