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Abstract

Loss spikes emerge commonly during training across neural networks of varying
architectures and scales when using the Adam optimizer. In this work, we inves-
tigate the underlying mechanism responsible for Adam spikes. While previous
explanations attribute these phenomena to the lower-loss-as-sharper characteristics
of the loss landscape, our analysis reveals that Adam’s adaptive preconditioners
themselves can trigger spikes. Specifically, we identify a critical regime where
squared gradients become substantially smaller than the second-order moment
estimates, causing the latter to undergo a fs-exponential decay and to respond
sluggishly to current gradient information. This mechanism can push the maximum
eigenvalue of the preconditioned Hessian beyond the classical stability threshold
2/n for a sustained period, inducing instability. This instability further leads to
an alignment between the gradient and the maximum eigendirection, and a loss
spike occurs precisely when the gradient-directional curvature exceeds 2/7. We
verify this mechanism through extensive experiments on fully connected networks,
convolutional networks, and Transformer architectures.

1 Introduction

Neural network optimization remains a complex and sometimes unpredictable process despite signifi-
cant advances in training methodologies. One particularly intriguing phenomenon that practitioners
frequently encounter but rarely explore systematically is the “loss spike” — a sudden and sharp surge
in the loss function that subsequently subsides, as illustrated in Fig.[I] These spikes are observed
across a wide range of network architectures and datasets, yet their underlying mechanisms remain
elusive. Practitioners face a critical dilemma when encountering loss spikes: should they intervene by
adjusting hyperparameters to eliminate these apparent anomalies, or might these spikes actually serve
some beneficial purpose in the optimization process? Answering these questions requires a deeper
theoretical understanding of when, how and why loss spikes occur.

Previous research has tried to explain loss spikes through the geometry of loss landscapes (Ma et al.,
20224 |L1 et al.| [2025). The lower-loss-as-sharper (LLLAS) hypothesis (Li et al.,|2025) suggests that
regions of lower loss correspond to sharper curvature in the loss landscape, potentially causing
instability. While this explanation provides some intuition, it fails to explain the specific behavior of
adaptive optimizers like Adam (Kingma and Bal |[2014) that consistently exhibit spikes even in simple
scenarios where landscape geometry is well-understood. For instance, as shown in Fig.[2{a), Adam
produces loss spikes on a simple quadratic function even with learning rates well below theoretical
stability thresholds, while gradient descent converges smoothly. This behavior can not be explained
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Figure 1: Loss spikes across architectures: (a) FNNs for function approximation. (b) CNNs on
CIFARI10. (c-d) Transformers on sequence learning. See experimental details in Appendix

by loss landscape alone, since quadratic functions have constant curvature. Furthermore, although
prior research has established that training instabilities can occur when the maximum eigenvalue
of Hessian or preconditioned Hessian exceeds 2/ (7 is the learning rate) (Cohen et al.,2021; Wu
et al.;, 2018} | Xing et al., 2018 |Ahn et al.| [2022; [Lyu et al., 2022} |Arora et al., 2022; Wang et al.,
2022} |Cohen et al.| [2023)), the precise relationship between such instabilities and observed loss spikes
remains unclear. In particular, instability may sometimes manifest as oscillations and sometimes as
spikes (Ma et al.|[2022)), the specific mechanism under which spikes occur is not well understood.

In this paper, we present a detailed mechanistic explanation for loss spikes in Adam optimization. Our
key insight is that these spikes arise not primarily from the complex geometry of the loss landscape,
but rather from the intrinsic dynamics of Adam’s adaptive preconditioners. Specifically, we identify
a critical regime where diminishing gradients become substantially smaller than the corresponding
second-moment estimates. When this occurs, the second-moment estimates begin an exponential
decay governed by (32, rather than responding to the current gradient information. This decoupling
pushes the maximum eigenvalue of the preconditioned Hessian beyond the threshold 2/7 for a
sustained period. This instability further leads to an alignment between gradient and maximum
eigendirection, and a loss spike occurs precisely when the gradient-directional curvature exceeds 2/7.

Our main contributions are summarized as follows:

(i) We show that Adam’s adaptive preconditioners can independently induce training instability by

causing the maximum eigenvalue of the preconditioned Hessian H, to exceed the stability threshold.
This mechanism is distinct from the lower-loss-as-sharper (LLAS) landscape hypothesis (Li et al.,
2025)) (please refer to Sec. [3|and Sec. .1).

(i) We identify a critical regime where gradients become significantly smaller than their second-
moment estimates when employing a relatively large 35. This renders the preconditioners insensitive
to current gradient information and causes the maximum eigenvalue of the preconditioned Hessian to
persistently exceed the classical stability bound 2/ (please refer to Sec. and Sec. .

(iii) We propose a novel predictor for loss spikes based on the gradient-directional curvature, denoted

Agrad, and empirically demonstrate that the condition )\max(fI +) > 2/n alone is insufficient; a spike
occurs specifically when the curvature in the gradient direction exceeds this threshold (please refer to

Sec.[43]and Sec.[3).

2 Related Work

Edge of Stability (EoS). Various works (Cohen et al., 2021; Wu et al., 2018}, Xing et al., 2018} /Ahn
et al., 2022} [Lyu et al.| [2022; |Arora et al.l [2022; [Jastrzebski et al., 2020; Jastrzebski et al.l [2019;
Lewkowycz et al.l 2020) have investigated the Edge of Stability (EoS), a phenomenon where gradient
descent progressively increases the sharpness of the loss landscape—a process known as progressive
sharpening—until the maximum Hessian eigenvalue stabilizes near the threshold 2/7, while the
loss continues to decrease non-monotonically. [Ma et al.| (2022) proposed a subquadratic structure
near local minima, where sharpness increases when the loss decreases along the gradient direction,
providing a theoretical account of this behavior. Other studies (Damian et al., 2023 Wang et al.,
2022)) show that when Apax > 2/7, self-stabilization mechanisms can reduce sharpness and restore
stability. More recently, |Cohen et al.| (2023) extended the EoS framework to adaptive optimizers,



introducing the concept of Adaptive Edge of Stability (AEoS). While EoS has been widely explored,
its direct association with loss spikes has yet to be thoroughly investigated.

