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Abstract

State Space Models (SSMs) have emerged as promising alternatives to attention
mechanisms, with the Mamba architecture demonstrating impressive performance
and linear complexity for processing long sequences. However, the fundamental
differences between Mamba and Transformer architectures remain incompletely un-
derstood. In this work, we use carefully designed synthetic tasks to reveal Mamba’s
inherent limitations. Through experiments, we identify that Mamba’s nonlinear
convolution introduces an asymmetry bias that significantly impairs its ability to
recognize symmetrical patterns and relationships. Using composite function and
inverse sequence matching tasks, we demonstrate that Mamba strongly favors
compositional solutions over symmetrical ones and struggles with tasks requiring
the matching of reversed sequences. We show these limitations stem not from the
SSM module itself but from the nonlinear convolution preceding it, which fuses
token information asymmetrically. These insights provide a new understanding of
Mamba’s constraints and suggest concrete architectural improvements for future
sequence models.

1 Introduction

Large Language Models (LLMs) have achieved remarkable progress and are now widely applied
across a broad range of fields (Vaswani et al., 2017; |Liu et al., 2018}, Devlin et al., |2018}; Radford
et al.| 2019; [Touvron et al.| [2023; OpenAll 2023} Brown et al., 2020; [Dong et al., 2022; Garg et al.|
2022; Trinh et al., 2024} |Davies et al.,[2021)). The performance and inductive biases of such models
are largely determined by their underlying architectures. Among these, the Transformer (Vaswani
et al., |2017) has become a dominant backbone in LLMs. Its attention mechanism is central to its
strong performance (Brown et al., [2020; Olsson et al., [2022; |Wang et al., [2024). However, this
mechanism also represents one of its major limitations: the computational complexity of attention
scales quadratically with sequence length, making Transformers inefficient for long-sequence tasks.

To address this issue, various Transformer variants have been proposed to reduce the computational
cost of attention, including sparse attention (Child et al.l 2019) and linear attention mechanisms
(Katharopoulos et al., [2020). Mamba (Gu and Daol 2024} |Dao and Gu,, |2024), which incorporates
State Space Model (SSM), has recently garnered significant attention due to its linear complexity
with respect to sequence length and its superior performance on long-sequence problems. As a result,
SSM offering a natural, computation-efficient alternative similar to linear attention have become a
focal point of research.

To better understand the behavior of large-scale models and to guide meaningful architectural
improvements, it is crucial to investigate the underlying causes of the differences between Mamba
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and Transformer. Given the inherent complexity of natural language tasks, this study leverages simple
but meticulously crafted synthetic data.

When examining architectural details more closely, is the difference between Mamba and Transformer
limited merely to the replacement of attention with State Space Models (SSMs)? In fact, beyond the
use of SSMs, Mamba exhibits several fundamental differences from the Transformer architecture.
One of the most critical distinctions lies in Mamba’s use of nonlinear convolution (O’shea and Nash|,
2015). On one hand, the nonlinear convolution enables Mamba to propagate information within a
sequence without relying solely on the SSM unlike Transformer, where Transformer depends entirely
on attention for intra-sequence communication. On the other hand, this convolution fuses token-level
information within the sequence, and the SSM operates on this fused representation to perform
matching and extraction.

Notably, the nonlinear convolution in Mamba introduces an intrinsic asymmetry due to the asymmetric
structure of convolution kernels. This asymmetry is transferred to the fused token representations and
consequently affects how information is extracted. To better understand this limitation, we devised
a composite function task (Zhang et al.| [2024albl 2025) aimed at evaluating how Mamba handles
compositional structures.

The composite function task admits two possible solutions: a composite solution and a symmetric
solution. We observe that Mamba exhibits a strong bias toward the composite solution while
struggling to learn the symmetric one. We find that Mamba struggles to match sequences under order
changes—for example, "1234" vs. "4321". To test this limitation, we designed a inverse sequence
matching task, where the model must match a sequence with its reversed counterpart. Experimental
results confirm that Mamba has difficulty completing this task, whereas Transformer handles it with
ease. We further introduced a residual connection that bypasses the convolution and directly feeds
information to the SSM. This modification led to a significant improvement in Mamba’s performance
on the inverse sequence matching task, confirming that the core issue lies not within the SSM itself,
but rather in the nonlinear convolution outside the SSM. This work therefore provides a new angle of
symmetry to understand fundamental mechanisms of Mamba structure.

The main contributions of this work are as follows:

1. We conduct an in-depth analysis of how Mamba solves the composite function task, revealing
a fundamental difference in information acquisition between Mamba and Transformer. We
show that Mamba tends to rely on convolution to retrieve relevant information.

2. Through systematic experiments and observations, we identify Mamba’s bias toward asym-
metric solutions in the composite function task. We demonstrate that this behavior distin-
guishes Mamba from Transformer and trace the root cause to the asymmetry introduced by
convolution.

3. To further examine this asymmetry bias, we design an inverse sequence matching task,
in which Mamba exhibits clear difficulties. We show that these difficulties can be effec-
tively addressed through targeted modifications inspired by our earlier findings, leading to
substantial performance improvements.

4. By highlighting how linear convolution-based fusion induces an inherent asymmetry in
Mamba, we provide insightful guidance for future model improvements and the design of
new architectures.

