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Abstract

In recent years, understanding the implicit regularization of neural networks (NNs) has
become a central task in deep learning theory. However, implicit regularization is itself not
completely defined and well understood. In this work, we attempt to mathematically define
and study implicit regularization. Importantly, we explore the limitations of a common
approach to characterizing implicit regularization using data-independent functions. We
propose two dynamical mechanisms, i.e., Two-point and One-point Overlapping mechanisms,
based on which we provide two recipes for producing classes of one-hidden-neuron NNs
that provably cannot be fully characterized by a type of or all data-independent functions.
Following the previous works, our results further emphasize the profound data dependency
of implicit regularization in general, inspiring us to study in detail the data dependency of
NN implicit regularization in the future.

1 Introduction

One of the greatest mysteries of neural networks (NNs) is their ability to generalize well without any
explicit regularization even when they are heavily overparametrized (Breiman, 1995; Zhang et al., 2017). For
conventional machine learning algorithms, without a regularization term, heavily overparameterized models
easily overfit the data. However, for NNs, it has been empirically observed that, with proper initialization,
their training trajectories are implicitly biased towards well-generalized solutions. Such a training-induced
regularization effect is commonly referred to as implicit regularization and is a central issue for the deep
learning theory.

Currently, our theoretical understanding of implicit regularization is very limited. To help us understand
NNs better, we make a further step to explore the following basic theoretical questions about implicit
regularization: (i) How to define implicit regularization mathematically; (ii) What is the relation between
implicit regularization and conventional explicit regularization; (iii) How to characterize implicit regularization.
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Questions (ii) and (iii) are closely related in the sense that if implicit and explicit regularization are equivalent,
then we may expect to find an explicit regularization function to fully characterize any implicit regularization.
In this work, we specifically address the relation between implicit regularization and a widely considered
class of explicit regularization—regularization by a data-independent function. In our study, this problem is
converted to whether there always exists a data-independent function G over the parameter space whose value
exactly quantifies the preference of a certain training process. For overparameterized linear models, specific
nonlinear models and also NNs in the NTK regime, such a data-independent function G can be exactly
derived, detailly introduced in Section 2. On the other hand, it has been proved that, for specific problems
like matrix factorization, stochastic convex optimization and one-neuron ReLU NN, implicit regularization
cannot be explained by norms, strongly convex functions and data-independent functions (Razin & Cohen,
2020; Dauber et al., 2020; Vardi & Shamir, 2021).

In our work, we take a further step to propose two types of global nonlinear dynamical mechanisms beyond the
description of various data-independent functions (see Section 5). Importantly, we provide two general recipes,
i.e., Two-point and One-point Overlapping Recipes, for producing families of one-hidden-neuron NNs that
realize these two dynamical mechanisms, respectively. We also prove that their implicit regularizations cannot
be fully characterized by any data-independent functions. Based on these results, we believe such mechanisms
commonly exist in the training dynamics of general NNs; in other words, the implicit regularization of NNs is
in general data-dependent. Our contribution in this work is summarized as follows.

(a) We give a mathematical definition of regularization, and define implicit and explicit regularization
accordingly (Section 4.1).

(b) We attempt to find the nature of implicit regularization, focusing on gradient descent. In particular, we
propose two general dynamical mechanisms, i.e., Two-point and One-point Overlapping mechanisms,
which put stringent constraints or even make it impossible to fully characterize implicit regularization
by data-independent functions (Section 5).

(c) Following the two mechanisms, we present Two-point and One-point Overlapping Recipes. The
examples they produce include rich classes of one-hidden-neuron NNs which realize one (or both)
of these two mechanisms (Section 6). Then we show that One-point Overlapping Recipe can be
extended to two-layer NNs with multiple neurons, meanwhile discuss the idea to generalize both
recipes to multi-layer NNs and multi-sample loss functions.

(d) Specifically, we give examples concerning one-hidden-neuron NNs with Sigmoid and Softplus activa-
tions. Experiments on such examples are also used to support our results.

(e) Based on (Vardi & Shamir, 2021), we further emphasize the importance of data-dependence of
implicit regularization in general, which should be carefully studied for NNs in the future.

2 Related Works

In recent years, many works have studied the implicit regularization (Kukačka et al., 2017) for various
problems. Progress has been achieved for many of them, e.g., matrix/tensor factorization, deep linear neural
networks, NNs in the NTK regime, linear and nonlinear models, and general nonlinear deep NNs. We
recapitulate some of these works as follows.

For general non-linear NNs, empirical studies suggest that NNs have an implicit regularization towards
low-complexity function during training process (Arpit et al., 2017; Kalimeris et al., 2019; Goldt et al., 2020;
Jin et al., 2020). For example, the frequency principle (Xu et al., 2019; 2020; Rahaman et al., 2019; Zhang
et al., 2021; Xu et al., 2022) quantifies the implicit regularization of “simple solution” by showing that NNs
learn the data from low to high frequency, i.e., implicit low-frequency regularization. The deep frequency
principle qualitatively explains why deep learning can be faster by empirically showing that the effective
target function for a deeper hidden layer biases towards lower frequency during the trainin (Xu & Zhou,
2021). However, such low-complexity/low-frequency regularization of general deep non-linear models is hard
to be characterized by an exact function in general. Only several special cases are studied, for example, the
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models linear w.r.t. trainable parameters, models linear w.r.t. both trainable parameters and inputs, and
those with certain homogeneous properties.

Various studies have been done for the first kind of NNs, i.e., NNs that are linear w.r.t. trainable parameters
but are non-linear w.r.t. the input. For example, NNs in the linear regime are studied by Luo et al. (2021)
and the NTK regime is studied by Jacot et al. (2018). By considering functions in the phase domain, it has
also been shown that gradient descent (GD) for the training of such NNs often picks a low-frequency function
from multiple solutions (Zhang et al., 2021; Luo et al., 2020), and such behavior can be exactly formulated
by a data-independent function. Another characterization of implicit regularization for NNs in the linear
regime, presented in Zhang et al. (2020) and Mei et al. (2019), uses norm difference between the initial and
learned parameters or between the initial and learned NN outputs. Finally, Chizat & Bach (2020) shows
that infinitely wide two-layer neural networks in the linear regime with homogeneous activations can be fully
characterized as a max-margin classifier in certain situations.

The study of the second kind of model, i.e., those linear w.r.t. both trainable parameters and inputs, yields a
series of results as well. One of the focues is deep linear NN. The implicit regularization due to depth in
deep linear NNs are quantitatively studied and exploited; these include biasing towards simple functions to
improve the generalization (Gissin et al., 2019) and accelerating the training by providing a regularization
that can be approximated by a momentum with adaptive learning rates to accelerate the gradient descent
(GD) (Arora et al., 2018). For others, Soudry et al. (2018) shows that GD takes the linearly fully-connected
networks to solutions with implicit regularization of max-margin, while Gunasekar et al. (2018a) shows that
GD takes linear convolutional networks to linear solutions with another penalty in the frequency domain.
Besides, deep matrix factorization by deep linear networks with GD induces nuclear norm minimization of
the learned matrix, leading to an implicit low-rank regularization (Gunasekar et al., 2018b; Arora et al., 2019;
Chou et al., 2020).

As far as we know, only specific and limited models of the third kind, i.e., the homogeneous ones, have been
studied. For example, Woodworth et al. (2020) studies simple homogeneous models for which the implicit
bias of training with gradient descent can be exactly derived as a function of the scale of the initialization.

While there are fruitful progress in explicitly characterizing the implicit regularization of (at least partially)
linear models, explicitly characterizing the implicit regularization in the training of general non-linear models
is more new, and encounters much difficulty. Therefore, with a focus on NNs, another line of works considers
constructing counter-examples that provably cannot be characterized explicitly by specific types of functions
like norms, strongly convex functions or more general data-independent functions (Razin & Cohen, 2020;
Dauber et al., 2020; Vardi & Shamir, 2021). We list some of them below.

Razin & Cohen (2020) proved that, under some conditions, the matrix completion task performed by a deep
linear NN, when trained by gradient descent with mean square error, can converge to an infimum, but there
is no minimum, that is, this infimum cannot be obtained. Thus, in this example the implicit bias of the
deep linear NN can not be described by any norm. Another kind of example, given by Dauber et al. (2020),
is based on stochastic convex optimization. More recently, Vardi & Shamir (2021) makes a step closer to
general nonlinear NNs by providing examples of gradient flows for one-neuron ReLU NNs which converge to
global minima. Based on zero-initialization and the manually-assigned derivative of ReLU at 0, they show
that the training of such networks cannot be described by any useful data-independent functions, in other
words, the training depends largely on data.

Compared to these previous attempts, our work, with a focus on (non-linear) NNs, makes a step further
in characterizing the implicit biases. Importantly, we analyze the reason behind the failure in using data-
independent functions to explicitly characterize implicit regularization in network training, presenting general
mechanisms (Section 5.1 mechanism) and corresponding example construction recipes (Section 5.1). Our
examples are all based on the recipes (see Section 5.2 and 5.3), which generate diverse and rich classes of
one-hidden-layer NNs. These are more systematic and universal compared to the existing ones we know,
such as NNs in NTK regime, or those employing a specific type of activation (e.g., ReLU). Third, we follow
the usual set-up of NN training, always considering over-parametrized networks (the number of parameters
exceeds the number of samples). Therefore, due to the generality and close relation to application, our
results highlight profound data-dependency of NN implicit regularization and provide a valuable insight for
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advancing the study in this area. Overall, our results emphasize the profound data-dependency of implicit
regularization in NNs. This aspect warrants thorough exploration in future studies, given its relevance and
potential impact on practical applications.

