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Summary. In this paper, we propose multi-scale deep neural networks (MscaleDNNs)
using the idea of radial scaling in frequency domain and activation functions with
compact support. The radial scaling converts the problem of approximation of high
frequency contents of PDEs’ solutions to a problem of learning about lower frequency
functions, and the compact support activation functions facilitate the separation of fre-
quency contents of the target function to be approximated by corresponding DNNs.
As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales.
The proposed MscaleDNNs are shown to be superior to traditional fully connected
DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equa-
tions with ample frequency contents over complex and singular domains.
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1 Introduction

Deep neural network (DNN) has found many applications beyond its traditional appli-
cations such as image classification and speech recognition into the arena of scientific
computing [10–15, 17, 22, 24, 25]. However, to apply the commonly-used DNNs to com-
putational science and engineering problems, we are faced with several challenges. The
most prominent issue is that the DNN normally only handles data with low frequency
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content well, as shown by a Frequency Principle (F-Principle) that many DNNs learn the
low frequency content of the data quickly with a good generalization error, but they are
inadequate when high frequency data are involved [21, 27, 28]. The fast convergence be-
havior of low frequency has been recently studied rigorously in theory in [2,6,19,30]. As
a comparison, such a behavior of DNNs is the opposite of that of the popular multi-grid
methods (MGM) for solving PDEs such as the Poisson-Boltzmann (PB) equation, where
the convergence is achieved first in the high frequency spectrum of the solution due to
the smoothing operations employed in the MGM. Considering the potential of DNNs in
handling higher dimensional solutions and approximating functions without the need
of a structured mesh as in traditional finite element or finite difference method, it is of
great value to extend the capability of DNN as a mesh-less PDE solver. Therefore, it
is imperative to improve the convergence of DNNs for solutions with fine structures as
encountered in the electrostatic potentials of complex molecules.

The electrostatic interaction of bio-molecules with ionic solvents, governed by the
Poisson-Boltzmann (PB) equation within the Debye-Huckel theory [3], plays an impor-
tant role in many applications including drug design and the study of disease. However,
due to the complex surface structure of the bio-molecules, usually represented by a bead
model, it has been a long outstanding challenging to design efficient numerical method
to handle the singular molecular surface, which is either the van der Waals (vdW) surface
being the sum of overlapping vdW spheres or the solvent accessible surface (SAS) gener-
ated by rolling a small ball on the vdW surface [18], and the complex distribution of the
electrostatic potential over the molecular surfaces. Tradition finite element [1] and finite
difference methods [29] have faced difficulties in the costly mesh generation and expen-
sive solution of the discretized linear system. Therefore, in this paper, we will propose
and investigate multi-scale DNNs, termed MscaleDNN, with the goal of approximating
both low and high frequency information of a solution uniformly and developing a mesh-
less solver for PDEs such as the PB equations in domains with complex and singular
geometries.

Different learning behaviors among different frequencies are common. Leveraging
this difference in designing neural network structure can benefit the learning process.
In the field of computer vision, a series of works, such as image recovery [9], super-
resolution [20], or classification [26], have improved the learning performance, including
the generalization and training speed, by utilizing the learning difference of different im-
age frequencies. However, it should be noted that the frequency used in the computer
vision tasks, is different from the response frequency of a mapping from the input (e.g.,
image) to the output (e.g., label), and the former refers to the frequency within an input
(i.e. an image) with respect to the spatial locations inside the image. In this work, we
address different response frequencies of the mapping from the input to the output. As
demonstrated in the previous work [28], the low response frequency is learned much
faster than the high frequency. The main idea of the MscaleDNN is to find a way to
convert the learning or approximation of high frequency data to that of a low frequency
one. Similar idea has been attempted in a previous work in the development of a phase
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shift DNN (PhaseDNN) [4], where the high frequency component of the data was given a
phase shift downward to a low frequency spectrum. The learning of the shifted data can
be achieved with a small size DNN quickly, which was then shifted back (i.e., upward
in frequency) to give approximation to the original high frequency data. The PhaseDNN
has been shown to be very effective to handle highly oscillatory data from solutions of
high frequency Helmholtz equations and functions of small dimensions. However, due
to the number of phase shifts employed along each coordinate direction independently,
the PhaseDNN will result in many small DNNs and a considerable computational cost
even for three dimensional problems. Here, we will consider a different approach to
achieve the conversion of high frequency to lower one, namely, with a radial partition
of the Fourier space, a scaling down operation will be used to convert higher frequency
spectrum to a low frequency one before the learning is carried out with a small-sized
DNN. As the scaling operation only needs to be done along the radial direction in the
Fourier space, this approach is easy to be implemented and gives an overall small num-
ber of DNNs, thus reducing the computational cost. In addition, borrowing the multi-
resolution concept of wavelet approximation theory using compact scaling and wavelet
functions [8], we will modify the traditional global activation functions to ones with com-
pact support. The compact support of the activation functions with sufficient smooth-
ness will give a localization in the frequency domain where the scaling operation will
effectively produce DNNs to approximate different frequency contents of a PDE solution.
As a previous study shows [23] that DNNs can approximate an intrinsically low dimen-
sional function defined in a high dimensional space without the curse of dimensionality
in terms of neuron number, provided it also has a sparse wavelet representation. The pro-
posed compact supported activation functions, similar to scaling and wavelet functions
in the wavelet theory, will show their scale resolution capability in the MscaleDNNs.

Two types of MscaleDNN architectures are proposed, investigated, and compared
for their performances. After various experiments, we demonstrate that MscaleDNNs
solves elliptic PDEs much faster and can achieve a much smaller generalization error,
compared with normal fully connected networks with similar overall size. We will ap-
ply MscaleDNNs to solve variable coefficient elliptic equations, including those solu-
tions with a broad range of frequencies and over different types of domains such as a
ring-shaped domain and a cubic domain with multiple holes. Also, to test the poten-
tial of MscaleDNN for finding Poisson-Boltzmann electrostatic solvation energy in bio-
molecules, we apply MscaleDNN to solve elliptic equation with geometric singularities,
such as cusps and self-intersecting surfaces in a molecular surface. These extensive ex-
periments clearly demonstrate that the MscaleDNN is an efficient and easy-to-implement
mesh-less PDE solver in complex domains.