Convergence Analysis of Adam. Numerous works have analyzed the convergence behavior of
adaptive gradient methods (Chen et al.l|2019; |Li and Orabonal 2019; Xie et al., 2020; Défossez et al.|
2022; Da Silva and Gazeau, 2020; |Shi et al., 2021} |Zou et al., 2019;|Zhou et al.| [2024)). In particular,
Reddi et al.[(2018) demonstrated that Adam may fail to converge even in simple convex settings,
prompting a series of variants (Liu et al.,[2019] [Taniguchi et al.,|2024). Zhang et al.| (2022)) showed
that Adam can converge to a neighborhood of critical points when f is large, and this convergence is
guaranteed if 81 < v/fa.

Loss Spike Analysis. |Chowdhery et al. (2023)) reported that restarting training from an earlier
checkpoint and skipping the spiking data batch can mitigate spikes in large models. [Molybog et al.
(2023)) found that the gradient and second-moment estimates of shallow layer parameters can decay
to near-zero and then spike upon encountering a large gradient. [Li et al.| (2025]) argued that spikes
occur in sharp regions of the loss landscape with a lower-loss-as-sharper (LLAS) structure. [Ma et al.
(2022)) qualitatively demonstrated that Adam’s hyperparameters impact the occurrence of spikes
or oscillations. More recently, |(Cattaneo and Shigidal (2025) empirically found that reducing S,
can effectively mitigate loss spikes. Although previous studies have uncovered parts of the puzzle
surrounding spikes, this work provides a more detailed understanding of the spike formation.

3 Distinct Loss Spike Mechanism in Adam vs. Gradient Descent (GD)

Adam Algorithm. The Adam algorithm is widely used in training Transformer models and is usually
more prone to cause loss spikes. Adam maintains exponential moving averages of gradients (first
moment) and squared gradients (second moment) to speed up training:

my = Bimy_1 + (1 —B1)gi, v = Povi1 + (1 - B2)g7. (H

where g; := VL(6,) is the gradient, and /51,82 € [0,1) are hyperparameters controlling the
exponential decay rates (default values: 51 = 0.9, 82 = 0.999). To counteract the initialization bias

toward zero, these moments are corrected: m; = 11”752, U = =5t The parameter update rule for
1 2

Adam is:

my
7 Vo +e
where 1 > 0 is the learning rate and € > 0 is a small constant (default 10~® in PyTorch).
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Figure 2: Optimization of f(0) = %62. (a) Loss trajectories during Adam and GD training across

various learning rates. Curves of different colors represent Adam’s training loss, which initially
decreases steadily before abruptly spiking to significantly higher values. (b) The relationship between
learning rate and /9, value at spike occurrence follows a power law, appearing as a straight line
with a slope of approximately 1 in log-log scale. (c) Under different learning rates, the ratio 1/+/0;
consistently reaches a nearly identical threshold value immediately before the loss begins to spike.

Differences in Spike Behavior Between GD and Adam. Adaptive gradient methods like Adam
exhibit fundamentally different behavior compared to standard gradient descent. A notable distinction

is that Adam can encounter convergence difficulties even with simple quadratic functions and very
small learning rates. For the quadratic function f(f) = %92, it is well established that gradient
descent converges when the learning rate 7 < 2/A.x = 2 (depicted by the black dashed line in



Fig.[2(a)). However, Adam displays more intricate dynamics. As illustrated in Fig. [2(a), Adam with a
learning rate 1 < 2 (using hyperparameters 3; = 0.9, 2 = 0.99, ¢ = 10~8) still fails to converge.
This non-convergence manifests in the distinctive colored curves in Fig. 2Ja), where the training loss
initially decreases steadily before abruptly spiking to a substantially higher magnitude. Fig. 2(b)
further examines the relationship between Adam’s second moment +/?; at spike occurrence and
learning rate. From Fig. b), we observe that smaller learning rates correspond to smaller v/9; values
when spikes occur, with the relationship appearing linear in log-log scale with a slope near 1. For
one-dimensional quadratic optimization, 77/+/?; can be interpreted as the actual effective learning rate
and it increases as training progresses because /9; diminishes alongside the gradient g; according to
Eq. (I). Experimentally, Fig. 2Jc) confirms that this ratio increases until reaching a nearly consistent
threshold value 38 (see Lem. |I|for a theoretical explanation), at which point the loss spike invariably
occurs. While straightforward, this analysis provides valuable intuition for the emergence of spikes.
However, it is important to note that in high-dimensional optimization scenarios, v0; becomes a
vector rather than a scalar, rendering the notion of an equivalent learning rate inapplicable. In the
following section, we will quantitatively characterize Adam’s spike behavior in more general settings.

4 Loss Spike Analysis Based on Quadratic Approximation

Quadratic Approximation. To understand the mechanics behind loss spikes, we first establish a
theoretical analysis that connects optimization dynamics with the geometry of the loss landscape.
Consider a neural network optimization problem where we aim to minimize a loss function L(0)
with respect to parameters @ € R . Around any point # in parameter space, we can approximate
the loss function using a second-order Taylor expansion with Lagrangian remainder L(6 + 00) =
L(0) + VL(0)" 56 + 150" H(6')56, where VL(0) € R is the gradient vector and H(8') =
V2L(6') € RM*M i the Hessian matrix of second derivatives evaluated at 6’, with 8’ € (0, 0 +40).
The Hessian characterizes the local curvature of the loss landscape. Although deep neural network
loss functions are highly non-convex with respect to parameters 8 and therefore not globally quadratic,
when 40 is sufficiently small and the loss function is smooth, the Hessian H remains approximately
constant in the local region. Under these conditions, the second-order approximation simplifies to:

L(0 +66) ~ L(36) := L(0) + VL(0) 66 + (1/2)60 T H56. 3)

Stability Analysis Based on Quadratic Approximation. In standard gradient descent with learning
rate 7), the parameter update follows: 0,1 = 6; — nVL(0;). Assume the second-order Taylor
expansion in Eq. (3)) is valid, then for a small perturbation 66, around 6, we have:

When Ayax(H) > 2/7, the iteration becomes unstable along the maximum eigendirection.

4.1 Modified Stability Analysis for Adam

Stability Analysis of Adaptive Mechanism. To analyze the stability conditions of Adam, we
first examine solely the adaptive mechanism by setting 3; = 0, thus ignoring momentum effects.
Following an approach similar to standard gradient descent analysis, if the second-order Taylor
expansion in Eq. (3 holds, then for a small perturbation ¢€ around 8, we have:

VL(66,) < , ( 1 ) ) VL(0)
660,11 ~ 60, — n———2 = (I — ndiag | —— | H ) 66, — n————. 5
t+1 t— "N o e ndiag 5 + ¢ t 77\/’574-5 ©)

Analogous to Eq. (@), stability of this iteration requires the spectral radius p (I - nﬂ ) to be less

than 1, where H = diag ( \/171 +E) H is the “adaptive preconditioned Hessian” of Adam, consistent
t

with previous literature (Cohen et al., 2023). This directly yields the stability condition p(H) < 2/7.