3 Preliminaries

We begin with definitions and notations we will use frequently throughout our discussion below. We start
with activation functions and models.
Definition 3.1. σ : R → R is a real-valued function which we call an activation function. Its reciprocal is
denoted by σ̃ (provided that it exists), i.e., σ̃(x) = 1

σ(x) when σ(x) ̸= 0.

In this definition, no smoothness requirements are imposed on σ (or σ̃), however, in our One-point Overlapping
Recipe, we further require that σ is continuously differentiable.
Definition 3.2. A model is a parametrized function g : RM × Rd → R. For any (θ, x) ∈ RM × Rd, θ is the
parameter of g and x the input of g. Thus, for each θ ∈ RM we have a function g(θ, ·) : Rd → R and the
training of g modifies θ.

We will often consider a one-neuron network. In this case g has the form g(θ, x) = aσ(wTx), where
θ = (a, w) ∈ R × Rd is its parameter and we write wTx = (w, x) the inner product of w and x on Rd.

Then we define our dataset and loss function for training a model.
Definition 3.3. A dataset is denoted by S = {(xi, yi) : i ∈ I} ∈ Rd × R for a given index set I. A loss
function (with respect to a given dataset S) is denoted by LS = L(·, S).

An example of LS is

LS(θ) = L(θ, S) = |aσ(θTx) − y|2, S = (x, y) ⊆ Rd × R,

where θ = (a, w) ∈ R1+d. If LS has a minimum, we further denote the set of its global minima by MS .
For example, if min LS = 0 then MS = L−1

S {0}. In our discussion about implicit regularization below, we
will focus on the scenarios (see 4.1) in which training dynamics converge to global minima. Such focus is
common in the study of implicit regularization, for example, Vardi & Shamir (2021). In general MS depends
on S, and we shall see in the next few sections that the failure of characterizing implicit regularization by a
data-independent function is closely related to the strong dependence of MS on S.

Finally, we will write γ for a parametrization of a curve as well as its image. More notations will be introduced
in the later sections.

4 Regularization

In conventional machine learning problems, regularization is often realized by adding a specific term to the loss
function, namely explicit regularization, to help solve most ill-posed problems. In contrast, one of the magics
of NNs is that, as aforementioned, its training often finds a good solution, as if it does the regularization
“implicitly” (Zhang et al., 2017). To make the future study of explicit and implicit regularization more
systematic and unified, we revisit the notion of regularization in this section. Mathematical formulation of
general regularization is provided, which goes beyond the scope of gradient flow (GF) or gradient descent
(GD). Based on this, we define implicit regularization and explicit regularization accordingly. Finally, we
consider implicit regularization of GF for a loss function and discuss two types of characterization of them,
both involving data-independent functions (see Example (b) in Section 4.1). These characterizations will be
our focus in the rest part of the paper.

4.1 Revisiting Regularization

We begin by defining the regularization in a general sense as a mapping between collections of algorithms.
Let g : RM × Rd → R be a model as before. We say A is a method if it maps an arbitrary dataset S to a
subset A(S) of RM . We call A(S) the solution set of A.
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Definition 4.1 (Regularization). Let A, A′ be two collections of methods that find solutions to the parameters
of g(θ, ·). A regularization (from A to A′) is just any map R : A → A′, i.e., R assigns a method A in A to
some R(A) ∈ A′.

The effect of this assignment is that R implicitly relates the solution set of A to that of R(A), provided that
both exist. Also note that while this definition emphasizes the mathematical essence of regularization in
general, the mapping (R) itself could be difficult to determine; instead, the study of it in practice may focus
more on understanding the properties of such mappings between specific collections of methods. Examples of
such are implicit and explicit regularizations.

For implicit regularizations, we focus on methods that find the global minima of a loss function LS , for any
given dataset S. Let Amin be one of such methods, namely

Amin(S) = {θ∗ ∈ RM : LS(θ∗) = minθ∈RM LS(θ)} = argminθ∈RM LS(θ).

We also define A to be a collection of methods Amin finding the global minima of LS . The implicit
regularization (for GF) will then be a mapping associating each Amin to a gradient flow in RM . These
notations will be used throughout the discussion below.
Definition 4.2 (implicit regularization for GF). Let L be a loss function (Definition 3.3). Denote the
gradient flow (GF) of LS starting at θ0 by AGF,θ0 , namely, AGF,θ0 is defined by{

θ̇(t) = −∇θLS(θ);
θ(0) = θ0.

(1)

Then a regularization R : A = {Amin : Amin finds the global minima of LS} → {AGF,θ0 : θ0 ∈ RM } is called
an implicit regularization of GF for L, or simply, an implicit regularization for L.

For example, we can consider the gradient flows on the loss landscape of a linear model, i.e., {AGF,θ0 : θ0 ∈ RM }
is the collection of gradient flows with respect to the loss function

L(θ, S) =
n∑

i=1
|θ · xi − yi|2, θ ∈ RM , n < M.

For the sample S = {(xi, yi)}n
i=1 we require that (x1, ..., xn) has full rank. Let A := {Aθ0 : θ0 ∈ RM }

where each Aθ0 finds the point in L−1(0) which has the shortest distance to θ0. Then we obtain a map
R : A → {AGF,θ0 : θ0 ∈ RM } by R(Aθ0) = AGF,θ0 .

To motivate the study of implicit regularization, we then give the following definition of explicit regularization.
We will also focus on methods that find global minima (but may not be those for L).
Definition 4.3 (explicit regularization). Let L be the loss function as before. Given a collection A′ of
methods such that for any A′ ∈ A′, any given dataset S and any θ∗

0 ∈ A′(S), we have

JS(θ∗
0 , A′) = min

θ∈RM
JS(θ, A′) (2)

for some function JS : RM × A′ → [−∞, ∞] related to L. An explicit regularization for L is a regularization
(i.e., a map) RA′ : A → A′. Here A := {Amin}.

Examples.

(a) Let JS(θ, A′) = L(θ, S) + H(θ, A′) for any given H : RM × A′ → R. This is just the form of many
commonly used explicit regularization in machine learning. For example, consider H(θ, A′) := ∥θ∥1,
H(θ, A′) = ∥θ∥2, or more generally H(θ, A′) = ∥θ∥r, r ≥ 1.

(b) Consider as before A′ = {AGF,θ0 : θ0 ∈ RM }. Because each AGF,θ0 is just a GF in RM , it is
determined by θ0. This means we obtain a map G : RM × RM → R such that for any θ∗

0 ∈ AGF,θ0 ,

G(θ∗
0 , θ0) = min

θ∈MS

G(θ, θ0).
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The construction of G is possible in a trivial way: we may find some c, c′ ∈ R with c′ > c, then set
G(θ∗

0 , θ0) = c for any θ0 ∈ RM and any θ∗
0 ∈ AGF,θ0 , and G(θ∗, θ) = c′ otherwise. In certain situation,

we can make G behave much better. For example, if the gradient flows are on the loss landscape of a
linear regression problem, we may simply set G(θ∗, θ) = |θ∗ − θ| for all (θ∗, θ) ∈ RM × RM .
Also notice that neither H nor G depends on S. In such cases we will say RA′ is characterized by
data-independent function H (or G).

4.2 Characterization of Implicit Regularization

A direct approach to understand the implicit regularization R is to look at the value of certain data-
independent function G over MS to determine the element chosen (or preferred) by R. Depending on the
amount of information about R provided by G, we classify the following two types of characterization of R
by G.
Definition 4.4. We say that an implicit regularization for L is characterized by a data-independent function
G : RM × RM → R if for any S and any θ0 ∈ RM , the operation

argminθ∈MS
G(θ, θ0) = θ∗

0 (3)

is well defined, i.e., θ∗
0 exists and is unique. Here θ0, θ∗

0 are the initial value and long-term limit of the GF
for L, respectively.
Definition 4.5. We say that the implicit regularization for L is characterized by a data-independent function
G : RM × RM → R in the weak sense if for any S and any θ0 ∈ RM ,

min
θ∈MS

G(θ, θ0) = G(θ∗
0 , θ0), (4)

where θ0, θ∗
0 are the initial value and long-term limit of the GF for L, respectively.

It is not difficult to see that if an implicit regularization is characterized by a data-independent function
G, then G characterizes it in the weak sense. In other words, Definition 4.4 is stronger than Definition
4.5. Moreover, note that a constant function G on RM × RM characterizes any implicit regularization for
L in the weak sense. Thus, every implicit regularization for L can be characterized in the weak sense,
however, what are interesting are those non-trivial ones. Conversely, if for some implicit regularization R,
the only data-independent functions characterizing it in the weak sense are constant ones, then R cannot be
characterized by data-independent function.

5 Overlapping Mechanisms and Examples

Let R be an implicit regularization of GF for a loss function L. By our definitions above, the study of R in
essence is to trace the families of training trajectories of GF. In this section, we focus on the characterization
of implicit regularization of GF for L by a data-independent function G, proposing dynamical mechanisms
that put stringent constraints on G or even make data-independent characterization impossible. These are the
Two-point Overlapping Mechanism (Lemma 5.1) and One-point Overlapping Mechanism (Lemma 5.2), both
of which can be realized by one-hidden-neuron NNs with common activation functions. This will be shown
by two numerical examples (in Section 5.2 and 5.3) using Sigmoid and Softplus, respectively. Furthermore,
they serve as prototypes of our Two-point and One-point overlapping Recipes.

5.1 Overlapping Mechanisms

Lemma 5.1 (Two-point Overlapping Mechanism). Fix θ0 ∈ RM . Let I be an index set and {Si}i∈I be a
collection of datasets. For each i ∈ I, let θ∗

i ∈ MSi denote the long-term limit of the GF for L(·, Si) starting
at θ0. Suppose that for any i ∈ I, there is some j ∈ I\{i} such that θ∗

i ≠ θ∗
j and {θ∗

i , θ∗
j } ⊆ MSi ∩ MSj

(see Figure 1 for an example). Then the following results hold.