The rest of the paper is organized as follows. In section 2, we will introduce frequency
scaling to generate a MscaleDNN representation. Section 3 will present MscaleDNN
structures with compact support activation functions. Section 4 will present a minimiza-
tion approach through the Ritz energy for finding the solutions of elliptic PDEs and a
minimization approach through a least squared error for fitting functions. In section 5,
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we use two test problems to show the effectiveness of the proposed MscaleDNN over
a normal fully connected DNN of same size. Next, numerical results of the solution of
complex elliptic PDEs with complex domains by the proposed MscaleDNN will be given
in Section 6. Finally, Section 7 gives a conclusion and some discussion for further work.

2 Frequency scaled DNNs and compact activation functions

In this section, we will first present a naive idea of how to use a frequency scaling in
Fourier wave number space to reduce a high frequency learning problems for a function
to a low frequency learning one for the DNN and will also point out the difficulties it
may encounter as a practical algorithm.

Consider a band-limited function f (x) x ∈ R
d, whose Fourier transform f̂ (k) has a

compact support, i.e.,

supp f̂ (k)⊂B(Kmax)={k∈R
d, |k|≤Kmax}. (2.1)

We will first partition the domain B(Kmax) as union of M concentric annulus with uniform
or non-uniform width, e.g., for the case of uniform K0-width

Ai={k∈R
d, (i−1)K0≤|k|≤iK0}, K0=Kmax/M, 1≤ i≤M (2.2)

so that

B(Kmax)=
M⋃

i=1

Ai. (2.3)

Now, we can decompose the function f̂ (k) as follows

f̂ (k)=
M

∑
i=1

χAi
(k) f̂ (k),

M

∑
i=1

f̂i(k), (2.4)

where χAi
is the indicator function of the set Ai and

supp f̂i(k)⊂Ai. (2.5)

The decomposition in the Fourier space give a corresponding one in the physical space

f (x)=
M

∑
i=1

fi(x), (2.6)

where

fi(x)=F−1[ f̂i(k)](x)= f (x)∗χ∨
Ai
(x), (2.7)
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and the inverse Fourier transform of χAi
(k) is called the frequency selection kernel [4]

and can be computed analytically using Bessel functions

χ∨
Ai
(x)=

1

(2π)d/2

∫

Ai

eik◦xdk. (2.8)

From (2.5), we can apply a simple down-scaling to convert the high frequency region Ai

to a low frequency region. Namely, we define a scaled version of f̂i(k) as

f̂
(scale)
i (k)= f̂i(αik), αi >1, (2.9)

and, correspondingly in the physical space

f
(scale)
i (x)= fi

( 1

αi
x

)
, (2.10)

or

fi(x)= f
(scale)
i (αix). (2.11)

We can see the low frequency spectrum of the scaled function f̂
(scale)
i (k) if αi is chosen

large enough, i.e.,

supp f̂
(scale)
i (k)⊂

{
k∈R

d,
(i−1)K0

αi
≤|k|≤ iK0

αi

}
. (2.12)

Using the F-Principle of common DNNs [27], with iK0/αi being small, we can train a

DNN fθni (x), with θni denoting the DNN parameters, to learn f
(scale)
i (x) quickly

f
(scale)
i (x)∼ fθni (x), (2.13)

which gives an approximation to fi(x) immediately

fi(x)∼ fθni (αix) (2.14)

and to f (x) as well

f (x)∼
M

∑
i=1

fθni (αix). (2.15)

The difficulty of the above procedure used directly for approximating function and even
more for finding a PDE solution is the need to compute the convolution in (2.7), which
is computationally expensive for scattered data in the space, especially in higher dimen-
sional problems. However, this framework will lay the structure for the multiscale DNN
to be proposed next.
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3 MscaleDNN structures

3.1 Activation function with compact support

In order to produce scale separation and identification capability of a MscaleDNN, we
borrow the idea of compact scaling function in the wavelet theory [8], and consider the
activation functions with compact support as well. Compared with the normal activation
function ReLU(x)=max{0,x}, we will see activation functions with compact support are
more effective in MscaleDNNs. Two possible activation functions are defined as follows

sReLU(x)=ReLU(−(x−1))×ReLU(x)=(x)+(1−x)+, (3.1)

and the quadratic B-spline with first continuous derivative

φ(x)=(x−0)2
+−3(x−1)2

++3(x−2)2
+−(x−3)2

+, (3.2)

where x+=max{x,0}=ReLU(x), and the latter has an alternative form,

φ(x)=ReLU(x)2−3ReLU(x−1)2+3ReLU(x−2)2−ReLU(x−3)2. (3.3)

All three activation functions are illustrated in spatial domain in Fig. 1 and the Fourier
transforms of both sReLU(x) and φ(x) are illustrated in Fig. 2.

(a) ReLU (b) sReLU (c) φ

Figure 1: A
tivation fun
tions in spatial domain.

3.2 Two MscaleDNN structures

While the procedure leading to (2.15) is not practical for numerical approximation in
high dimension, it does suggest a plausible form of function space for finding the so-
lution more quickly with DNN functions. We can use a series of ai ranging from 1 to
a large number to produce a MscaleDNN structure to achieve our goal in speeding up
the convergence for solution with a wide range of frequencies with uniform accuracy in
frequencies. For this purpose, we propose the following two multi-scale structures.

MscaleDNN-1. For the first kind, we separate the neuron in the first hidden-layer into
to N parts. The neuron in the i-th part receives input aix, that is, its output is σ(aiw·
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(a) sReLU (b) φ

Figure 2: A
tivation fun
tions in frequen
y domain, normalized by the maximum of ea
h 
ase.

