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Abstract

A supervised learning problem is to find a function in a hypothesis function space given values on
isolated data points. Inspired by the frequency principle in neural networks, we propose a Fourier-
domain variational formulation for supervised learning problem. This formulation circumvents the
difficulty of imposing the constraints of given values on isolated data points in continuum mod-
elling. Under a necessary and sufficient condition within our unified framework, we establish the
well-posedness of the Fourier-domain variational problem, by showing a critical exponent depend-
ing on the data dimension. In practice, a neural network can be a convenient way to implement our
formulation, which automatically satisfies the well-posedness condition.

Keywords: Fourier-domain variational problem, well-posedness, critical exponent, frequency prin-
ciple, supervised learning

1. Introduction

Supervised learning is ubiquitous. In a supervised learning problem, the goal is to find a function in
a hypothesis function space given values on isolated data points with labels. In practice, Deep neural
network (DNN), although with limit understanding, has been a powerful method. A series of works
provide a good explanation for the good generalization of DNNs by showing a Frequency Principle
(F-Principle), i.e., a DNN tends to learn a target function from low to high frequencies during the
training (Xu et al., 2019, 2020; Rahaman et al., 2019). The F-Principle shows a low-frequency
bias of DNNs when fitting a given data set. In the neural tangent kernel regime (Jacot et al., 2018;
Lee et al., 2019), later works show that the long-time training solution of a wide two-layer neural
network is equivalent to the solution of a constrained Fourier-domain variational problem (Zhang
etal., 2019; Luo et al., 2020).

Inspired by above works about the F-Principle, in this paper, we propose a general Fourier-
domain variational formulation for supervised learning problem and study its well-posedness. In
continuum modelling, it is often difficult to impose the constraint of given values on isolated data
points in a function space without sufficient regularity, e.g., a LP space. We circumvent this diffi-
culty by regarding the Fourier-domain variation as the primal problem and the constraint of isolated
data points is imposed through a linear operator. Under a necessary and sufficient condition within
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our unified framework, we establish the well-posedness of the Fourier-domain variational problem.
We show that the well-posedness depends on a critical exponent, which equals to the data dimension.
This is a stark difference compared with a traditional partial differential equation (PDE) problem.
For example, in a boundary value problem of any PDE in a d-dimensional domain, the boundary
data should be prescribed on the (d — 1)-dimensional boundary of the domain, where the dimension
d plays an important role. However, in a well-posed supervised learning problem, the constraint is
always on isolated points, which are O-dimensional independent of d, while the model has to sat-
isfy a well-posedness condition depending on the dimension. In practice, a neural network can be
a convenient way to implement our formulation, which automatically satisfies the well-posedness
condition. With a clear understanding of its posedness, the Fourier-domain variational formulation
also provides insight for designing methods for supervised learning problems.

The rest of the paper is organized as follows. Section 2 shows some related work. In section 3,
we propose a Fourier-domain variational formulation for supervised learning problems. The neces-
sary and sufficient condition for the well-posedness of our model is presented in section 4. Section 5
is devoted to the numerical demonstration in which we solve the Fourier-domain variational problem
using band-limited functions. Finally, we present a short conclusion and discussion in section 6.

2. Related Works

Our work, as a modelling for supervised learning, is related to the point cloud interpolation problem
which belongs to semi-supervised learning. One of the most widely used methods for the point cloud
problems is the 2-Laplacian method (Zhu et al., 2003), which is an approach based on a Gaussian
random field and weighted graph model. But it has been observed (El Alaoui et al., 2016; Nadler
et al., 2009) that when the number of unlabeled data point is large, the graph Laplacian method is
usually ill-posed. A new weighted Laplace method was proposed to overcome this shortcoming of
the original 2-Laplacian method (Shi et al., 2017). Calder and Slepev (2019) further considered a
way to correctly set the weights in Laplacian regularization with a exponent « > d and proved the
well-posedness of the corresponding continuum model in the large-sample limit. We remark that
our continuum model is proposed for the case of finite number of data points, i.e., n < +00, not the
large-sample limit case.