(a) The implicit regularization for L cannot be characterized by any data-independent function G :
RM × RM → R.
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(b) Any data-independent function G that characterizes the implicit regularization for L in the weak
sense is constant on {θ∗

i }i∈I .

(c) Any continuous data-independent function G ∈ C(RM × RM ) that characterizes the implicit regular-
ization for L in the weak sense is constant on the closure of {θ∗

i }i∈I .

Proof. See the proof of Lemma A.1 in Appendix.

Lemma 5.2 (One-point Overlapping Mechanism). Fix θ0, θ∗
0 ∈ RM . Let {γi}M

i=1 be M trajectories of GF
for L from θ0 to θ∗

0, such that limt→∞
γ̇i(t)

|γ̇i(t)| exist for all i and the limits are linearly independent. If the
implicit regularization for L is characterized by a data-independent function G ∈ C1(RM × RM ) in the weak
sense, then ∇G(·, θ0)|θ∗

0
= 0, where the derivative is taken with respect to the first entry of G. (see Figure 2

for an example)

Proof. See the proof of Lemma A.2 in Appendix.

The One-point Overlapping Mechanism puts stringent constraint on G. If this mechanism is further
strengthened such that trajectories starting from θ0 with different data S can overlap at any point in a
neighbourhood of θ∗

0 , then the corresponding implicit regularization cannot be characterized by any data-
independent function. This strengthened mechanism can be realized for special cases in experiment, and we
will try to provide a general recipe for this mechanism in our future works.

Two-point Overlapping Mechanism (Lemma 5.1), which works for arbitrary function G : RM × RM → R, is
the heart of Two-point Overlapping Recipes. It will be used to prove Theorem 6.1. One-point Overlapping
Mechanism (Lemma 5.2), on the other hand, is more specific in that it requires G to be continuous. It is the
heart of the One-point Overlapping Recipe and it will be used to prove Theorem 6.2.

In the following subsections, we provide concrete examples of one-hidden-neuron NNs with common activation
functions that can realize each of the above mechanisms. These two specific examples further inspire our
general recipes in Section 6 for producing rich classes of one-hidden-neuron NNs.

5.2 Example for Two-point Overlapping Mechanism

In this example, we consider the one-hidden-neuron NN with Sigmoid activation, i.e.,

f(θ, x) = f(w, a, x) = a

1 + e−wx
, θ = (w, a) ∈ R2.

and one-sample ℓ2 loss

LS(θ) = L(θ, {(x, y)}) = |f(θ, x) − y|2, S = {(x, y)} ∈ R2.

Notice that for any S, the global minimum of LS is 0 and L−1
S {0} is a curve in R2. Indeed, f(θ, x) = y is

equivalent to
a = y · e−wx + y,

so that a is a function of w ∈ R. Therefore, as illustrated in Figure 1, by properly choosing two singleton
datasets S1 = (x1, y1) and S2 = (x2, y2), we may obtain two sets of global minima for L(·, S1) and L(·, S2),
respectively, which intersect at two points. Then, assigning each of these two points as a long-time limit (for
a trajectory of GF) denoted by θ∗

1 and θ∗
2 respectively, we “trace back” the trajectories to obtain two curves

in the stable manifolds of MS1 , MS2 , respectively. Then we select a point θ0 in their intersection. By this
procedure, we find a θ0, two datasets S1 and S2 and two gradient trajectories γ1, γ2 converging to two points
in MS1 ∩ MS2 as required by the Two-point Overlapping Mechanism (Figure 1) .

Thus, the implicit regularization for L can only be characterized by a data-independent function G : R2 ×R2 →
R in the weak sense, because we must have G(θ∗

1 , θ0) = G(θ∗
2 , θ0) = minθ∈MS1

G(θ, θ0). Clearly, θ∗
1 and θ∗

2
cannot be differentiated without information from data by any data-independent function G. Therefore, as
the GF trajectories differentiate θ∗

1 and θ∗
2 , the corresponding implicit regularization must be data-dependent.
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Figure 1: Two-point Overlapping Mechanism realized by a one-neuron-hidden NN with Sigmoid activation.
Tracing back of gradient trajectories γ1, γ2 finds θ0. This procedure inspires our Two-point Overlapping
Recipe. We choose the initial point θ0 = (0.922, 2.868). The sample for (i) the blue lines is (x1, y1) = (1, 1);
(ii) the orange lines is (x2, y2) = (12.307, 1.400).

5.3 Example for One-point Overlapping Mechanism

In this example, we consider another one-hidden-neuron NN with Softplus activation, i.e.,

f(θ, x) = f(w, a, x) = a log(1 + ewx)

and the one-sample ℓ2 loss. Notice that if y = −aσ(wx) then f(w, −a, x) = y, which means (w, −a) ∈ L−1
S {0}

for S = {(x, −aσ(xw)}, for any x ∈ R. Therefore, as illustrated in Figure 2, we first choose an initial point
θ0 = (w0, a0). Then we use the one-element dataset S = {(x, −a0σ(xw0))} with various x, by which we obtain
distinct trajectories of GF from θ0 to θ∗ = (w0, −a0), each one converging to θ∗ from different directions. In
Figure 2, we show both the trajectories (dashed line) and MS ’s (solid line), i.e., the sets of global minima of
L, which clearly exhibits the One-point Overlapping Mechanism.

Thus, if the implicit regularization for L is characterized by a data-independent function G ∈ C1(R2×R2) → R
in the weak sense, then ∇G(·, θ0)|θ∗ = 0, where the derivatives are taken with respect to the first entry of G.

6 Overlapping Recipes

In this section, we realize the overlapping mechanisms in Section 5 by providing two general recipes which
produce rich classes of one-hidden-layer NNs, none of which can be (fully) characterized by a type of, or all
data-independent functions. These recipes are exactly inspired by our numerical examples above; in fact,
they can be viewed as generalizations of them.

6.1 Two-point Overlapping Recipe (Part A)

Our Two-point Overlapping Recipe produces one-hidden-neuron networks which realizes the Two-point
Overlapping Mechanism (Lemma 5.1). It works by selecting a common initial value θ0 for two gradient
trajectories with respect to S1, S2, which converge to two points θ∗

1 , θ∗
2 ∈ MS2 ∩ MS1 , respectively. In this

procedure, the choice of θ0 and θ∗
1 are (almost) arbitrary and one of the datasets (S1 or S2) can be chosen
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Figure 2: One-point Overlapping Mechanism realized by an one-neuron-hidden NN with Softplus activation.
The dashed lines are gradient trajectories and the solid lines are MS = L−1

S {0} for different singleton datasets
S = {(x, y)}. We choose initial value θ0 = (w0, a0) = (0.3, 1). Then θ∗ = (w0, −a0) = (0.3, −1). The dataset
for (i) blue lines is (x, y) = (0, 6, −a0σ(0.6w0)); (ii) orange lines is (x, y) = (1.0, −a0σ(w0)); (iii) brown lines
is (x, y) = (1.4, −a0σ(1.4w0)); (iv) grey lines is (x, y) = (1.8, −a0σ(1.8w0)).
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(almost) arbitrarily. Moreover, using this construction procedure, we can make σ ∈ Cm(R) for any m ∈ [0, ∞]
and with other nice properties (monotonicity, periodicity, etc.).

The following procedure constructs σ and finds θ0, θ∗
1 , θ∗

2 , and S1, S2. For any h ∈ RM , define Ph : RM →
span{h} be the orthogonal projection from RM onto span{h}.

(a) Find w0, a0 with w0 ̸= 0. Find θ∗
1 = (w∗

1 , a∗
1) with w∗

1 ≠ w0, S1 = (x1, y1) with x1 ̸= 0, and
σ1 : R → R such that the trajectory of GF for L(θ, S1) = |aσ1(xT

1 w) − y1|2 starting at θ0 converges
to θ∗

1 as t → ∞, and L(θ∗
1 , S1) = 0.

(b) Let E1 = {xT
1 w(t) ∈ R : t ≥ 0} ⊆ R.

(c) Find some w∗
2 such that xT

1 w∗
2 /∈ E1 ∪ {0}, and if l is the line segment connecting w0 and w∗

2 , then
0 ̸= Ph(w∗

1) /∈ Ph(l), where h = w∗
2 − w0.

(d) Find some a∗
2 and re-define σ1 (if necessary) at {xT

1 w∗
2} such that a∗

2a0 ≥ 0 and a∗
2σ1(xT

1 w∗
2) = y1.

Let Ẽ1 = E1 ∪ {xT
1 w∗

2}.

(e) Find x2 ∈ span{w∗
2 − w0}\{0} with sup{|x2|−1|z| : z ∈ Ẽ1} < min{|Ph(w∗

1)|, |Ph(w0)|, |Ph(w∗
2)|}.

(f) Define σ2 : R → R and y2, such that i) σ2(xT
2 w) = σ1(xT

2 w) whenever xT
2 w ∈ Ẽ1, ii) a∗

1σ2(xT
2 w∗

1) =
y2, and iii) the trajectory γ := (γw, γa) of GF for L(·, S2) starting at θ0 converges to θ∗

2 as t → ∞.
Let σ := σ2.

Remark 6.1. In Corollary A.1, we show that step (a) and (f) are well-established. This is achieved by
Proposition A.1, which, based on the exponential function ex, shows that given S = {(x, y)} ⊆ Rd and two
points θ0, θ∗ ∈ Rd+1, there is a σ : R → R such that the GF of LS(a, w) = |aσ(xT w) − y|2 starting from θ0
converges to θ∗. However, note that the choice of exponential function is just for the simplicity of proof; in
general we could prove by using many other functions.