2 Related work

State Space Models (SSM), Mamba, and Their Shortcomings. State space models (SSM) originate
from neuromorphic spiking models (Voelker, |2019; [Voelker et al.,[2019) and have gained prominence
through several key developments, such as S4 (Gu et al., [2022), S5 (Smith et al., 2023)), the RWKV
series (Peng et al.| 2023 [2024), RetNet (Sun et al., [2023)), and GLA (Yang et al.} 2024). Among these,
Mamba?2 (Gu and Dao| [2024) stands out by delivering performance competitive with Transformers
while requiring significantly lower computational resources. However, numerous studies reveal that
Mamba has notable limitations. Research including (Ben-Kish et al.| [2025} Ye et al., 2025} [Yuan et al.|
2025)) indicates that Mamba generally underperforms compared to Transformers in tasks involving
long-context understanding, prompting the development of alternative models like DeciMamba,
LongMamba, and ReMamba. Similarly, (Park et al., [2024; Waleffe et al., |2024) explore Mamba’s



in-context learning abilities and conclude that they fall short of Transformer capabilities. Additionally,
(Arora et al., [2023} Jelassi et al.,2024)) demonstrate that Mamba struggles with retrieval tasks, such
as copying information from the input context. Some studies, such as (Xu et al.,2025]), also examine
the practical efficiency of Mamba compared to Transformers, noting that despite its theoretical
advantages, real-world performance can be lacking. Furthermore, (Ren et al.| [2024) introduces a
‘COPY’ task, which exposes a performance bottleneck in Mamba. Our study takes a structural view
of Mamba, employing carefully designed synthetic data to explore its behavior from the perspective
of symmetry, offering deeper insights into these shortcomings of Mamba and proposing a solution to
address them.

Understanding the Mechanism of Neural Network Models. Our work conducts an in-depth
investigation into the internal mechanisms of Mamba. In identifying the functional roles of key
modules in Mamba presented in this paper, we adopt the commonly used techniques of perturbation
and causal intervention from research on interpretability in large language models (Vig et al., |2020;
Jeoung and Diesner, 2022} [Wang et al., [2022; Conmy et al., [2023; Merullo et al.,|2023; |Guo et al.,
2023;|Wang and Weinan, |2024;/Amsel et al.,[2024; Li et al.| 2024} |Wang et al.|2024). The construction
of synthetic datasets in our study is primarily inspired by the works of |Poli et al.|(2024)) and Zhang
et al.|(2024a)). The design of our composite function tasks is adopted from the approach used in|Zhang
et al. (2024bla). Additionally, several insightful theoretical studies on feedforward neural networks
have also informed our theoretical analysis. For instance, various works explore the preferences and
generalization capabilities of neural networks from perspectives such as regularization, frequency,
and dynamics (Xu et al.| [2025albl 2019; Wang et al., 2024} Jacot et al.| 2018, |2020; |Arora et al., 2019,
2018; Wu and Sul 2023} [Wang and Wu, 2023} |Arora et al., 2022; |L1 et al., [2021; Wu et al., [2018; Zhu
et al.L 2018 |Arora et al., 2019} Ren et al., [2024]).

3 Preliminary

3.1 Introduction of Mamba

The overall structure of Mamba (Gu and Dao} [2024; |Dao and Gu, 2024) is shown in Fig.|l} The
Mamba block can be divided into three parts: the widely known SSM (State Space Model) component,
the pre-SSM part, and the post-SSM part. Omitting trivial dimension transformations and setting the
batch size to 1 to omit the batch dimension, for a given input U to the block, the internal computation
process to obtain the output O can be described as follows:

Pre-SSM
(U, Z,dt) = Linear(U), U € R4 U e R4+ 7 ¢ R(2d) gt e RN (1)
(B,C,X) = o(Convld(U)), B e R e RN X e Rs24), @

SSM

Mask = F(Ag,dt), Ay € R, Mask € RNm%), 3)
I =Repeat(CB' | Ny)), Ie RWwss), @)
S = MaskolI, SeRWNwss) )
Y =SX + X, Y e RWns2d/Nn) ©

Post-SSM
Ynorm = RMS(Y o (6(Z))), Ynorm € RS2, o
O = Linear(Yyorm), O € RS2, ®)

where s is the sequence length, d is the model’s hidden-state dimension, A is the SSM hidden dimen-
sion, S is the SSM matrix, IV}, is the number of SSM heads, Linear denotes a linear transformation,
Convld denotes a one-dimensional convolution, o denotes a nonlinear activation function, F denotes
the function that generates the M ask, Repeat denotes a dimension-replication operation, o denotes
pointwise multiplication, and RMS denotes RMS normalization.



We define the composition of o and Convld as nonlinear convolution and attention score from
token j to token i is given by the (i, j) entry of the SSM matrix S throughout the paper. For more
comprehensive computational details, please refer to the appendix.

3.2 Difference between Mamba and Transformer

Transformer block x L
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Figure 1: Overview of Mamba and Transformer Blocks. The green trapezoids represent linear
mappings. Within the attention mechanism, ), K, and V' can be respectively mapped to B, C, and
X in the SSM framework. "smax" denotes the softmax function, "FNN" stands for feed-forward
neural network, and "LN" represents layer normalization. The meanings of variables specific to the
Mamba block are explained in the main text. For additional computational details regarding Mamba,
please refer to the appendix.

By incorporating the SSM module, Mamba circumvents the quadratic complexity of attention
in Transformers. While SSM significantly improves computational efficiency, the key difference
from attention appears limited to the softmax function and the learnable mask. However, notable
distinctions also exist beyond the SSM itself.

Prior to the attention-like SSM, Mamba applies a nonlinear convolution that fuses information,
limiting the SSM to operate on already mixed representations. Mamba contains a z-gate following
SSM, lacks a Feed-Forward Network (FFN), and its preceding nonlinear layer lacks hidden layers.

As we will demonstrate, nonlinear convolution is a defining feature of Mamba that underlies its
fundamental divergence from the Transformer.