From extensive synthetic and realistic datasets, frequency principle is proposed to characterize
the training process of deep neural networks (Xu et al., 2019; Rahaman et al., 2019; Xu et al., 2020).
A series of theoretical works subsequently show that frequency principle holds in different settings,
for example, a non-NTK (neural tangent kernel) regime with infinite samples (Luo et al., 2019) and
the NTK regime with finite samples (Zhang et al., 2019; Bordelon et al., 2020; Luo et al., 2020) or
infinite samples (Cao et al., 2019; Ronen et al., 2019). E et al. (2020) show that the integral equation
would naturally leads to the frequency principle. The frequency principle inspires the design of deep
neural networks to fast learn a function with high frequency (Liu et al., 2020; Wang et al., 2020b;
Jagtap et al., 2020; Cai et al., 2019; Biland et al., 2020; Li et al., 2020; Wang et al., 2020a).

3. Fourier-domain Variational Problem for Supervised Learning

3.1. Motivation: Linear Frequency Principle

In the following, we consider the regression problem of fitting a target function f € C.(R?).
Clearly, f € L2(R%). Specifically, we use a DNN, hpxn(x, 0(t)), to fit the training dataset
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{(@i,yi)}_, of n sample points, where x; € RY, y; = f(=;) for each i. For the convenience
of notation, we denote X = (x1,...,2,)T, Y = (y1,...,yn)T. It has been shown in (Jacot et al.,
2018; Lee et al., 2019) that, if the number of neurons in each hidden layer is sufficiently large, then
|6(t) — 0(0)|| < 1 for any ¢t > 0. In such cases, the the following function

h(z,8) = hpnn(x, 00) + Vohpan (x,00) - (0 — 6p),

is a very good approximation of DNN output hApnn (x, 8(t)) with 8(0) = 6y. Note that, we have
the following requirement for hpnyn which is easily satisfied for common DNNs: for any 8 € R™,
there exists a weak derivative of hpn (-, @g) with respect to 8 satisfying Vohpnn (-, 8p) € L2(R?).

Inspired by the F-Principle and the linear dynamics in the kernel regime, (Zhang et al., 2019;
Luo et al., 2020) derived a Linear F-Principle (LFP) dynamics to effectively study the training
dynamics of a two-layer ReLU NN with the mean square loss in the large width limit. Up to a
multiplicative constant in the time scale, the gradient descent dynamics of a sufficiently wide two-
layer NN is approximated by

O F[ul (€, 1) = — (7(€))*Flu,)(6), (1)

where u(x,t) = h(x,t) — hiarget(€), up(x) = u(x,t)p(x). We follow this work and further
assume that p(z) = 13", §(x — @;), accounting for the real case of a finite training dataset
{(wi’ yi)}?:l’ and

(0)® (0)*r(0)
(7(5))2 = Ea(0)r(0) [167:;”5”%3 461%2‘{7’”’%1} )

where 7(0) = |w(0)| and the two-layer ReLU NN parameters at initial a(0) and w(0) are random
variables with certain given distribution. In this work, for any function g defined on R%, we use the
following convention of the Fourier transform and its inverse:

Flgl(€) = /Rd g(x)e ™€ 4z g(x) = 5 Flgl(€)e*™ =€ gg.

Different from F[u(£,t) on the left hand side, the formula on the right hand side reads as

n

Flupl(§,t) = Flu(- 1)p(-)I(§,t) = %}" [Z (h(-,0(t)) — i) o(- — wi)] (& 1),

i=1

which incorporates the information of the training dataset. The solution of the LFP model (1) is
equivalent to that of the following optimization problem in a proper hypothesis space F’,

min, [ (2©)FE) ~ Flhual O de,

h_hini GF’Y

subject to constraints h(xz;) = y; fori = 1,...,n. The weight (y(£))~2 grows as the frequency &
increases, which means that a large penalty is imposed on the high frequency part of h(x) — hini ().
As we can see, a random non-zero initial output of DNN leads to a specific type of generalization er-
ror. To eliminate this error, we use DNNs with an antisymmetrical initialization (ASI) trick (Zhang
et al., 2020), which guarantees hin;(€) = 0. Then the final output h(x) is dominated by low fre-
quency, and the DNN model possesses a good generalization.
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3.2. Fourier-domain Variational Formulation