6.2 Two-point Overlapping Recipe (Part B)

The Two-point Overlapping Recipe (Part A) gives one-hidden-neuron networks that make it impossible to
characterize the implicit regularization for L by any data-independent function G. In fact, we can repeat the
construction steps in Section 6.1 to obtain countably many datasets {Sn}∞

n=1 and countably many long-term
limits of gradient trajectories {θ∗

n}∞
n=1 such that if the implicit regularization for L is characterized by a

data-independent function G in the weak sense, then G must be constant on {θ : θ = θ∗
n, n ∈ N}. The

detailed procedure is given below. As in Section 6.1, this procedure can also give a σ of any degree of
smoothness and with nice properties (monotonicity, periodicity, etc.).

The construction is described as follows. For n = 1, do the steps (a), (b) to obtain θ0, θ∗
1 , σ1 and E1. For

n ≥ 2, do the following steps.

(a) Find some k ∈ {1, ..., n − 1} and w∗
n ∈ RM−1 such that xT

k w∗
n /∈ En−1 ∪ {0}, and if l is the line

segment connecting w0 and w∗
n then 0 ̸= Ph(w∗

k) /∈ Ph(l), where h = w∗
n − w0.

(b) Find some a∗
n and re-define σn−1 (if necessary) at {xT

k w∗
n} such that a∗

na0 ≥ 0 and a∗
nσn−1(xT

k w∗
n) =

yk. Let Ẽn−1 = En−1 ∪ {xT
k w∗

n}.

(c) Find xn ∈ span{w∗
n −w0}\{0} with sup{|xn|−1|z| : z ∈ Ẽn−1} < min{|Ph(w∗

k)|, |Ph(w0)|, |Ph(w∗
n)|}.

(d) Define σn : R → R and yn, such that i) σn(xT
n w) = σn−1(xT

n w) whenever xT
n w ∈ Ẽn−1, ii)

a∗
kσn(xT

n w∗
k) = yn, iii) the trajectory γ := (γw, γa) of GF for L(·, Sn) starting at θ0 converges to θ∗

n

as t → ∞. Let En := Ẽn−1 ∪ xT
n γw.

Finally, after doing this for countably many times, we have defined a function σ∞ on part of the real line.
Now extend σ∞ to the whole real line. Let the extension be our activation function σ.

10
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A simple induction argument shows that G must be constant on {θ : θ = θ∗
n, n ∈ N}. Indeed, suppose we

have proved that
G(θ∗

1 , θ0) = G(θ∗
2 , θ0) = ... = G(θ∗

n, θ0). (5)

By our construction above, θ∗
n+1 ∈ MSk

for some 1 ≤ k ≤ n, whence G(θ∗
n+1, θ0) ≤ G(θ∗

k, θ0). Similarly,
θ∗

k ∈ MSn+1 , whence G(θ∗
k, θ0) ≤ G(θ∗

n+1, θ0). It follows that G(θ∗
k, θ0) = G(θ∗

n+1, θ0), completing the
induction step.

In Two-point Overlapping Recipe, we only find countably many points on which G is constant. One may
ask if we can find uncountably many such points. This is usually not true at least when M = 2 (so d = 1).
In fact, for most (w, a) ∈ R2 and most (x0, y0) ∈ R2, there is a neighborhood U of (x0, y0) such that for
S0 = {(x0, y0)}, for any S = {(x, y)} ⊆ U , we cannot have

|L−1
S {0} ∩ L−1

S0
{0}| ≥ 2

and
(w, a) ∈ L−1

S {0} ∩ L−1
S0

{0}

simultaneously (|E| denotes the cardinality of a set E). Since each such U contains a rational number and
since Q is countable and dense in R, it follows that we can find at most countably many points on which G is
constant. Moreover, this shows that the Two-point Overlapping Mechanism and the construction of our
recipe above both utilizes the global property of the activation σ. A formal explanation of it is given in the
following proposition. Recall that when L((a, w), (x, y)) = 0, a = y/σ(xw) =: yσ̃(xw).

Proposition 6.1 (Two-point Overlapping Recipe is global when M = 2). Let w ∈ R. Fix a point (x0, y0) ∈ R2

with y0 ̸= 0. Let F : R2 → R, F (p, x) = σ̃(xw)σ̃(x0p) − σ̃(xp)σ̃(x0w). We have

(a) Suppose that |F (p, x)| ≥ C|p − w|k|x − x0|r for some C > 0 and r, k ∈ N near (w, x0). Then for
sufficiently small δ > 0, if 0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R such
that 0 < |p − w| < δ and yσ̃(xp) = y0σ̃(x0p).

(b) Suppose that σ̃ ∈ C2 and σ̃(x0w), σ̃′(x0w) ̸= 0. Also suppose

1
w

− x0

[
σ̃′(x0w)
σ̃(x0w) − σ̃′′(x0w)

σ̃′(x0w)

]
̸= 0. (6)

Then for sufficiently small δ > 0, if 0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no
p ∈ R such that 0 < |p − w| < δ and yσ̃(xp) = y0σ̃(x0p). If, however, DF (p, x0) ≡ 0 for p near w
or DF (w, x) ≡ 0 for x near x0, then σ is a power function near x0w, i.e., σ(x) = Cxd for some
C, d ∈ R, when x is sufficiently close to x0w.

Proof. See the proof of Proposition A.2 in Appendix.

Remark 6.2. We do not prove the case for M > 2, but we believe that this result also holds for M > 2.
Namely, for most (w, a) ∈ Rd+1 and S0 = {(x0, y0)} ⊆ Rd+1, there is a neighborhood U of (x0, y0) such that
for any S = {(x, y)} ⊆ U , we cannot simultaneously have

|L−1
S {0} ∩ L−1

S0
{0}| ≥ 2

and
(w, a) ∈ L−1

S {0} ∩ L−1
S0

{0}.

Corollary 6.1 below indicates that Proposition 6.1 holds in general. Since we deal with neural networks,
this corollary focuses on commonly-seen activation functions, including piecewise monomials, exponential
activation, the Sigmoid activation and the Gaussian function.
Corollary 6.1. Following the notations in Proposition 6.1, all the results below hold.
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(a) Any σ and w, x0 ̸= 0 such that σ is a power function on a neighborhood of x0w (this includes ReLU
and PReLU and Heaviside) satisfies F = 0 near (w, x0).

(b) For any analytic activation σ and any x0, w ∈ R such that the zero locus of the function F (p, x) =
σ̃(xw)σ̃(x0p) − σ̃(xp)σ̃(x0w) satisfies

F −1{0} ∩ U = {(p, x) ∈ U : p = w} ∪ {(p, x) ∈ U : x = x0}

for some neighborhood U ⊆ R2 of (w, x0), we can find a sufficiently small δ > 0 such that if
0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R with 0 < |p − w| < δ and
yσ̃(xp) = y0σ̃(x0p).

(c) If σ = ex or σ = e−x2 , then for any x0 ∈ R, we can find a sufficiently small δ > 0 such that if
0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R with 0 < |p − w| < δ and
yσ̃(xp) = y0σ̃(x0p).

(d) Let w > 0. If σ = 1
1+e−x , for any x0 ∈ (−∞, w−1) ∪ (2w−1, ∞), we can find a sufficiently small δ > 0

such that if 0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R with 0 < |p − w| < δ
and yσ̃(xp) = y0σ̃(x0p).

Proof. See the proof of Corollary A.2 in Appendix.

6.3 One-point Overlapping Recipe

Clearly, Section 6.1 and 6.2 are not the only ways to negate the possibility that any one-hidden-neuron
network can be characterized by a data-independent function G. We present another way below, called
One-point Overlapping Recipe, which considers C1 functions satisfying G(p, q) = G(p − q, 0) for p, q ∈ RM ;
one such G can be the Euclidean norm on RM . In this recipe, the choice of datasets are (almost) arbitrary,
and we only require that σ is differentiable, non-negative and strictly increasing on R.

This recipe is described as follows.

(a) Find any σ : R → R+ such that σ′ > 0.

(b) For each n ∈ N, find any θn = (wn, an) with an ̸= 0. Select datasets Sn,k = (xn,k, −anσ(xT
n,kwn)),

such that the vectors

−
σ(xT

n,kwn)
anσ′(xT

n,kwn)

(
1

(xn,k)1
, ...,

1
(xn,k)d

)
, 1 ≤ k ≤ d

are linearly independent in Rd.

(c) Repeat step (b) until we find enough θn’s with different values of an (wn can be arbitrary), as well
as corresponding Sn,1, ..., Sn.d for each n ∈ N.

In (c), the word “enough” depends on the property of G we would like to obtain. For example, in Lemma
6.2 we show that by carefully selecting one θn and d distinct datasets we can show that ∇G(p, q) = 0 for
some p, q ∈ RM ; while in Theorem 6.2 we show that by carefully selecting countably many such points and
datasets, we can show that ∇G(p, q) = 0 on an affine subspace of RM × RM .

The following two lemmas guarantee the validity of our One-point Overlapping Recipe.
Lemma 6.1. Suppose that σ > 0 and σ′ > 0 on R. For any dataset S = {(x, y)} ∈ R\{0} × R and any
θ0 = (w0, a0), the trajectory of GF for L(·, S) has a long-term limit θ∗

0 ∈ MS.
Remark 6.3. This lemma is also used to construct concrete examples using the construction in Section 6.2.
Moreover, the same result holds for σ < 0 and σ′ < 0, because L(θ) = |aσ(wx) − y|2 = |a(−σ)(wx) − (−y)|2.