3.3 Composite function task
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Figure 2: Illustration of the Composite Function Task. Anchors 1, 2, 3, and 4 (depicted in orange)
each represent distinct functions. Among the 16 anchor pairs formed, 14 correspond to composite
functions derived directly from the sequential application of the individual anchor functions. The pair
"34" highlighted in red, is defined as a different function rather than a direct composition. The pair
"43" is intentionally excluded from the training set. The input to each anchor pair function is referred
to as the "key" (indicated in green). Label indicates the output of an anchor pair applied to a key.

=>unseen

A detailed illustration of the composite function task (Zhang et al.} 2024alb, [2025) is shown in Fig. E}
The core idea of the composite function task task can be understood with a simple real-world analogy.
Imagine a row of people indexed by numbers. Let’s define two functions: n(x): Find the person n
positions to the right of person x and m(x): Find the person m positions to the left of person x. The
composite function m(n(x)) means "If you start with person x, go n people to their right, and then m
people to their left, who do you end up with?"

In the composite function task, each sequence contains two anchors and one key, the remaining
elements in the sequence are randomly sampled from the same range as the key. Each anchor is
assigned a unique function, and a pair of anchors defines a composite function, with the key (token
before anchor pairs) serving as the input. We use the token 1 through 4 as anchors, yielding a total of
16 possible anchor pairs. Among these, 14 composite functions are defined by directly composing
the functions associated with the individual anchors. For the anchor pair “34”, however, we assign a
function that deviates from the standard composition of its components.

The objective is to examine how Mamba handles the unseen anchor pair “43”. Two plausible solutions
exist: one is the symmetric solution, which infers the result of “43” by symmetry from the result
of “34”; the other is the composite solution, which computes the result by directly composing the
functions associated with “4” and “3”.

In all experiments, the loss is calculated exclusively based on the final token of the sequence and its
corresponding label. For detailed data and training settings, please refer to the appendix.



3.4 Inverse sequence matching task
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Figure 3: Illustration of the Inverse Sequence Matching Task. The orange elements denote the
generation set, which consists of three distinct numbers randomly selected from the interval [20,
100], as well as all possible permutations thereof. Blue and green indicate selected key sequences
from the permutation space, separated by random numbers that do not belong to the generation set.
One green key sequence is chosen as the answer sequence. The query sequence (shown in red) is
obtained by reversing the answer sequence. The corresponding label identifies the position of the
answer sequence. To prevent Mamba from leveraging its nonlinear convolution mechanism to infer
answers, we prepend the query sequence with random numbers (outside the generation set) matching
the length of Mamba’s pure convolutional receptive field.
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Block the convolution

To investigate whether Mamba can match token information fused by the nonlinear convolution, we
design an inverse sequence matching task. The detailed structure of the task is illustrated in Fig. [3
The inverse sequence matching task corresponds to real world situations where people search for the
symmetrical counterpart of an object or text. It is similar to asking children to find the symmetrical
counterpart of a toy and fit them together. This task can test a model’s ability to perform symmetry
matching. Although it is simple and fundamental, it reflects a core capability of the model.

Each sample is built from a generating set of three distinct numbers (e.g., {28, 92, 37}). From its six
possible permutations, five are randomly chosen to form key sequences, which are concatenated and
separated by a token not in the generating set.

Next, one of the five key sequences is randomly selected, reversed, and appended to the end as
the query sequence, separated by non-generating-set tokens so that the query and key sequences
would not fuse by convolution. The number of tokens is determined by Mamba’s pure convolutional
receptive field. For example, in the illustration, six tokens correspond to the pure convolutional
receptive field (refers exclusively to how many tokens can be accessed through convolution alone,
without invoking the SSM) of a two-layer Mamba (2 x 3 = 6). Finally, the label is the position index
of the answer sequence, i.e., the unreversed version of the query sequence.

4 Mamba biases composite solution

In this section, we will empirically show that Mamba is struggling with the symmetric property in
composition but biases composite solutions, and analyze the role of nonlinear convolution.

Initialization scale is shown to be critical for a Transformer to learn the composite or symmetric
solution (Zhang et al.,|2024b, [2025). Therefore, we scan different initialization scales as follows. A
parameter W € R %% is initialized as a Gaussian distribution N'(0, (1/d])?), where + is called
initialization rate (Luo et al.| [2021).

We scan a Mamba with different layers and with different . As shown in Fig. fi] where the accuracy
is computed by regarding the label as the composite solution in Fig. |4a or the symmetric solution in
Fig. @p, for small ~y (large initialization), the network fails to capture either composite or symmetric
solution. The value at each position in the figure is computed as the average of three independent
random runs. This is consistent with previous study in Transformer (Zhang et al.| |2024b}2025)). For
large ~ (small initialization), the network biases the composite function across almost all cases.
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Figure 4: Phase diagram of Mamba on the composite function task. Accuracy (color) for composite
function task under different initialization rates (abscissa) and depths (ordinate). The groundtruth
for (a) is composite solution and for (b) is symmetric solution. Detailed model configurations and
training settings are provided in the appendix.
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Figure 5: SSM information flow in Mamba for the composite function task. Left: SSM information
flow; green crosses indicate pruned connections. Right: (i) SSM input computation; (ii) state
replacement after convolution. Flow is computed from S = Mask o CT B, with line thickness
indicating flow magnitude. Attention score from token j to token i is given by the (7, j) entry of S
The numbers are the outputs of each layer through the model’s final linear layer and then take the
arg-max of the resulting logits to obtain the corresponding digit.