Inspired by the variational formulation of LFP model, we propose a new continuum model for the
supervised learning. This is a variational problem with a parameter o > 0 to be determined later:

win Qull] = [ (€7 17l de. @
eH Rd

s.t. h(ml) = Yi, 1= 1, ey, (3)
where (¢) = (1 + ||&]? )2 is the “Japanese bracket” of € and H = {h(z)] fRd )] d¢ <

oo}. Note that in the spatial domain, the evaluation on n known data points is meamngless in the
sense of L? functions. Therefore, we consider the problem in the frequency domain and define
a linear operator Px : L'(R%) N L?(R?) — R™ for the given sample set X to transform the
original constraints into the ones in the Fourier domain: Px ¢* = Y. More precisely, we define for

¢ € LY(RY) N L2(RY)

Pxoi= ([ o@ememag . [ o@emeenag) @

The admissible function class reads as
Axy = {6 € L'RYH N L*RY) | Pxp=Y}.

Notice that | F~1[g]| , o e = (Jpa(&)*|0(&)* d€) % is a Sobolev norm, which characterizes the
regularity of the final output function h(xz) = F~![¢](x). The larger the exponent « is, the better
the regularity becomes.

For example, when d = 1 and o« = 2, by Parseval’s theorem,

1
lully = [ A+ EPIFLIOP e = [ o+ (5 1Tu da,

Accordingly, the Fourier-domain variational problem reads as a standard variational problem in
spatial domain. This is true for any quadratic Fourier-domain variational problem, but of course our
Fourier-domain variational formulation is not necessarily being quadratic. The details for general
cases (non-quadratic ones) are left to future work. For the quadratic setting with exponent «, i.e.,
Problem (2), it is roughly equivalent to the following spatial-domain variational problem:

min/ (u? + |V2ul?) dz
R4

This is clear for integer «v/2, while fractional derivatives are required for non-integer «/2.
Back to our problem, after the above transformation, our goal is transformed into studying the
following Fourier-domain variational problem,

Problem 1 Find a minimizer ¢* in Ax y such that

¢* € arg &rgixr{yﬂf‘l[qb]llz%- )
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This formulation is novel in the following two aspects:

1. We regard F|[h] as the primal solution.

2. The evaluation on the sample points x;’s are imposed by the linear operator Px.
Now we explain the importance of these new viewpoints for our task.

Traditionally, we all considered the problem in & — y space, the spatial domain. Recently, by
the understanding of F-Principle (Xu et al., 2019, 2020; Luo et al., 2020; Zhang et al., 2019), we
believe that if DNN is used to fit the data, it is more natural to consider the problem in the frequency
domain. In particular, the functions defined on Fourier domain are assumed to be primal. And our
variational problem is asked for such functions.

We remark that the operator Px is the inverse Fourier transform with evaluations on sample
points X. Actually, the linear operator Px projects a function defined on R? to a function defined
on 0O-dimensional manifold X. Just like the (linear) trace operator 7" in a Sobolev space projects a
function defined on d-dimensional manifold into a function defined on (d — 1)-dimensional bound-
ary manifold. Note that the only function space over the O-dimensional manifold X is the n-
dimensional vector space R™, where n is the number of data points, while any Sobolev (or Besov)
space over d-dimensional manifold (d > 1) is an infinite dimensional vector space.

4. Existence and Non-existence of Fourier-domain Variantional Problems

In this section, we consider the existence/non-existence dichotomy to Problem 1. In subsection 4.1,
we prove that there is no solution to the Problem 1 in subcritical case o < d. The supercritical case
« > d will be investigated in subsection 4.2, where we prove the optimal function is a continuous
and nontrivial solution. All proof of propositions and theorems in this section can be found in
Appendix.

4.1. Subcritical Case: o < d

In order to prove the nonexistence of the solution to the Problem 1 in o < d case, at first we need to
. d
find a class of functions that make the norm tend to zero. Let ¢, (&) = (27)2 0% 27 IlEI* | then

ll]]
by direct calculation, we have F~1[1),](x) = e 202 . For a < d the following proposition shows
that the norm || F~1[t),] ||§{% can be sufficiently small as o — 0.