Proof. See the proof of Lemma A.3 in Appendix.
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Lemma 6.2. Let σ : R → R+ be differentiable and strictly increasing. Then

(a) Suppose that M = 2. If the implicit regularization for L is characterized by a data-independent
function G ∈ C1 in the weak sense, then there are some θ0, θ∗

0 ∈ R2 such that ∇G(·, θ0)|θ∗
0

= 0,
where the derivatives are taken with respect to the first entry of G.

(b) The result in (a) also holds for general M ≥ 2.

Proof. See the proof of Lemma A.4 in Appendix.

6.4 Main Theorems

In this subsection, we summarize our examples based on the Two-point and One-point Overlapping recipes.
Complete proof of the results are given in Appendix. Both theorems consider the following class of functions

GM = {G ∈ C1(RM × RM : G(p, q) = G(p − q, 0)}. (7)

Theorem 6.1. Based on the Two-point Overlapping Recipe, we have

(a) For any k ∈ N, we can construct an activation σ ∈ Ck following Section 6.1, such that the implicit
regularization for L cannot be characterized by any data-independent function G : RM × RM → R.

(b) Following Section 6.2, for any k ∈ N we can find an activation σ ∈ Ck such that if the implicit
regularization for L is characterized by a data-independent function G ∈ C1(RM × RM ) in the weak
sense, then G(·, θ0) is constant on an open set of RM for some θ0 ∈ RM .

(c) Following Section 6.2, for any k ∈ N we can find an activation σ ∈ Ck having the property that if
the implicit regularization for L is characterized by a data-independent function G ∈ GM in the weak
sense, then G is constant.

Proof. See the proofs of Theorem 6.1 (a), Theorem 6.1 (b) and Theorem 6.1 (c)in Appendix.

Theorem 6.2. Let σ : R → R+ be differentiable and strictly increasing. Based on the One-point Overlapping
Recipe, we have

(a) L cannot be characterized by any strongly convex data-independent function G ∈ C1(RM × RM ).

(b) If the implicit regularization for L is characterized by a data-independent function G ∈ GM in the
weak sense, then G(·, θ) is constant on a line in RM for any given θ.

Proof. See the proof of Theorem 6.2 in Appendix.

Corollary 6.2 (One-point Overlapping Recipe for Two-layer NNs). Fix m, d ∈ N. Consider the two-layer
neural network g(θ, x) =

∑m
k=1 akσ(wk · x), where θ = (wk, ak)m

k=1 ∈ R(d+1)m, and the corresponding loss
function

L(θ, (x, y)) = |g(θ, x) − y|2 =

∣∣∣∣∣
m∑

k=1
akσ(wk · x) − y

∣∣∣∣∣
2

.

Suppose that σ : R → R+ is differentiable and strictly increasing. Based on One-point Overlapping Recipe, we
have

(a) L cannot be characterized by any strongly convex data-independent function G ∈ C1(R(d+1)m ×
R(d+1)m).

(b) If the implicit regularization for L is characterized by a data-independent function G ∈ GM in the
weak sense, then for any θ ∈ R(d+1)m G(·, θ) is constant on the set {(0, pk)m

k=1 : pk ∈ R}.

Proof. See the proof of Corollary 6.2 in Appendix.
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7 Conclusions and Discussion

7.1 Generalization of Overlapping Recipes

In this part we briefly discuss the generalization of our One-point Overlapping and Two-point Overlapping
recipes (as well as corresponding mechanisms). We discuss the potential for our recipes to work for two-layer
(fully-connected) NNs with multiple neurons with one-sample dataset, or even for more general models and
loss functions.

Let’s start with the Two-point Overlapping Recipe. Indeed, for this recipe, very few restrictions are
put on the structure of the network or the loss functions; so in particular it can be generalized to a
much larger set of models. To see this, consider a σ-dependent model g = gσ : RM × Rd → R, and
L(θ, (x, y)) = Lσ(θ, (x, y)) = |gσ(θ, x) − y|2. The key of Two-point Overlapping Recipe is to “construct”
the model g by “constructing” σ, meanwhile taking the advantage that a convergent GF uses only partial
information of σ. By looking at this recipe for one-neuron models (Section 6.1 and/or 6.2), to make the
Two-point Overlapping Recipe work for gσ we basically need to

(a) Find θ∗
1 , some dataset S1 and some σ1 such that the GF for Lσ1(·, S1) starting at θ0 converges to

θ∗
1 , and Lσ1(θ∗

1 , S1) = 0.

(b) Find θ∗
2 such that gσ1(θ∗

2 , S1) = y, namely, Lσ1(θ∗
2 , S1) = 0.

(c) Find another dataset S2 and σ2 so that gσ2(θ∗
2 , S2) = y, and the GF for Lσ2(·, S2) converges to θ∗

2 .

(d) Finally define σ by appropriately “concatenating” σ1 and σ2.

Note that here we do not require that S1, S2 must be singletons. As long as the system is over-parametrized,
these requirements are easy to satisfy, not only because they set few restrictions on the choice the activations,
the samples, and the parameters we choose, but also because the requirements are loosely related to each
other, e.g., requirement (b) does not have much to do with requirement (a).

The One-point Overlapping Recipe deals with the relationship between the partial derivatives of the loss
function, so it naturally depends more on the structure of both the model and the loss function. We have
shown that this recipe works for two-layer fully connected NNs as well. Unfortunately, currently we do not
know how to generalize it to NNs with more layers, and/or to multi-sample loss functions. What we know is:
to make it work we basically need to

(a) Find two distinct points point θ0, θ∗
0 ∈ RM and some datasets S1, ..., SM .

(b) For each 1 ≤ j ≤ M , the GF γj for LSj starting at θ0 converges to θ∗
0 .

(c) For each 1 ≤ j ≤ M , γj has a limiting direction, i.e., limt→∞
γj(t)

|γj(t)| exists; moreover, these directions
are linearly independent.

With such information we can conclude that ∇G(·, θ0)|θ∗
0

= 0 as in Lemma 6.2.

7.2 Conclusion

In this work, we provide mathematical definitions of regularization, implicit regularization, and explicit
regularization. We specify two levels of characterization of implicit regularization using a data-independent
function G, i.e., (full) characterization and characterization in the weak sense. We delve into the nature
of implicit regularization and address its challenges by proposing two general dynamical mechanisms, i.e.,
Two-point and One-point Overlapping mechanisms. These mechanisms make implicit regularization difficult
to characterize or even impossible to characterize using data-independent functions. Additionally, we give
numerical examples that realize these mechanisms with one-hidden-neuron NNs with Sigmoid or Softplus
activations. These examples further inspire our development of Two-point and One-point Overlapping recipes
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that produce rich classes of one-hidden-neuron networks which realize these two mechanisms respectively.
Last but not least, We show that our Two-point Overlapping Recipe depends on the global property of
activation functions.

One strength of our work is that we proposed two mechanisms explaining why characterizing implicit
regularization using data-independent functions often fails, and we have recipes that serve as general
guidelines for the construction of examples. This systematic approach yields rich classes of common one-
hidden-neuron NNs. Furthermore, as we have discussed before, our recipes and mechanisms have the potential
to be extended to two-layer NNs with multiple neurons, or even more general models. In comparison, the
existing examples mainly focus on more specific cases (e.g., specific set-up or specific kind of activations).The
generality of our recipes thus suggests that it is generally difficult to characterize implicit regularization by
data-independent functions, if not impossible.

On the other hand, our work does not fully explain the implicit regularization in NNs. For example, we
do not know whether all the implicit regularization of NNs fall into one of our recipes and/or mechanisms.
Neither are we clear about the practical implication of it. In particular, whether a data-dependent implicit
regularization could help the generalization of DNNs remains an open problem for the future research.

While an implicit regularization is generally data-dependent, partial information about it may still be obtained
by a data-independent function. Further studies should be conducted to mathematically determine details of
such partial information. Besides, one may alternatively look for meaningful1 data-dependent functions to
characterize an implicit regularization. Since the non-equivalence between implicit and explicit regularization
seem to depend on the global property of an activation function, one may also consider characterizing the
training dynamics by a set of functions.
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A Appendix

Lemma A.1 (Lemma 5.1). Fix θ0 ∈ RM . Let I be an index set and {Si}i∈I be a collection of datasets.
For each i ∈ I, let θ∗

i ∈ MSi denote the long-term limit of the GF for L(·, Si) starting at θ0. Suppose that
for any i ∈ I, there is some j ∈ I\{i} such that θ∗

i ̸= θ∗
j and {θ∗

i , θ∗
j } ⊆ MSi

∩ MSj
(see Figure 1 for an

example). Then the following results hold.

(a) The implicit regularization for L cannot be characterized by any data-independent function G :
RM × RM → R.

(b) Any data-independent function G that characterizes the implicit regularization for L in the weak
sense is constant on {θ∗

i }i∈I .

(c) Any continuous data-independent function G ∈ C(RM × RM ) that characterizes the implicit regular-
ization for L in the weak sense is constant on the closure of {θ∗

i }i∈I .

Proof.

(a) Suppose that the implicit regularization for L is characterized by a data-independent function
G : RM × RM → R. Since θ∗

i ∈ MSj
\{θ∗

j } for some j ∈ I, we must have

G(θ∗
i , θ0) > G(θ∗

j , θ0). (8)

Similarly, since θ∗
j ∈ MSi

\{θ∗
i }, we must have

G(θ∗
j , θ0) > G(θ∗

i , θ0). (9)

But then
G(θ∗

i , θ0) < G(θ∗
j , θ0) < G(θ∗

i , θ0), (10)

which is absurd.

(b) Argue in the same way as in (a), we can see that for any i ∈ I, there is some j ≠ i such that
G(θ∗

j , θ0) = G(θ∗
i , θ0). The desired result follows immediately.

(c) Clear from (b).