(a) MscaleDNN-1 (b) MscaleDNN-2

Figure 3: Illustration of two Ms
aleDNN stru
tures.

x+b), where w, x, b are weight, input, and bias parameters, respectively. A complete
MscaleDNNs takes the following form

fθ(x)=W
[L−1]σ◦(···(W [1]σ◦(W [0](K⊙x)+b

[0])+b
[1])···)+b

[L−1], (3.4)

where x∈R
d, W [l]∈R

ml+1×ml , ml is the neuron number of l-th hidden layer, m0=d, b[l]∈
R

ml+1, σ is a scalar function and “◦” means entry-wise operation, ⊙ is the Hadamard
product and

K=(a1,a1,··· ,a1︸ ︷︷ ︸
1st part

,a2,a2,··· ,a2︸ ︷︷ ︸
2nd part

,a3,··· ,ai−1,ai,ai,··· ,ai︸ ︷︷ ︸
ith part

,··· ,aN ,aN ··· ,aN︸ ︷︷ ︸
Nth part

)T, (3.5)

where ai = i or ai =2i−1.
We refer to this structure as Multi-scale DNN-1 (MscaleDNN-1) of the form in Eq. (3.4),

as depicted in Fig. 3(a).
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MscaleDNN-2. A second kind of multi-scale DNN is given in Fig. 3(b), as a sum of N
subnetworks, in which each scale input goes through a subnetwork. In MscaleDNN-2,
weight matrices from W [1] to W [L−1] are block diagonal. Again, we could select the scale
coefficient ai = i or ai =2i−1.

For comparison studies, we will define a “normal” network as an one fully connected
DNN with no multi-scale features. We would perform extensive numerical experiments
to examine the effectiveness of different settings and use an efficient one to solve complex
problems. All models are trained by Adam [16] with learning rate 0.001.

4 MscaleDNN for approximations and elliptic PDE’s solutions

In this section, we will address two problems, i.e., fitting functions and solving PDEs such
as the PB equations, to show the effectiveness of MscaleDNNs in the following sections.

4.1 Mean squared error training for fitting functions

A DNN, denoted by fθ(x), will be trained with the mean squared error (MSE) loss to fit a
target function f ∗(x). The loss function is defined as

minL( fθ)=
∫

Ω
| f ∗(x)− fθ(x)|2dx, (4.1)

where fθ(x) is a neural network with parameter θ.
In our training process, the training data are sampled from f (x) at each training

epoch, the loss at each epoch is

LS( fθ)=
1

n ∑
x∈S

| f ∗(x)− fθ(x)|2, (4.2)

where n is the sample size in S.

The above training process requires all information of the target function, which in-
dicates such a training process is not of much practical use. We conduct this study to
examine the ability of a DNN in fitting high-frequency functions given sufficient infor-
mation of the target function.

4.2 A Ritz variational method for Poisson-Boltzmann equations

Let us consider the following elliptic Poisson-Boltzmann equation,

−∇(ǫ(x)∇u(x))+κ(x)u(x)= f (x), x∈Ω⊂R
d, (4.3)

where ǫ(x) is the dielectric constant and κ(x) the inverse Debye-Huckel length of an ionic
solvent. For a typical solvation problem of a solute such as a bio-molecule in ionic solvent,
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the dielectric constant will be a discontinuous function across the solute-solvent interface
Γ where the following transmission condition will be imposed,

[u](x)=0, x∈Γ, (4.4)
[
ǫ

∂u

∂n

]
(x)=0, x∈Γ, (4.5)

where [ ] denotes the jump of the quantity inside the square bracket and, for simplicity,
an approximate homogeneous boundary condition on ∂Ω is used for this study, i.e.

u|∂Ω =0. (4.6)

We will apply the deep Ritz method as proposed in [11], which produces a variational
solution u(x) of Eqs. (4.3), (4.4) and (4.5) through the following minimization problem

u=arg min
v∈H1

0(Ω)
J(v), (4.7)

where the energy functional is defined as

J(v)=
∫

Ω

1

2

(
ǫ(x)|∇v(x)|2+κ(x)v(x)2

)
dx−

∫

Ω

f (x)v(x)dx,

∫

Ω

E(v(x))dx. (4.8)

We use the MscaleDNN uθ(x) to represent trial functions v(x) in the above variational
problem, where θ is the DNN parameter set. Then, the MscaleDNN solution is

θ∗=argmin
θ

J(uθ(x)). (4.9)

The minimizer θ∗ can be found by a stochastic gradient decent (SGD) method,

θ
(n+1)=θ

(n)+η∇θJ(uθ(x)). (4.10)

The integral in Eq. (4.8) will only be sampled at some random points xi, i=1,··· ,n at each
training step (see (2.11) in [11]), namely,

∇θJ(uθ(x))∼∇θ

1

n

n

∑
i=1

E(uθ(xi)). (4.11)

At convergence θ
(n)→θ∗, we obtain a MscaleDNN solution uθ∗(x).

Variational functional for non-homogeneous Dirichlet boundary conditions

To derive the functional for (4.3) with a non-homogeneous boundary condition

u|∂Ω= g, (4.12)
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we will construct a spatial extension function g̃∈C2(Ω), such that

g̃|∂Ω = g,
∂g̃

∂n

∣∣∣
∂Ω

=0, sup(g̃)∩Γ=∅, (4.13)

and consider the function
w=u− g̃, (4.14)

which satisfies Eq. (4.3) with a new right hand side

f̃ = f +ǫ(x)∆g̃−κ(x)g̃ (4.15)

with an homogeneous boundary condition on ∂Ω, and can be found as the minimizer of
the following minimization problem

w=arg min
v∈H1

0 (Ω)
J(v), (4.16)

where

J(v)= J(v; f̃ )=
1

2

∫

Ω

(
|ǫ(x)∇v(x)|2+κ(x)v(x)2

)
dx−

∫

Ω

f̃ v(x)dx. (4.17)

Now consider the set

Vg={̟∈H1(Ω) |̟= g̃+v, v∈H1
0 (Ω)}= g̃⊕H1

0(Ω)⊂H1(Ω). (4.18)

Using the definition of Vg in (4.18) and f̃ in (4.15), we can show that for piecewise constant
ǫ(x),

J(v)=
1

2

∫

Ω

(
|ǫ(x)(∇̟−∇g̃)|2+κ(x)(̟− g̃)2

)
dx−

∫

Ω

( f +ǫ(x)∆g̃−κ(x)g̃)(̟− g̃)dx

=


1

2

∫

Ω

(
|ǫ(x)∇̟|2+κ(x)̟2

)
dx−

∫

Ω

f ̟dx


−

∫

Ω

(ǫ(x)∇̟∇g̃+κ(x)̟g̃)dx

+
1

2

∫

Ω

(
|ǫ(x)∇g̃|2+κ(x)g̃2

)
dx−

∫

Ω

(ǫ(x)∆g̃−κ(x)g̃)̟dx

+
∫

Ω

f g̃dx+
∫

Ω

(ǫ(x)∆g̃−κ(x)g̃) g̃dx

= J(̟; f )−
∫

Ω

ǫ∇̟∇g̃dx−
∫

Ω

ǫ∆g̟̃dx+C( f , g̃)