Proposition 1 (critical exponent) For any input dimension d, we have

0, a < d,

. —1 2 _

;%“f [wU]HH% - Cda o = dv (6)
oo, «>d.

Here the constant Cy = %(d — 1)!(27r)—d12{d7722) only depends on the dimension d.

Remark 1 The function F~'[¢)] can be any function in the Schwartz space, not necessarily Gaus-
sian. Proposition 1 still holds with (possibly) different C.

For every small o, we can use n rapidly decreasing functions F~1[¢),](x — x;) to construct the
solution F~![¢,](x) of the supervised learning problem. However, according to Proposition 1,
when the parameter ¢ tends to 0, the limit is the zero function in the sense of L?(R?). Therefore we
have the following theorem:
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Theorem 1 (non-existence) Suppose thatY # 0. For o < d, there is no function ¢* € Ax y
satisfying
*carg min [|[F ]2 .
o cars min |F(oll

In other words, there is no solution to the Problem 1.

4.2. Supercritical Case: o > d

In this section, we provide a theorem to establish the existence of the minimizer for Problem 1 in
the case of a > d.

Theorem 2 (existence) For o > d, there exists ¢* € Ax y satisfying
* . —1 2
€ arg min ||F a.
6 carg min |70l
In other words, there exists a solution to the Problem 1.

Remark 2 Note that, according to the Sobolev embedding theorem (Adams and Fournier, 2003;

Evans, 1999), the minimizer in Theorem 2 has smoothness index no less than [O‘T_d]

5. Numerical Results

In this section, we illustrate our results by solving Fourier-domain variational problems numerically.
We use uniform mesh in frequency domain with mesh size A£ and band limit M A&. In this discrete
setting, the considered space becomes R(2M )" We emphasize that the numerical solution with this
setup always exists even for the subcritical case which corresponds to the non-existence theorem.
However, as we will show later, the numerical solution is trivial in nature when o < d.

5.1. Special Case: One Data Point in One Dimension

To simplify the problem, we start with a single point X = 0 € Z with the label Y = 2. Denote
oj = ¢(&;) for j € Z. We also assume that the function ¢ is an even function. Then according to
the definition of Px, we have the following problem:

Example 1 (Problem 1 with a particular discretization)

M
i 14 A2 |¢,]?
Join ) (L4 77A8) (017, (7
7=1
M
s.t. Z¢jA§:1, (8)
j=1

where we further assume ¢9 = ¢(0) = 0. If we denote ¢ = (é1,P2,...,0nm)", b = Aig’ A=

(1,1,...,1) € RM and
(14 12A¢%)7
i (1+22A¢%)%

(14 M2Ag%)T
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In fact this is a standard Tikhonov regularization (Tikhonov and Arsenin, 1977) also known as ridge
regression problem with the Lagrange multiplier A\. The corresponding ridge regression problem is,

min |A¢p —bl|5 + [T |3, 9)

where we put \ in the optimization term || T'¢||3, instead of the constraint term || A¢ — b||3. This
problem admits an explicit and unique solution (Tikhonov and Arsenin, 1977),

$=(ATA+TITT) " ATh. (10)

Here we need to point out that the above method is also applicable to the case that the matrix I' is
not diagonal.

Back to our problem, in order to obtain the explicit expression for the optimal ¢ we need the
following relation between the solution of the ridge regression and the singular-value decomposition
(SVD).

By denoting I'=1Tand

A=Ar"'= \% ((1 +12AE%) T, (1+22A8H)7, ..., (1+ M2A§2)%) :

where I is the diagonal matrix, the optimal solution (10) can be written as
. -1 L. -1 . -
¢ =(r7)"! (ATA + I> r1ATh = (P7)"! (ATA + I) ATh = (D7) g,

~ - -1 . - .
where ¢ = <ATA +1I > ATb is the solution of ridge regression with A and I'. In order to
obtain the explicit expression for ¢ we need the following relation between the solution of the ridge

regression and the singular-value decomposition (SVD).

Lemmal If T = I, then this least-squares solution can be solved using SVD. Given the singular
value decomposition

A=UXVT,

with singular values o;, the Tikhonov regularized solution can be expressed aspects

¢ =VDUT,
where D has diagonal values
Dy = —
23 O_ZQ _"_ 17

and is zero elsewhere.