Lemma A.2 (Lemma 5.2). Fix θ0, θ∗
0 ∈ RM . Let {γi}M

i=1 be M trajectories of GF for L from θ0 to θ∗
0 , such

that limt→∞
γ̇i(t)

|γ̇i(t)| exist for all i and the limits are linearly independent. If the implicit regularization for L is
characterized by a data-independent function G ∈ C1(RM × RM ) in the weak sense, then ∇G(·, θ0)|θ∗

0
= 0,

where the derivative is taken with respect to the first entry of G.

Proof. Note that any γi is eventually orthogonal to a null set of L containing θ∗. The rest are clear.

Proposition A.1. Let σ(x) = ex and θ0 = (w0, a0) ∈ RM with w0 ̸= 0. For any dataset S the trajectory of
GF for L(·, S) starting at θ0 converges as t → ∞. Conversely, for any θ∗ = (w∗, a∗) such that a∗ ̸= a0, there
is a dataset S such that the trajectory of GF for L(·, S) starting at θ0 converges to θ∗ as t → ∞.

Proof. Fix any S = (x, y) ∈ RM−1 × R. We have L(θ, S) = |aexTw − y|2. Thus,{
ȧ = −2(aexTw − y)exTw

ẇi = −2(aexTw − y)xiaexTw,
(11)

Thus,
−2(aexTw − y)exTwxiȧa = −2(aexTw − y)exTwẇ. (12)
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If aexTw − y ̸= 0, we clearly have xiaȧ = ẇi. Otherwise, ȧ = ẇi = 0, so we still have xiaȧ = ẇi. Integrating
on both sides of the equation, we see that∫ t

0
ẇi(u)du = xi

∫ t

0
a(u)ȧ(u)du, (13)

which yields wi(t) = wi(0) + (a2(t)−a2
0)

2 xi. Equivalently,

w(t) = w(0) + a2(t) − a2
0

2 x. (14)

Thus, {(w(t), a(t)) : t ∈ [0, ∞)} is part of a parabola. This means as t → ∞, either w(t), a(t) both diverge,
or both of them converge. Suppose that a2(t) → ∞ as t → ∞. Then there is some N ∈ N such that for any
t > N we have xTw(t) > 0. Whence a(t)exTw(t) − y → ∞ as t → ∞, which is a contradiction. It follows
that limt→∞ w(t) and limt→∞ a(t) exist.

Conversely, fix θ∗ = (w∗, a∗) with a∗ ̸= a0. Set

x = 2
a∗ − a0

(w∗ − w0), y = a∗exTw∗
, (15)

By our proof above, the trajectory of GF for L(·, (x, y)) has a long-term limit. Since L(θ∗, (x, y)) = 0 and
since w∗ = w(0) + a∗2−a2

0
2 x, this limit is (w∗, a∗) = θ∗.

Corollary A.1. Based on Proposition A.1, we have the following results.

(a) There exist some θ0, θ∗
1, S1 and σ1 such that step (a) in Two-point Overlapping Recipe (Part A)

(Section 6.1) holds.

(b) There exist some σ2 (σ) and y2 such that step (f) in Two-point Overlapping Recipe (Part A) (Section
6.1) holds.

Proof.

(a) Fix any θ0 = (w0, a0) with w0 ̸= 0 and any θ∗
1 with w∗

1 ̸= w0 (this is the requirement of the recipe)
and a0 ̸= 0 (this is the requirement of equation (15)). Find any θ∗

1 = (w∗
1 , a∗

1) such that (15) holds.
The result follows immediately from Proposition A.1.

(b) Use equation (15) to find a dataset S̃2 = {(x̃2, ỹ2)} such that the trajectory of GF for |aex̃T
2 w − ỹn|2

starting at θ0 converges to (w∗
2 , a∗

2) as t → ∞. Note that we must have x̃2 ∈ span{w∗
2 − w0}.

Also, since the sign of a∗
2 is the same as that of a0, γw is the line segment l connecting w0 and

w∗
2 . Therefore, we can set y2 = ỹ2 and define σ2 : R → R such that σ2(xT

2 w) = σ1(xT
2 w) whenever

xT
2 w ∈ Ẽ1 and σ2(xT

2 w) = ex̃T
2 w for w ∈ l. Since Ph(w∗

1) /∈ Ph(l), where h = w∗
2 − w0, it follows

that we can re-define σ2 at {xT
2 w∗

1} such that a∗
1σ2(xT

2 w∗
1) = y2.

Remark. While our construction is based on the exponential activation function σ(x) = ex, it can be based
on any other activation function that satisfies: there are datasets S1, S2 such that the trajectories of GF for
L(·, S1), L(·, S2) starting at θ0 converges to distinct θ∗

1 , θ∗
2 , respectively. For example, as we show in Section

5, the Sigmoid function is one candidate.

We now give the proof of our main theorems.
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Proof of Theorem 6.1 (a). Suppose that the implicit regularization for L is characterized by a data-
independent function G : RM × RM → R. The Two-point Overlapping Recipe (Part A) guarantees that
θ∗

1 ∈ MS2\ {θ∗
2} and θ∗

2 ∈ MS1\ {θ∗
1}. Applying Lemma 5.1 to the set

{θ∗
1 , θ∗

2} , (16)

we conclude that the implicit regularization for L cannot be characterized by any data-independent function
G : RM × RM → R. It remains to show that σ can be made as smooth as we want. To do this, let σ2 be of
Ck when restricted to Ẽ1 ∪ xT

2 γw. Extend σ2 to a Ck function on the whole R. Since σ = σ2 in Two-point
Overlapping Recipe (Part A), σ ∈ Ck.

Proof of Theorem 6.1 (b). Follow the Two-point Overlapping Recipe (Part A) to obtain a σ1, σ2, θ0, θ∗
1 , θ∗

2 ,
S1 and S2. For simplicity, we may further require that the construction is based on Proposition A.1 and
corollary A.1, and a∗

2 ̸= 0, a∗
2a0 ≥ 0.

Find a small enough r > 0 such that for any θ∗ = (w∗, a∗) ∈ B(θ∗
2 , r), we have i) θ0 ̸= θ∗, ii) 0 ̸= Ph(w∗

1) /∈
Ph(l), where l is the line segment connecting w0 and w∗ and h = w∗ − w0 and iii) a∗ ̸= 0. Geometrically
and intuitively, B(θ∗

2 , r) is an open ball lying either above or below the w-plane, and does not contain
θ0. Now find a countable, dense subset {θ∗

n = (w∗
n, a∗

n)}∞
n=3 of B(θ∗

2 , r) such that for any distinct i, j ≥ 3,
xT

1 w∗
i ̸= xT

1 w∗
j .

For n ≥ 3, choose sufficiently large xn such that step (c) in Two-point Overlapping Recipe (Part B) holds.
Then use equation (15) to find a dataset S̃n = (x̃n, ỹn) such that the trajectory γ = (γwn , γan) of GF for
|aex̃Tw − yn|2 starting at θ0 converges to θ∗

n as t → ∞. Since the sign of a∗
n equals a0, γwn

is the line
segment connecting w0 and w∗

n. Set yn = ỹn. Define σn : R → R such that σn(xT
n w) = σn−1(xT

n w) whenever
xT

n w ∈ Ẽn−1 and σn(xT
n w) = ex̃T

n w for w ∈ γwn . Since Ph(w∗
1) /∈ Ph(γwn), where h = w∗

n − w0, we can
re-define σn at {xT

n w∗
1} such that a∗

1σn(xT
n w∗

1).

Note that Ẽn−1 is the union of finitely many disjoint compact sets. Thus, after doing countably many times,
we can obtain a σ∞ defined on a union of disjoint compact sets. Thus, by our proof A in Appendix, we
can extend the σ∞ from this union of compact sets to be a Ck function on R. Since σ = σ∞ by our recipe,
σ ∈ Ck.

Now our construction forces any data-independent G : RM × RM → R that characterizes the implicit
regularization for L in the weak sense to be constant on {θ∗

n}∞
n=2. Thus, if G is continuous, it is constant on

the closure of it, whose interior contains B(θ∗
2 , r).

Remark. Our choice of exT
n w near w0 is not mandatory. Actually, we can let σ(w) = h(xT

n w) for any
h : R → R satisfying

(a) For any dataset S the trajectory of GF for L(·, S) starting at θ0 converges to θ∗(S) as t → ∞.

(b) The correspondence S 7→ θ∗(S) is a local continuous injection.

Proof of Theorem 6.1 (c). Do the construction in the proof of Theorem 6.1 (b) repeatedly, each time fixing
some θ0 and then finding θ∗

0 and {Sn}∞
n=1 carefully such that the closure of {θ : θ = θ∗

n, n ∈ N} is the
translation of a “2M -ant”2 of RM that does not contain θ∗

0 . This shows that G(θ, 0) = G(θ + θ0, θ0) for all θ
in some 2n-ant of RM . Choose different θ0 and/or θ∗

0 to show that G(·, 0) must be constant on each 2n-ant
of RM , whence G(·, 0) is constant. Since G(p, q) = G(p − q, 0), G must be constant on RM × RM .