Although H = diag ( \/171 +6> H is asymmetric, it can still be diagonalized and possesses real
eigenvalues (see AppendixLem. B.1). Therefore, the stability condition becomes Amax (H ) < 2/7.

Stability Analysis of Momentum Mechanism. When momentum is introduced (5, > 0), we can
analyze the momentum mechanism independently from the adaptive mechanism, considering the



update rule ;1 = 6, — nm; where m; is first-order momentum. Following the second-order Taylor
expansion approach, we have:

50t+1 =~ 50t — n(ﬂlmt_l + (1 — Bl)VE((FOt)) = 501& - n(ﬂlmt_l + (1 — ﬂl)(VL(O) + H50t))
Substituting nm;_1 = 60,1 — 6;, we obtain:

60,11 ~ [(1+ 1)L —n(1 — p1)H] 66, — $1660;—1 —n(1 — S1)VL(0). (6)
The stability condition for this three-term recursion is given in Lem. [T}
Lemma 1 (see Appendix [B|Lem. [B.2]for proof). The three-term recursive iteration (@) converges if

and only if)\max(%H) < 2/n.

Comprehensive Stability Analysis of Adam. When considering the complete update formula of
Adam, Eq. (2), both the adaptive mechanism and the momentum mechanism should be integrated.

Additionally, when incorporating the momentum bias correction term 1, = T—ét, the comprehensive
1
“Adam preconditioned Hessian” becomes:
- 1 1- 1
H, = - ﬁldiag( _ )Ht. (7
1-811+ 5 v+ €

In the subsequent sections, we experimentally validate that this modified stability criterion Amax(ﬁt)
accurately corresponds to the occurrence of loss spikes in practical optimization scenarios.

4.2 Adaptive Preconditioners Trigger Loss Spike

The key difference of the stability condition between gradient descent and Adam is the adaptive
preconditioners v;. To investigate the effect of the decay behavior of v, on loss spikes, we conducted
controlled experiments on a simple quadratic objective f(6) = %02. Fig. a—b) shows results under
the Adam setting with 8; = 0.9 and B> = 0.99. Initially, the loss decreases smoothly. However,
a loss spike occurs at epoch 782, precisely when the maximum eigenvalue of the preconditioned

Hessian, Amax(ﬁt), exceeds the critical threshold 2/1).

Fig.[B|a) shows the evolution of the gradient norm (green line), while Fig. [3[b) plots the second-order
moment estimate 9, (red line). Notably, the gradient norm (~ 10~!%) becomes very small before
the spike—much smaller than /9, (=~ 10~!). According to the update rule (Eq. (I)), this leads the
training to enter a regime where v; decays exponentially as v; ~ Bav;_1. The green dashed line
in Fig. [3(b) fits this decay using ©9; = Ac’, showing excellent agreement with the actual 9, and
confirming o ~ 5 = 0.99. When Apax (H;) surpasses 2/7, a loss spike occurs and the gradient
norm g; begins to increase. However, the condition g; < /9; persists, causing the exponential decay
of v to continue. This sustained decay consequently maintains the elevation of /\max(ﬂ +) above the
stability threshold 2/n over time. As the spike progresses, the gradient norm eventually grows large
enough to impact vy, at which point 9; begins to increase rapidly. This causes /\max(ﬁ +) to drop
back below 2/7, and the loss begins to decrease again at epoch 845.
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Figure 3: Adam optimization on f(6) = %92 with different 35 values. (a, c) Evolution of training loss
and gradient norm. (b, d) Evolution of the second moment estimate 9, and the maximum eigenvalue
of the preconditioned Hessian. The red dotted line marks the onset of the loss spike, while the blue
dotted line indicates the point where the loss begins to decrease. The green dashed lines fit v, decay

using ¥; = Aa! with decay rate shown in the labels.

In contrast, employing a smaller 5 increases v;’s sensitivity to gradient changes and may alter this
behavior. Fig. [B(c—d) present results for 3; = 0.9 and 8 = 0.9—a configuration less commonly used



in practice due to its inferior convergence guarantees (Shi et al.| 2021}, |[Zhang et al.,[2022)). In this
setting, the gradient remains non-negligible relative to y/v; throughout training, effectively preventing
the onset of 32-exponential decay (e.g., the observed decay rate o ~ 0.93 in Fig. [3(d) is larger than
B2 = 0.9). As training progresses, the gradient gradually diminishes and 0, continues to decrease,
which leads to a gradual increase in )\max(ﬁ +). However, since the gradient is non-negligible, once
)\max(ﬁt) reaches the critical threshold 2/7, the gradient norm begins to rise, causing an immediate
adjustment in v;. This feedback mechanism prevents Amax(ﬁt) from persistently exceeding the
stability threshold, thereby suppressing the emergence of pronounced loss spikes. As illustrated in
Fig.[3]c), the loss exhibits a minor rise followed by oscillations, never reaching a large spike. This
helps explain why Adam training, as empirically observed by Ma et al.| (2022}, sometimes results in
sudden spikes in loss and sometimes in oscillatory behavior.

4.3 Precise Loss Spike Prediction via Gradient-Directional Curvature

In high-dimensional optimization, when the maximum eigenvalue of the Hessian satisfies Ay ax >
2/m), instability arises primarily along the corresponding eigendirection, while the remaining directions
may still exhibit stable descent. As a result, a loss spike does not necessarily occur immediately,
with not even any visible signs of abnormality (see Fig. ff(a)). To more precisely predict the onset
of a loss spike, we analyze the change in the loss value between consecutive optimization steps.
Applying a second-order Taylor expansion of the loss function L at 8;, we obtain: L(6;11) =~
L(6;) +VL(0;)" (6;11 — 6;) + L(6:1 — 6;)TH(0;,1 — 6;). Substituting the gradient descent
update rule 6,1 — 6; = —nVLEBt), the estimated loss change becomes: L(6;1) — L(0;) =
—n||[VL(6:)|* + 37>V L(6;) " HVL(6;). Assuming the quadratic approximation holds, an increase
in loss—i.e., a necessary condition for a spike to occur when:
VL) HVL(,) 2
Aerad(H) 1= —. 8
L 7 (2] R ®

Here, Agraq denotes the curvature of the loss landscape along the gradient direction. A loss spike is

therefore predicted only when the gradient becomes sufficiently aligned with the dominant curvature
direction. For Adam, where the Hessian is preconditioned, we analogously define the predictor as

)\grad(I:I )= %ﬁ;é(et), where H denotes the preconditioned Hessian in Eq. (7).