= J(̟; f )+
∫

∂Ω

ǫ
∂g̃

∂n
̟dx+C( f , g̃)

= J(̟; f )+C( f , g̃),
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where the term C( f , g̃) is considered as a constant during the minimization process. There-
fore, we have

arg min
v∈H1

0(Ω)
J(v, f̃ )=arg min

̟∈Vg

J(̟, f ), (4.19)

where

J(̟)= J(̟, f )=
1

2

∫

Ω

(
|ǫ(x)∇̟|2+κ(x)̟2

)
dx−

∫

Ω

f ̟dx. (4.20)

In practice, a penalty term can be added in the functional to enforce the boundary condi-
tion, namely

w=arg min
̟∈H1(Ω)

J(̟)+β||̟−g||2 . (4.21)

In our numerical tests, the Ritz loss function is taken as

Lritz(uθ)=
1

n ∑
x∈S

(ǫ(x)|∇uθ(x)|2/2+κ(x)uθ(x)2/2− f (x)uθ(x))

+β
1

ñ ∑
x∈S̃

(uθ(x)−g(x))2, (4.22)

where uθ(x) is the DNN output, S is the sample set from Ω and n is the sample size, ñ
indicates the number of sample set S̃ from ∂Ω. We choose β=1000 for all experiments.

To see the learning accuracy, we also compute the L2 error between uθ(x) and utrue(x)
on test data points St={xi}nt

i=1 inside the domain,

error(uθ(x),utrue(x))=

(
1

nt
∑

x∈St

(uθ(x)−utrue(x))2

)1/2

. (4.23)

5 Effectiveness of various MscaleDNN settings

In this section, we will show that MscaleDNNs outperform normal fully-connected DNNs
(indicated by “normal" in the numerical results) in various settings, namely, the loss func-
tion of MscaleDNN decays faster to smaller values than that of normal fully-connected
DNNs.It will also reflect smaller errors for the solutions for the MscaleDNN. First, we will
carry out two test problems. Second, we will demonstrate that compact supported activa-
tion functions of sReLU(x) and φ(x) are much better than the commonly used ReLU(x).
Third, we use activation functions φ(x) to show MscaleDNN structures are better than
normal fully connected one. Finally, we examine the effects of various scale selections.

5.1 Two test problems

To understand the performance of different MscaleDNNs and their parameters, here we
consider one- and two- dimensional problems in fitting functions and solving PDEs, and
problems in 3-D in complex domains will be considered in the next section.
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Test problem 1: Fitting problem. The target function for the fitting problem is F :
[−1,1]d →R

F(x)=
d

∑
j=1

g(xj) xj ∈ [−1,1], (5.1)

where x=(x1,··· ,xd),

g(x)= e−x2
sin(µx2).

In the case of d= 1, we choose µ= 70 while for the case of d= 2, µ= 30. The functions
of d=1 and d=2 are shown in Fig. 4. 5000 training data at each epoch and 500 test data
are randomly sampled from [−1,1]d. All DNNs are trained by the Adam optimizer with
learning rate 0.001.

(a) d=1 (b) d=2

Figure 4: Test Problem 1: target fun
tions for �tting problems.

Test problem 2: Solving PB equations. We will solve the elliptic equation (4.3) with
ǫ=1 and a constant κ(x)=λ2 in a domain Ω=[−1,1]d and the right hand side

f (x)=
d

∑
i=1

(λ2+µ2)sin(µxi),

which gives a PB equation with the following exact solution,

u(x)=
d

∑
i=1

− sinµ

sinhλ
sinh(λxi)+sin(µxi)

with corresponding boundary condition given by the exact solution.

For d = 1, we choose λ = 20, µ = 50. For d = 2, we choose λ = 2, µ = 30. The exact
solutions for d= 1 and d= 2 are shown in Fig. 5. DNNs are trained by Adam optimizer
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(a) d=1 (b) d=2

Figure 5: Test problem 2: exa
t solutions of 1-D and 2-D PB equation.

with learning rate 0.001. 5000 training data at each epoch are randomly sampled from
Ω. We choose the penalty coefficient for boundary as β=1000. The number of boundary
data randomly sampled from ∂Ω is 400 for d=1 and 4000 for d=2.

5.2 Different activation functions

We use the following three network structures to examine the effectiveness of different ac-
tivation functions by solving one-dimensional fitting and PDE problems described above:

1. fully-connected DNN with size 1-900-900-900-1 (normal);

2. MscaleDNN-1 with size 1-900-900-900-1 and scale coefficients of {1,2,4,8,16,32}
(MscaleDNN-1(32));

3. MscaleDNN-2 with six subnetworks with size 1-150-150-150-1 and scale coefficients
of {1,2,4,8,16,32} (MscaleDNN-2(32)).

In Fig. 8, we increase the number of total epoch to 50000. The results are similar.
Therefore, several thousand epochs are enough to compare the performance of networks.

We use three different activation functions, i.e., ReLU, sReLU, φ for the above struc-
tures. For normal network structure in the fitting problem, as shown in Fig. 6(a), φ (blue)
performs much better than other two activation functions. However, with a normal net-
work structure to solve the PDE, as shown in Fig. 7(a), φ (blue) performs much worse than
other two activation functions. The results indicate all three activation function are not
stable in a normal fully connected structure. On the other hand, as shown in Figs. 6(b,c),
and 7(b,c), for both MscaleDNN structures, the performance of compact supported acti-
vation functions, sReLU (orange) and φ (blue), are much better than that of ReLU (green)
for both test problems.
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(a) normal (b) MscaleDNN-1 (c) MscaleDNN-2

Figure 6: Di�erent a
tivation fun
tions in 1-D �tting problems.

(a) normal (b) MscaleDNN-1 (c) MscaleDNN-2

Figure 7: Di�erent a
tivation fun
tions in a 1-D PB equation.