Lemma A.3 (Lemma 6.1). Suppose that σ > 0 and σ′ > 0 on R. For any sample S = {(x, y)} ⊆ R × R and
any θ0 = (w0, a0), the trajectory of GF for L(·, S) starting at θ0 has a long-term limit θ∗

0 ∈ MS.
2We define the j-th 2M -ant of RM to be the closure of the set consisting of θ ∈ RM such that the sign of the i-th component

of θ equals 2ji − 1, where j = (jM−1...j0)2.
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Proof. Note that the trajectory of the GF is characterized by{
ȧ = −2(aσ(xw) − y)σ(xw)
ẇ = −2(aσ(xw) − y)axσ′(xw),

(17)

with the initial value w(0) = w0 and a(0) = a0. Multiplying the two equations, we see that

−2(aσ(xw) − y)xσ′(xw)aȧ = −2(aσ(xw) − y)σ(xw)ẇ. (18)

If x = 0, L(θ, S) = |aσ(0) − y|2. In this case, the trajectory of GF for L(·, S) clearly converges. Now suppose
that x ̸= 0. If aσ(xw) ̸= y, then

aȧ = ẇσ(xw)
xσ′(xw) . (19)

If a(t)σ(xw(t)) = y, then ȧ(t) = ẇ(t) = 0, so (19) also holds. Integrating on both sides of (19), we see that
there is some strictly monotonic function h (depends on x) such that

1
2a2(t) − 1

2a2
0 = h(w(t)) − h(w0). (20)

Thus, w(t) = h−1 (
h(w0) + a2(t)/2 − a2

0/2
)

and thus the first equation in (17) becomes

ȧ = −
[
aσ(xh−1 (

h(w0) + a2(t)/2 − a2
0/2

)
) − y

]
σ(xh−1 (

h(w0) + a2(t)/2 − a2
0/2

)
). (21)

Define ϕ(s) = sσ(xh−1(h(w0) + s2/2 − a2
0/2)) − y. If z = h(w0) − a2

0/2 then

ϕ′(s) = σ

(
xh−1

(
s2

2 + z

))
+ sσ′

(
xh−1

(
s2

2 + z

))
x(h−1)′

(
s2

2 + z

)
s

= σ

(
xh−1

(
s2

2 + z

))
+ s2σ′

(
xh−1

(
s2

2 + z

))
x(h−1)′

(
s2

2 + z

)
.

(22)

Since h is strictly increasing when x > 0 and strictly decreasing when x < 0, x(h−1)′(s2/2 + z) is always
positive. Thus, s2σ′(xh−1(z + s2/2)x(h−1)′(z + s2/2) > 0. Moreover,

lims→±∞ σ

(
xh−1

(
1
2s2 + z

))
> σ(xh−1(z)), (23)

where the right side of the inequality is positive. It follows ϕ′ is bounded below and thus lima→±∞ ϕ(a) = ±∞,
so ϕ has a unique zero a∗

0. This is the point to which the a-component of the GF converges; moreover, if
w∗

0 = h−1(h(w0) + a∗2
0 /2 − a2

0/2), then (w∗
0 , a∗

0) lies in L−1(·, S){0}. This completes the proof.

Lemma A.4 (Lemma 6.2). Let σ : R → R+ be differentiable and strictly increasing. Then

(a) Suppose that M = 2. If the implicit regularization for L is characterized by a data-independent
function G ∈ C1 in the weak sense, then there are some θ0, θ∗

0 ∈ R2 such that ∇G(·, θ0)|θ∗
0

= 0,
where the derivatives are taken with respect to the first entry of G.

(b) The result in (a) also holds for general M ≥ 2.

Proof.

(a) By Lemma 6.1, since σ > 0 and σ′ > 0, for any dataset S = {(x, y)} ⊆ R × R with x ̸= 0 and any
θ0 = (w0, a0), the trajectory of GF for L(·, S) has a long-term limit θ∗

0 = (w∗
0 , a∗

0) ∈ L−1(·, S){0}.
Now, if a0 ̸= 0 and S = (x, −a0σ(xw0)), since

L(θ0, S) = |a0σ(xw0) − (−a0σ(xw0))|2 = 4(a0σ(xw0))2 > 0, (24)
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the continuity of aσ(xw) − y ensures that a∗
0 ̸= a0. Thus, a∗

0 = −a0. Then

h(w∗
0) = h(w0) + a∗2

0 /2 − a2/2 = h(w0) + 0. (25)

Because h is monotonic, we have w∗
0 = w0. Thus, θ∗

0 = (w0, −a0). Moreover,

lim
t→∞

ȧ(t)
ẇ(t) = lim

θ→θ∗
0

σ(xw)
axσ′(xw)

= − σ(xw0)
a0xσ′(xw0) .

(26)

Suppose that limt→∞
ȧ(t)
ẇ(t) = k for all x ∈ R. Then since σ′ ̸= 0 on R, k ̸= 0 and thus σ′(xw0)

σ(xw0) = 1
a0k

1
x .

Integrating both sides with respect to x, we can see that there are some non-zero constants A, B ∈ R
such that

log(Aσ(xw0)) = 1
a0k

log(Bx). (27)

Thus,

σ(xw0) = (Bx)1/a0k

A
, (28)

which implies that σ is a monomial; but then σ(0) = 0, a contradiction. Thus, there must be two
x1, x2 ∈ R such that

σ(x1w0)
a0x1σ′(x1w0) ̸= σ(x2w0)

a0x2σ′(x2w0) . (29)

Therefore, by Lemma 5.2,
∇G(·, θ0)|θ∗

0
= 0. (30)

(b) Let x ̸= 0 and let {x/|x|, b1, ..., bM−1} be an orthonormal basis of RM . For any parameter θ =
(wxx/|x| +

∑M−1
i=1 wibi, a),

L(θ, S) = |aσ(xTw) − y|2 = |aσ(|x|wx) − y|2. (31)

Therefore by (a), the trajectory of GF for L(·, S) starting at θ0 = (w0, a0) with a0 ̸= 0 ends at a
distinct point θ∗

0 = (w∗
0 , −a∗

0), and the partial derivative of G(·, θ0) with respect to x/|x| and a vanish.
By letting x be the multiples of each of the standard basis of RM , we can see that ∇G(·, θ0)|θ∗

0
= 0.

Proof of Theorem 6.2.

(a) Suppose that G ∈ C1(RM × RM ) is strongly convex. For any θ0, ∇G(·, θ0)|θ = 0 for at most one
θ ∈ RM . Fix w0 ∈ RM−1 and a0 ∈ R\{0}. Since σ, σ′ are strictly positive, Lemma 6.2 says that
∇G(·, (w0, a0))|(w0,−a0) = 0. By choosing two different values of a0, we can see that there are two
points at which ∇G(·, θ0) = 0. Thus, G is not strongly convex.

(b) Fix w0 ∈ RM−1 and a0 ∈ R\{0}. By Lemma 6.2, ∇G(·, (w0, a0))|(w0,−a0) = 0; equivalently,
∇G(·, 0)|(0,−2a0) = 0 for all a0 ̸= 0. Since ∇G(·, 0) is continuous, ∇G(·, 0)|(0,0) = 0. It follows that
for any θ ∈ RM , G(·, θ) must be constant on the set {(0, p) : p ∈ R}.

Proof of Corollary 6.2.
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(a) Due to the structure of g we can apply Lemma 6.1 and 6.2 to each pair (wk, ak). The idea is to fix
any θ0 = (w0k, a0k)m

k=1 and any x ∈ Rd such that the components of x, xl ≠ 0 for all 1 ≤ l ≤ d, and
g(θ0, x) ̸= 0 and

∑m
k=1 a0kσ′(xTw0k) ̸= 0. Set S := (x, −g(θ0, x)). Since L(θ0, S) > 0, the GF for

L starting at θ0 is not constant.
For each 1 ≤ k ≤ m we have

ȧk(t) = − ∂L

∂ak
(θ, S) = −2(g(θ, x) − y)σ(xTwk(t))

ẇk(t) = − ∂L

∂wk
(θ, S) = −2(g(θ, x) − y)σ′(xTwk(t))ak(t)x.

This means for any 1 ≤ k ≤ m and any 1 ≤ l ≤ d,

ȧk(t)ak(t) = (ẇk)l(t)σ(xTwk(t))
xlσ′(xTwk(t)) .

By the proof of Lemma 6.2 (see Lemma A.4), there is some strictly monotonic h depending only on
xl and σ, such that 1

2 a2
k(t) − 1

2 a2
k(0) = h(wk(t)) − h(wk(0)). Thus, applying the proof of Lemma 6.2,

we can see that limt→∞ ak(t) = −a0k and limt→∞ wk(t) = w0k for each k. Moreover, since xl ̸= 0,

lim
t→∞

ȧk(t)
(ẇk)l(t)

= − g(θ0, x)
xl

∑m
k=1 a0kσ′(w0kx)

.

Again, argue in the same way as in Lemma A.4, we conclude that by choosing different x,
∂aj

G(·, (w0k, a0k)m
k=1), ∂wj

G(·, (w0k, a0k)m
k=1) vanish at (w0k, −a0k)m

k=1, for each 1 ≤ j ≤ m.
Now argue in the same way as in Theorem 6.2 by choosing two different initial points. Then the
derivative of G vanishes at two points, whence G cannot be strongly convex.

(b) Fix w01, ..., w0m and choose different a01, ..., a0m. Since G ∈ GM , ∇G(·, 0)|(0,−2a0k)m
k=1

= 0 for
almost all (a01, ..., a0m) ∈ Rm. Thus, for any θ ∈ R(d+1)m, G(·, θ) must be constant on the set
{(0, pk)m

k=1 : pk ∈ R}.

Proposition A.2 (Proposition 6.1). Let w ∈ R. Fix a point (x0, y0) ∈ R2 with y0 ̸= 0. Let F : R2 → R,
F (p, x) = σ̃(xw)σ̃(x0p) − σ̃(xp)σ̃(x0w). We have

(a) Suppose that |F (p, x)| ≥ C|p − w|k|x − x0|r for some C > 0 and r, k ∈ N near (w, x0). Then for
sufficiently small δ > 0, if 0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R such
that 0 < |p − w| < δ and yσ̃(xp) = y0σ̃(x0p).