Experimental Verification of Loss Spike Predictor. We validate the proposed loss spike predictor
using a two-layer fully connected neural network trained on 20 data points to fit the 1-dimensional
target function f(z) = sin(x) + sin(4x) (see Appendix [E| for experimental details). The model
is trained using either gradient descent or Adam with full-batch. During training, we track both
Amax (H¢) and Agraq (Hy). For gradient descent, as shown in Fig. @a—b), two prominent loss spikes
are observed. At epoch 416, although Ay,.x(H}) already exceeds 2 /7, the loss continues to decrease.
A sharp loss increase (spike) at epoch 580 occurs only when Agrad (H:) also exceeds 2/7. Once
Agrad (H) falls below the threshold, the loss resumes decreasing. Notably, during the initial two
epochs, Amax (H¢) and Agraa(Hy) also exceed 2/7 transitorily without triggering any spikes. This
period corresponds to rapid loss decrease, suggesting that the Hessian varies rapidly and the quadratic
approximation assumption may not hold during this phase. For Adam, Fig. ffc—d) shows 7 distinct
loss spikes. However, /\max(ﬂ +) exceeds 2/n at 10 different time steps. Crucially, spikes occur only

when )\gmd(ﬁ +) > 2/n, confirming that )\max(ﬁ +) alone is insufficient to predict spikes.

4.4 The Mechanics of Loss Spike Formation in Adam

Building on our theoretical and empirical findings, we identify a five-phase progression that charac-
terizes the formation and resolution of loss spikes during training with the Adam optimizer.

Phase 1: Stable Loss Decrease. Training loss decreases steadily with no abnormalities observed.

Phase 2: Decay of the Adaptive Preconditioners. As the gradient g; diminishes for some layers, the
corresponding second-moment estimate v; begins to decay. Under typical settings with large 5 €
[0.95,0.9999], || g¢ || can be much smaller than ||,/v¢||, causing v to enter an S>-dominant exponential
decay regime: v; =~ Bowv;_1. This decay reduces the strength of the adaptive preconditioners v;.

Phase 3: Onset of the Loss Spike. Instability arises when the maximum eigenvalue of the precon-
ditioned Hessian, \,ax (H}), exceeds the stability threshold 2 /7. Initially localized, the instability



6x10°1 —— Training Loss Ampx(He) >2 alone is insufficient]
Loss Spike tq trigger loss spike

Loss.
Loss

5x107%

Eigenvalue

100{ | — Amax(Fe)
Agraa(He)
>

Eigenvalue

: H E i
e : Y : . o1 " i ;

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 Loss Spike
Epoch Epoch Epoch 0 200 400 600

(a) GD (loss) (b) GD (eigenvalues) (c) Adam (loss) (d) Adam (eigenvalues)

Figure 4: Experimental validation of the gradient-directional loss spike predictor. A two-layer
fully connected neural network (width 1, 000, approximately 3, 000 parameters) is trained on 200
randomly sampled data points to fit f(z) = sin(x) + sin(4x). (a-b) Gradient descent with learning
rate n = 0.08. (c—d) Adam with learning rate n = 0.01, 51 = 0.9, 82 = 0.999.

intensifies as the gradient aligns with the unstable curvature direction. A loss spike occurs only when
the gradient-projected curvature Agaq also surpasses 2/7. Since v, responds sluggishly to current
gradient information g, Agraqa Will persistently exceed 2/7.

Phase 4: Growth of the Adaptive Preconditioners. As the loss spike intensifies, the gradient norm
grows progressively larger. When the gradient becomes sufficiently large to influence /vy, the decay

of v; halts and reverses. The resulting growth in v, reduces Agraq (H ), helping to restore stability.

Phase 5: Loss Decay Phase: When A4 (H ) falls back below 2/7, the optimizer regains stability.
The loss resumes decreasing, completing the spike cycle and returning to Phase 1.

These five phases provide a comprehensive intuitive understanding of the Adam loss spike phe-
nomenon. Furthermore, we also provide a mathematically rigorous characterization of these phases
for a one-dimensional quadratic optimization in Appendix [B] Thm. [B.T]

5 Loss Spike Analysis in Neural Network Optimization

To validate our proposed spike mechanism and evaluate our predictors’ effectiveness in high-
dimensional, non-convex settings, we performed empirical studies across various neural network
architectures and tasks. Detailed experimental configurations are provided in Appendix [E} with
supplementary experiments presented in Appendix [D]

5.1 Fully Connected Neural Networks for Function Approximation

We trained a two-layer fully connected network on a 50-dimensional function approximation task us-
ing Adam hyperparameters 51 = 0.9, 82 = 0.999. Fig.[5(a) shows optimization dynamics mirroring
our quadratic function analysis: both loss and gradient norm decrease rapidly before experiencing a
sharp spike. We track maximum eigenvalue evolution of Hessian and the preconditioned Hessian dur-
ing training. Fig. b) shows Amax (H) quickly stabilizing while Ay (H;) continues to increases
due to the decrease of v; in Fig. c). Though Amax (H;) surpasses the stability threshold 2/7 at
epoch 179, the spike occurs at epoch 184, precisely when Agrad(ﬁt) exceeds 2/ (Fig. b)).

Fig. c) illustrates the evolution of second-moment norms +/®; for each parameter block. Before
the spike, gradient norm |[|g;|| (= 10~2) becomes significantly smaller than ||\/%;||, causing v; to
decay exponentially at rate 5. After spike onset, the gradient norm increases, while ¥; continues to
decrease due to its sluggish response. Once the gradient norm becomes sufficiently large, v; begins to

rise rapidly, which drives Amax(ﬂt) below 2/7, allowing the loss to resume its descent at epoch 206.

The cosine similarity between maximum eigenvectors of H; across consecutive steps approaches
1 early in training (Fig. [5(d)), validating our quadratic approximation and loss spikes occur when
gradient aligns with maximum curvature direction. Fig.[5(e) confirms this by projecting the trajectory
onto maximum and minimum eigenvectors. Intuitively, pre-spike optimization resembles traversing a

river valley; when )\max(ﬁ +) violates stability, oscillations along the valley direction generate the
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Figure 5: (a) Training loss and gradient norm over time. (b) Evolution of critical eigenvalues: original
Hessian maximum eigenvalue Ap.x(H?}), preconditioned Hessian maximum eigenvalue )\max(ﬁt)
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epoch 28 and 1 corresponds to epoch 390, to better visualize the trajectory near the spike. (f) Increase
the default ¢ in Eq. (2) to 0.1 at epoch 184.

spike. To suppress the spike, a straightforward method involves increasing ¢ in Eq. (Z). As shown in
Fig. B|f), increasing ¢ to 0.1 at spike onset effectively eliminates it.