(a) normal (b) MscaleDNN-1 (c) MscaleDNN-2

Figure 8: Di�erent a
tivation fun
tions in a 1-D PB equation.

5.3 Different network structures

In this subsection, we examine the effectiveness of the following different network struc-
tures with the activation function of φ(x):

1. fully-connected DNN with size 1-900-900-900-1 (normal);

2. MscaleDNN-1 with size 1-900-900-900-1 and scale coefficients of {1,2,4,8,16,32}
(MscaleDNN-1(32));

3. MscaleDNN-2 with six subnetworks with size 1-150-150-150-1 and scale coefficients
of {1,2,4,8,16,32} (MscaleDNN-2(32)).
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(a) 1d function (b) 2d function

Figure 9: Di�erent network stru
tures in �tting problems.

(a) 1d equation (b) 2d equation

Figure 10: Di�erent network stru
tures in PDE problems.

As shown in Figs. 9 and 10, both MscaleDNN structures are better than normal struc-
tures in both problems. Two different MscaleDNN structures have similar performance
in both test problems. As MscaleDNN-2 performs better than MscaleDNN-1 and also
has much less connections compared with MscaleDNN-1 and a dynamic adaptive strat-
egy of adding and removing scales can also be implemented, in the following we will use
MscaleDNN-2 for further numerical experiments.

5.4 Different scale selections in MscaleDNNs

In this subsection, we will test different scales for the activation function in MscaleDNNs:

1. fully-connected DNN with size 1-900-900-900-1 (normal);

2. MscaleDNN-2 with six subnetworks with size 1-150-150-150-1 and scale coefficients
of {1,1,1,1,1,1} (MscaleDNN-2(1));

3. MscaleDNN-2 with three subnetworks with size 1-300-300-300-1 and scale coeffi-
cients of {1,2,3} (MscaleDNN-2(3));
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(a) 1d equation (b) 2d equation

Figure 11: Di�erent s
ale options in 1-D and 2-D PB equations.

4. MscaleDNN-2 with three subnetworks with size 1-300-300-300-1 and scale coeffi-
cients of {1,2,4} (MscaleDNN-2(4));

5. MscaleDNN-2 with six subnetworks with size 1-150-150-150-1 and scale coefficients
of {1,2,3,4,5,6} (MscaleDNN-2(6));

6. MscaleDNN-2 with six subnetworks with size 1-150-150-150-1 and scale coefficients
of {1,2,4,8,16,32} (MscaleDNN-2(32)).

As shown in Fig. 11, MscaleDNNs almost perform consistently better than normal
DNNs. Note that with larger-range scale, MscaleDNN solves the problem faster. With
all scales as 1, the performance of DNN structure (MscaleDNN-2(1)) is much worse than
those with multiscales in solving elliptic PDEs. Therefore, with the subnetwork struc-
tures with different scales, the MscaleDNN is able to achieve a faster convergence. These
experiments show that MscaleDNNs with proper scales are more efficient in solving PDE
problems and the selection of the scales are not too sensitive.

With these numerical experiments, we have demonstrated that MscaleDNN is much
more efficient to solve elliptic PDEs and the preferred network is MscaleDNN-2 with the
compact support function φ(x), which will be used for the rest of the paper for solving
Poisson and PB equations in complex and/or singular domains.

6 MscaleDNNs for Poisson and Poisson-Boltzmann equations

in complex and singular domains

In this section, we apply MscaleDNNs with activation function φ(x) to solve complex
elliptic equations, including cases with a broad range of frequencies, variable coefficients,
a ring-shaped domain, and a cubic domain with multiple holes. Finally, we apply the
MscaleDNN to solve PB equations with geometric singularities, such as cusps and self-
intersecting surfaces, which comes from a typical bead-model of bio-molecule. Through
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these experiments, we convincingly demonstrate that MscaleDNNs are an efficient and
easy-implemented mesh-less method to solve complex elliptic PDEs.

6.1 Poisson equation in complex domains

6.1.1 Broad range of frequencies

Consider the Poisson equation in Ω=[−1,1]d,

−∆u(x)= f (x), (6.1)

where

f (x)=
d

∑
i=1

4µ2x2
i sin(µx2

i )−2µcos(µx2
i ). (6.2)

The equation has an exact solution as

u(x)=
d

∑
i=1

sin(µx2
i ), (6.3)

which will also provide the boundary condition in problem (6.1).
In each training epoch, we sample 5000 points inside the domain and 4000 points

from the boundary. We examine the following two structures:

1. a fully-connected DNN with size 1-1000-1000-1000-1 (normal);

2. a MscaleDNN-2 with five subnetworks with size 1-200-200-200-1, and scale coeffi-
cients {1,2,4,8,16} (Mscale).

This problem does not have a fixed frequency but a broad range of frequencies. A
commonly-used fully connected DNN will not be able to solve this problem. For µ=15,
the exact solution for the two-dimensional case of problem (6.1) is shown in Fig. 12(a)
as a highly oscillated function. The solution, obtained by the normal DNN in Fig. 12(b),

(a) exact (b) normal (c) Mscale

Figure 12: Two-dimensional 
ase for problem (6.1). As an example, the Ms
aleDNN well 
aptures the os
illation

in the red marked 
ir
le while the normal fully 
onne
ted network fails.
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(a) 2d Poisson equation (b) 3d Poisson equation

Figure 13: Error vs. epo
h for problems with broad range of frequen
ies.

fails to capture the oscillate structure, while the solution obtained by the MscaleDNN in
Fig. 12(c) captures well the different-scale oscillations. For example of the area marked
by the red circle, the expected oscillation almost disappears in the solution of the nor-
mal networks while MscaleDNN solutions resolve the oscillations well. Similar behavior
differences occur for the oscillations at four corners.

The errors of the two-dimensional and the three-dimensional problems are shown in
Fig. 13(a) and (b), respectively. In both cases, MscaleDNNs solve problems much faster
to lower errors.

6.1.2 A ring-shaped domain

Consider the Poisson equation (6.1) in a ring-shaped domain Ω with its center at (0,0)
and inner radius 1 and outer radius 3 with a source term

f (x)=µ2 J0(µ|x−x0|), (6.4)

where J0 is the Bessel function. The exact solution is given by

u(x)= J0(µ|x−x0|). (6.5)

Again, the boundary condition is given by the exact solution u(x). We choose x0=(0.5,0)
and solve the equation with µ=5 and µ=10.