Proof In fact, ¢ = (ATA + I'"T) ' ATh = V(ETS + 1I)"'VTVETUTH
= V. DUTb, which completes the proof. |

-~ 1 a =
Since AAT = X ij‘il(l + j2A¢?)"2, we have A = UL VT with

=

M
U=1, Z (1+ j2A8?) —32 = Z/\/X,
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V= ((1 F12AEY) T8 /7, (1 + 22A2) 5 /7, (1 + M2A£2)_%/Z)T.
Then we get the diagonal value
_Z/VX
22N+ 1
Therefore, by Lemma 1

- 1/VA

_ _ 2 A ¢2)— 2 2 A ¢2\— % 27 ¢2)-2\T
d)-VDUb—ZQ//\Jrl((lJrlA{) (1422075, (1 + M2AE2) )b.

Finally, for the original optimal solution

1

p=T7)"'¢p= A ((1 F12AE)7E, (14 22A62)7 5, (1 + M2A§2)—%)T’

which means N
(1+2A8%) 2
(Z2 + N)AE

To derive the function in x space, say h(z) then

¢; =

1 M

h(z) = (Z2Z+ N ‘ZM(l + AL T

=]

2

(Z2+A) (1+.]2A§2)_%COS(27TJ1') (11)

J=1

Fig. 1 shows that for this special case with a large M, h(x) is not an trivial function in o > d
case and degenerates to a trivial function in o < d case.

5.2. General Case: n Points in d Dimension
Assume that we have n data points 1, s, ..., x, € R< and each data point has d components:
x; = (Ti1, Ti2, . . ., Tig)"

and denote the corresponding label as (y1,y2, - .., yn)'. For the sake of simplicity, we denote the
vector (j1,j2,- -+ ,ja)T by Jj,.. j,- Then our problem becomes

Example 2 (Problem 1 with general discretization)

M
. & 2
min 3 (T alPA)E (65l (12)
PEREIT g1, da=—M
M -
s.t. > Girga AT~y =12, .d (13)
Jiyenja=—M
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2.04 — a=0.5
1.5
2 1.01
e
0.5 J
0.0 ~
-1.0 -0.5 0.0 0.5 1.0

X

Figure 1: Fitting the function h(x) shown in equation (11) with different exponent o’s. Here we
take M = 105, A¢ = 0.01, A = 1 and different o and observe that h(x) is not an trivial function in
«a > d case and degenerates to a trivial function in o < d case.

The calculation of this example can be completed by the method analogous to the one used in
subsection 5.1. Let

Aj = <e2WiA5JIM*M---*Mmj, R ,eQﬂ—iAgJJTlJQ“-jdwj’ .. ’e2WiA€J]1\-/[M”.JWm]'>T ,7=1,2,...,n,
(14)
A= (Ay, Ay, .. AT eRCM b — () yy L y,)T € RV (15)
’ e d d
L=\ (14 [|Jjy o lIPAE2) 5 € REM)TxEM)T, (16)

We just need to solve the following equation:
¢=(ATA+TTT) ' ATh. (17)
Then we can get the output function h(x) by using inverse Fourier transform:

M
hz)= > e A e (18)
Jtyja=—M

Since the size of the matrix is too large, it is difficult to solve ¢ by an explicit calculation. Thus we
choose special n, d and M and show that h(z) is not a trivial solution (non-zero function).

In our experiment, we set the hyper-parameter M, o, A, A€ in advance. We set A = 0,5, A =
0.1 in 1-dimensional case and A\ = 0.2, A¢ = 0.1 in 2-dimensional case. We select two data
points {(—0.5,0.9),(0.5,0.9)} as the given points in 1-dimensional case and four points as given
points in 2-dimensional case whose second coordinates are 0.5 so that it is convenient to observe
the phenomenon. At first, we use formula (14), (15) and (16) to calculate matrix A, T’ and vector b.
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1.2 1.2
1.0 1.01
0.81 0.81
—~ 0.61 —~ 0.61
X X
< 041 < 044
0.21 0.21
— M=5 —— M=1000 — M=3 —— M=100
0.0 — M=10 % data point 0.0 — M=10 * data point
—— M=100 — M=25
-0.2 : : . -0.2 : , ,
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X
(a) 2 points in 1 dimension (b) 20 points in 2 dimension

Figure 2: Fitting data points in different dimensions with different band limit M. We use a proper
a (o > d) and observe that even for a large M, the function h(x) does not degenerate to a trivial
function. Note that the blue curve and the red one overlap with each. Here the trivial function
represents a function whose value decays rapidly to zero except for the given training points.