4.1 SSM does not function in composite tasks

It requires information from anchors and key to finish a composition task. Mamba has two potential
options: utilizing the convolution or the SSM module. We found that in standard Mamba
2024), convolution plays a critical role while SSM module does not function.

Information blocking. The information flow analysis is a useful tool to visualize the information
exchange on token level (Wang et al.} 2024). Since the SSM module has high similarity with the
attention, we treat every element in SSM matrix as the “attention score” in information flow in Fig.[5]




The result suggests that, within the SSM, tokens at later positions have little attention to the key and
anchor information. In the case of the Transformer, failure to retrieve the required information via
attention renders it incapable of solving the composite function task. To further verify that Mamba
does not utilize the SSM for information propagation, we applied a causal intervention approach
(Feng and Steinhardt, 2023} Meng et al., 2022} Vig et al.,2020; [Wang et al., 2024}, manually blocking
all information flow from the key and both anchors to the downstream tokens. The (4, j) element of S
represents how much token ¢ attends to token j. If this value is set to 0, it implies that token ¢ cannot
receive information from token j through the SSM. Our blocking mechanism is implemented by
zeroing out the specific entries in .S corresponding to the connections we wish to block. As shown in
the Fig.[6] for various anchor pairs, the output after cutting these connections remains nearly identical
to the original output, indicating that the SSM plays little role in transmitting this information.

Information substitution. To further verify that Mamba relies on convolution for information
transmission, we conducted an information substitution experiment: if Mamba encodes all necessary
information through convolution, then transferring the resulting state to another sequence should
enable it to produce the same output as the original. For all sequences with anchor pairs other
than ‘43, as illustrated in Fig.[5 we replaced the post-convolution hidden states of the downstream
tokens with those from a “43” sequence, where all other elements are identical except for the anchor
pair. As shown in Fig.[6] we found that the outputs of nearly all anchor pairs collapse to the output
corresponding to the “43” anchor pair.

Taken together, these two experiments clearly demonstrate that Mamba solves the composite func-
tion task primarily by leveraging convolution to extract the necessary information. This lays the
groundwork for Mamba’s inability to reach symmetric solution.
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Figure 6: Accuracy of each anchor pair under blocking and substitution experiments compared to
the original output. Figures (a) and (b) correspond to the blocking and substitution experiments,
respectively. The x-axis denotes the anchor pairs, and the y-axis represents accuracy. Each anchor
pair is evaluated using 480 randomly generated sequences.

4.2 Nonlinear convolution introduces asymmetry

In this section we will examine that the asymmetry weight in convolution introduces asymmetry
between symmetric anchor pairs.

We design a task with fully symmetric setting as follows. The symmetric anchor pairs have the same
function but they do not composite by elementary functions; only function “43” is unseen during the
training. This leaves the symmetric solution as the only possible one. As shown in the Fig.[7h, we
found that standard Mamba can achieve 100% in the test data of “34” function and fails to learn “43”
via symmetric property. Additional experimental results are provided in the appendix.

To better isolate the effect of asymmetry, we remove this asymmetry by setting all convolutional
kernel weights to 1. As shown in the Fig.[7b, once the asymmetric behavior is eliminated, Mamba
biases learning the symmetric solution to fit the composite task.

This indicates that Mamba’s preference for asymmetry stems from the inherent asymmetry of its
nonlinear convolution. In Mamba, sequence information is fused through a nonlinear convolution
operation, which serves as the input to the SSM module. Consider two sequences, (v1,va, V3, V1)
and its reversed counterpart . For the convolution outputs of the above sequences, we define the final
token of the result as follows:

original sequence: f = ¢y owv; +ca0vy +c30v3+cg0v4 + G,



symmetric sequence: g = ¢; 0 Vg + C2 0 U3 + 3 0 vy + ¢4 0 V] + 5.

If the convolution parameters c¢; are not identical( is the bias), then f and g will generally differ.
This means that even for token sequences that are symmetric in content, their representations after
convolution in Mamba can be significantly different. Such a discrepancy illustrates Mamba’s inherent
asymmetry, as it fails to preserve the equivalence of symmetric inputs.

The root cause of this asymmetry lies in the non-uniformity of the convolution weights. Since
the convolution parameters in Mamba are initialized randomly and trained independently, the c;
values typically remain distinct throughout training. As a result, the convolution operation induces a
persistent asymmetry, where different token orders lead to different outputs. We examined the cosine
similarity between the individual parameters of the convolution kernel at both the beginning and
end of training, and found that they were largely orthogonal to one another, indicating a strong and
persistent inconsistency throughout the training process. The detailed results can be found in the
appendix.

For a Mamba network with initialization rate v = 0.5, it cannot learn composite task by either
composite function or symmetric function. We found that if positional encoding is explicitly included,
as shown in the Fig.[7¢, such Mamba network learns composite task by symmetric function. Therefore,
positional encoding is also critical for learning symmetric solution.
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Figure 7: Test Accuracy across. (a): Fully symmetric setting, i.e., target functions are symmetric but
do not composite by elementary functions, standard Mamba with v = 0.5. (b): Accuracy computed
based on groundtruth of composite solution (comp.) and symmetric solution (sym.) for Mamba
with all-one convolution (1convld) and standard Mamba (Standard structure) with initialization rate
~ = 1. (c): Similar legend as (b) for Mamba with positional encoding (Pos.) and the standard one but
with initialization rate v = 0.5. Details of the data and training setup can be found in the appendix.