5.2 Convolutional Neural Networks for Image Classification

We trained a convolutional neural network on CIFAR10 using Adam hyperparameters 51 = 0.9, 52 =
0.999. As shown in Fig.[6[a), the optimization follows a pattern similar to FNN, with an initial loss
decrease followed by three distinct spikes. Analysis of the preconditioned Hessian’s eigenvalues
(Fig. Ekb)) shows Apax (H}) remaining below the stability threshold 2/7, while Amax(ﬁt) increases
until exceeding it. Loss spikes occur precisely when )\grad(I:It) surpasses 2/17. Figs. Ekc—d) show
the evolution of squared gradients and second-order moments /®; across parameter blocks. Before
spikes, ||g¢|| is much smaller than ||\/?;||, with &; decaying exponentially at rate ~ (5. During
spikes, while v, continues decreasing, the gradient norm increases until substantially impacting v;,.
Subsequently, v, rises, causing )\gmd(ﬂ +) to fall below 2/ and allowing loss descent to resume.

5.3 Transformer Models for Sequence Learning

We trained an 8-layer Transformer (approximately 10 million parameters) on a synthetic dataset of
900k sequences (batch size 2048) for compositional rule learning under the next-token prediction
paradigm. Fig.[7[(a) shows seven distinct loss spikes (blue regions). Prior to each spike, the norm of
the second-moment estimate v, for the embedding and Wy, parameters across attention layers decays
at a rate of approximately 0.999003 (close to (2), followed by a sudden increase in ||0;|| and a sharp
drop in loss. To investigate whether these spikes correspond to the onset of instability, we tracked
Agrad (Hy) (Fig.b), gray line). While spikes coincide with Agyaq(H}) exceeding 2/7, not all thresh-
old crossings trigger spikes. A detailed analysis of these events revealed that transient periods where
Agrad (H¢) exceeds 2/7 do not necessarily cause a spike. Loss spikes only occur when /\grad(Ht)
remains above the threshold for a sustained duration (Fig. [7{c-e)). Consequently, we defined a “sus-
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Figure 6: Training a CNN on 50 randomly selected CIFAR-10 images to illustrate the detailed
spikes (see similar result for larger datasets in Appendix [D]Fig.[D6). (a) Training loss over time.
(b) Evolution of eigenvalues: original Hessian maximum eigenvalue A,.x(H}), preconditioned
Hessian maximum eigenvalue )\max(ﬁ +), and gradient-directional eigenvalue )\gmd(ﬁ +) relative to
2/n (black dashed line). (c) Gradient norm evolution across parameter blocks. (d) Lo-norm of second
moment estimate ||0;|| of different parameter blocks.

tained spike predictor” as: )\gmd(ﬂt)(sustained) = min()\grad(ﬂt,l), Agrad(ﬂt), Agrad (ﬂt+1)).
This refined predictor ((Fig.[7(b), orange line)) demonstrates perfect correspondence with loss spike
occurrences. Sustained periods above threshold trigger loss spikes, which is consistent with the
findings in Fig.[3]
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Figure 7: (a) Evolution of training loss and second moment ||©;||, with seven spikes highlighted.

(b) Gradient-directional eigenvalues )\grad(fl +) (gray) and sustained predictor /\grad(ﬁ +)(sustained)
(orange) vs. 2/1. (c-e) Detailed inspection of threshold-exceeding intervals showing the maximum

eigenvalues of the original Hessian Ay,.x (H}), preconditioned Hessian )\max(fIt), and )\grad(f{t).



6 Conclusion and Discussion

We present a detailed analysis for loss spikes in Adam, revealing that the adaptive preconditioners
themselves can trigger these spikes. However, it is possible that both the geometry of the loss
landscape and the preconditioners jointly contribute to loss spikes. Disentangling their individual
contributions and attributing different spike mechanisms remains an open direction for future work.

Loss spikes represent more than mere optimization phenomena; they may signify transitions between
distinct attractor basins in the landscape. Our experiments in Appendix |C| identify four spike
types (neutral, beneficial, malignant, and catastrophic) in Transformer training—highlighting
the importance of context-specific decisions on whether to suppress or preserve them. Precisely
distinguishing between these spike types remains an unresolved challenge.

When severe spikes disrupt training, several mitigation strategies exist. Increasing € or 51 can reduce
the preprocessed Hessian, while reducing 55 (Cattaneo and Shigidal 2025 makes the second-moment
more responsive to recent gradients, breaking the persistence condition that leads to spikes. Alternative
techniques include sandwich normalization (Ding et al., 2021; |Y1n et al.} 20235)), o-Reparam (Zhai
et al.; 2023), and scaled-decouple distribution (Wang et al.;,|2025). While some studies (Lyu et al.|
2022; Mueller et al.,|2023) attribute normalization’s effectiveness to sharpness reduction, a deeper
understanding of how to leverage or control spikes remains a promising avenue for future research.
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A Limitation and Future Work

Our detailed analysis of loss spikes in Adam optimization reveals that adaptive preconditioners
can themselves trigger these phenomena and we verify this mechanism in certain neural network
architectures. However, we acknowledge that in more complex scenarios, both the intrinsic geometry
of the loss landscape and the applied preconditioners likely interact to jointly produce loss spikes.
Disentangling these individual contributions and accurately attributing different spike mechanisms in
large-scale models remains a significant challenge for future research.

A key constraint in extending this analysis to larger models is the prohibitive computational cost of
calculating Hessian eigenvalues at scale. Consequently, developing efficient algorithms to approxi-
mate the maximum eigenvalue of the Hessian and the eigenvalues in the gradient direction represents
a critical direction for future work.

Furthermore, as discussed in Appendix [C] the precise categorization of loss spikes into our proposed
taxonomy (neutral, beneficial, malignant, and catastrophic types) presents ongoing challenges.
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Developing robust, computationally efficient criteria to distinguish between these categories would
significantly enhance our ability to detect and appropriately respond to different spike types during
training.