Then from the equation (17) we can deduce vector ¢. The final output function h(x) is obtained by
inverse discrete Fourier transform (18).

In Fig.2, we set o = 10 in both cases to ensure o > d and change the band limit M. We observe
that as M increases, the fitting curve converges to a non-trivial curve. In Fig.3, we set M = 1000
in 1-dimensional case and M = 100 in 2-dimensional case. By changing exponent «, we can see in
all cases, the fitting curves are non-trivial when o > d, but degenerate when o < d.

6. Conclusion

In this paper, we study the supervised learning problem by proposing a Fourier-domain variational
formulation motivated by the frequency principle in deep learning. We establish the sufficient and
necessary conditions for the well-posedness of the Fourier-domain variational problem, followed by
numerical demonstration.

Our Fourier-domain variational formulation provides a novel viewpoint for modelling machine
learning problem, that is, imposing more constraints, e.g., higher regularity, on the model rather
than the data (always isolated points in practice) can give us the well-posedness as dimension of
the problem increases. This is different from the modelling in physics and traditional point cloud
problems, in which the model is independent of dimension in general. Our work suggests a potential
approach of algorithm design by considering a dimension-dependent model for data modelling.

In contrast to the natural sciences, where models are usually derived from fundamental physical
laws, in data science, the story may be totally different: we may propose mathematical models based
on the algorithms of great practical success like DNNs. Afterwards, the continuum formulation and
its mathematical validation can be analyzed. This seems to be a new scientific paradigm, along
which our work plays a role as one step.

10
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1.0 1.0
p\_/—q
0.8 1 0.8 1
0.6 1 0.6 1
—~ 0.41 —~ 0.41
X X
< 021 < 0.2
0.0 1 . 0.0 1
—0.21 —— alpha=0.1 —— alpha=10 -0.21 — a=0.1 — a=10
— alpha=1 % data point — a=2 % data point
—-0.4 - : - -0.4 : . :
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X
(a) 2 points in 1 dimension (b) 20 points in 2 dimension

Figure 3: Fitting data points in different dimensions with different exponent a’s. We observe that
with a proper M, the function h(x) is not a trivial function for o« > d case and degenerates to a
trivial function for o > d case.
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Appendix A. Lemma 2

Lemma 2 Let the function 5 (§) = (27r)%0de_27r2“2”5”2, ¢ € R% We have

0, a < d,
At / 1€11%1¢0(€)Pdg = { Ca, a=d, (19)
o—0 R4

oo, a>d.

2

Here the constant Cg = 3(d — 1)!(277)‘61% only depends on the dimension d.

Proof In fact,

1im/ II£\“\wa(€)l2d£=hm/ 1€]|% (2m) 2024 o 1€ gg
00 JRd =0 JRrd

— Jim (2m) o / log|oe 1o (og)
o—0 R4

oo
. _ _ _ 2,2
= hm(27r)dad O‘/ rotd=le=4m " qr L wy,
0

o—0

o8

where wy = Fzrd) is the surface area of a unit (d — 1)-sphere.
2

Notice that

0 2.2 1 2,2 o 2,2

/ roz+d—1e—47r ™ dr = / Ta+d—le—47r ™ dr +/ Ta+d—le—47r ™ dr
0 0 1

& 2,.2 & 2,2
</ e 4T d?“—i—/ T[a}+de—4ﬂ' ™ qr
0 0

1 OO[]+d_422
= 3+/ rlTe ™ T dy
0

82
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and

([a1+d 1) (2)~ (1) [o] + dis odd,

] +d

2
(27)~ a]+d+1)(%) ([a] +d =1, [«a] + dis even.