In each training epoch, we sample 5000 points inside the domain and 4000 points
from the boundary. We examine the following two structures:

1. a fully-connected DNN with size 1-500-500-500-1 (normal);

2. a MscaleDNN-2 with five subnetworks with size 1-100-100-100-1 and scale coeffi-
cients {1,2,4,8,16} (Mscale).

The exact solutions and numerical solutions obtained by normal and MscaleDNNs
are shown in Fig. 14 (µ= 5) and Fig. 15 (µ= 10). To highlight the superior performance
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(a) exact (b) normal (c) Mscale

Figure 14: Exa
t and numeri
al solutions for the equation in a ring-shaped domain with µ=5. The bla
k 
ir
le

is for illustration purpose only.

(a) exact (b) normal (c) Mscale

Figure 15: Exa
t and numeri
al solution for the equation in ring-shaped domain with µ=10. The bla
k 
ir
le

is for illustration purpose only.

(a) µ=5 (b) µ=10

Figure 16: Error vs. epo
h for the Poisson equation in ring-shaped domain.

of the MscaleDNNs, areas in the figures marked by the black circle show the region of
the solution with the largest amplitude, the normal networks completely fail to capture
the oscillations while the MscaleDNNs faithfully captures them in both cases. Again, as
shown in Fig. 16, MscaleDNN solves both problems with a much better accuracy.
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6.1.3 A square domain with a few holes

Domain one. The centers for three circle holes are (−0.5,−0.5), (0.5,0.5), and (0.5,−0.5),
with radii of 0.1, 0.2, and 0.2, respectively. In each epoch, we randomly sample 3000
on outer boundary, 800 points on the boundary of each big hole and 400 points on the
boundary of the small hole.

Domain two. The centers for three circle holes are (−0.6,−0.6), (0.3,−0.3) and (0.6,0.6),
with radii of 0.3, 0.6, 0.3, respectively. The boundary of the elliptic hole is described by
16(x+0.5)2+64(y−0.5)2 =1. The sample sizes at each epoch are 2400, 1100, 550, and 400
for the outer boundary, the boundary of the big circle hole, the boundary of each small
circle hole, and the boundary of the elliptic hole, respectively.

We solve the Poisson equation (6.1) with the source term as

f (x)=2µ2 sinµx1 sinµx2, µ=7π. (6.6)

The exact solution is

u(x)=sinµx1sinµx2, (6.7)

which also provides the boundary condition. In each training epoch, we sample 5000
points inside the domain with the following two DNN structures:

1. a fully-connected DNN with size 1-1000-1000-1000-1 (normal);

2. a MscaleDNN-2 with five subnetworks with size 1-200-200-200-1, and scale coeffi-
cients of {1,2,4,8,16} (Mscale).

As shown in Fig. 19. MscaleDNNs solve both problems much faster to lower errors.

Compared with the exact solutions in Fig. 17(a) and Fig. 18(a), normal DNN fails
to resolve the magnitudes of many oscillations as shown in Fig. 17(b) and Fig. 18(b)
while MscaleDNNs capture each oscillation of the true solutions accurately as shown
in Fig. 17(c) and Fig. 18(c).

(a) exact (b) normal (c) Mscale

Figure 17: Exa
t and numeri
al solution for the Poisson equation in domain 1.
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(a) exact (b) normal (c) Mscale

Figure 18: Exa
t and numeri
al solution for the Poisson equation in domain 2.

(a) domain 1 (b) domain 2

Figure 19: Error vs. epo
h for the Poisson equation in square domains with few holes.

6.1.4 A square domain with many holes

To verify the capability of the MscaleDNN for complex domains, we consider a three
dimensional cube [−1,1]3 with 125 holes inside removed as shown in Fig. 20, and the
holes are centered at a uniform mesh, i.e., {−0.8,−0.4,0,0.4,0.8}3, with radii randomly
sampled from a uniform distribution in [0,0.15]. The sample sizes for training DNNs
at each training epoch are 2500 for the outer boundary and 1500 for the inner holes (12
points for each hole).

Again, consider the Poisson equation with f (x) and the Dirichlet boundary condition
given by the exact solution u(x) for the following three cases:

1. Example 1: u(x)=sinµx1sinµx2sinµx3.

2. Example 2: u(x)=esinµx1+sinµx2+sinµx3 .

3. Example 3: u(x)=esinµx1sinµx2 sinµx3 .

The difficulty of this problem consists of the complex holes and oscillatory exact solutions
with µ = 7π. In each training epoch, we sample 5000 points inside the domain, and
compare the following two structures:
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Figure 20: Holes of domain for the problem.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 21: Error vs. epo
h for the PDEs in square domain with many holes.

1. a fully-connected DNN with size 1-1000-1000-1000-1 (normal);

2. a MscaleDNN-2 with five subnetworks with size 1-200-200-200-1, and scale coeffi-
cients of {1,2,4,8,16} (Mscale).

As shown in Fig. 21 for all three cases, the normal fully-connected structures do not
converge for such complex problems at all while MscaleDNNs can solve the problem
with much smaller errors.

6.2 Poisson-Boltzmann equations with domain and source singularities

6.2.1 Variable coefficients

Consider the PB equation (4.3) in Ω=[−1,1]3 with

f (x)=(µ2
1+µ2

2+µ2
3+x2

1+2x2
2+3x2

3)sin(µ1x1)sin(µ2x2)sin(µ3x3), (6.8)

and
κ(x)=(x2

1+2x2
2+3x2

3), (6.9)

which has an exact solution as

u(x)=sin(µ1x1)sin(µ2x2)sin(µ3x3). (6.10)
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Figure 22: Error vs. epo
h for variable 
oe�
ient PB equation.

The boundary condition is given by the exact solution u(x). We choose µ1 = 15, µ2 = 20,
µ3=25. In each training epoch, we sample 5000 points inside the domain and 4000 points
from the boundary. We compare the following two DNN structures:

1. a fully-connected DNN with size 1-900-900-900-1 (normal);

2. a MscaleDNN-2 with six subnetworks with size 1-150-150-150-1 and scale coeffi-
cients {1,2,4,8,16,32} (Mscale).