B Proofs of Theoretical Results

Lemma B.1. Let H be a real symmetric matrix and H = diag ( \/171 +E) H. Then H is diagonaliz-
able in the field of real numbers.

Proof. While diag ( \/171 +5) H is generally asymmetric, we can demonstrate that it is similar to a
t

symmetric matrix and therefore has real eigenvalues. Let D, = diag ( \/171 +E) , which is positive
t

definite. We can express:
D.H = D}? . (D}*HD}*) - D;/?

Since Dt1 H Dt1 /% s symmetric, D; H is similar to a symmetric matrix. This confirms that D, H
has real eigenvalues and is diagonalizable. O
Lemma B.2. The three-term recursive iteration 60,11 = [(1+ $1)I —n(1— 51)H]0, —
8160;_1 — n(1 — B81)VL(0) converges if and only if)\max(%ﬂ) < %

Proof. We analyze the convergence of the vector recurrence by decomposing it along the eigenspace
of the Hessian matrix. Since the Hessian H is symmetric and positive semi-definite, it admits an
eigen-decomposition H = QAQ", where Q is an orthogonal matrix and A = diag(\1, ..., \q)
contains the eigenvalues of H.

Define the change of variables §0; = Qz;. Substituting into the recurrence yields
zepr = [(14 )T — (1 = B1)A] 2t — Brzios — (1 — $1)Q T VL(H).
(4)

Since this is a decoupled system in the eigenbasis, for each 7 = 1, ..., d, the i-th component z,
satisfies a scalar second-order linear nonhomogeneous recurrence:

Zt% = aizt(i) - 512’,@1 + ¢,

where
aii=(1+B) —n(l =B\, ci=—-n(1—=p)g?, ¢9:=[QTVL®)],.
The general solution to this nonhomogeneous recurrence is the sum of the homogeneous solution and
a particular solution. The homogeneous part is governed by the characteristic equation:
r? —a;r + B1 = 0.
It is well known (e.g., see Elaydi, An Introduction to Difference Equations (Elaydi, 2005)) that the

solution z,gi) converges if and only if both roots of the characteristic equation lie strictly inside the

unit circle in the complex plane. This is equivalent to the following three conditions:

1+ai+51>07
1—a;+ 51 >0,
|B1] < 1.

Since 1 € [0,1) by assumption, the third condition always holds. The first two inequalities can be
rewritten as:
|C%i| <1+ 61.

Substituting the expression for «;, we obtain:

|(1+ B1) —n(1 = Bi)A| <14 Bi.
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Solving this inequality gives:

2 1+
0<nl=PF)N<2(146) = MN<-—: Bl.
n 1=pH
Therefore, the recurrence converges in all eigendirections if and only if this condition holds for all 7,
i.e.,
1-— 2
oo (1) < 2.
1+ 5 n
This completes the proof. O

Theorem B.1 (Five Phases of Adam for Optimizing Quadratic Loss). Consider the 1-d quadratic

loss L(0) = %92, optimized using Adam with hyper-parameters 81 = 0, 82 € (0,1), and learning

rate n > 0. The update rules are:

Orp1 = (1 — \/7%) 0r,  vip1 = Bavg + (1 — Ba)07.

Assume the initialization satisfies vo = 03 and |0| > 2. Then the training dynamics exhibit the
following five-phase behavior:

(i) Stable Loss Decrease. For all t < ty, where

[
21n (%—i—%)
to = B R
N3,

the sequence |0;| decreases exponentially, and vy € (B503,03). In particular, there exists s € (0, 1)
such that
0:] < 80|, and |0s,] < 6 := 5"

(ii) Decay of the Adaptive Preconditioners. For ty < t < ti, where

. n
ty:=inf{t >t |1— < -1,
1 m{ 0| \/E }

the momentum vy decays exponentially as

vy § (vto+1 752) ;—to—l +52.

(iii) Onset of the Loss Spike. Define
to 1= 1nf{t > 1 ‘ ‘0t| > (5} .

grows,

Fort, <t < tg, the preconditioner vy continues to decay, and the update multiplier ‘1 — \/Lvi
causing |0y to increase exponentially.

(iv) Growth of the Adaptive Preconditioners. Once |0;| > 6, the gradient magnitude increases, which

causes vy to grow and the update multiplier |1 — \/%‘ to shrink. This stabilizes the dynamics.

(v) Loss Decay Phase. Eventually, v; grows large enough so that \/% < 1, restoring the condition
for loss decrease.

Proof. We prove each phase sequentially.

Phase 1 (Loss Decreasing). Given vy = 032, we first show that v; > (562 by induction:
v = ol + (1~ Ba2)05 = 63,

and for all ¢, since 07 < 62, we have:

Vi1 = /BQ'Ut “+ (1 — ﬂg)af > BQ’Ut = Vg > 559(2)
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This implies:

U < n Ui ﬁ;t/Q

NN TR

Define tg such that —2—= = 1 + %, which implies:

2
1 2n
’Uto :ﬁévtoi (3> .

n((3)°/63) 2 (%)
In 35 By

This shows that ¢ is finite. During this phase, we can bound the update as:

Solving B5°602 < vy,, we get:

ty <

n . n
01 =(1——)0, with 0< —— <1.
1 ( m)t e o

b,

0] < s'[60], = 04| < s™)00| =: 6.

Thus, |6;| decays exponentially. Let

5= max{ln, ‘1 S
2 [6o] |0

then:

Phase 2 (Decay of the Adaptive Preconditioners). For ¢ > ¢, since |0;| < J, we have:

Vi1 < Bovg + (1 — B2)6°
Solving the recurrence gives:

t—to—1

vy < (Vg1 — 52) 2 + 6%,

which shows exponential decay of v; toward §%. As v; — 62, the term —= — 2, which can

o
eventually exceed 2. Therefore, there exists a finite ¢; such that:
Ui
1-— < —1.
A /’Ut1

Phase 3 (Onset of the Loss Spike). Once 1 — \/% < —1, the update becomes unstable:

Ui . n

Opp1=1——— |06, th |1—-——|>1.
o ( \F) v ‘ Vo

Hence, |0;| grows exponentially. Since v; is still small and decaying, this growth continues until
|6¢| > 4, at which point we define ¢5. During this phase, v; continues to decay, bounded as:

v < (v 41 — 0%)B5 T+ 6%

Phase 4 (Growth of the Adaptive Preconditioners). Once |0;| > §, the term 67 in the update of
v becomes significant, and v; begins to grow. This reduces the step size 7)/,/v, slowing down the
divergence.