D=

o0 2,2
/ rleltde=1mr qp —
0

Therefore, in both cases, the integral ;™ potd=1e=47*r* qp i finite. Then we have

w\%

o
i [ €10 dé = lim(am)iote [~y o
c—0 JRd ag—0 0
0, a<d,
B oo, a>d.
When o = d, it follows that

- d—1_—4x?r? L —2d
/ potd—le= 4™ qp = 5(2#) (d—1)L
0

Therefore

lim / €1 o (€)1 dg = 3 (d — 11(2m)

which completes the proof. |

Appendix B. Proof of Proposition 1

Proof Similar to the proof of Lemma 2, we have

lim || F [ ]2 ¢ = lim (27)%0% / (02 + |log|?) 2 e 171 q o)
o—0 H?2 o—0 Rd

o—0

= lim(QW)de_a/ rHo? +1?)2e AT Qg
0

For o < 1, the following integrals are bounded from below and above, respectively:
* d- —4 > d—1 _—4r3r?
/ ri= o +1%)%e 7”dr>/ rotd=le=dm " dr = ¢y > 0,
0 0
and
00 1 00
/ rd=1(o? +r) 4’Trdr</r (1+7’) 47”"dr+/ rd ((2r)) —Am*r?
0 0 1

1
< / (1 +r ) — 4722 dr + 9Q /-oo ra+dflef4ﬂ'2’]"2 dr
0 0

= (s < o0,
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where C1 = [ portd—le=4m*r? qp and Cy = fl d=1(142) 5 e=47°r* qr4-20 Jo© ot o4 .
Therefore, we obtain the results for the subcritical (v < d) and supercritical (o« > d) cases

o—0
0, a<d,
B oo, a>d.

For the critical case a = d, we have

o0
: —1 2 T d_d—a d— —4g2p2
;%H.F [wU]HH% = lim (27)% /0 rl(o? +1%)2e dr - wq

lim || F~ [1o][1%, 5
c—0

c—0

o0
_hm27rd/ J+T)7_47TTC17" Wy
0

[o@)
= lim (27) d

jme | -
‘I

()
2d 1 —47r r2 dr - wa + IIH%) |:(;(27T)d0'2/ ’,"2d—36_47T27’2 dT'wd+O(U2)
0

= lim (27) p2d=lo—4m?r? q,. Wy

O'*)O

1

= (- i(em) T

w\m

r(5)

Therefore the proposition holds. |

Appendix C. Proof of Theorem 1

Proof Given X = (z1,...,x,)Tand Y = (y1,...,yn)T, let A = (exp(—”wgif"lp)) be an
nxn

g
n X n matrix. For sufficiently small o, the matrix A is diagonally dominant, and hence invertible.

So the linear system Ag(?) = Y has a solution g(*) = (g§ ), géa), , gﬁﬁ) " Let

§) = > gl e Ty (g),

2
(4]

where ¢,(§) = (27r)5l<7"le_27r o*I€I” satisfying F1[t),] () = € 207 . Thus

_ == zzH

ZQ(U)F (@ — ) Zgz =

In particular, forall: =1,2,--- | n

2
|

F ool @i) =Y g7 =7 = (Ag)i =y
J

Therefore, ¢, € Ax y for sufficiently small o > 0.
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According to the above discussion, we can construct a sequence {¢1 }>°_, C Ax y, where
M is a sufficiently large positive integer to make the matrix A invertible. As Proposition 1 shows,

lim (|76 ]2 5 =0.

m——+00

Now, suppose that there exists a solution to the Problem 1, denoted as ¢* € Ax y. By definition,

—17 %7112 : —1 2 : —1 2 _
IF 6N < min 17l < lim 157601 =00

Therefore, ¢* (&) = 0 and Px ¢* = 0, which contradicts to the restrictive condition Px ¢* =Y for
the situation that Y # 0. The proof is completed. |