As shown in Fig. 22, during the training process, the error of the MscaleDNN decays
significantly, while the error of the normal DNN almost keeps unchanged. Therefore,
MscaleDNN solves the problem much faster with a much better accuracy.

6.2.2 Geometric singularities

In this subsection, we consider the PB equation (4.3) in a domain with geometric singu-
larities and jump condition on interior interfaces, which arises from the simulation of
solvation of bio-molecules. Consider an open bounded domain Ω1 ⊂R

3, which divides
R

3 into two disjoint open subdomains by the surface Γ=∂Ω1. Ω1 is identified as the bio-
molecule, and Ω2 =R

3\Ω1 is the solvent region. The exact solution u(x) is also divided
into two parts, u1(x) is defined in Ω1 and u2(x) in Ω2. The solution will also satisfy the
transmission condition (4.4), (4.5) along the interface Γ and a decaying condition at the
∞, i.e.

lim
|x|→∞

u2(x)=0. (6.11)

To deal with the unbounded domain, we truncate the solution domain to a large ball or
cube, denoted by Ω satisfying Ω1 ⊂Ω and we re-define Ω2 =Ω\Ω1 and set an approxi-
mate condition u2=0 on the boundary of the ball (Fig. 23 (left)) and such a crude bound-
ary condition will surely introduce error to the PDEs solution. Higher order boundary
conditions have been studied extensively, and as we are more interested in the perfor-
mance of the DNNs near the interior interface, we will not ponder over this issue here.
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Figure 23: Solution domain: (left) trun
ation of 
omputation domain, (right) geometri
 singularity.

The domain with geometric singularities is constructed as follows. We choose a big
ball with a center at (0,0,0) and a radius of 0.5. 20 points are randomly selected on the sur-
face of the big ball as the centers of small balls. Radiuses of the small balls are randomly
sampled from [0.1,0.2]. Ω1 is the union of these balls and the big ball. The shape of Ω1 is
illustrated in Fig. 23 (right). The intersections among balls cause geometric singularities,
such as kinks, which poses major challenges for obtaining mesh generation for traditional
finite element and boundary element methods and accurate solution procedures.

Following two examples are considered. In both examples, coefficients ǫ(x) and κ(x)
are chosen as piece-wise constant. Singular sources for the PB equations, which can occur
from the point charges inside bio-molecules or ions in the solvents, will be considered
later. These point charge sources, modeled by Dirac delta function, will create point
singularity in the solution, which can be removed by subtracting a singular solution [7].

Example 1. The exact solution is

u(x)=
esinµx1+sinµx2+sinµx3

|x|2+1
(|x|2−1) (6.12)

with coefficients for the PB equation as

µ=15, ǫ(x)=1, κ(x)=1 for x∈Ω1, ǫ(x)=1, κ(x)=5 for x∈Ω2. (6.13)

The whole domain is truncated by a ball with center at (0,0,0) and a radius 1 with zero
boundary condition on the sphere.

Example 2. We choose

f (x)=
esinµx1+sinµx2+sinµx3

|x|2+1
(|x|2−1) (6.14)
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(a) loss (b) relative error

Figure 24: Loss and relative error vs. epo
h for the PB equation in a domain with geometri
 singularities

(Example 1).

(a) loss (b) relative error

Figure 25: Loss and relative error vs. epo
h for the PB equations in a domain with geometri
 singularities

(Example 2).

with coefficients

µ=20, ǫ(x)=1 for x∈Ω1, ǫ(x)=80 for x∈Ω2, κ(x)=1. (6.15)

In this case, the computational domain is obtained with a truncation by a cube [−1,1]3

and the reference solution is calculated by finite difference method (FDM) with a suffi-
cient fine mesh ensuring enough accuracy.

In Example 1, in each training epoch, we sample 5000 points inside the domain Ω and
4000 points on boundary ∂Ω. In Example 2, we sample 6000 points inside the domain Ω,
3000 points on boundary ∂Ω. We train MscaleDNNs with the Ritz loss function in (4.22).
Note that the continuity condition in (4.4) is satisfied since we use a single network to fit
the whole domain Ω; The natural condition in (4.5) is also automatically satisfied due to
the use of the Ritz loss.

We examine the following two structures:

1. a fully-connected DNN with size 1-1000-1000-1000-1 (normal);
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Figure 26: Numeri
al solutions of Example 2 on line x1 = x3=0.

2. a MscaleDNN-2 with five subnetworks with size 1-200-200-200-1, and scale coeffi-
cients of {1,2,4,8,16} (Mscale).

Since the value of the exact solution is small, we show the relative L2 error for both
cases. As in practice, the exact solution is unknown, therefore, we also show the training
loss for both examples, which could be used as a possible criteria to terminate the training.
For Example 1 as shown in Fig. 24, the training loss in Fig. 24(a) and the error in Fig. 24(b)
have similar trends, that is, the MscaleDNN converge faster to smaller values, compared
with the normal DNN. For Example 2 shown in Fig. 25, the MscaleDNN shows a similar
advantage over the normal DNN. These examples indicate that with by just monitoring
the training loss, MscaleDNN solves the PB equations with non-smooth solution over
singular domains much faster and with better accuracy.

For illustration, we show a cross section of the solution in the second example. The
reference solution is obtained by the FDM. Numerical solutions on the line x1 = x3 = 0
obtained by FDM (h= 0.02), normal DNN (5000 epochs) and MscaleDNN (5000 epochs)
are shown in Fig. 26. The output of the normal fully connected network gives a wrong
solution in the interior of the singular domain while the MscaleDNN gives a satisfactory
approximation to the reference solution.

6.2.3 Source and geometric singularities

In this subsection, we consider the PB equation (4.3) with singular sources, that is,

f (x)=
K

∑
k=1

qkδ(x−sk), (6.16)

where δ(x) is Dirac delta function, qk and sk represent the charge and position of one
nuclei in the bio-molecule, respectively. We assume that the distance between nucleus
and the molecule interface is bigger than a constant R0, that is, Ω0={x :∃k,|x−sk|<R0}⊂
Ω1. In Fig. 27, the blue part represents the solvent domain Ω2, the green part represents
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Figure 27: Spheri
al trun
ation of the physi
al domain.

the biomolecular domain Ω1\Ω0, and the pink part represents Ω0, which contains all
charges.