Phase 5 (Loss Decay Phase). Eventually, \/77’; < 1, restoring the condition ‘1 — \/%‘ < 1, and the

system re-enters the stable regime where |0;| decreases. This completes one spike cycle.
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C Discussion: The Pros and Cons of Loss Spikes

Connection to Generalization Transitions. Loss spikes represent more than mere optimization phe-
nomena; they may signify transitions between distinct attractor basins in the optimization landscape.
To systematically investigate the relationship between loss spikes and generalization, we conducted
controlled experiments using a Transformer model. The model was trained to identify specific anchors
within sequences, using a dataset of 2,000 samples (1,800 training, 200 test). We employed full-batch
Adam optimization for training (detailed experimental setups and dataset specifications are provided
in Appendix [D). By analyzing the differential impacts on training and test losses before and after
spike occurrences, we identified four distinct categories of loss spikes:

(i) Neutral Spikes (Fig.[DI[a)): Both training and test losses resume their normal declining trajectory
following the spike, suggesting minimal impact on the overall optimization process.

(ii) Beneficial Spikes (Fig. b)): Prior to the spike, training loss reaches very low values while test
loss remains elevated, indicating overfitting. After the spike, test loss decreases rapidly, suggesting
improved generalization performance.

(iii) Malignant Spikes (Fig.[DI|c)): Before the spike, both training and test losses achieve low values.
After the spike, while training loss continues to decrease normally, test loss plateaus, indicating
deteriorated generalization.

(iv) Catastrophic Spikes (Fig.[DI(d)): Both training and test losses are low before the spike but
neither recovers afterward, signifying a complete breakdown of the optimization process. These find-
ings demonstrate that loss spikes can have context-dependent effects on generalization—sometimes
enhancing model performance while in other cases degrading performance.
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Figure D1: The Transformer model was trained to identify specific anchors within sequences. (a—d)
Evolution of the training and test losses over the course of training. (e-h) Evolution of the eigenvalues

in the gradient direction )\gmd(ﬁ +) near the spike.

As shown in Fig. e—h), all four types of spikes correspond to our proposed indicator, /\grad(I:I t)s
exceeding the classical stability threshold 2/7. Despite this commonality, their effects on general-
ization differ significantly. While our study uncovers the underlying mechanism that triggers these
spikes, determining the precise conditions under which a spike becomes beneficial or malignant
remains an open question for future research.

D Supplementary Experiments
Optimization of Quadratic Function with Varying Hyper-parameters. For the optimization of a

one-dimensional quadratic function, Fig.[D2]illustrates the precise location of the spike under various
hyperparameter configurations, where A,.x (H}) exceeds the stability threshold %
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Figure D2: Optimization of f(0) = 502 using the Adam algorithm with different hyperparameter
settings. The solid red line denotes the training loss. The dashed black line indicates the stability

threshold % The blue, purple, and green solid lines represent Ay ax (Hy), )\max(fI +), and the bias-
corrected ||/ |

2, respectively, at each training step.

Delay Mechanism in Gradient Descent

To verify that in high-dimensional cases, when Ay > 2 the maximum eigenvalue direction

oscillates while other eigenvalue directions steadily decrease (resulting in overall loss reduction), we
conducted experiments on one and two-dimensional quadratic functions with varying learning rates.

For a one-dimensional quadratic function, the loss landscape curvature remains constant. In this
setting, the learning rate initially produces linear improvement over time, followed by gradual decay.
When the instability condition is met—as illustrated in Fig. [D3|a)—the loss increases immediately.

In contrast, for the two-dimensional case, instability primarily emerges along the dominant eigendi-
rection, while other directions continue to descend stably. As shown in Fig. Mb), this leads to a
delayed onset of the loss spike.

To further validate this mechanism, we visualize the training trajectories in Fig.[D4[a-b). In gradient
descent (GD), the component along the maximum eigenvalue direction is learned rapidly at first,
resulting in a small magnitude. However, once the instability condition is triggered, this component
requires significant time to grow and eventually dominate the dynamics.
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Figure D3: Delay mechanism in gradient descent: Comparison of loss dynamics for 1D and 2D
quadratic functions. The learning rate varies over the course of training.

Gradient-direction Curvature vs. Update-direction Curvature for Loss Spike Prediction

17



x value
\

(( ««@\\\\\\\\\\\\

0 25 50 75 100 125 150 175 200 2.0 -15 -1.0 -0.5 0.5 1.0 15 2.0
Epoch

(a) Parameter value (b) TraJectory
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For Adam, where the Hessian is preconditioned, we define the predictor as

. VL(6,)THVL(,)
A T H):= )
N A
where H denotes the preconditioned Hessian in Eq. (7).
We also define _
- uw, Hu,
)\update(H) = W
where u; = W . is the update vector.

To validate our quadratic approximation-based predictor, we tracked the eigenvalue evolution of the
precondltloned Hessian throughout training. Fig. lb) reveals that while Ay, .x(H) quickly stabi-

llzes Amax (H) continues to increase steadily. Notably, Amax () surpasses the stability threshold
; at epoch 179, yet no immediate spike occurs. At epoch 184, precisely when )\grad(Ht) exceeds 2 o

we observe the loss spike depicted in Fig. a). Subsequently, the eigenvalue )\updam(ﬂ +) in the
parameter update direction also exceeds 2

This demonstrates that the eigenvalue in the gradient direction more accurately predicts the onset
of the actual spike. The update direction requires time to respond to changes in the gradient. When
Aupdate €xceeds 2 /m, the loss spike has already occurred.
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Figure DS: (a) Training loss and gradient norm over time. (b) Evolution of critical eigenval-
ues: original Hessian maximum eigenvalue Ay,.x(H}), preconditioned Hessian maximum eigen-

value )\max(ﬁt), gradient-directional eigenvalue )\grad(ﬁt) and update-directional eigenvalue
Aupdate (H¢) relative to 2/7.

CIFAR-10 Experiments
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We trained a convolutional neural network on CIFAR-10 using the Adam optimizer with hyperparam-
eters 1 = 0.9 and B2 = 0.999. The results are shown in Fig. To enable efficient computation of
the Hessian eigenvalues, 1,000 images were randomly selected from the CIFAR-10 dataset.
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Figure D6: Loss spike in CNNs on CIFAR10 for randomly sampled 1000 images. (a) Temporal evolu-
tion of training loss. (b) Progression of critical eigenvalue metrics: original Hessian maximum eigen-

value \p,ax (H¢), preconditioned Hessian maximum eigenvalue )\max(ﬁ +), and gradient-directional
eigenvalue Agroq (H) relative to the stability threshold % (black dashed line). (c) Temporal evolution

of gradient norm of different parameter blocks. (d) Lo-norm of second moment ||9;| of different
parameter blocks.