4.3 Transformer with convolution biases asymmetric solution

The empirical analysis in Mamba reveals that the convolution structure is a key component to
introduce asymmetry. Imagine if convolution is introduced into the Transformer, does it increase
anchor asymmetry and push the model toward learning asymmetric composite solution? We insert a
convolution after the input to the Transformer and before the attention module (applying it to Q, K,
and V). This is analogous to how Mamba applies nonlinear convolution before the SSM module. For
detailed configurations, please refer to the appendix. Previous study(Zhang et al.||2024b)) has shown
that with different ~, Transformer can learn symmetric solution or composite solution in different
regimes. As shown in Fig. 8] with convolution component, Transformer either can not generalize for
small v or fit data by symmetric solution for relative large . In this case, the Transformer exhibits
a similar preference for composite function solutions as Mamba and struggles to learn symmetric
solutions.

5 Mamba’s challenges in the inverse sequence matching task

This raises a critical question: Does the change in token order between sequences like 1234 and 4321
make it inherently difficult for Mamba to attend across reversed patterns and discover the correct
reverse sequence?

As shown in Fig. O, for the standard Mamba network, the training accuracy can easily achieve 100%,
however, the test accuracy for the case with tokens seen during training or the case with tokens unseen
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Figure 8: Phase Diagram of the Composite Function Task under Different Settings. Accuracy (color)
for composite function task under different initialization rates (abscissa) and depths (ordinate). (a) and
(b) show the composite and symmetric solution accuracy of the Transformer after adding nonlinear
convolution.

during the training (“OOD”), the network predicts the outcome with a random-guess level. Additional
experimental results can be found in the appendix. For Transformer, or a Mamba network that adds
a residual connection from the input of convolution to SSM and the position embedding, as shown
in Fig. HJ and @:, the network can accurately predicts test cases. In addition, for the “O0OD” case,
the accuracies of such two cases are also significantly larger than random guess. We also conducted
additional architectural experiments aimed at mitigating Mamba’s asymmetry bias. For details, please
refer to the appendix.
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Figure 9: Accuracy on the inverse sequence matching task across different model architectures. (a),
(b), and (c) show the accuracy of Mamba, Transformer, and the modified Mamba with residual
connection, respectively, on the inverse sequence matching task under the same settings. “O0OD”
refers to a set drawn from a distribution outside the training and standard test ranges.

6 Conclusion

In this work, we leveraged synthetic data to experimentally and systematically analyze the intrinsic
properties of the Mamba architecture. Our findings reveal fundamental differences between Mamba
and Transformer models, particularly in handling symmetrical patterns and relationships. We
identified that Mamba’s inherent asymmetry bias stems from its nonlinear convolution mechanism,
which fuses token information asymmetrically before passing it to the SSM module. This architectural
constraint limits Mamba'’s ability to recognize symmetrical solutions in composite function tasks and
to match reversed sequences.

By implementing a simple residual connection that bypasses the convolutional layer, we demon-
strated significant performance improvements on symmetry-requiring tasks, confirming that the
limitation resides not in the SSM itself but in how token information is processed before reaching
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it. These insights provide valuable guidance for designing future sequence models that combine the
computational efficiency of SSMs with the flexible pattern recognition capabilities of Transformers.

Our work emphasizes the importance of understanding architectural biases in neural networks and
how they influence model capabilities. As sequence modeling architectures continue to evolve, such
mechanistic insights will be crucial for developing more versatile and powerful models across diverse
application domains. Future research should explore how to best combine the strengths of both
approaches while mitigating their respective limitations.

7 Limitations

To enable a precise investigation and clear illustration of Mamba’s internal mechanisms and inductive
biases, this work employs synthetic data rather than real-world datasets. While the synthetic tasks are
designed to capture key characteristics of the Mamba architecture, they may not generalize to the
full diversity of real-world data. Moreover, due to the use of synthetic data, the Mamba models used
in our experiments are relatively small. Whether the observed biases persist in larger-scale Mamba
architectures remains an open question requiring further investigation. Additionally, many existing
large-scale models incorporating Mamba do so in conjunction with Transformer components. In such
hybrid architectures, it remains to be studied whether Mamba’s inductive bias still dominates or is
diminished.
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A Experiments compute resources

All experiments were conducted on a server running Ubuntu 22.04.4 LTS. The system is equipped
with an Intel Xeon Gold 6133 processor featuring 80 logical cores at 3.0GHz, and 352 GB of RAM.
The machine is configured with 8 NVIDIA GeForce RTX 4080 GPUs with 16GB of video memory
each.

B Detail of Mamba

The following provides a detailed explanation of the internal computations within the Mamba module,
beginning with the specification of the corresponding dimensional representations.

B := Batch size,
S := Sequence length,
D,,, := dimension of model,
D;,, := dimension of inner model
= expand X D,
N := dimension of hidden state,
Numy, := number of heads,
H,; := dimension of heads,

The computations within the Mamba module can be divided into three components: pre-SSM, SSM,
and post-SSM. The following presents a detailed derivation for each submodule.

Input: ©w € RB S Pm)
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Pre-SSM

zzBCdt = Linearp,oj(u) € R(B: S, 2Din+2N+Numy,)
(z,2BC,dt) = zzBCdt € R S:(Din, Din+2N, Nump))
2.B.C. = Convld(zBC) € R®E S Punt2N)
ZefBefCop = SILU(zBC) € R(E: S Dint2N),
(Tefs Beg, Cop) = Top BeyCop € RB:S:(Din, N, N)),
Ainir ~ Uniform(Apin, Amax) € RN
Agg = log(Ainie) € RN,
A= —oxp (i) € RN,
tbinie = exp (rand (Numy) - (log(dt_max) — log(dt_min) + log(dt_min)
dtpias = dtbinis +log (— exp (—dtbiny) +1) € RN
dt s, = softplus(dt + dtpias) € R(B: S, Numy)
A=Aodty, €R® S Num)
T = z.s.reshape(B, S, Numy,, Hy) o dt,.reshape(B, S, Numy, 1)
B= B.y.reshape(B,S,1,N) € R(®B: S L, N),
C = C.r.reshape(B,S,1,N) € R(B:S: 1L, N)

N
e RN,

B, S, Numy, H
c R( h d)7

Here, Linearp,.; denotes a linear transformation, Conv1d refers to a one-dimensional convolution,
and SiLU represents the SiLU activation function. Uniform indicates sampling from a uniform
distribution, while softplus denotes the Softplus activation function. rand refers to drawing a
specified number of random values. The o symbol denotes element-wise multiplication, and reshape

indicates a dimensional transformation operation.