To deal with singularities, we define

ū(x)=
K

∑
k=1

qkG(x−sk)m(x−sk), (6.17)

where

G(x)=
1

4πǫ1

e
− κ1√

ǫ1
|x|

|x| (6.18)

and the mollifier function




m(x)=1−
(
|x|
R0

)3(
4−3 |x|

R0

)
, |x|<R0,

m(x)=0. |x|>R0.
(6.19)

By above definitions, it can be verified easily that ū(x) satisfies





−∆ū(x)+κ2ū(x)=∑
K
k=1 qkδ(x−sk)+∑

K
k=1qkF(|x−sk|), x∈Ω0,

ū= ∂ū
∂n =0, x∈∂Ω0,

ū(x)=0, x∈Ωc
0.

(6.20)

Next, we define

w(x)=u(x)−ū(x)χΩ0
(x), (6.21)

which will satisfy the following equations without singularities

−ǫ(x)△w(x)+κ2(x)w(x)= f (x)χΩ0
(x), (6.22)
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where

f (x)=−
K

∑
k=1

qkF(|x−sk|), (6.23)





F(r)= 3e
− κ1√

ǫ1
r

πR4
0

(2R0−3r+2 κ1√
ǫ1

r2−2R0
κ1√
ǫ1

r), r<R0,

F(r)=0, r>R0.
(6.24)

We will present the numerical results for Eq. (6.22).

Example 1. In the first example, we choose Ω=[−1,1]3. Ω1 is a ball with center (0,0,0)
and radius R=0.7. Parameters are chosen as

s=(0,0,0), q=1, R0=0.5, ǫ(x)=1 for x∈Ω1, ǫ(x)=80 for x∈Ω2, κ(x)=0.

The exact solution is

u(x)=
1

4π|x|ǫ1
−
( 1

ǫ1
− 1

ǫ2

) 1

4πR
, x∈Ω1; u(x)=

1

4π|x|ǫ2,
, x∈Ω2, (6.25)

and, correspondingly





w(x)= 1
4πǫ1|x|

(
|x|
R0

)3(
4−3

|x|
R0

)
−( 1

ǫ1
− 1

ǫ2
) 1

4πR , |x|<R0,

w(x)= 1
4π|x|ǫ1

−( 1
ǫ1
− 1

ǫ2
) 1

4πR , R0< |x|<R,

w(x)= 1
4π|x|ǫ2

, |x|>R.

Example 2. In the second example, we choose Ω=[−1,1]3. The domain is constructed as
follows. We choose a large ball with center (0,0,0) and radius 0.7. 20 points are randomly
selected on the surface of the large ball as the centers of small balls. Radii of the small
balls are randomly sampled from [0.1,0.3]. Ω1 is the union of these balls.

The singular source term in (6.16) is constructed as follows. The position of each
charge is randomly selected in the ball with center (0,0,0) and radius 0.5 and the quantity
of charges is from [−0.5,0.5]. We choose R0=0.2. Parameters are chosen as

ǫ(x)=1 for x∈Ω1, ǫ(x)=80 for x∈Ω2, κ(x)=0.

The reference solution is again calculated by a FDM with a very fine mesh.

DNN results. In each training epoch, we sample 6000 points inside the domain Ω and
3000 points on boundary ∂Ω. In Example 1, we examine the following two structures:

1. fully-connected DNN with size 1-1000-1000-1000-1 (normal);
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(a) Example 1 (b) Example 2

Figure 28: Error vs. epo
h for the PDEs in domain with geometri
 and sour
e singularities.

(a) Example 1 (b) Example 2

Figure 29: Numeri
al solutions on line x2 = x3 =0.

2. MscaleDNN-2 with five subnetworks with size 1-200-200-200-1, and scale coeffi-
cients of {1,2,4,8,16} (Mscale).

In Example 2, the equation is more complex than before, we need more neurons to ap-
proximate the complex solution. In Example 2, we examine the following two structures
with boundary penalty β=100:

1. fully-connected DNN with size 1-1500-1000-1000-500-1 (normal);

2. MscaleDNN-2 with five subnetworks with size 1-300-200-200-100-1, and scale coef-
ficients of {1,2,4,8,16} (Mscale).

As shown in Fig. 28, the errors of the MscaleDNN decays much faster and achieves
much smaller errors after training for both examples.

The numerical solutions on the line x2=x3=0 obtained by the FDM (h=0.01), normal
DNN (10000 epochs) and MscaleDNN (10000 epochs) are shown in Fig. 29. The output
of the normal fully connected network can not capture the peaks in exact solution very
well.
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(a) FDM (b) Normal (c) Mscale

Figure 30: Numeri
al solutions of Example 2 on plane x3 =0.

(a) Normal (b) Mscale

Figure 31: Errors of Example 2 on plane x3 =0.

For the second example, the numerical solutions and errors on the surface x3 = 0
around the bio-molecule obtained by FDM (h= 0.01), normal DNN (10000 epochs) and
MscaleDNN (10000 epochs) are shown in Fig. 30 and Fig. 31.

7 Conclusion and future work

In this paper, we have introduced a new kind of multi-scale DNNs, using a frequency
domain scaling technique and compactly supported activation functions, to generate a
multi-scale capability for finding the solutions of elliptic PDEs with rich frequency con-
tents. By using a radial scaling in the Fourier domain of the solutions, the MscaleDNN is
shown to be an efficient mesh-less and easy-to-implement method for PDEs on complex
and singular domains, for which solvers by finite element and finite difference methods
may be costly due to the need of mesh generations and solution of large linear systems.

For future work, we will also explore the idea of activation function with the mother
wavelet properties as proposed in [5], which should give further frequency localization
and separation capability in the MscaleDNNs. Applications of the MscaleDNN to large
scale computational engineering problems will be carried out, especially, in comparison
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with finite element and finite difference methods. More importantly, an area to be ex-
plored is to apply the MscaleDNN to high dimensional PDEs such as Schrodinger equa-
tions for many body quantum systems, issues of high dimensional sampling and low
dimensional structure of solutions will be studied.
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