(b) Suppose that σ̃ ∈ C2 and σ̃(x0w), σ̃′(x0w) ̸= 0. Also suppose

1
w

− x0

[
σ̃′(x0w)
σ̃(x0w) − σ̃′′(x0w)

σ̃′(x0w)

]
̸= 0. (32)

Then for sufficiently small δ > 0, if 0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no
p ∈ R such that 0 < |p − w| < δ and yσ̃(xp) = y0σ̃(x0p). If, however, DF (p, x0) ≡ 0 for p near w
or DF (w, x) ≡ 0 for x near x0, then σ is a power function near x0w, i.e., σ(x) = Cxd for some
C, d ∈ R, when x is sufficiently close to x0w.

Proof.

(a) Let g(p) = yσ̃(xp) and g0(p) = y0σ̃(x0p). Suppose that the values of g and g0 coincide at w, p. Then
we have

yσ̃(xw) = y0σ̃(x0w);
yσ̃(xp) = y0σ̃(x0p).

(33)
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Equivalently, whenever y ̸= 0 and y0 ̸= 0,

σ̃(xw)σ̃(x0p) − σ̃(xp)σ̃(x0w) = F (p, x) = 0. (34)

Now by hypothesis, there is some δ, ε > 0 such that for any (p, s) ∈ R2 with ∥(p, x) − (w, x0)∥∞ < δ,
|F (p, x)| ≥ C|p − w|k|x − x0|r > 0. But this is equivalent to saying that for sufficiently small δ > 0,
if 0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R such that 0 < |p − w| < δ and
yσ̃(xp) = y0σ̃(x0p).

(b) Fix w ̸= 0. Note that

F (p, x) = σ̃(xw)σ̃(x0p) − σ̃(xp)σ̃(x0w)
= [σ̃(x0w) + σ̃′(x0w)(x − x0)w + o(x − x0)]σ̃(x0p)

− [σ̃(x0p) + σ̃′(x0p)(x − x0)p + o(x − x0)]σ̃(x0w)
= σ̃′(x0w)σ̃(x0p)(x − x0)w − σ̃′(x0p)σ̃(x0w)(x − x0)p + o(x − x0) · (σ̃(x0p) − σ̃(x0w))
= (x − x0)[σ̃′(x0w)σ̃(x0p)w − σ̃′(x0p)σ̃(x0w)p] + o((x − x0)(p − w)).

(35)

It suffices to show that σ̃′(x0w)σ̃(x0p)w − σ̃′(x0p)σ̃(x0w)p = Ω(p − w) for all p sufficiently near
w. Then we can find some C > 0 such that |σ̃′(x0w)σ̃(x0p)w − σ̃′(x0p)σ̃(x0w)p| ≥ C|p − w| and
o((x − x0)(p − w)) ≤ C|x − x0||p − w|/2. Then

|F (p, x)| ≥ |x − x0||p − w|C − o((x − x0)(p − w)) ≥ C

2 |x − x0||p − w|, (36)

when x is sufficiently close to x0 and p sufficiently close to w. Thus, by (a) there is some δ > 0 such
that for small enough δ > 0, if 0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R
such that 0 < |p − w| < δ and yσ̃(xp) = y0σ̃(x0p). Since σ̃ ∈ C2, when σ̃′(x0w), σ̃′′(x0w) ̸= 0, this is
equivalent to proving

σ̃′(x0p)
σ̃′(x0w) − w

p

σ̃(x0p)
σ̃(x0w) = Ω(p − w) (37)

for all p near w. Note that we have

σ̃′(x0p)
σ̃′(x0w) = σ̃′(x0w) + σ̃′′(x0w)x0(p − w) + o(p − w)

σ̃′(x0w)

= 1 + σ′′(x0w)
σ̃′(x0w) x0(p − w) + o(p − w)

(38)

and
w

p

σ̃(x0p)
σ̃(x0w) =

(
w − p

p
+ 1

)
σ̃(x0w) + σ̃(x0w)x0(p − w) + o(p − w)

σ̃(x0w)

=
(

w − p

p
+ 1

) (
1 + σ̃′(x0w)

σ̃(x0w) x0(p − w) + o(p − w)
)

= 1 + w − p

p
+ σ̃′(x0w)

σ̃(x0w) x0(p − w) + o(p − w).

(39)

Thus, the left side of (37) becomes

σ̃′(x0p)
σ̃′(x0w) − w

p

σ̃(x0p)
σ̃(x0w) =

[
σ̃′′(x0w)
σ̃′(x0w) x0 + 1

p
− σ̃′(x0w)

σ̃(x0w) x0

]
(p − w) + o(p − w). (40)

By hypothesis, there is some δ > 0 and some C > 0 such that for any p ∈ (w − δ, w + δ),∣∣∣∣1
p

− x0

[
σ̃′(x0w)
σ̃(x0w) − σ̃′′(x0w)

σ̃′(x0w)

]∣∣∣∣ ≥ C. (41)

This proves (37), which in turn completes the first part of our proof.
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Now assume that DF (w, x) ≡ 0 for x near x0. Thus, there is a neighborhood U of x0 on
which ∂F

∂p (w, x) = x0σ̃(xw)σ̃′(x0w) − xσ̃′(xw)σ̃(x0w) vanishes. Because x0 ̸= 0 and by hypoth-
esis, σ′(x0w) ̸= 0, we can make this U so small that 0 /∈ U and σ′(xw) ̸= 0 for x ∈ U . This
means

σ̃′(xw)
σ̃(xw) = x0σ̃′(x0w)

σ̃(x0w)
1
x

. (42)

Arguing in the same way as the proof of Lemma 6.2, we can see that there are non-zero constants
A, B such that

log(Aσ̃(xw)) = x0σ̃′(x0w)
σ̃(x0w) log(Bx). (43)

Therefore σ̃, and thus σ, is a power function. Similarly, when DF (p, x0) = 0 for p near w, we can
integrate and deduce that σ is a power function near w.

Corollary A.2 (Corollary 6.1). Following the notations in Proposition 6.1, all the results below hold.

(a) Any σ and w, x0 ̸= 0 such that σ is a power function on a neighborhood of x0w (this includes ReLU
and PReLU and Heaviside) satisfies F = 0 near (w, x0).

(b) For any analytic activation σ and any x0, w ∈ R such that the zero locus of the function F (p, x) =
σ̃(xw)σ̃(x0p) − σ̃(xp)σ̃(x0w) satisfies

F −1{0} ∩ U = {(p, x) ∈ U : p = w} ∪ {(p, x) ∈ U : x = x0}

for some neighborhood U ⊆ R2 of (w, x0), we can find a sufficiently small δ > 0 such that if
0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R with 0 < |p − w| < δ and
yσ̃(xp) = y0σ̃(x0p).

(c) If σ = ex or σ = e−x2 , then for any x0 ∈ R, we can find a sufficiently small δ > 0 such that if
0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R with 0 < |p − w| < δ and
yσ̃(xp) = y0σ̃(x0p).

(d) Let w > 0. If σ = 1
1+e−x , for any x0 ∈ (−∞, w−1) ∪ (2w−1, ∞), we can find a sufficiently small δ > 0

such that if 0 < |x − x0| < δ, y ̸= 0 and yσ̃(xw) = y0σ̃(x0w), there is no p ∈ R with 0 < |p − w| < δ
and yσ̃(xp) = y0σ̃(x0p).

Proof.

(a) Note that σ is a power function near w if and only if σ̃ is. Therefore, suppose that σ̃(x) = xq for
some q ∈ R, then for any (x, p) sufficiently close to (x0, w),

F (p, x) = (xw)q(x0p)q − (xp)q(x0w)q = 0.

(b) Apply Lojasiewicz distance inequality to F 2 on U . Denote ℓ1 := {(p, x) ∈ R2 : p = w} and
ℓ2 := {(p, x) ∈ R2 : x = x0}. Since (F 2)−1{0} = F −1{0}, there are some C, β > 0 such that for
(p, x) ∈ U sufficiently close to (w, x0), we have

|F 2(p, x)| ≥ Cdist
(
(p, x), F |−1

U {0}
)β

= Cdist
(
(p, x), F −1{0} ∩ U

)β

≥ C min{dist ((p, x), ℓ1)β
, dist ((p, x), ℓ2)β}

= C min{|x − x0|β , |p − w|β}
≥ C|x − x0|β |p − w|β .

This shows that the assumption in Proposition 6.1 (a) is satisfied, so the desired result follows.
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(c) Note that both ex and e−x2 are (real) analytic functions. We will prove by applying the result in (b).
For σ(x) = ex, when F (p, x) = 0 we must have

e−xwe−x0p = e−xpe−x0w,

which gives xw + x0p = xp + x0w, i.e., (x − x0)(p − w) = 0. Thus, either p = w or x = x0. Similarly,
for σ(x) = e−x2 , when F (p, x) = 0 we must have

ex2w2
ex2

0p2
= ex2p2+x2

0w2
.

Thus, x2w2 + x2
0p2 = x2p2 + x2

0w2, which gives (x2 − x2
0)(p2 − w2) = 0 and this holds when x2 = x2

0
or w2 = p2. Thus, for (p, x) sufficiently close to (w, x0), we must have x = x0 or p = w.

The proof above shows that either for σ(x) = ex or σ(x) = e−x2 , we can find some neighborhood
U ⊆ R2 of (w, x0) such that

F −1{0} ∩ U = {(p, x) ∈ U : p = w} ∪ {(p, x) ∈ U : x = x0}.

Therefore, the desired result follows from (b).

(d) σ̃(x) = 1 + e−x. Let u = x0w. Therefore,

1 − u

(
σ̃′(u)
σ̃(u) − σ̃′′(u)

σ̃′(u)

)
= 1 − x

1 + e−x
. (44)

Let z denote the root of 1 − x
1+e−x . Since z ∈ (1, 2), it follows that when u ∈ (−∞, 1) ∪ (2, ∞), the

desired result follows from Proposition 6.1.
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