SSM

A = Mask; orepeat(A) ¢ R® Numn 8, 8)

-~

Acumsum = cumsum(A4) e R(B Numn, $,8)
L = exp(Masks 0 Acumsum) € RE Numn, S, 8)
P = einsum(’ BSHN, BSHN — BHSS”,C,B) e R® LSS,
M = einsum(”BHSS,BHSS — BHSS”,L,P) € R(B: Numy, S, s)’

y = einsum("BHSS, BSHP — BSHP” M,%) e R® S Numn, Ha)

The Mask; operation is used to zero out the diagonal and upper-triangular elements of a matrix,
retaining only the elements below the diagonal. The Maskj sets the elements above the diagonal
to negative infinity. The cumsum operation performs a cumulative sum along the first of the last
two dimensions (i.e., across rows) in a matrix of shape (S, S), summing from top to bottom. The
einsum operation denotes the Einstein summation convention, used for concise and flexible tensor

contractions.

16



Post-SSM
D=1p, €RPn
y =y + x.y.reshape(B, S, Numy, Hy) x D.reshape(D;,,1) € R®: S Numn, Ha)
ij = y.reshape(B, S, D;,) € R S Din)
y. = - SILU(z) € RS Di)
1

yz . . c R(Bv S, Din)
\/mean(y2, axis = —1) + ¢

Ynorm = )

] B Dm
Yout = Llnearproj (ynorm) S R( 'S )

Here, 1 denotes a vector in which all elements are equal to 1.

Output: Yout € R®E: S Dm)

C Data setup

C.1 Composite function task

Standard The total dataset comprises 300,000 samples, and each sequence has a fixed length of
8. Each anchor pair in the training set accounts for 5.6% of the total data, while each anchor pair
in the test set constitutes 0.6%. The mapping between anchors and their associated functions is as
follows: anchor 1 corresponds to a shift of +5, anchor 2 to +1, anchor 3 to —2, and anchor 4 to —8.
During training, all 15 possible anchor pairs are included except for pair 43. Among these, all pairs
except 34 are derived from the composition of their corresponding single-anchor functions. Notably,
the function for pair 34 is manually set to —6, deviating from the correct compositional result of
—10. The test set contains both symmetric and compositional instances of pair 43. The distinction
between training and test data is governed by the position of the key token. For sequences of length 8,
each position is associated with a congruence class modulo 8. In the training set, the key token is
prohibited from appearing in the position whose modulo-8 class matches its own. For example, key
33 cannot appear in the first position, as it belongs to the congruence class 1 mod 8, which is aligned
with the first index. Conversely, in the test set, each key token is required to occupy the position
that corresponds exactly to its modulo-8 congruence class. This design ensures that the model has
access to the full semantic range of tokens during training while preventing it from relying solely on
positional memorization to generalize to the test set.

Full symmetry The total number of datasets is 300,000, and each sequence has a fixed length
of 8. Each anchor pair in the training set accounts for 4.5% of the total, while each anchor in the
test set accounts for 0.5% of the total. To ensure that the only possible solutions are symmetric,
we simultaneously utilize two sets of correspondences between anchors and functions. This setup
prevents the model from simply solving for individual anchor functions and instead forces it to derive
symmetric solutions by understanding the symmetry of anchor pairs. There are a total of five anchors:
0, 1,2, 3, and 4. The 0 anchor is added to balance the data volume between the two function sets, thus
avoiding model bias caused by disparities in data quantity. The first set of correspondences between
anchors and functions is as follows: 0 corresponds to 42, 1 corresponds to +5, 2 corresponds to +1,
3 corresponds to —2, and 4 corresponds to —8. The second set of correspondences is: 0 corresponds
to —9, 1 corresponds to 4-6, 2 corresponds to —7, and 3 corresponds to +3. All anchor pair functions
are composed of either the first or the second set of correspondences. To facilitate the observation of
symmetric solutions, anchor pairs 00, 11, 22, 33, and 44 are excluded from this task. Thus, there are
a total of 20 anchor pairs in this task. The anchor pairs following the first set of correspondences are
01, 02, 10, 20, 14, 41, 23, 32, 34, 43, a total of 10 pairs. Among them, there are 4 1s, 4 ones, 4 twos,
4 threes and 4 fours. This design ensures that each anchor has the same amount of data under the
two corresponding methods, and the two corresponding methods also have the same amount of data.
The anchor pairs following the second set of correspondences are 03, 30, 04, 40, 12, 21, 13, 31, 24,
42. Only 43 is not included in the training set. The purpose of this task is to observe whether the
model can discover the symmetry among all anchor pairs and thus output symmetric solutions. The
distinction between the training set and the test set in the dataset is based on the position of the key.
For sequences of length 8, each position corresponds to a congruence class modulo 8. In the training
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set, for each key, the key does not fall within the congruence class corresponding to its position. For
example, the key 33 cannot appear in the first position of the sequence because it would then be in the
congruence class modulo 8 of 1, which corresponds to that position. In contrast, in the test set, each
key must exactly fall within the congruence class corresponding to its position. This setup allows the
model to learn the meaning of all tokens while preventing it from relying solely on memorization to
generalize to the test set.