Appendix D. Proof of Theorem 2

Proof 1. We introduce a distance for functions ¢, 1) € L? (Rd):

dist(¢,¥) = |7 (6] = F ' [¥]] 5

Under the topology induced by this distance, the closure of the admissible function class Ax y

reads as
dist (-

Axy ={¢ € L'(R) NL*RY) | Pxp =Y}

2. We will consider an auxiliary minimization problem: to find ¢* such that

¢* €arg min [|F]ll,5- (20)
PEAX Y

Let m := inf , o—||F~ Yol a ;4 - According to the proof of Proposition 1 and Theorem 1, for a
small enough o > 0, the inverse Fourier transform of function

Zgl 727r1£ a:l (5)

[l=]]

has finite Sobolev norm ||]:_1[¢J]||H% < 00, where ¥, (&) satisfies F~1[1h,](z) = e 207, A =
(exp(_M)> and g(?) = <g§ ),géa)y 797(1 )) = A7'Y. Thus m < +oo.
nxn

202

3. Choose a minimizing sequence {¢;}3°, C Ax y such that
lim || F~'[o a =m.
Jim (|73l
By definition of the closure, there exists a function ¢, € Ax y for each k such that

1F~Hw) = F ol g <

==

Therefore {¢}}32, C Ax,y is also a minimizing sequence, i.e.,

. —1 .
Tim (|71 y] 5 = m.
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Then {F~![#]}22, is bounded in the Sobolev space H 2 (R?). Hence there exist a weakly conver-
gent subsequence {F 1[4y, ]}3°, and a function F~1[¢*] € H? (R?) such that

] = F1e*] in HZ(RY) as k — oc.
Note that

gs =M

m=inf |F ¢, s <IF 6", g <liminfl|F ¢y, ]|
PpeAx y H= e P *

where we have used the lower semi-continuity of the Sobolev norm of H 2 (R%) in the third inequal-
ity. Hence ||]-'_1[qb*]||H% =m.

4. We further establish the strong convergence that F~'[¢,, ] — F~![¢*] — 0in Hz (RY) as k —
co. In fact, since F ¢, ] — F1p*] in H2 (RY) as k — oo and limy_,o0 || F L[

nlll s =
m = | F~4[¢*]] ;5. we have
Jdim |7 fon] = F 0T g = lim (F7 (0w = FF o] = F N 0))
= gm FHon ] T onl) + (F0 F 0 = F oL F TS — (P F T 0n)
=m?m? = lim ((F7[on,], 77 07]) + (F (6], 7" [on,))

=m? +m? — (F "], F Y g"]) — (F o], F"]) = 0.

Here (-, -) is the inner product of the Hilbert space H 2 .
5. We have ¢* € L'(R) because

[l [ L e < pmign g ([ 2

1
where C' := (fRd @ dg) * < 400. Hence ¢* € L'(R%) N L2(R%) and Px ¢* is well-defined.
6. Recall that Px ¢, = Y. We have

1
3
> =Cm < 400,

Y —Px¢*| = lim |[Px¢n, — Pxo"|
k—+oc0

= lim ’ /R d(% — ¢*)emizE d&’

k—+o0
. (€)3 (bn, = 6") ormiae
N kgr-i{loo /Rd (&)2 ¢ ds‘

1t ok M 2
< Jim 1F o] = F 0 (/R B
=C lim [|F 7 én,] = F el ,p5 =0.

Hence Px¢* =Y and ¢* € Ax y.
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7. Note that

= inf .F_l a < inf f_l g<f_l* a =m.
m ¢GTX7Y\\ (9]l g < ¢ef\lx,yH 9l g < NIF (@71l pg =m

This implies that infyey o [|[F S]]l ,,4 = m and ¢* € argminge sy o | F[¢]]] which

H HS>
completes the proof.

18



	1 Introduction
	2 Related Works
	3 Fourier-domain Variational Problem for Supervised Learning
	3.1 Motivation: Linear Frequency Principle
	3.2 Fourier-domain Variational Formulation

	4 Existence and Non-existence of Fourier-domain Variantional Problems
	4.1 Subcritical Case: <d
	4.2 Supercritical Case: >d

	5 Numerical Results
	5.1 Special Case: One Data Point in One Dimension
	5.2 General Case: n Points in d Dimension

	6 Conclusion 
	A Lemma 2
	B Proof of Proposition 1
	C Proof of Theorem 1
	D Proof of Theorem 2