Transformer Models for Sequence Learning

6 x 10°
= Training Loss
Amax(H)

5% 10° Amax(F)
" Agra(He)
a
o —_2
— Gl

4x10°

-l ‘ il
0 5000 10000 15000 20000 25000 30000 35000
Iteration
(a) Eigenvalues
) ——— Loss

5x10 Agraa(He)(sustained)
n —_2
g
o
c
S 4x10°
@
p | | ‘ |

o

5000 10000 15000 20000 25000 30000 35000
Iteration

(b) Sustained

Figure D7: (a) Evolution of critical eigenvalues: original Hessian maximum eigenvalue \yax (H}),
preconditioned Hessian maximum eigenvalue )\max(ﬁ ) and gradient-directional eigenvalue
)\grad(ﬁ +) relative to 2/7. (b) The “sustained spike predictor” evolution: )\grad(ﬁ +)(sustained) =
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For the experiment illustrated in Fig.[7] Fig. presents the complete evolution of all eigenvalues,
along with detailed views of each spike in Fig.[/(c-e) and Fig.[D8(a-d).

As depicted in Fig. m a-d), we found that transient periods where )\max(ﬁ +) and )\grad(fI +) exceed

2/n are insufficient to induce a spike. Loss spikes only materialize when Agraq (H;) remains above
the threshold for a sustained duration. This observation aligns with stability analysis principles,
which suggest that loss increases exponentially only after persistent instability, with isolated threshold
violations being insufficient to trigger rapid loss elevation. Based on this insight, we formulated a
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“sustained spike predictor” defined as:

Agrad (H) (sustained) = min(Agrad (Fy—1), Agrad (F¢); Agraa (Fli41)).-

This refined predictor demonstrates perfect correspondence with loss spike occurrences, as shown by
the orange line in Fig.[D7|b).
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Figure D8: Detailed inspection of loss spike intervals showing the maximum eigenvalues of the
original Hessian Ay,ax (H ), preconditioned Hessian Amax (H}), and Agraq (Hy).

Controlling Adaptive Preconditioners to Eliminate Spikes

We discovered that the epsilon parameter (¢) in Adam plays a critical role in modulating loss spike
behavior. Specifically, using a larger ¢ significantly reduces spike severity by effectively imposing an
upper bound on the preconditioned eigenvalues. Additionally, we experimented with component-wise
clipping of v;, where elements falling below a specified threshold are clipped to that threshold value.
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Figure D9: The training loss with the same experiment settings as Fig. |5} (a) The only difference
of the orange solid line is that we change the ¢ in Adam to 0.1 at epoch 184 where the loss in the
original training process begin to spike. (b) The orange solid line is the training loss that we change
the ¢ to 0.1 at the beginning of the training. The blue solid line is the training loss that we clip the v

in Adam

to 0.01.



As shown in Fig.[D9|a), locally increasing ¢ during training can effectively suppress loss spikes.
Fig. [D9(b) further demonstrates that increasing e or applying v; clipping from the beginning of
training can also mitigate spike behavior, although this may come at the cost of slower convergence.

E Experimental Setup

All experiments were conducted on 1 NVIDIA RTX 4080 GPU. The runtime varied across tasks,
ranging from a few minutes for smaller models to several days for large-scale training.

Computing the full Hessian matrix for large-scale neural networks is computationally prohibitive
due to its quadratic memory complexity. To address this challenge, we employ an efficient power
iteration method combined with Hessian-vector products that leverages automatic differentiation,
circumventing the explicit construction of the complete Hessian matrix.

Setup for Fig.[d] We validate the proposed loss spike predictor using a two-layer fully connected
neural network trained on 20 data points to fit the one-dimensional target function f(z) = sin(z) +
sin(4x). For panels (a)-(b), we use a hidden layer size of m = 20 with all parameters initialized
from a Gaussian distribution (1 = 0, 0 = m~%%) and train using gradient descent with learning rate
n = 0.08. For panels (c)-(d), we use a hidden layer size of m = 100 with all parameters initialized
from a Gaussian distribution (1 = 0, 0 = m~!) and train using Adam with learning rate = 0.01,
81 =0.9, and B2 = 0.999.

Setup for Fig. 5| and Fig. [[(a). We trained two-layer fully connected neural network applied
to a high-dimensional function approximation task. The target function is defined as f*(x) =
w* Tz + = " diag(v*)x, where w*, v* € R are the ground-truth parameters and = € R°° denotes
the input features. A total of n = 200 data points are sampled, with inputs drawn from a standard
Gaussian distribution. Gaussian noise with standard deviation € = 0.1 is added to the outputs. The
network has a hidden layer width of m = 1000, placing it in the over-parameterized regime. All
weights are initialized from a Gaussian distribution A/ (0, %) Training is performed using full-batch
Adam with a learning rate of 77 = 0.02, and momentum parameters 5; = 0.9, 52 = 0.999.

Setup for Fig.[6|and Fig.[[(b). We trained a convolutional neural network on the CIFAR-10 dataset.
For computational tractability in computing Hessian eigenvalues, we restricted the training set to 50
randomly sampled images. The network contains approximately 500, 000 parameters and is trained
using Mean Squared Error (MSE) loss with one-hot encoded labels. Optimization is performed using
full-batch Adam with a learning rate of n = 0.001 and default momentum parameters 5; = 0.9,
B2 = 0.999.

Setup for Fig. [7]and Fig.[T(d). We implemented an 8-layer standard Transformer with approx-
imately 10 million parameters. The model is trained on a synthetic dataset designed to learn
compositional rules from sequences (Zhang et al} [2025)), consisting of 900, 000 sequences. Training
uses a batch size of 2048 and follows the next-token prediction paradigm with cross-entropy loss. The
learning rate follows a linear warm-up phase followed by cosine decay. Optimization is performed
using Adam with $; = 0.9 and 8y = 0.999.

Setup for Fig. DI]and Fig.[T[(c). We further evaluate our theoretical insights using 4-layer and
12-layer standard Transformers trained on a synthetic classification task. The dataset is constructed
to learn a specific anchor rule (3x — z) from sequences (Zhang et al., 2025), comprising 2, 000
sequences. The model is trained using cross-entropy loss. The learning rate follows a linear warm-up
followed by cosine decay. Adam is used for optimization with 5; = 0.9 and 32 = 0.999.
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