C.2 Inverse sequence matching task

The total dataset consists of 100,000 samples. The sequence length varies with the number of layers
in the Mamba model. Each sequence is generated from a generation set consisting of three distinct
elements. It contains five different permutations of the elements in the generation set, where each
permutation is followed by a random token that does not belong to the generation set. Each such
permutation is referred to as a key sequence.

One of these five sequences is randomly selected and reversed to form the query sequence, which is
appended to the end of the original sequence. Between the key sequences and the query sequence,
a number of randomly generated tokens—equal to the convolutional receptive field of Mamba are
inserted to prevent the model from retrieving information through convolution. Therefore, the total
sequence length can be formally expressed as follows:

S =5x(3+1)+3x Numygye, + 3.

Here, Numy,,., denotes the number of layers in the Mamba model. For example, in the case of
a two-layer Mamba model, the sequence length is 29. To ensure a fair comparison, Mamba and
Transformer models with the same number of layers are trained on identical sequence configurations.

The training set constitutes 80% of the total dataset, while the test set and the out-of-distribution
(OOD) set each account for 10%. In the training set, the three elements in the generating set do not
all belong to the same congruence class modulo 3. In contrast, in the test set, all three elements in the
generating set belong to the same congruence class modulo 3. For both the training and test sets, all
numerical values in the sequences are drawn from the range 20 to 100. In the OOD set, however, all
sequence elements are drawn from the range 101 to 200, and the generation set is not subject to any
congruence constraints.

D Training setup

Unless otherwise specified, all tasks in this work adopt the following training parameter settings. The
learning rate is initially set to le-5 at the start of training, warmed up to 25 times its initial value
within 10 epochs, and then decreases to 1e-5 via cosine decay at 200 epochs. The training optimizer
is AdamW with parameters set as 51 = 0.9, B2 = 0.999, eps = le — 8, and weight decay=1e-2.
Meanwhile, gradient clipping is applied with a maximum norm of 1. For composite function tasks,
the batch size is set to 2048, while for inverse sequence matching tasks, the batch size is 1024. The
loss function used for training is the cross - entropy loss function, which is calculated only for the
last token of the model output sequence.

E Experiment detail and result

E.1 Composite function task

E.1.1 Phase diagram of Mamba on the composite function task

Mamba configurations The dimension of model is set to 32, the dimension of hidden state is
set to the default value of 128, and the expansion factor is set to the default value of 2, and the
activation function employed throughout the model is the Sigmoid Linear Unit (SiLU). To facilitate
clear observation, all experiments are conducted using a single head. The convolution kernel length
is set to its default value of 4. The values reported at different positions represent the mean results
obtained using three fixed random seeds. Across these positions, the only variations are in the model’s
depth or initialization.
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E.1.2 Experiments with all-one convolution

Mamba configurations To investigate whether the asymmetry of convolution is responsible for
Mamba’s difficulty in learning the symmetric solution, we select a model configuration under
which Mamba successfully learns the compositional solution but fails to learn the symmetric one.
Specifically, we use a five-layer Mamba model with small initialization(y = 1), while all other
settings are consistent with those used in the phase diagram experiments.

E.1.3 Experiments with positional encoding

Mamba configurations To examine whether Mamba’s bias for asymmetry in the composite
function task arises from its lack of explicit positional encoding, thus encouraging reliance on
convolution. We select a configuration under which Mamba struggles to learn both the composite and
symmetric solutions. Specifically, we use a two-layer Mamba model with standard initialization(y =
0.5). All other settings are kept consistent with those used in the phase diagram experiments.

E.1.4 Experiment under full symmetry

Mamba configurations To validate Mamba’s difficulty in solving the composite function task
under fully symmetric settings, we set dimension of model to 128, while keeping all other settings
consistent with those used in the phase diagram experiments. The number of layers is varied across 2,
3,4, 5, and 6, and standard initialization(y = 0.5) is applied.

Extended results For each configuration, experiments are conducted using three fixed random
seeds. The results are shown in the Fig.[I0]and Fig.[TI] As can be observed, under all configurations,
Mamba consistently struggles to solve the composite function task in the fully symmetric setting.

E.1.5 Cosine similarity among convolution weights

Mamba’s asymmetry bias originates from its nonlinear convolution, specifically from the asymmetry
of its convolutional kernel parameters. To investigate this asymmetry, we examined the cosine
similarity between the convolutional kernels at the beginning and the end of training, as shown in the
Fig. and found that they are nearly orthogonal. This indicates that the convolutional parameters
exhibit strong asymmetry throughout the training process.

E.2 Inverse sequence matching task

Mamba configurations The dimension of model is set to 128, the dimension of hidden state is set
to the default value of 128, and the expansion factor is set to the default value of 2. The activation
function used is SiLU. To clearly isolate the structural differences between Transformer and Mamba
and ensure a fair comparison, the Transformer model also adopts SiLU as its activation function. The
convolution kernel length is set to its default value of 4, and the number of heads is fixed at 1.

Transformer configurations The dimension of model is set to 128, consistent with the Mamba
configuration. To ensure a fair comparison, the Transformer also adopts a 2x dimensional expansion
when generating value vectors, mirroring Mamba’s setup. Specifically, the dimensions of the query
and key vectors are set to 128, while the value vectors have a dimension of 256. Additionally, to
ensure a fair comparison and maintain a comparable number of parameters between the two models,
the Transformer’s feedforward network (FNN) uses a hidden dimension of 128, and, like Mamba, it
is configured with only a single attention head throughout.

Extended results All experiments are conducted using the same set of random seeds to ensure
fairness in comparison.

To evaluate Mamba’s difficulty in solving the inverse sequence matching task, we vary the model
depth across 2, 3, 4, and 5 layers, and consider different initialization strategies ranging from standard
to small initialization(y = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). The detailed results are shown in the Fig.
and Fig.[T4] It can be observed that Mamba fails to solve the inverse sequence matching task under
nearly all configurations.
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Figure 10: Accuracy of Mamba under fully symmetric setting. The horizontal axis represents the
random seed, while the vertical axis corresponds to the number of layers in the Mamba model.

For the two-layer Transformer, results under different initialization schemes(y =
0.5,0.6,0.7,0.8,0.9,1.0) are shown in the Fig. [I5] and Fig. [T[6] It can be seen that even
with a small number of layers, the Transformer outperforms Mamba.

The results of the modified two-layer Mamba under different initialization schemes(y =
0.5,0.6,0.7,0.8,0.9, 1.0) are shown in the Fig.[I5]and Fig.[I6] It can be observed that the modified
Mamba not only significantly outperforms standard Mamba, but also substantially surpasses the
performance of the Transformer.

Experiments with alternative architectural modifications From our experiments, we observe that
Mamba’s bias toward asymmetry originates from the inherent asymmetry introduced by its nonlinear
convolution. However, by introducing a residual connection that bypasses this nonlinear convolution,
the impact of such asymmetry can be effectively mitigated. This allows Mamba to leverage the SSM
module for information extraction and even achieve performance comparable to or surpassing that of
Transformers on the inverse sequence matching task.
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Figure 11: Loss of Mamba under fully symmetric setting. The horizontal axis represents the random
seed, while the vertical axis corresponds to the number of layers in the Mamba model.

It is important to emphasize that, in order for the SSM to extract information in a manner similar
to Attention, positional awareness of tokens is essential. Therefore, positional embedding must be
incorporated. In fact, the addition of positional embedding plays a significant role in the inverse
sequence matching task as well.

In addition to introducing the residual connection that bypasses the nonlinear convolution, we also
conducted another set of architectural experiments. Inspired by the original Mamba architecture,
another possible way to inject the raw token information is through a "gating mechanism". For
example, one might use a pointwise product between the original token and the fused token (after
nonlinear convolution) as the input to the SSM. We additionally conducted multiple experiments on
this approach, and the results are shown in Fig.[T7] The following presents the computation process
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Figure 12: Cosine similarity of convolutional kernel parameters between epoch 0 and epoch 209
for the two-layer Mamba model. The model configuration is consistent with that used in the phase
diagram experiments. In this figure, Mamba is configured with two layers and initialized with v = 1.

of the gating mechanism. Given the input U to the Mamba block, we have:
(U, Z,dt) = Linear (U), U e R®Y U e R&24+20 7 R(:2d) gp ¢ R:Nn),

(B,C,X) = o(Convld(U)), BeR®M Ce RN X e R:24), )
(B,C,X)=(B,C,X)oU, BeR®M CecR®MN X e R,

Finally, B , C , and X serve as the input to the SSM.

22



/ {
04l / ot | ogt |
/ / f
gosf | zosl | gos| |
i
/ i i
Zoa | Soat | Zoaf |
o3 ogf e 02
09 f 09 J 00l J
T E ™o o 20 G £ o o 0 3 Eg oo =0
Epoch Epoch Epoch
19 —_—— W wf ————————
08 H ost | os |
/ ! |
zos | zos | zost |
! [ 1
i [ /
Sodf | Zoat | Zos |
/ / /
o {l o 02 r
00 00 X!
g Eg oo 10 %0 3 Eg EE R L T Eg E R T
Epoch Epoch Epoch
10 ﬁ_* W wf
ool oof | oof |
i [
[ | |
gost | gos | 7ot |
£ / { t
foal | Zoat | 2oal |
/ {
02 [{ 02 [ o)
00 00 00 [
T EJ oo 120 g EJ oo 120 3 Eg R C T
Epoch Epoch Epoch
19 — 19 r___— 1 ﬁ_-—
osf osf / o
{
{ i
gost | gost | goo |
£ { g i H
H 3 | g [
§oat | Goaf | ot |
J /
02 02 r 02|
] § ]
¢ E ™o w20 3 E e 3 Eg e
Epoch Epoch epoch
19 — 19 1
08 / 08 / ol /
/ / {
2 06 2 05 / z o5
/ / /
oo f Zoar 2 o4
/ / /

T B oy = 700 u Ed o = 200 t e THo ™ =00
Epoch Epoch Epoch

10 10 — 19 —
ol o / o /
/ i
1 o Z 08| Z 0| / 2 o /
: /
VLo £ o4 ,/1 £ o4 /

oaf 7 03] r_, o }
oo | o od

5 e 5 T 5 S 5 W

Epoch Epoch Epoch Epoch

Layer num

Figure 13: Accuracy of Mamba under different configurations on the inverse sequence matching
task. The horizontal axis represents the number of layers in the Mamba model, while the vertical axis
corresponds to the initialization scheme.
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Figure 17: Accuracy (left) and loss (right) curves of Mamba with gate residual connections on the
inverse sequence matching task. The architecture of gate-residual Mamba is consistent with that of
residual Mamba. From top to bottom, the initialization is set to v = 0.5,y = 0.6, vy = 0.7, v = 0.8,
v =0.9,and v = 1.0.
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